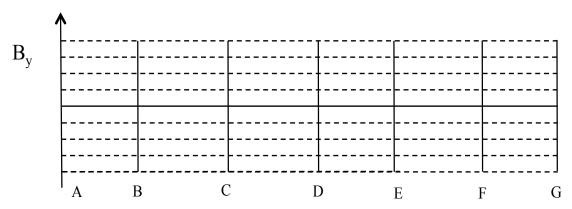
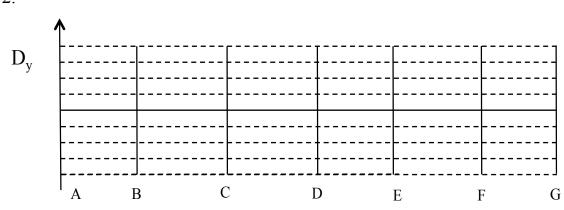
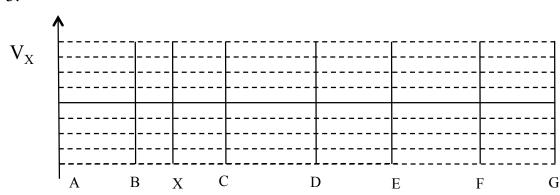

Name: _____

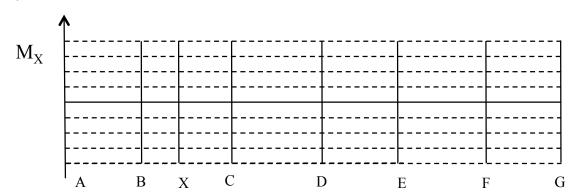

The beam shown is pin supported at point A; roller supported at points B, D, and F (note that roller supports resist movement both up and down); and has internal hinges at points C and E.

- 1. Construct the influence line for the vertical support reaction at the roller at point B. Take support reaction upward as positive. Using statics, find the value of B_y for a unit load placed at B, C, E, and G.
- 2. Construct the influence line for the vertical support reaction at the roller at point D. Take support reaction upward as positive. Using statics, find the value of D_y for a unit load placed at C, D, E, and G.
- 3. Construct the influence line for the internal shear at point X. Use the "usual" Civil Engineering sign convention for positive shear. Using statics, find the value of V_X for a unit load placed at X^- , X^+ , C, E, and G.
- 4. Construct the influence line for the internal bending moment at point X. Use the "usual" Civil Engineering sign convention for positive bending moment. Using statics, find the value of M_X for unit loads places at C, E, and G.
- 5. Using the influence line for the internal shear at point X, find the maximum positive shear at point X for a uniformly distributed live load of 1.5 k/ft and a uniform dead load of 0.6 k/ft.


Use the table below to record the results of your analyses and plot your diagrams on the axes provided on the next page.

Unit load at:	\mathbf{B}_{y}	D_{y}	V_{X}	M_{X}
A	0	0	0	0
В		0	0	0
X^{-} X^{+}				
X^{+}				
С				
D	0		0	0
Е				
F	0	0	0	0
G				


1.


2.

3.

4.

5. The maximum positive shear at X for the given dead load and live load is: