Method of Virtual Work for Trusses
Steven Vukazich
San Jose State University
Work Done by Force/Moment

\[W = F\delta \]

Work is done by a force acting through and in-line displacement

\[W = M\theta \]

Work is done by a moment acting through and in-line rotation
Strain Energy of Deformation of a Truss Member

Internal strain energy stored through axial deformation of the truss member: \(U = \frac{1}{2} P \Delta \)

- \(A \) = Cross sectional area
- \(E \) = Modulus of Elasticity

\[\Delta = \frac{PL}{AE} \]

\[U = \frac{1}{2} P \Delta = \frac{P^2 L}{2AE} \]
1. Apply a virtual force Q to the truss member;
2. Apply an additional real force P to the truss member
3. Note that the work done by the virtual force Q only is: \[W_Q = Q\delta_P \]
Virtual Strain Energy for a Truss Member

\[\begin{align*}
U_Q &= \int_0^L F_Q \delta_{dLP} \\
\delta_{dLP} &= \frac{F_P dL}{AE} \\
\delta_{dLQ} &= \frac{F_Q dL}{AE} \\
dU_Q &= F_Q \delta_{dLP}
\end{align*} \]
\[W_Q = U_Q \]

\[Q \delta_P = \int_0^L F_Q \frac{F_P \, dL}{AE} \]

\(A = \text{Cross sectional area} \)

\(E = \text{Modulus of Elasticity} \)
Principle of Virtual Work for a Prismatic, Elastic Truss member

\[Q \delta_4 = \frac{F_2 F_4}{AE} dL \]

If the internal axial force is constant and \(A \) and \(E \) are constant:

\[Q \delta_P = \int_0^L F_Q \frac{F_P dL}{AE} = F_Q \frac{F_P}{AE} \int_0^L dL \]

\[Q \delta_P = F_Q \frac{F_P L}{AE} \]

\(A \) = Cross sectional area
\(E \) = Modulus of Elasticity
Consider a Truss Structure Subjected To Joint Loads

We want to find the deflection of joint B due to the applied loads

\[A_i = \text{Cross sectional area} \]
\[E_i = \text{Modulus of Elasticity} \]
\[L_i = \text{Length of truss member} \]
\[n = \text{Total number of truss members} \]
Apply Virtual Force

The virtual force will cause an internal axial force to develop in each truss member, F_{Qi}.

Apply a virtual force in-line with the real displacement δ_P.

$W_Q = Q \delta_P$
Apply the Real Loads to the Truss

The real loads cause an axial deformation of each truss member, \(\Delta L_i \).

The real loads cause an internal axial force to develop in each truss member, \(F_{Pi} \).

- \(A_i \) = Cross sectional area
- \(E_i \) = Modulus of Elasticity
- \(L_i \) = Length of truss member
- \(n \) = Total number of truss members

\[
\Delta L_{Pi} = \frac{F_{Pi}L_i}{A_iE_i}
\]
Virtual Strain Energy

Virtual strain energy developed in an individual truss member

\[U_{Qi} = F_{Qi} \cdot \Delta L_{Pi} = F_{Qi} \frac{F_{Pi}L_i}{A_iE_i} \]

Virtual strain energy for the entire truss

\[U_Q = \sum_{i=1}^{n} F_{Qi} \frac{F_{Pi}L_i}{A_iE_i} \]

- \(A_i \) = Cross sectional area
- \(E_i \) = Modulus of Elasticity
- \(L_i \) = Length of truss member
- \(n \) = Total number of truss members
Principle of Virtual Work for Truss Deflections

\[W_Q = U_Q \]

- \(A_i \) = Cross sectional area
- \(E_i \) = Modulus of Elasticity
- \(L_i \) = Length of truss member
- \(n \) = Total number of truss members

\[Q \delta_P = \sum_{i=1}^{n} F_{Qi} \left(\frac{F_{Pi}L_i}{A_iE_i} \right) \]

Real Deformation

Virtual Loads
We want to find the real deflection of joint B due to the applied loads, δ_P.

Variables:
- A_i = Cross sectional area
- E_i = Modulus of Elasticity
- L_i = Length of truss member
- n = Total number of truss members
1. Remove all loads from the structure;
2. Apply a unit, dimensionless virtual load in-line with the real displacement, δ_P, that we want to find;
3. Perform a truss analysis to find all truss member virtual axial forces, F_{Qi}.
1. Place all of the loads on the structure;
2. Perform a truss analysis to find all truss member real axial forces, F_{Pi}
Step 3 – Use the Principle of Virtual Work to Find δ_P

From Step 2 – real analysis

From Step 1 – virtual analysis

$1 \cdot \delta_P = \sum_{i=1}^{n} \frac{F_{Qi}L_i}{A_iE_i}$

$A_i = \text{Cross sectional area}$

$E_i = \text{Modulus of Elasticity}$

$L_i = \text{Length of truss member}$

$n = \text{Total number of truss members}$