
CS 159: Parallel Processing
Project 1

Lab Background:

The primary purpose of this first programming lab for CS159 is to demonstrate a basic system 
call utility, fork, to create multiple processes from a single source code program.  This will allow the 
student to experiment with the basic concepts of parallelism using a (hopefully) familiar and simple “C” 
programming environment.  However, because of output buffering and scheduling optimization done by 
the operating system, some preliminary information is needed before the gist of the fork lab is discussed.

This preliminary section explains and demonstrates some of the printing anomalies that may 
occur during project 1 due to process race conditions and buffered I/O.  The goal of the buffering 
provided by the standard 'C' I/O library routines is to use the minimum number of actual device-level 
read and write calls.  Also, the OS tries to do its buffering automatically for each I/O stream, obviating 
the need for the application to worry about it.  Unfortunately, buffering is the single most confusing 
aspect of the standard I/O library, especially when its actions are combined with a scenario where 
processes are being forked (as is done in this homework assignment).

'C' processes execute on top of the kernel (which is itself, a process).  Output generated by a 'C' 
process with a printf statement is buffered by the kernel before being routed to the hardware; that is, 
output generated by the 'C' process is stored by the kernel to a temporary buffer until a sufficient amount 
of it has been accumulated to warrant disrupting process execution with an I/O fault.  The system does 
this because it is more efficient for overall system performance to buffer I/O to minimize the number of 
I/O operations actually performed by the relatively slow physical devices (usually the disk).  Recall that 
every time a running process does an I/O, it voluntarily gives up the RUN state and is moved to the 
WAIT state while waiting for the relatively slow I/O to be performed.  This automatic, and seemingly 
ad-hoc and opportunistic optimization means that even though a process may have been coded by the 
programmer to print 5 bytes each time it goes through a 10-iteration loop, the system may in actuality 
perform just one write of 50 bytes after all 10 iterations through the loop have been completed.  
Typically, several printf statements can be executed by the process (and buffered by the kernel) before an 
actual write operation needs to be performed to a physical device or resource.  This minimizes the 
number of transitions a process will need to make to the WAIT state.

The system generally performs buffering when it "knows" that the output is a disk (a file) rather 
than the terminal, since a person never really has the opportunity to see the output of the disk (file) until 
the process generating the output is complete and the file closed.  Then, and only then, will the user 
typically open the file again for reading.  It doesn’t really matter if the file was written character-by-
character, or all at once in a single burst upon process completion.  Thus, the buffering is, in practicality, 
transparent to the user.  For example, such a scenario occurs whenever the output of a process is piped to 
a file via the UNIX shell command " > ".  Only after the program is complete will the user examine the 
output target file of the ">" shell command.  The file appears the same to the user independent of 
whether it is written in real-time or buffered by the system.

When the output is directed to a terminal however, the system "knows" that there is a person 
sitting in front of the device expecting output to occur in real time.  It then must actually perform the I/O 
operations as they occur.  This way, if a user prints 5 bytes each time a program goes through a loop (a 
common debugging technique), (s)he actually sees 5 bytes print out on the screen each time the program 
executes through the loop, rather than seeing 50 bytes print out all at once after all 10 iterations through 
the loop have been completed.  This may be important to the user because (s)he may be doing the 
incremental printing as a way of tracing the execution of the program.  In fact, we will be doing exactly 
this as part of the lab assignment.



The differing requirements of output directed to a terminal vs. that directed to a file lead to the 
following buffering rules: A new line feed will generally force the system to actually perform the output 
if the output device is the terminal; however, it typically will not force an I/O to be performed if the 
output device is a disk (file).  Error messages generated by the system need to be reported to the user as 
soon as possible and as close to the offending executable statement as possible.  Therefore, error 
messages cannot be buffered at all.

Thus, there are three types of buffering provided by the system:

1) Fully buffered.  In this case, actual I/O only takes place when the I/O buffer is 
filled.  Files that reside on disk are normally fully buffered by the standard I/O 
library.  The term "flush" describes the writing of a standard I/O buffer to a 
device.  The buffer can be flushed automatically by the kernel, or manually by the 
programmer via a call to the function fflush.  Printf behaves this way when 
directed to a disk.

2) Line buffered.  In this case, the standard I/O library performs I/O when a newline 
character is encountered on input or output.  This allows a program to output a 
single character at a time, but the actual I/O will take place only when the program 
finishes writing each line.  Line buffering is typically used on a stream when it is 
directed to a terminal.  Printf behaves this way when directed to a terminal.

3) Unbuffered.  Here, output generated by a program is written to the target output 
device in real-time.  The standard error stream, for example, is normally 
unbuffered.  This is done so that any error messages are displayed as quickly as 
possible, regardless of whether they contain a newline or not.  Write generally 
behaves this way -- or at least for this project we can think of it as being this way.

Based on the material presented in lecture, you should also realize that processes are selected 
from the ready queue as dictated by some scheduling algorithm.  Processes are executed in the order 
determined, not by the user, but by the scheduler.  If a single program spawns several concurrently active 
processes, the exact execution order of each process can be different (depending on system load, or even 
by sheer chance) for the program on different invocations of the exact same program code.

Normally, process scheduling is transparent to the end user.  The rules of output buffering are 
also designed to maximize system performance while being transparent to the end user.  However, when 
the randomness of process scheduling is combined with the "delayed" output effects of buffering, 
idiosyncrasies may arise and become apparent to the end user in the form of missing, out-of-order, or 
extraneous output.  These anomalous results are caused by some interesting race conditions that occur 
when multiple processes, each of which performs some printing (and each of whose output is being 
buffered), are actively running concurrently.  For example, when a parent process terminates, all of its 
children are terminated too.  Typically, buffers get emptied upon process termination; however, if 
several parent/child processes are running, it is possible that the parent process will terminate and orphan 
the child process before its output can be flushed.  The end user, in effect, experiences a situation where 
the child's output is lost.  Other execution scenarios can actually lead to output being replicated.

Fortunately, there are ways for a programmer to counter the effects of buffered I/O and the 
seemingly randomness of scheduling.  To obtain a more deterministic and consistent execution order for 
processes, the wait system call can be used to force a process to "pass up its turn" on the CPU until 
another process has a chance to catch up.  Also, output can be forced to occur, i.e., flushed by the user 
via the fflush(stdout) statement.  In these exercises, the wait statement will be used to force parents to 
wait (if necessary) for the child process to complete.  The utility of the fflush system call is also 
demonstrated.



1)  Execute the following 'C' program, first interactively, then by redirecting output to a file at the UNIX 
shell level with a ">".  Explain the difference between the output observed on the terminal and that 
contained in the target piped file.  [2 pts]

int main (void)
{ printf("Line 1 ..\n");

write(1,"Line 2 ",7); } Be sure there are 7 characters in "Line 2 "

2)  Execute the following 'C' program, first interactively, then by redirecting output to a file at the UNIX 
shell level with a ">".  Explain what has happened with the addition of the fflush system call.  [2 pts]

#include <stdio.h>
int main (void)
{ printf("Line 1 ..\n");

fflush(stdout);
write(1,"Line 2 ",7); } Be sure there are 7 characters in "Line 2 "

3)  Run the following 'C' program several times interactively.  Note the different execution order on 
different runs.

main ()
{ int pid;

int i;
for (i=0; i<3; i++){

if ((pid=fork()) <0 ) {printf("Sorry...cannot fork\n"); }
else if (pid ==0) {printf("child %d\n", i); }
else {printf ("parent %d\n", i); }
}

exit(0); }

To help you understand the intended behavior of this program, note the following explanation of 
the fork system call along with the important points regarding this particular program's process 
execution tree.  The system call fork( ) is called without any arguments and returns an integer process 
identification number (pid).  It causes the OS kernel to create a new process which is an exact duplicate 
of the calling process.  The new process is termed to be a child of the parent process.  The new child 
process is an exact clone of the parent.  It has the same data and variable values as the parent at the time 
fork was executed.  It even shares the same file descriptors as the parent.  The child process does not 
start its execution from the first instruction in the source code, but continues with the next statement 
after the call to fork.  That is, after the call, the parent process and its newly created offspring execute 
concurrently with both processes resuming execution at the statement immediately after the call to fork.

This leads to an intriguing predicament because if the parent and child are perfect clones, how 
does the child know it is a child and the parent know it is the parent ?  The only way to tell is to have 
each process immediately examine the return value of the fork call.  In the parent, a successful fork 
returns the process identifier (PID) of the new child.  The pid is set to a unique, non-zero, positive 
integer identifying the newly created child process for the parent.  In the child, fork returns a nominal 
value of 0.  The value of the pid enables a programmer to distinguish a child from its parent and to 
specify different actions for the two processes, usually via an IF or CASE statement.  A process can 
obtain its own pid and that of its parent using the getpid( ) and getppid( ) system calls respectively.  The 
typical method of spawning processes is as follows.  The main (parent) program executes a fork.  If the 
fork is successful, each process must now determine its identity (parent or child) by checking the value 
returned by fork.  Then, a branch in execution paths occurs as a function of the process type (parent or 
child) through a simple test of the return value of the fork system call.



The behavior of the fork may seem a little counterintuitive if you are being introduced to it for 
the first time.  The key to understanding it is to think in terms of processes instead of programs.  
Normally, when you produce a program, you think of each line of the source code text as being executed 
in a predictable sequence.  Typically, when you run the program, you run a single process on your source 
code.  However, when you think of processes, you have to think of each instance of your program 
behaving as an independent entity.  Each process may share the same program source code, but after 
forking, each process may pursue a completely different route through the program.  Also bear in mind 
that, on a uniprocessor implementing multiprogramming, there is only one CPU.  Therefore, only one 
process is really executing at any point in time, even though from a programmer perspective, they are 
running "concurrently".  Depending on the scheduling algorithm employed by the system, the parent and 
child processes can make progress at different rates of execution.

     In particular, for program 3, note the following:

* A process P in an iteration will continue and try to iterate with a value of i incremented by 1.  P 
will have generated a child C that will also try to iterate with a value of i incremented by 1.  We 
can represent the various processes with the tree:

                              P(0) 
                                | 
                +-------------------------------+ 
              P(1)                             C(0) 
                |                               | 
          +---------------+             +------------------+ 
        P(2)             C(1)         P(1)                C(1) 
          |               |             |                  | 
       *------+       +-------+     +-------+          +--------+ 
             C(2)    P(2)    C(2)  P(2)    C(2)      P(2)      C(2) 

* In this tree, each node is represented with the value of i at the time this process prints a 
message.

* Also, in this tree, when we go from a node N to its left successor, we go from one iteration to 
the next iteration of the process represented at N.

* When we go from a node N to its right successor, we are introducing the child of the process 
represented at N.

In what order are the 'nodes' of the process tree traversed ?  That is, left or right most, depth or breadth 
first and why ?  [3 pts]

4)  Making the minor changes to program 3 above needed to get the code below, execute the following 
'C' program several times interactively.

a) Explain how and why the order of the output from this program is different from that of 
program 3.  [3 pts]

main ()
{ int pid;

int i;
for (i=0; i<3; i++){

if ((pid=fork()) <0 ) {printf("Sorry...cannot fork\n"); }
else if (pid ==0) {printf("child %d\n", i); }
else {wait();

printf ("parent %d\n", i); }
}

exit(0); }



4b) Run the program several times while redirecting output to a file via ">".  First, note that the 
standard output is line buffered if it's connected to a terminal device, otherwise it's fully buffered.  When 
we run the program interactively, we get only a single copy of the printf lines because the standard 
output buffer is flushed by the newline.  However, when we redirect standard output to a file, we get 
multiple copies of some of the printfs.  What has happened in this case of full buffering is that a printf 
before a fork is called once, but the line "printed" remains in the buffer when fork is called.  This buffer 
is then replicated and inherited by the child process.  Both the parent and child now have a standard I/O 
buffer with the "printed" line in it.  Any additional printfs performed by the parent or child simply 
appends additional printed data to its (now separate) existing buffer.  When each process terminates, its 
copy of the buffer is finally flushed.

5)  Making the minor changes to program 4, execute the following 'C' program several times 
interactively, as well as several times while redirecting to a file.  Explain what has happened.  [3 pts]

#include <stdio.h>
main () {

int pid;
int i;
for (i=0; i<3; i++){

if ((pid=fork()) <0 ) {printf("Sorry...cannot fork\n"); }
else if (pid ==0) {printf("child %d\n", i);

fflush(stdout); }
else {wait();

printf ("parent %d\n", i);
fflush(stdout); }

}
exit(0);}

For the problems 1-5 above, provide a run-time trace (or a simple “print screen” snapshot) of 
the execution result(s) along with a written explanation documenting your observations of what the 
program did and why.  Your written explanation carries the heaviest weight in the evaluation of your 
answers for problems 1-5.  Simply providing printouts from the program is not sufficient.  In fact, it is 
not necessary to provide a printout of the source code from problems 1-5 because it is already given to 
you.

Note that you do not have to provide source code for problems 1-5; however, you do need to 
provide the source code for problems 6-8.

Now that the preliminaries have been discussed, the student is ready to write his/her own 
programs and experiment with forking.  In this exercise, the focus is on OS support of user process 
management tasks.  Specifically, in a multiprogrammed system where several processes can be active 
concurrently, functions are needed to enable user processes to:  1) create (fork) other processes, 2) 
coordinate (via wait and sleep) their execution sequences, and 3) communicate with (signal) each other.

For the following programs:  Hand in your source code listing and a printout showing that the 
program performs correctly for various test conditions.  Mark and label your printout using a 
pen/pencil/highlighter to identify the output of your program for given inputs.  Note that your 
documentation of how well your program performs under various test cases will be part of the 
evaluation criteria.  Simply handing in source code listings will not earn the student full credit.  
Although some information is provided below regarding the various system calls, you may find it useful 
to consult other reference documentation such as that contained on-line or in other books.  Note that 
you may also need to make use of the fflush and wait system calls as demonstrated in preliminary 
exercises 1 to 5 in order to make the redirected output appear correctly.



6)  Write a program that will create a child process.  Have the parent print out its pid and that of its child.  
Have the child print its pid and that of its parent.  Have the processes print informational messages 
during various phases of their execution as a means of tracing them.  A typical printout might contain the 
following output (not necessarily in this order).  [10 pts]

Immediately before the fork.  Only one process at this point.
Immediately after the fork.  This statement should print twice.
Immediately after the fork.  This statement should print twice.
I'm the child.  My pid is XXXX.  My parent's pid is XXXX.
I'm the parent.  My pid is XXXX.  My child's pid is XXXX.

7)  Write a program that will create a process tree structure as shown below.  Again, have the processes 
print informational messages to verify that their parent-child relationship is that as shown.  So processes 
B and C should both report the same parent pid (that of A).  Also, processes E, and F should both report 
the same parent pid (that of C) and D should report its parent as being B.  Label each node in the figure 
with the PID of the process your program creates.  [30 pts]

A

B C

D E F

8)  One way for a parent process to attack a very large problem might be to split it into several smaller 
pieces, create several new child processes, and allocate each child a piece of the problem.  In this and 
other scenarios, it is important that processes be able to synchronize with each other.  The wait(&status)
function provides one mechanism in which two processes can re-synchronize at some point in their 
executions.  It causes a parent process to be suspended until some child process terminates.  In some 
ways, it is a specialized version of the sleep(x) function which causes a process to suspend itself for x 
seconds.

Write a program that will create a child process.  Have the child sleep for 5 seconds; have the parent wait 
for the child to finish sleeping.  Put print messages in the program such that you can keep track of where 
each process is.  For example, the following strings would enable you to compare the time-based 
execution with and without the parent waiting.  [10 pts]

Child going to sleep.
Parent starting wait.
Child finished sleeping.
Parent finished wait.



9) You have access to CPU’s capable of performing at 1 MIP each.  Your goal is to design a new system 
that has 2 MIPs of performance.  You can either redesign 1 of the current processors such that it is twice 
as fast, or use two of the existing processors in a parallel processing fashion.  Which approach would 
generally give a better cost/performance ratio?  Use a simple diagram to defend your answer.  [3 pts]

10) One of the design goals of Instruction-Level Parallelism (ILP) was to make it transparent to the 
software layer; however, there are limitations as to how effective it is, and to what degree of 
aggressiveness or “look-ahead” it can be performed at.  What are the causes of the limitations and how 
do they arise?  [3 pts]

11)  What is HyperThreading, and what, if anything, should software programmers do to leverage it as 
effectively as possible.  [3 pts]

12) What are the micro-architecture and macro-architecture trends and HW design problems that have 
led to the need for programmers to explicitly express parallelism into their software ?  What are some of 
the challenges associated with directly exposing the underlying hardware parallelism to the software 
layer and programmers ? [3 pts]

13)  Describe the four Flynn Architecture Classifications.  Explain why the MISD configuration has 
traditionally thought of as non-sensible.  [3 pts]

14)  In some ways, the speedup from pipelining is “an illusion” because each instruction may actually 
take longer to complete in a pipelined machine as compared to a non-pipelined one.  Explain how and 
why this statement is true.  [3 pts]

b) Under extremely poor conditions, the pipeline could conceivably be stalled and flushed after 
every single instruction.  In this situation, how would the performance of the pipelined machine compare 
against that of the non-pipelined one?  Why?  [2 pts]

15)  Assuming that an instruction's execution is broken into four equal stages (FI, DA, FO, and EX), and 
that the pipeline is simply stalled and flushed in order to accommodate worst-case analysis on branches, 
show the pipeline schedule for the instruction stream below.  [5 pts]

S1: X = 5
S2: Y = X + X
S3: IF Y > 7 THEN GOTO S5
S4: A = B + C
S5: Z = X + Y

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14

S1

S2

S3

S4

S5



16) Assume a simple single instruction lookahead issuing scheme for instruction-level parallel 
processing while preserving apparent sequentiality in which the control unit issues consecutive 
instructions until a hazard is detected.  At that point, all issuing stops until the blocked statement can 
execute.  Show the instruction schedule for the stream S1 to S7 for the two multi-function hardware 
configurations below.  Also, show the statement number and type of hazard on which issuing is blocked 
for each time segment.

S1: A = B + C
S2: D = E + F
S3: G = A * Y
S4: Z = H + G
S5: W = I * J
S6: F = W * Z
S7: H = K * L

a) CASE 1:  Two adders and one multiplier unit available.  [2 pts]

Time 1 2 3 4 5

Adder 1

Adder 2

Multiplier

Hazard:

b) CASE 2:  Two adders and two multiplier units available  [2 pts]

Time 1 2 3 4 5

Adder 1

Adder 2

Multiplier 1

Multiplier 2

Hazard:

c) CASE 3:  Four adders and four multiplier units available  [2 pts]

Time 1 2 3 4 5

Adder 1

Adder 2

Adder 3

Adder 4

Multiplier 1

Multiplier 2

Multiplier 3

Multiplier 4

Hazard:



17)  Assume that a RAM memory chip has a 0.4 ms access time and 0.8 ms cycle time.  It takes the CPU 
0.2 ms to prepare a memory request and 0.2 ms to process the result.  The CPU can either prepare a 
memory request or process a result in parallel with the memory; however, it cannot prepare a request and 
process a result concurrently.  If an idle memory chip is available, the CPU can issue a request for the 
next operand (e.g. B) to it before actually receiving and processing a previously requested one (e.g. A) 
from another memory chip, but it must handle a result as soon as it becomes available from memory.

A worksheet is provided for each of the various degrees of interleaving showing time from 0 ms 
to 4 ms in 0.2 ms increments.  Assume a string of four operands (A - D).  Show the time at which each 
operand is prepared, memory accessed (including wait times), and handled.

a) Non-Interleaved [2 pts]

CPU Prepare

Memory

CPU Handle

b) Two-Way Interleaved [2 pts]

CPU Prepare

Memory 1

CPU Handle

Memory 2

c) Four-Way Interleaved [2 pts]

CPU Prepare

Memory 1

CPU Handle

Memory 2

Memory 3

Memory 4


