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ABSTRACT
This paper will examine parallel techniques for multiprocessor architectures and studies its implication for Java programs. We will overview basic techniques of program parallelization in traditional static compilers, followed by successful parallelizing compilers. Then we will study the efforts of Java virtual machines fused with parallelizing techniques. We will also look at how Java 8 has evolved to take advantage of parallel processing. Lastly, we will summarize the opportunities and challenges of parallelizing Java computing on multicore platforms.
1. INTRODUCTION

With the scaling of technology and diminishing return of complex uniprocessors, the computer industry is rapidly moving toward single-chip multi-core processors or chip multiprocessors (CMP). Compared to previous architectural improvements such as increasing clock frequency and extracting instruction level parallelism (ILP), today’s CMPs focus on improving throughput of multiple independent threads, which cannot transparently benefit single-threaded performance by hardware. Due to the complexity of these architectures, programmers are usually incapable of writing codes which are properly parallelized. Also, the portability of parallel programs has to be considered as well, since current hardware platforms are not unified. Therefore, a tool that parallelizes normal programs is strongly needed. Compilers, which process source code and generate machine codes, can extract abundant information from programs, are a good choice for this task.[14]
As early as 1980s, the question of automatic program parallelization has been proposed. Although at the time, there are only vector machines, multi-process computer and early prototype of multi-processor system that can be used for parallelism, the basic idea remains the same. The major issue of automatic parallelization is how to divide a sequential task (or program) into parallel tasks and finally, improve the performance by running them simultaneously on separate processors. A parallelizing compiler is designed to do this by generating parallelized machine code from sequential source codes.

Section 2 will cover static compiler techniques for automatic parallelization. Section 3 gives an overview of some parallelizing compilers. Section 4 examines the details of combining parallelizing compiler with Java virtual machines. Section 5 takes a look at Java 8 lets programmers benefit from multicore architecture. Section 6 summarizes the opportunities and challenges of applying parallelization techniques on JVMs. Section 7 is the conclusion.
2. Traditional Compiler Techniques for Automatic Parallelization
Dependence analysis[2] is an important topic in parallelization. Two tasks without dependence can be easily executed simultaneously. However, there is always some kind of dependence in sequential programs. How to eliminate or at least reduce the dependence is the goal of dependence analysis. There are basically two kinds of dependence: data and control dependence. The former comes from sequential instructions that access data, while the latter is due to branches in the program. For data dependence, a statement dependence graph is a useful tool to describe relations among instructions. Another tool is the iteration dependence graph, which is designed especially for loops. Based on these tools, a method called data-dependence computation is developed to resolve the dependence problems in single and nested loops. However, even today, it remains a challenge to get the accurate solution of data dependence in real-world sequential programs. On the other hand, control dependence can be converted to data dependence by replacing all if statements with assignment statements to Boolean variables. As a result, the same analysis can be performed as that is done for data dependence.
Another issue is program transformation[2], which is based on dependence analysis and generates parallelized codes. Firstly, there are several techniques for acyclic code. The common objective is to partition the acyclic statements into subsets and then execute them in parallel. The techniques are coarse-grain parallelization performed at thread-level, code compaction on instruction level, trace scheduling and percolation scheduling. Secondly, loops are taken care of by two types of parallelization. One generates heterogeneous parallel code, and the other constructs homogeneous parallel code by assigning the entire loop body to all the processing elements cooperating in the execution of the loop. There are also techniques such as changing order of iterations, privatization and induction variable elimination, which are used to improve data locality, give more flexibility to run-time scheduler or reducing cross-iteration dependence. Pointers are usually dealt with by compilers, referring to linear linked lists. For recursive programs, a technique called recursion splitting is developed to parallelize them.
3. Parallelizing Compilers
In the past two decades, a number of parallelizing compilers are being developed. Most are designed for static high level programming languages such as C and FORTRAN. These compilers aim to achieve competitive performance compared to carefully hand-coded parallel programs.
3.1 SUIF
Stanford University Intermediate Format (SUIF)[6] is a parallelizing compiler framework developed by Stanford University in 1990s. It is designed for parallelizing array-based numerical programs. SUIF compiler performs scalar and array analysis to detect and construct the parallelism in sequential programs. Furthermore, inter-procedural analysis is also introduced in SUIF to detect and partition better based on the data flow. It also optimizes memory behavior; in particular, cache performance. It tries to eliminate as many cache misses as possible, by:
· Ensuring that processors reuse the same data as many times as possible; and

· Making the data accessed by each processor contiguous in the shared address space.

3.2 POSH
POSH[7] applies Thread-Level Speculation (TLS), in which compilers do not need to fully prove the independence of concurrent tasks, but make choices of where and when to generate speculative tasks that are crucial to overall TLS performance.
POSH is developed based on gcc-3.5 with two design decisions. First, to partition the code into tasks, it leverages the code structures created by the programmer, namely subroutines and loops. Second, it uses a simple profiling pass to discard ineffective tasks. To enhance parallelism and data prefetching, POSH performs aggressive hoisting of tasks spawns. Moreover, it supports software value prediction. Finally, to maximize applicability, POSH targets a chip multiprocessor (CMP) architecture with relatively simple TLS hardware.

3.3 Pillar
Pillar[1] is a low-level language infrastructure which can be automatically generated from high-level source code. Pillar’s concurrency features include constructs for threading, synchronization, and explicit data-parallel operations. The threading constructs focus on creating new threads only when hardware resources are idle, and otherwise executing parallel work within existing threads, thus minimizing thread creation overhead. In addition to the usual synchronization constructs, Pillar includes transactional memory. Its sequential features include stack walking, second-class continuations, support for precise garbage collection, tail calls, and seamless integration of Pillar and legacy code.
4. Parallelizing Compilers and Techniques with Java VM
Studies of parallelizing compilers with Java virtual machine (VM) started in the 1990s, along with the development of both Java virtual machine and multicore architecture.
4.1 JAVAB

JAVAB[3] is one of the early attempts, which works on Java bytecode, the set of instructions that the Java VM executes, to automatically parallelize loops. JAVAB performs a bytecode-to-bytecode transformation that can be done at either compile-time or run-time, in order to automatically detect the implicit loop parallelism in bytecode and exploit the parallelism by means of the multi-threading mechanism provided by the JVM.

4.2 Jrpm

Java run-time parallelizing machine (Jrpm)[5] is a complete system for parallelizing sequential Java programs automatically. It is based on a chip multiprocessor (CMP) with thread-level speculation (TLS) support. Jrpm analyzes speculative buffer requirements and inter-thread dependencies of prospective speculative thread loops (STL) at run-time using dynamic compilation and hardware profiler, and detects the best loops to be parallelized. Once sufficient information has been collected to make a reasonable decision, selected loops are dynamically recompiled to run in parallel. Hardware profiler is used in Jrpm to ensure the correctness of dynamic parallelism analysis. Tracer for Extracting Speculative Threads (TEST) is hardware support in Jrpm that analyzes sequential program execution in real-time to find the best regions to parallelize. This system provides accurate estimates of dynamic dependency behavior, thread size, and buffering requirements that are needed for selecting good decompositions and that would be difficult to derive statically. The procedure of automatic parallelization in Jrpm consists of five steps:
· Identify possible thread decompositions by analyzing bytecodes and compile native with annotation instructions.

· Run annotated program sequentially, collecting TEST profile statistics on potential thread decompositions.

· Post-process profile statistics and choose thread decompositions that provide the best speedups.

· Recompile code with TLS instructions for selected thread decompositions.

· Run native TLS code.

The Just-In-Time (JIT) compiler in Jrpm intends to perform some optimizations that improves speculative performance, such as loop invariant register allocation, non-communicating loop inductors, reduction operator optimization, etc. On a CMP with four processors, Jrpm achieve speedups of 3-4 on floating point applications, 2-3 on multimedia applications, and between 1.5 and 2.5 on integer applications.

4.3 Pointer-based Dynamic Data Structure Programs

Chan and Abdelrahman[4] proposed an approach for the automatic parallelization of programs that use pointer-based dynamic data structures written in Java. The approach exploits parallelism among methods by creating an asynchronous thread of execution for each method invocation in a program. At compile time, methods are analyzed to determine the data they access, parameterized by their context. A description of these data accesses is transmitted to a run-time system during program execution. The run-time system utilizes this description to determine when a thread may execute, and to enforce dependence among threads. In their system, the execution of the program may be viewed as a set of threads executing concurrently, with each thread sequentially executing the body of its associated method, and creating more threads whenever it invokes methods.

4.4 Java VM and SIMD

Tefft and Lee[11] presented how to use the Java VM to implement Single Instruction Multiple Data (SIMD) architecture. Their simple idea is to utilize multi-thread JVM over multiprocessor system to process multiple data within one instruction cycle. Their motive is to reduce the complexity of the code and to ease implementation of parallelization by running a single set of instructions concurrently on an entire collection of objects.

4.5 Software-based Speculative Multi-threading

Pickett[9] applied software-based speculative multi-threading on sequential Java programs to achieve speedup on multiprocessors. Their initial profiling results indicate that three parallel optimizations are important, which are:
· Adaptive return value prediction

· On-line fork heuristics and

· In-order nested method level speculation
4.6 Heap based Data Dependence

Mark Marron et all.[8] presented a technique for precisely tracking heap based data dependence in nontrivial Java programs via static analysis. Using an abstract interpretation framework, the approach extends a shape analysis technique based on an existing graph model of heaps, by integrating read/write history information and intelligent memorization. Their work is based on a graph representation named abstract heap domain. Besides extending the heap graph, they also extend the intermediate representation to record read/write history of objects in the heap.
4.7 JEOPARD

JEOPARD[10] was proposed to provide the tools for platform-independent development of predictable systems that make use of Symmetric MultiProcessing (SMP) platforms. These tools will enhance the software productivity and reusability by extending technology that is established on desktop systems by the specific needs of multicore embedded systems. At the same time, Wellings[13] made a proposal of improving Real-Time Specification for Java (RTSJ). The main issues which need to be addressed for multiprocessor are:

· Dispatching model

· Allocation model

· Cost enforcement model

· Affinity of interrupts

· Failure model

5. Java 8
Java 8 brings many features that let you write code in more concise way[12]. Instead of writing code as follows:

Collections.sort(transactions, new Comparator<Transaction>(){
  public int compare(Transaction t1, Transaction t2){
    return t1.getValue().compareTo(t2.getValue());
  }
});
You can now write the following more compact code that does the same thing but reads a lot closer to the problem statement:

transactions.sort(comparing(Transaction::getValue));
The major features introduced are lambda expressions, method references and the new Streams API. It is considered the largest language change since the advent of Java 20 years ago. Not only do these features allow more concise code, they also let programmers benefit from multi-core architecture.
We will compare different methods to compute the variance of a large data set using:

1. An imperative style

2. The fork/join framework

3. The Streams API

The variance is used in statistics to measure how far a set of numbers is spread out. It can be calculated by averaging the squared difference from the mean of the set of numbers. For example, given the numbers 40, 30, 50, and 80 representing the ages of a population, we can calculate the variance by:
1. Calculating the mean: (40 + 30 + 50 + 80) / 4 = 50

2. Taking the square difference from the mean of the set of numbers: (40 - 50)² + (30 - 50)² + (50 - 50)² + (80 - 50)² = 1400

3. Finally averaging it: 1400 / 4 = 350

5.1 Imperative style
A typical imperative implementation of the variance formula is as follows:
public static double varianceImperative(double[] population){
   double average = 0.0;
   for(double p: population){
      average += p;
   }
   average /= population.length;
   double variance = 0.0;
   for(double p: population){
     variance += (p - average) * (p - average);
   }
   return variance/population.length;
}
It is imperative since it describes the computation in terms of a sequence of statements that change state. We are explicitly iterating through each element of the population array and updating two local variables (average and variance) at every iteration. This maps very straightforwardly to the instruction set of a single CPU.
5.2 Fork/Join framework

To develop a parallel version of this algorithm, we take advantage of the fork/join framework introduced in Java 7:

public class ForkJoinCalculator extends RecursiveTask<Double> {
   public static final long THRESHOLD = 1_000_000;
   private final SequentialCalculator sequentialCalculator;
   private final double[] numbers;
   private final int start;
   private final int end;
   public ForkJoinCalculator(double[] numbers, SequentialCalculator sequentialCalculator) {
     this(numbers, 0, numbers.length, sequentialCalculator);
   }
   private ForkJoinCalculator(double[] numbers, int start, int end, SequentialCalculator sequentialCalculator) {
     this.numbers = numbers;
     this.start = start;
     this.end = end;
     this.sequentialCalculator = sequentialCalculator;
   }
   @Override
   protected Double compute() {
     int length = end - start;
     if (length <= THRESHOLD) {
         return sequentialCalculator.computeSequentially(numbers, start, end);
     }
     ForkJoinCalculator leftTask = new ForkJoinCalculator(numbers, start, start + length/2, sequentialCalculator);
     leftTask.fork();
     ForkJoinCalculator rightTask = new ForkJoinCalculator(numbers, start + length/2, end, sequentialCalculator);
     Double rightResult = rightTask.compute();
     Double leftResult = leftTask.join();
     return leftResult + rightResult;
  }
}
Here we develop a RecursiveTask splitting an array of doubles until the length of a subarray doesn’t go below a given threshold. At this point the subarray is processed sequentially applying on it the operation defined by the following interface:

public interface SequentialCalculator {
  double computeSequentially(double[] numbers, int start, int end);
}
With this infrastructure it is possible to recalculate the variance in parallel as follows:

public static double varianceForkJoin(double[] population){
   final ForkJoinPool forkJoinPool = new ForkJoinPool();
   double total = forkJoinPool.invoke(new ForkJoinCalculator(population, new SequentialCalculator() {
     @Override
     public double computeSequentially(double[] numbers, int start, int end) {
       double total = 0;
       for (int i = start; i < end; i++) {
         total += numbers[i];
       }
       return total;
     }
  }));
  final double average = total / population.length;
  double variance = forkJoinPool.invoke(new ForkJoinCalculator(population, new SequentialCalculator() {
    @Override
    public double computeSequentially(double[] numbers, int start, int end) {
      double variance = 0;
      for (int i = start; i < end; i++) {
        variance += (numbers[i] - average) * (numbers[i] - average);
      }
      return variance;
    }
 }));
 return variance / population.length;
}
Even with the help of fork/join framework, the parallel version is significantly harder to write and debug than the sequential counterpart.

5.3 Parallel Streams

Java 8 lets you achieve this in a different way. Instead of writing how a computation should be implemented, you describe what it does in broad strokes using the Streams API. As a result, the library can figure out how to implement the computation for you and make use of various optimizations. This is known as declarative programming. In Java 8, a parallel stream is designed to leverage a multi-core architecture. Let’s see how we can use them to run calculate the variance in a faster way.

The first step is to create a stream from the population array. We can achieve this using the Arrays.stream() static method:

DoubleStream populationStream = Arrays.stream(population).parallel();
A DoubleStream supports the method average() which we can use:

double average = populationStream.average().orElse(0.0);
The next step is to calculate the variance which makes use of the average. Each element of the population needs first to have the average subtracted from it and the result squared. A map operation which transforms each element into another one using a lambda expression (double p) -> (p – average) * (p – average) achieves this. Once this is done we can calculate the sum of all resulting elements by calling the method sum().

However, streams can only be consumed once. If we re-use populationStream we will get an error:

java.lang.IllegalStateException: stream has already been operated upon or closed
So we need to get a second stream to calculate the variance as shown below:

public static double varianceStreams(double[] population){
   double average = Arrays.stream(population).parallel().average().orElse(0.0);
   double variance = Arrays.stream(population).parallel()
                              .map(p -> (p - average) * (p - average))
                              .sum() / population.length;
   return variance;
}
By making use of built-in operations in the Streams API we’ve rewritten our imperative style code in a declarative and concise way which reads almost like the mathematical definition of the variance. Let’s looks at the performance of the three versions of implementation.
5.4 Benchmark

We wrote the three versions of the variance algorithm in very different styles. The streams version is the most concise and is written declaratively, which allows the library to decide on an adequate implementation and leverage the multi-core infrastructure. A benchmark is created to calculate the variance of a population of 30 million random numbers between 1 and 140. We used jmh to investigate the performance of each version. Jmh is a Java harness supported by OpenJDK.

The benchmark was run on a Macbook Pro 2.3 Ghz quad-core Intel Core i7, with 16 GB 1600 MHz DDR3. In addition, we used the following version of JDK8:

java version "1.8.0-ea"

Java(TM) SE Runtime Environment (build 1.8.0-ea-b121)

Java HotSpot(TM) 64-Bit Server VM (build 25.0-b63, mixed mode)

The results are illustrated in the histogram below. The imperative version took 60ms, the fork/join version 22ms, and the streams version 46ms. While the Streams version is slower than the fork/join version, it is interesting to notice that adopting the declarative programming style opens the door for optimizations behind the scenes that are not possible in a strictly imperative style and in a much more straightforward way than is possible with fork/join.
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6. Opportunities and Challenges of Parallelizing Java in Multicore Platforms
There are several potential advantages in parallelizing with JVM. They are brought by unique features of the Java language and JVM, such as dynamic compilation, rich run-time information, good thread support, etc.
First of all, JVM provides dynamic compilation that is able to collect run-time information. Run-time information is normally unavailable for all kinds of parallelizing compilers based on C/FORTRAN. But with JVM, a dynamic parallelizing compiler can obtain the value of that variable before executing the loop body, and perform parallelization for that loop more efficiently.
Second, Java is a multi-thread-friendly language and JVM normally provides good support to multi-thread on multiprocessor. This feature simplifies the final step of parallelization, which generates multiple threads and executes them at the same time. It is also easier to balance loads among processors, as well as scheduling multiple threads with JVM built-in support.

Third, compilers on JVM work on bytecodes instead of source codes. Traditional parallelizing compilers need source code to do their analysis, which limits their usage from the programs without source code. Since all that JVM needs is just bytecode, parallelizing techniques can be applied to all Java programs without any limitation.

Finally, memory management in JVM makes it easier to analyze data dependency during parallelization. Java is a pure object oriented language, and all the objects in a JVM are stored and managed in either stacks or the heap, where no pointer is used like in C/C++ programs. This property helps to model memory behaviors of a Java program and makes dependency analysis simpler than that of a C/C++ program.
It is not easy to adopt existing approaches onto Java. There are also some major challenges to be resolved before parallelizing compilers work perfectly on JVMs.

The first challenge is to control run-time parallelization overheads. Traditional parallelizing compiler is normally off-line. No matter how long the off-line parallelizing compiler works, it does not affect the program’s execution time. However, since Java uses dynamic compilation and is part of execution of Java programs, this introduces overhead. Parallelizing methods have to be carefully selected to reach a balance between performance improvement and parallelizing overheads.

The second challenge is synchronization between parallelized threads. Synchronization and locking are unavoidable as long as the dependency of parallel tasks cannot be completely eliminated. They also introduce significant overheads during parallel execution. Most modern JVMs provide synchronization and lock mechanisms, but the efficiency is the key problem, especially when the scale of a parallel system becomes large.

The third challenge is the scalability of thread models provided by JVMs. Most modern JVMs exploit OS-based threads to provide multi-thread support to Java programs, which guarantees the simplicity of JVMs. However, OS-based threads normally have bad scalability due to its heavy space and timing overheads. It remains an unsolved problem whether JVMs should provide alternative thread models for parallel Java programs, or rely on the development of operating systems that are designed for multiprocessor architectures.

The last challenge is the interference between optimization and parallelization. A program’s structure and execution pattern are both greatly changed after parallelization. As a result, optimization decisions that are made based on the original sequential program may not be optimal anymore. Also, some optimization techniques that are designed for sequential programs are not suitable in the context of parallel execution. The cooperation between optimization and parallelization needs to be examined carefully.

7. Conclusion

Parallel compilers have been a hot research topic for a long time. A number of optimizations and techniques are developed for the programming languages such as C and FORTRAN, including both static and dynamic approaches. However, there are still problems that remain unsolved. First of all, most automatic parallelization works well only for those array-based “regular” programs. Irregular general-purpose programs with pointer/tree/graph data structures are still hard to parallelize by compilers. Also, there are relatively fewer efforts on automatic parallelization with Java programs, with most limited in thread level speculation techniques. Parallelizing Java programs by exploiting multiprocessors and run-time information is likely to be a promising direction to continuously improve the performance of Java computing. Judging by the way Java continues to move with the myriad of features in Java 8, support for parallel processing will only increase.
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