JS 111
DNA and Crime

I. Welcome and Introductions
 Steven Lee- Instructor

II. Overview of the course
 Description- Requirements
 Small Groups- Your background, interests
 First “case” assignment

III. Introduction to DNA typing
 Why DNA?
 Learn the main uses of DNA in Forensics
 Progression and Comparison of DNA markers
 Overview of DNA typing
 Brief History of DNA typing
My Background

• Who am I? Scientist, Teacher and Dad
 – Professor and Director Forensic Science SJSU
 – Consultant – Biotechnology Company San Diego
 – Adjunct Prof Biology SFSU
 – Blessed to have been a mentor to my students
 – Husband and Dad to 4
 – Interests: music, running, meditation

• How did I get here? Research and Teaching Experience
 – CA DOJ DNA (94-99), Adjunct SFSU (96-), Biology UNC (92-94)
 – SUNYB, AECOM, NYU, Columbia, UCB, UGA
 – Courses: Mol Genetics, Genetics of Forensic DNA typing (UC Davis), Chem. of DNA typing (Web Based- FIU- F 2001, Sp 2003)

• Forensic Experience? All in DNA
 – CA DOJ DNA Research, Validation and Training-TWGDA 94-99
 AEDII, mtDNA QA, ASCILD LAB certified, AAFS Fellow, CAC
Contact Information

Instructor: Dr. Steven Lee, Associate Professor
Office: MH 509
Office Hrs: m 1230-1630
Set 15 minute appointments via email
email: sblee999@gmail.com
Phone: 408-924-2948
Overview of the Course

• Course Description: This course is designed to introduce students to the basics of DNA and the application of DNA to solving crime. Students will be introduced to DNA testing utilized in criminal casework and convicted offender DNA databases. Students will become familiar with the scientific concepts, methods, practices and analytical instrumentation utilized for DNA analysis. Legal issues including national standards for quality assurance, validation, legal admissibility and training will also be covered.
Course Texts:

• **Required Texts:**
Required reading and internet materials:

• Journal articles and other readings will be accessible at the SJSU library, on reserve or will be accessible on line. Citations and URLs for on line materials will be provided in assignments.

• President’s DNA Initiative: www.dna.gov
• NIST :http://www.cstl.nist.gov/div831/strbase/index.htm
• NCJRS publications will be used extensively
 http://www.ncjrs.org/forensic/publications.html
 http://www.ojp.usdoj.gov/nij/sciencetech/dna_pub.htm
• DNA and crime links will also be utilized to supplement the course including:
Course Format:

• The course will include lectures by the instructor and guest lectures including scientists from crime laboratories. Discussions, videos, and small-group hands-on activities, will also be included throughout the semester. If possible, on-line chats will be scheduled (TBA).
Small group formation

6-8 per team (form 4 teams)- Designate one team leader
Gather emails and phone numbers
Find out the following from each other

1) Name, Year (class), Major
2) Why are you interested in DNA and Crime?
3) Something special/to remember you
Course requirements:

- Exams: Three exams will be given in this course. Exams will be cumulative and will include all material covered up to the date of the exam. Exams may include multiple choice, matching, true/false, short answer, diagrams, drawings and sketches, short essay and/or long essay. The final will be comprehensive.
- Exam 1: Mon. 02/28/11
- Exam 2: Mon. 04/18/11
- **Final: Friday May 20th 1445-1700**
Quizzes and Small Group Activities

• Quizzes on assigned readings, small group activities and other assigned materials will be given during the semester. These will generally be multiple choice, matching, true/false and short answer but may also include essay questions. 5 quizzes will count. 100 points total.
Grading

• Quizzes/Activities 100 points
• Exam 1 100 points
• Exam 2 100 points
• Final exam 200 points
• Total required 500 points

• Extra Credit A total of 10 points may be granted for additional extra credit small group assignments and other assignments during the semester. Each assignment will be worth 1-2 points each. These extra credit points may be used to augment your final point total.
Grading Policies

• Make-up exams will not generally be permitted. However, under extraordinary circumstances, with proper documentation and approval by the instructor, a 15 page single-spaced term paper of an instructor assigned topic, may substitute for 1 exam.

• A+ 483.5 to 500
• A 467 to 483.4
• A- 450 to 466.9
• B+ 433.5 to 449.9
• B 417 to 433.4
• B- 400 to 416.9
• C+ 383.5 to 399.9
• C 367 to 383.4
• C- 350 to 366.9
• D+ 333.5 to 349.9
• D 317 to 333.4
• D- 300 to 316.9
• F <300
Course Schedule

Section 1.
 Introduction/Overview- History
 Basics of Physical Evidence and Collection and Preservation
 DNA Biology- The Scientific Basis for DNA typing

Section 2
 Methods Used in Forensic DNA
 PCR and Short Tandem Repeats
 DNA Databases
 Interpretation of DNA results
 Cold Hits

Section 3
 Additional DNA markers
 Quality Control, Validation, Training Standards
 Admissibility, Court Testimony,
 Legal and Ethical Implications of DNA testing
 Innocence Project
 Future of DNA typing

16 weeks- Last class 05/16, Final 05/20
Course Add/Drop Statement

• Instructors are permitted to drop students who fail to attend the first scheduled class meeting and who fail to inform the instructor prior to the second class meeting of the reason for any absence and their intention to continue in the class. Some instructors will drop students who do not meet the stated course prerequisites. However, instructors are not required to drop a student from their course. It is the student’s responsibility to make sure classes are dropped.

• You, the student, are responsible for understanding the policies and procedures about add/drops, academic renewal, withdrawal, etc. found at: http://sa.sjsu.edu/student_conduct
Course Add/Drop Statement

• Dropping and Adding
• Students are responsible for understanding the policies and procedures about add/drops, academic renewal, etc. Information on add/drops are available at http://info.sjsu.edu/web-dbgen/narr/soc-fall/rec-324.html
• Information about late drop is available at http://www.sjsu.edu/sac/advising/latedrops/policy/
• Students should be aware of the current deadlines and penalties for adding and dropping classes.
Academic Integrity and Plagiarism

• Academic integrity statement (from the Office of Student Conduct and Ethical Development):

• “Your own commitment to learning, as evidenced by your enrollment at San José State University, and the University’s Academic Integrity Policy requires you to be honest in all your academic course work. Faculty members are required to report all infractions to the Office of Student Conduct and Ethical Development. The policy on academic integrity can be found at

• http://www.sa.sjsu.edu/download/judicial_affairs/Academic_Integrity_Policy_S07-2.pdf
Plagiarism

- Plagiarism at SJSU includes but is not limited to:
- The act of incorporating the ideas, words, sentences, paragraphs, or parts thereof, or the specific substances of another’s work, without giving appropriate credit, and representing the product as one’s own work; and representing another’s artistic/scholarly works such as musical compositions, computer programs, photographs, painting, drawing, sculptures, or similar works as one’s own. All students are required to take the on-line tutorial and quiz on plagiarism:
- Go to: http://tutorials.sjlibrary.org/tutorial/plagiarism/index.htm
- Take the quiz and print out your results
- You must complete this tutorial and print out your report at the end to hand in to the instructor. All due by class period Monday 02/07/11
Full Service Crime Lab Services

- Physical Science Unit - chemistry, physics, geology on drugs, glass, paint explosives and soil
- Biology Unit - biologist and biochemists conduct serology and DNA testing of biological material (Fluids)
- Firearms Unit - Examination of firearms, discharged bullets, cartridge cases, shotgun shells, ammo, and clothing for residues are performed
- Document Examination Unit - handwriting and typewriting studies to ascertain authenticity or source
- Photography Unit - Digital imaging, IR, UV X ray
- Toxicology, Latent Fingerprints, Polygraph, Voiceprint, and Evidence collection units
Why DNA?

• Law Enforcement
 – Criminal Investigation- Casework, Databanks
 – Reuniting immigrant families- Paternity
 – Missing persons

• Evolutionary, Agricultural and Zoological applications
 – Assessing genetic diversity
 – Fingerprinting endangered species and pathogens
 – Assessing unrelatedness to breed for increasing genetic diversity
 – Assessing relationships for all biological predictions
 – Ancient DNA analyses for reconstructing history (how we populated the globe)

• Other Human Applications
 – Making sense of the Human Genome project results- Bioinformatics
 – Developing rapid medical diagnostics such as those associated with triplet repeat diseases (STRs)- (Moxon et al. 1999 Sci Amer. 280:94)
 – Understanding the molecular basis of development, disease and aging
 – Screening candidates for bone marrow/organ transplants and grafts
Human Identity Testing

- Forensic cases -- matching suspect with evidence
- Exonerate persons wrongly accused of crimes-- freeing the innocent
- Establish paternity and other family relationships—identifying dad
- Historical investigations–DNA testing of human remains
- Missing persons investigations
- Mass disasters -- putting pieces back together
- Military DNA “dog tag”– Missing soldier ID
- Identify endangered and protected species as an aid to wildlife officials (could be used for prosecuting poachers)- Wildlife forensics
- Authenticating consumables- e.g. caviar or wine
- Detect bacteria and other organisms that may pollute air, water, soil, and food or that may be used in bioterrorism- Homeland security
- Convicted felon DNA databases
Progression of DNA Typing Markers

- **RFLP**
 - multilocus VNTR probes
 - single locus VNTR probes \((^{32}P \text{ and chemi})\)

- **PCR**
 - DQ-alpha (reverse dot blot)
 - PolyMarker (6 plex PCR; dots for SNPs)
 - D1S80 (AMP-FLPs)
 - singleplex STRs with silver staining
 - multiplex STRs with fluorescent dyes
Comparison of DNA Typing Technologies

- **Power of High Markers Used (Biology)**
 - RFLP
 - Multi-Locus Probes
 - RFLP
 - Single Locus Probes

- **Power of Discrimination (Genetics)**
 - Low
 - Slow
 - RFLP
 - Single Locus Probes
 - mtDNA
 - PolyMarker
 - D1S80
 - single STR
 - DQα
 - ABO blood groups

- **Speed of Analysis (Technology)**
 - Fast
 - Multiplex STRs
Overview of DNA typing

Biology
- Sample Obtained from Crime Scene or Paternity Investigation
- DNA Extraction → DNA Quantitation → PCR Amplification of Multiple STR markers

Technology
- Separation and Detection of PCR Products (STR Alleles) → Sample Genotype Determination

Genetics
- Comparison of Sample Genotype to Other Sample Results
- If match occurs, comparison of DNA profile to population databases
- Generation of Case Report with Probability of Random Match
Human Identity Testing Involves Comparing DNA Profiles

Results obtained in less than 5 hours with a spot of blood the size of a pinhead

probability of a random match: ~1 in 3 trillion
Brief History of DNA Typing

• 1980 - Ray White describes first polymorphic RFLP marker
• 1985 - Alec Jeffreys discovers multilocus VNTR probes
• 1985 - first paper on PCR
• 1988 - FBI starts DNA casework
• 1991 - first STR paper
• 1995 - FSS starts UK DNA database
• 1998 - FBI launches CODIS database
Detailed History of Serology and DNA

Bloodstains 384 AD
Blood groups 1888
Secretor status 1937

FORENSIC SEROLOGY AND DNA ANALYSIS TIME LINE

- 384: Hume II, used bloodstains to corroborate a crime or supply additional evidence.
- 1247: Sen-en-Roku, treatise on the mixing of blood of parties in a paternity dispute.
- 1853: Teichman Test, microscopic crystal test for hemoglobin using hemin crystals.
- 1862: J. (Izaak) Van Deen (Denmark), test for blood using guaiac, a West Indian shrub.
- 1863: Schönbein, blood test, ability of hemoglobin to oxidize hydrogen peroxide making it foam.
- 1888: Leopold Landsteiner, discovered human blood groups, Nobel Prize 1930.
- 1901: Dr. Paul Uhlenhuth discovered method to differentiate between human and animal blood.
- 1904: Oskar and Rudolf Adler developed a presumptive test for blood based on benzidine.
- 1912: Masaeo Takayama, microscopic crystal test for hemoglobin using hemochromogen crystals.
- 1915: Leone Lattes antibody test for ABO blood groups.
- 1923: Vittorio Siracusa, absorption-elution test for ABO blood typing of stains.
- 1924: Bernstein, mathematician, proves that ABO blood types are in fact under genetic control.
- 1927: Landsteiner and Levine, M, N, and P blood factors lead to the MNSs and P typing systems.
- 1929: K. I. Yoshida finds serological isoantibodies in body fluids other than blood.
- 1931: Franz Josef Holzer developed the absorption-inhibition ABO typing technique.
- 1937: Holzer published the first paper on secretor status for forensic applications.
- Walter Specht developed the chemiluminescent reagent luminol to test for blood.
- 1940: Landsteiner and A.S. Wiener first described Rh blood groups.
- 1945: Frank Lundquist developed the acid phophatase test for semen.
- 1946: Mourant first described the Lewis blood group system. R.R. Race first described the Kell blood group system.
- 1950: M. Cutbush, and colleagues first described the Duffy blood group system.
- 1951: F.H. Allen and colleagues first described the Kidd blood group system.
Detailed History of Serology and DNA 2

1958 A. S. Weiner and colleagues used H-lectin to positively determine O blood type.
1960 Maurice Muller used the Ouchterlony antibody-antigen diffusion test to determine species.
1964 N. Spencer et al. identified the polymorphic nature of red cell phosphoglucomutase (PGM).
1966 Culliford and Wraxall developed the immunoelectrophoretic technique for haptoglobin typing in blood stains.
1967 Culliford initiated gel-based methods to test for isoenzymes in dried blood stains. Developed and disseminated tests for proteins and isoenzymes in blood, body fluids and secretions.
1968 Spencer et al. identify the polymorphic nature of red cell adenosine deaminase (ADA).
1971 Culliford published The Examination and Typing of Bloodstains in the Crime Laboratory.
1973 Hopkinson and colleagues first identified the polymorphic nature of esterase D (ESD).
1978 Wraxall and Storolow developed the “multisystem” method for testing the PGM, ESD, and GLO isoenzyme systems simultaneously. Developed methods for typing blood serum proteins such as haptoglobin and Gc.
1986 → Henry Erlich, Cetus, developed PCR technique for clinical and forensic applications. Resulted in first commercial PCR typing kit, HLA DQ-alpha (DQA1), specifically for forensic use. In People vs. Pestinikas, PCR-based DNA testing (HLA DQ-alpha) used to confirm different autopsy samples are from the same person. First DNA tests accepted by U.S. civil court.
1990 → K. Kasai et a. suggest the D1S80 locus (pMCT118) for forensic DNA analysis.
1994 → Roche released 5 additional DNA markers to add to HLA-DQA1 for forensic DNA typing.
1998 → FBI DNA database, enabling interstate cooperation in lining crimes, was put into practice.
Small Group Exercise 1

What samples provide DNA?

• DNA can be typed from a number of different types of samples and sources. You have a missing person and there are no known blood samples available as a reference.

• In your small groups, list all types of samples you believe will provide DNA typing results that may provide a reference for the missing person. Start with the ones with the highest probability of typing.

• You have 10 minutes to complete, review and edit your lists

• Be sure that all members of your group sign and print their names and submit the list
DNA Chant

The subject of the course today (me)
Is simply stated DNA (you)
Sugar-Phosphate backbone chains (me)
Hold the base pairs heres their names (you)
Chorus: AT(me)- AT(you)
 GC(me)- GC(you)
 ATGC, ATGC (together)

RFLP holy grail
Put bad guys away in jail
PCR can lend a hand
Amplifying those weak bands ----------------> Chorus

Blood, saliva, semen too,
Can be used as crucial clues
Fingernails and skin and hair
DNA is everywhere --------------> Chorus
Office Hours Policies

• Set up 15 minute appointments by email sblee999@gmail.com

• Benefits (to you and me)
 – Review the course material.
 – Show me how hard you are working
 – Provide feedback
 – Ask specific questions or Ask for help
 – Extra credit may be provided for coming to discuss questions on the reading, exams, DNA, assignments, forensics, news articles, department, college and campus scholarships…etc