Constructing Influence Lines
Steven Vukazich
San Jose State University
In addition to supporting fixed gravity loads (Dead Load), structures must also support gravity loads that can vary in magnitude and position (Live Loads).

To design the components of a structure, it is important to understand how to place live loads to produce the maximum response for important design quantities (e.g. support reactions, internal shear, bending moment, axial force).

The Influence Line for a response quantity is a tool to help place live loads to find the maximum response.
Construction of Influence Lines

The overhanging beam shown has a fixed support at A, a roller support at C and an internal hinge at B. Construct influence lines for:

1. The roller support at C;
2. The vertical reaction at the fixed support at A;
3. The moment reaction at the fixed support at A
1. Choose a reference coordinate;
2. Choose a sign convention for each diagram;
3. Place a unit, dimensionless load on the structure;
4. Use equilibrium analysis to find the response quantity (e.g. support reaction, internal force) at the position of the unit, dimensionless, load;
5. Move unit load to another position and repeat Step 4;
6. Plot the value of the response quantity versus the position of the unit, dimensionless, load.
The overhanging beam shown has a fixed support at A, a roller support at C and an internal hinge at B. Construct influence lines for:

1. The roller support at C;
2. The vertical reaction at the fixed support at A;
3. The moment reaction at the fixed support at A

Sign Convention for Positive Support Reactions
Place Unit Load at $x = 0$ (Point A)

Free-body Diagram

4 Unknowns – 3 Equations of Equilibrium
Need to make a cut at the hinge at B
Place Unit Load at $x = 0$ (Point A)

Free-body Diagrams

6 Unknowns – 6 Equations of Equilibrium

\[\sum M_A = 0 \rightarrow M_A = 0 \]
\[\sum F_x = 0 \rightarrow A_x = 0 \]
\[\sum F_y = 0 \rightarrow A_y = 1 \]
\[\sum M_B = 0 \rightarrow C_y = 0 \]
\[\sum F_x = 0 \rightarrow F_B = 0 \]
\[\sum F_y = 0 \rightarrow V_B = 0 \]
Place Unit Load at $x = 5$ m

Free-body Diagrams

6 Unknowns – 6 Equations of Equilibrium

\[\sum M_A = 0 \rightarrow M_A = -5 \text{ m} \]
\[\sum F_x = 0 \rightarrow A_x = 0 \]
\[\sum F_y = 0 \rightarrow A_y = 1 \]
\[\sum M_B = 0 \rightarrow C_y = 0 \]
\[\sum F_x = 0 \rightarrow F_B = 0 \]
\[\sum F_y = 0 \rightarrow V_B = 0 \]
Place Unit Load at $x = 9^{-} m$

Free-body Diagrams

6 Unknowns – 6 Equations of Equilibrium

\[\sum M_A = 0 \rightarrow M_A = -9 \text{ m} \]

\[\sum F_x = 0 \rightarrow A_x = 0 \]

\[\sum F_y = 0 \rightarrow A_y = 1 \]

\[\sum M_B = 0 \rightarrow C_y = 0 \]

\[\sum F_x = 0 \rightarrow F_B = 0 \]

\[\sum F_y = 0 \rightarrow V_B = 0 \]
Place Unit Load at $x = 12 \text{ m}$

Free-body Diagrams

6 Unknowns – 6 Equations of Equilibrium

\[\sum M_A = 0 \quad \Rightarrow \quad M_A = -4.5 \text{ m} \]

\[\sum F_x = 0 \quad \Rightarrow \quad A_x = 0 \]

\[\sum F_y = 0 \quad \Rightarrow \quad A_y = 0.5 \]

\[\sum M_B = 0 \quad \Rightarrow \quad C_y = 0.5 \]

\[\sum F_x = 0 \quad \Rightarrow \quad F_B = 0 \]

\[\sum F_y = 0 \quad \Rightarrow \quad V_B = 0.5 \]
Place Unit Load at $x = 15 \text{ m}$

Free-body Diagrams

6 Unknowns – 6 Equations of Equilibrium

\[\sum M_A = 0 \Rightarrow M_A = 0 \]
\[\sum F_x = 0 \Rightarrow A_x = 0 \]
\[\sum F_y = 0 \Rightarrow A_y = 0 \]
\[\sum M_B = 0 \Rightarrow C_y = 1 \]
\[\sum F_x = 0 \Rightarrow F_B = 0 \]
\[\sum F_y = 0 \Rightarrow V_B = 0 \]
Place Unit Load at $x = 18 \text{ m}$

Free-body Diagrams

6 Unknowns – 6 Equations of Equilibrium

1. $\sum M_A = 0 \Rightarrow M_A = 4.5 \text{ m}$
2. $\sum M_B = 0 \Rightarrow C_y = 1.5$
3. $\sum F_x = 0 \Rightarrow A_x = 0$
4. $\sum F_x = 0 \Rightarrow F_B = 0$
5. $\sum F_y = 0 \Rightarrow A_y = -0.5$
6. $\sum F_y = 0 \Rightarrow V_B = -0.5$
Plot the Influence Line for C_y

$C_y = \begin{cases}
0 & \text{for } x = 0 \\
0 & \text{for } x = 5 \text{ m} \\
0 & \text{for } x = 9 - 1 \text{ m} \\
0.5 & \text{for } x = 12 \text{ m} \\
1.0 & \text{for } x = 15 \text{ m} \\
1.5 & \text{for } x = 18 \text{ m}
\end{cases}$
Plot the Influence Line for A_y

<table>
<thead>
<tr>
<th>x</th>
<th>A_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5 m</td>
<td>1</td>
</tr>
<tr>
<td>$9 - m$</td>
<td>1</td>
</tr>
<tr>
<td>12 m</td>
<td>0.5</td>
</tr>
<tr>
<td>15 m</td>
<td>0</td>
</tr>
<tr>
<td>18 m</td>
<td>-0.5</td>
</tr>
</tbody>
</table>
Plot the Influence Line for M_A