Method of Virtual Work
Beam Deflection Example

Steven Vukazich
San Jose State University
Summary of Procedure for Finding Bending Deformation Using Virtual Work

We want to find the deflection at point A and the slope at point B due to the applied loads.

Modulus of Elasticity = E
Moment of Inertia = I
Step 1 – Remove all loads and apply a virtual force (or moment) to measure the deformation at the point of interest

From an equilibrium analysis, find the internal bending moment function for the virtual system: $M_Q(x)$

Convenient to set $Q = 1$
Step 2 – Replace all of the loads on the structure and perform the real analysis

From an equilibrium analysis, find the internal bending moment function for the real system: $M_P(x)$
Step 3 – Evaluate the virtual work product integrals and solve for the deformation of interest

\[Q \delta_A = \int_0^L M_Q \frac{M_P}{EI} \, dx \]

If the bending stiffness, \(EI \), is constant:

\[Q \delta_A = \frac{1}{EI} \int_0^L M_Q M_P \, dx \]

Table in textbook appendix is provided to help evaluate product integrals of this type
Table to Evaluate Virtual Work Product Integrals

Appendix Table.2

<table>
<thead>
<tr>
<th>Shape</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>$M_1 M_2 L$</td>
</tr>
<tr>
<td>Trapezium</td>
<td>$\frac{1}{2} M_1 M_2 L$</td>
</tr>
<tr>
<td>Parallelogram</td>
<td>$\frac{1}{2} (M_1 + M_2) M_2 L$</td>
</tr>
<tr>
<td>Triangle</td>
<td>$\frac{1}{6} M_1 M_2 (L + a)$</td>
</tr>
<tr>
<td>Rhombus</td>
<td>$\frac{1}{6} M_1 M_2 (L + b)$</td>
</tr>
<tr>
<td>Parabola</td>
<td>$\frac{1}{3} M_1 M_2 L$</td>
</tr>
<tr>
<td>Parabola</td>
<td>$\frac{1}{12} (M_1 + 3M_2) M_2 L$</td>
</tr>
</tbody>
</table>

Table is as useful tool to evaluate product integrals of the form:

$$ \int_{0}^{L} M_Q M_P dx $$
The overhanging beam shown has a fixed support at A, a roller support at C and an internal hinge at B. $EI_{ABC} = 2,000,000 \text{ k-in}^2$ and $EI_{CDE} = 800,000 \text{ k-in}^2$

For the loads shown, find the following:

1. The vertical deflection at point E;
2. The slope just to the left of the internal hinge at C;
3. The slope just to the right of the internal hinge at C
Step 1 – Remove all loads and apply a virtual force (or moment) to measure the deformation at the point of interest

From an equilibrium analysis, find the internal bending moment function for the virtual system: $M_Q(x)$
Find the Moment Diagram for the Virtual System

\[\sum M_A = 0 \Rightarrow M_A = 8 \text{ ft} \]
\[\sum F_x = 0 \Rightarrow A_x = 0 \]
\[\sum F_y = 0 \Rightarrow A_y = -0.5 \]

\[\sum M_C = 0 \Rightarrow D_y = 1.5 \]
\[\sum F_x = 0 \Rightarrow F_B = 0 \]
\[\sum F_y = 0 \Rightarrow V_C = -0.5 \]
Support Reactions for the Virtual System
Moment Diagram for the Virtual System

- **8 ft**
- **0.5**
- **1.5**
- **1.0**

- **V_Q**
- **M_Q**

- **+**
- **-**
Step 2 – Replace all of the loads on the structure and perform the real analysis

From an equilibrium analysis, find the internal bending moment function for the real system: $M_P(x)$
Find the Moment Diagram for the Real System

\[\sum M_A = 0 \quad \Rightarrow \quad M_A = -104 \text{ k-ft} \]

\[\sum F_x = 0 \quad \Rightarrow \quad A_x = 0 \]

\[\sum F_y = 0 \quad \Rightarrow \quad A_y = 16 \text{ k} \]

\[\sum M_C = 0 \quad \Rightarrow \quad D_y = 9 \text{ k} \]

\[\sum F_x = 0 \quad \Rightarrow \quad F_B = 0 \]

\[\sum F_y = 0 \quad \Rightarrow \quad V_C = -3 \text{ k} \]
Support Reactions for the Real System

- At A: 104 k-ft
- At B: 19 k
- At C: 3 k
- At D: 3 k
- At E: 6 k

Dimensions:
- AB: 8 ft
- BC: 8 ft
- CD: 8 ft
- DE: 4 ft
- AC: 16 k
- BD: 9 k
Moment Diagram for the Real System

- 104 k-ft
- 19 k
- 6 k
- 16 k
- 9 k
- 8 k
- 4 ft
- 8 ft
- 8 ft
- 4 ft
- 3 k
- 24 k-ft
- 24 k-ft
- 104 k-ft

Components:
- \(V_P \): 16 k
- \(V_P \): -3 k
- \(M_P \): 24 k-ft
- \(M_P \): -24 k-ft
- \(V_P \): 6 k
Step 3 – Evaluate the virtual work product integrals and solve for the deformation of interest

\[1 \cdot \delta_E = \frac{1}{EI} \int_0^L M_Q M_P dx \]

Use Table to evaluate product integrals

- \(EI_{ABC} = 2,000,000 \text{ k-in}^2 \)
- \(EI_{CDE} = 800,000 \text{ k-in}^2 \)

\[8 - 0.5x = 4.75 \text{ ft} \]

\[\frac{104}{x} = \frac{24}{8 - x} \]

\[832 = 128x \]

\[x = 6.5 \text{ ft} \]
Evaluate Product Integrals

\[M_Q \]

\[M_P \]

\[-104 \text{ k-ft} \]
Table to Evaluate Virtual Work Product Integrals

Appendix Table.2

<table>
<thead>
<tr>
<th>(M_Q)</th>
<th>(M_P)</th>
<th>(M_{1})</th>
<th>(M_{2})</th>
<th>(M_{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{L})</td>
<td>(M_{L})</td>
<td>(\frac{1}{2} M_{L} M_{L})</td>
<td>(\frac{1}{6} M_{L} M_{L})</td>
<td>(\frac{1}{6} M_{L} M_{L})</td>
</tr>
<tr>
<td>(\frac{1}{2} M_{1} M_{L})</td>
<td>(\frac{1}{3} M_{1} M_{L})</td>
<td>(\frac{1}{6} (M_{1} + 2M_{L}) M_{L})</td>
<td>(\frac{1}{6} M_{2} M_{L} (L + a))</td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2} M_{L} M_{L})</td>
<td>(\frac{1}{6} M_{L} M_{L})</td>
<td>(\frac{1}{6} (2M_{1} + M_{L}) M_{L})</td>
<td>(\frac{1}{6} M_{2} M_{L} (L + b))</td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2} M_{1} (M_{1} + M_{L}))</td>
<td>(\frac{1}{6} M_{1} (M_{1} + 2M_{L}))</td>
<td>(\frac{1}{6} M_{1} (2M_{1} + M_{L}))</td>
<td>(\frac{1}{6} M_{2} M_{L} (L + b) + \frac{1}{6} M_{2} M_{L} (L + a))</td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2} M_{L} M_{L})</td>
<td>(\frac{1}{6} M_{L} M_{L})</td>
<td>(\frac{1}{6} M_{L} M_{L} (L + c) + \frac{1}{6} M_{2} M_{L} (L + c))</td>
<td>(\text{for } c \leq a: \frac{1}{3} - \frac{(a - c)^2}{6a^2 d} M_{1} M_{L})</td>
<td></td>
</tr>
<tr>
<td>(\frac{2}{3} M_{L} M_{L})</td>
<td>(\frac{1}{3} M_{1} M_{L})</td>
<td>(\frac{1}{3} (M_{1} + M_{L}) M_{L})</td>
<td>(\frac{1}{3} M_{2} M_{L} \left(L + \frac{3b}{L} \right))</td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{3} M_{L} M_{L})</td>
<td>(\frac{1}{4} M_{1} M_{L})</td>
<td>(\frac{1}{12} (M_{1} + 3M_{L}) M_{L})</td>
<td>(\frac{1}{12} M_{2} M_{L} \left(3a + \frac{a^3}{L} \right))</td>
<td></td>
</tr>
</tbody>
</table>

Table is as useful tool to evaluate product integrals of the form:

\[
\int_{0}^{L} M_{Q} M_{P} dx
\]
Evaluate Product Integrals

\[M_3 = \frac{1}{6} (M_1 + 2M_2)M_3L \]
\[= \frac{1}{6} (4.75 + 2(8))(-104)(6.5) \]
\[= -2337.83 \text{ k-ft}^3 \]

\[M_2 = 8 \text{ ft} \]
\[M_1 = 4.75 \text{ ft} \]

\[c = a = 8 \text{ ft} \]

\[M_Q \]

\[M_P \]

\[c = a = 8 \text{ ft} \]

\[M_3 = 384 \text{ k-ft}^3 \]

\[\frac{1}{6}M_1M_3(L + c) \]
\[= \frac{1}{6}(4.75)(24)(9.5 + 8) \]
\[= 332.5 \text{ k-ft}^3 \]

\[\left(\frac{1}{3} - \frac{(a - c)^2}{6ad}\right)M_1M_3L \]

for \(c \leq a \):
Evaluate Product Integrals

\[EI_{ABC} = 2,000,000 \text{ k-in}^2 \quad EI_{CDE} = 800,000 \text{ k-in}^2 \]

\[
1 \cdot \delta_E = \frac{1}{EI} \int_0^L M_Q M_P \, dx
\]

Segment AX

\[-2337.83 \text{ k-ft}^3\]

Segment XC

\[332.5 \text{ k-ft}^3\]

Segment CDE

\[384 \text{ k-ft}^3\]

\[
\int_0^{L_{ABC}} M_Q M_P \, dx = \left(-2337.83 + 332.5 \text{ k-ft}^3 \right) \left(\frac{12^3 \text{ in}^3}{\text{ft}^3} \right) = -3,465,216.0 \text{ k-in}^3
\]

\[
\int_0^{L_{CDE}} M_Q M_P \, dx = \left(384 \text{ k-ft}^3 \right) \left(\frac{12^3 \text{ in}^3}{\text{ft}^3} \right) = 663,552 \text{ k-in}^3
\]
Evaluate Product Integrals

\[\int_{0}^{L_{ABC}} M_Q M_P dx = (-2337.83 + 332.5 k \text{-} ft^3) \left(\frac{12^3 \text{ in}^3}{ft^3} \right) = -3,465,216.0 \text{ k} \text{-} \text{in}^3 \]

\[\int_{0}^{L_{CDE}} M_Q M_P dx = (384 \text{ k} \text{-} ft^3) \left(\frac{12^3 \text{ in}^3}{ft^3} \right) = 663,552 \text{ k} \text{-} \text{in}^3 \]

\[
\delta_E = \frac{1}{E I_{ABC}} \int_{0}^{L_{ABC}} M_Q M_P dx + \frac{1}{E I_{CDE}} \int_{0}^{L_{CDE}} M_Q M_P dx
\]

\[
\delta_E = \frac{-3,465,216.0 \text{ k} \text{-} \text{in}^3}{2,000,000 \text{ k} \text{-} \text{in}^2} + \frac{663,552 \text{ k} \text{-} \text{in}^3}{800,000 \text{ k} \text{-} \text{in}^2}
\]

\[
\delta_E = -1.733 \text{ in} + 0.8294 \text{ in} = -0.903 \text{ in}
\]

\[
\delta_E = 0.903 \text{ in upward}
\]

Negative result, so deflection is in the opposite direction of the virtual unit load.
Step 1 – Remove all loads and apply a virtual force (or moment) to measure the deformation at the point of interest.

From an equilibrium analysis, find the internal bending moment function for the virtual system:

\[M_Q(x) \]
Find the Moment Diagram for the Virtual System

\[\sum_{\text{about } A} M_A = 0 \rightarrow M_A = 1 \]

\[\sum_{\text{along } x} F_x = 0 \rightarrow A_x = 0 \]

\[\sum_{\text{along } y} F_y = 0 \rightarrow A_y = 0 \]

\[\sum_{\text{about } C} M_C = 0 \rightarrow D_y = 0 \]

\[\sum_{\text{along } x} F_x = 0 \rightarrow F_B = 0 \]

\[\sum_{\text{along } y} F_y = 0 \rightarrow V_C = 0 \]
Support Reactions for the Virtual System

1

8 ft

8 ft
Moment Diagram for the Virtual System

1

V_Q

0

1

M_Q

0
Evaluate the Virtual Work Product Integrals

\[1 \cdot \theta_C = \frac{1}{EI} \int_0^L M_Q M_P dx \]

Use Table to evaluate product integrals

\[EI_{ABC} = 2,000,000 \text{ k-in}^2 \]
\[EI_{CDE} = 800,000 \text{ k-in}^2 \]

\[M_Q \]

\[8 \text{ ft} \quad 8 \text{ ft} \quad 8 \text{ ft} \quad 4 \text{ ft} \]

\[M_P \]

\[24 \text{ k-ft} \quad -24 \text{ k-ft} \]

\[-104 \text{ k-ft} \quad 6.5 \text{ ft} \]
Table to Evaluate Virtual Work Product Integrals

<table>
<thead>
<tr>
<th>Appendix Table.2</th>
<th>Table is as useful tool to evaluate product integrals of the form:</th>
</tr>
</thead>
</table>

\[
\int_{0}^{L} M_Q M_P dx
\]

Table

<table>
<thead>
<tr>
<th>Shape</th>
<th>Relationship</th>
<th>Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangle</td>
<td>(M_0)</td>
<td>(M_0)</td>
</tr>
<tr>
<td>Triangle</td>
<td>(M_1)</td>
<td>(\frac{1}{2} M_1 M_0)</td>
</tr>
<tr>
<td>Triangle</td>
<td>(M_2)</td>
<td>(\frac{1}{2} (M_1 + M_0) M_0)</td>
</tr>
<tr>
<td>Triangle</td>
<td>(M_3)</td>
<td>(\frac{1}{2} M_3 M_0)</td>
</tr>
<tr>
<td>Triangle</td>
<td>(M_4)</td>
<td>(\frac{1}{6} (M_1 + 2M_0) M_0)</td>
</tr>
<tr>
<td>Triangle</td>
<td>(M_5)</td>
<td>(\frac{1}{6} M_5 (L + a))</td>
</tr>
<tr>
<td>Triangle</td>
<td>(M_6)</td>
<td>(\frac{1}{6} M_6 (L + b))</td>
</tr>
<tr>
<td>Parabola</td>
<td>(M_7)</td>
<td>(\frac{1}{2} M_7 M_0)</td>
</tr>
<tr>
<td>Parabola</td>
<td>(M_8)</td>
<td>(\frac{1}{3} M_8 M_0)</td>
</tr>
<tr>
<td>Parabola</td>
<td>(M_9)</td>
<td>(\frac{1}{4} (M_1 + M_0) M_0)</td>
</tr>
<tr>
<td>Parabola</td>
<td>(M_{10})</td>
<td>(\frac{1}{12} (M_1 + 3M_0) M_0)</td>
</tr>
<tr>
<td>Parabola</td>
<td>(M_{11})</td>
<td>(\frac{1}{12} M_1 (3M_0 \frac{a^2}{L}))</td>
</tr>
</tbody>
</table>
Evaluate Product Integrals

\[
\begin{align*}
\text{Evaluate Product Integrals} \\
\begin{array}{c}
\text{Evaluate Product Integrals} \\
\text{Evaluate Product Integrals} \\
\end{array}
\end{align*}
\]
Evaluate Product Integrals

\[
1 \cdot \theta_{c}^- = \frac{1}{EI} \int_{0}^{L} M_Q M_P \, dx
\]

Segment AX

\[
\int_{0}^{L_{ABC}} M_Q M_P \, dx = (-338 + 114 \text{ k-ft}^2) \left(\frac{12^2 \text{ in}^2}{\text{ft}^2} \right) = -32,256 \text{ k-in}^2
\]

Segment XC

\[
\int_{0}^{L_{CDE}} M_Q M_P \, dx = 0
\]

\[
\int_{0}^{L_{ABC}} M_Q M_P \, dx = (-338 + 114 \text{ k-ft}^2) \left(\frac{12^2 \text{ in}^2}{\text{ft}^2} \right) = -32,256 \text{ k-in}^2
\]
Evaluate Product Integrals

\[
\int_{0}^{L_{ABC}} M_Q M_P dx = (-338 + 114 \text{ k-} \text{ft}^2) \left(\frac{12^2 \text{ in}^2}{\text{ft}^2} \right) = -32,256 \text{ k-} \text{in}^2
\]

\[
\int_{0}^{L_{CDE}} M_Q M_P dx = 0
\]

\[
1 \cdot \theta_C^- = \frac{1}{EI_{ABC}} \int_{0}^{L_{ABC}} M_Q M_P dx + \frac{1}{EI_{CDE}} \int_{0}^{L_{CDE}} M_Q M_P dx
\]

\[
\theta_C^- = \frac{-32,256 \text{ k-} \text{in}^2}{2,000,000 \text{ k-} \text{in}^2} + \frac{0}{800,000 \text{ k-} \text{in}^2}
\]

\[
\theta_C^- = -0.0161 \text{ rad} + 0 = -0.0161 \text{ rad}
\]

\[
\theta_C^- = 0.0161 \text{ radians clockwise}
\]

Negative result, so rotation is in the opposite direction of the virtual unit moment.
Step 1 – Remove all loads and apply a virtual force (or moment) to measure the deformation at the point of interest

From an equilibrium analysis, find the internal bending moment function for the virtual system:

\[M_Q(x) \]
Find the Moment Diagram for the Virtual System

\[\sum M_A = 0 \implies M_A = -2 \]
\[\sum F_x = 0 \implies A_x = 0 \]
\[\sum F_y = 0 \implies A_y = 0.125 \text{ /ft} \]
\[\sum M_C = 0 \implies D_y = -0.125 \text{ /ft} \]
\[\sum F_x = 0 \implies F_B = 0 \]
\[\sum F_y = 0 \implies V_C = 0.125 \text{ /ft} \]
Support Reactions for the Virtual System

2

A | B | C

0.125/ft

8 ft | 8 ft

0.125/ft

1

C | D | E

0.125/ft

8 ft | 4 ft
Moment Diagram for the Virtual System

- \(V_Q \): 0.125 /ft
- \(M_Q \): -2 to -1
- \(0.125 /ft \)
- 8 ft sections
- Points A, B, C, D, E

+ forces and moments indicated
Moment Diagram for the Real System

104 k-ft

19 k

6 k

16 k

9 k

8 ft

8 ft

8 ft

4 ft

16 k

V_p

16 k

− 3 k

− 104 k-ft

24 k-ft

M_p

24 k-ft

− 24 k-ft

− 104 k-ft

+
Evaluate the Virtual Work Product Integrals

\[1 \cdot \theta_{c+} = \frac{1}{EI} \int_{0}^{L} M_Q M_P \, dx \]

Use Table to evaluate product integrals

- \(EI_{ABC} = 2,000,000 \text{ k-in}^2 \)
- \(EI_{CDE} = 800,000 \text{ k-in}^2 \)

- \(M_Q \) changes from -2 to -1.1875 to -1
- \(M_P \) changes from -104 k-ft to 24 k-ft to -24 k-ft

- Displacements:
 - A to B: 8 ft
 - B to C: 8 ft
 - C to D: 8 ft
 - D to E: 4 ft

- Use Table to evaluate product integrals.
Table to Evaluate Virtual Work Product Integrals

Appendix Table.2

<table>
<thead>
<tr>
<th>M_Q</th>
<th>M_I</th>
<th>M_1</th>
<th>M_2</th>
<th>M_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_Q</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
<td>M_1</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Table is as useful tool to evaluate product integrals of the form:

$$\int_0^L M_Q M_P dx$$
Evaluate Product Integrals Using the Table

\[\frac{1}{6} (M_1 + 2M_2)M_3L \]

\[\frac{1}{6} (-1.1875)(24)(9.5 + 8) \]

\[\frac{1}{6} (-1.1875 + 2(-2))(-104)(6.5) \]

584.458 k-ft²

-83.125 k-ft²

32 k-ft²

0
Evaluate the Virtual Work Product Integrals

\[1 \cdot \theta_{c^+} = \frac{1}{EI} \int_0^L M_Q M_P \, dx \]

Segment AX
- 584.458 k-ft²

Segment XC
- 83.125 k-ft²

Segment CD
32 k-ft²

Segment DE
0

\[\int_0^{L_{ABC}} M_Q M_P \, dx = (584.458 - 83.125 \text{ k-ft}^2) \left(\frac{12^2 \text{ in}^2}{\text{ft}^2} \right) = 72,191.95 \text{ k-in}^2 \]

\[\int_0^{L_{CDE}} M_Q M_P \, dx = (32 \text{ k-ft}^2) \left(\frac{12^2 \text{ in}^2}{\text{ft}^2} \right) = 4608 \text{ k-in}^2 \]
Evaluate Product Integrals

\[
\int_{0}^{L_{ABC}} M_Q M_P \, dx = (584.458 - 83.125 \text{ k-ft}^2) \left(\frac{12^2 \text{ in}^2}{\text{ft}^2}\right) = 72,191.95 \text{ k-in}^2
\]

\[
\int_{0}^{L_{CDE}} M_Q M_P \, dx = (32 \text{ k-ft}^2) \left(\frac{12^2 \text{ in}^2}{\text{ft}^2}\right) = 4608 \text{ k-in}^2
\]

\[
1 \cdot \theta_{C^+} = \frac{1}{EI_{ABC}} \int_{0}^{L_{ABC}} M_Q M_P \, dx + \frac{1}{EI_{CDE}} \int_{0}^{L_{CDE}} M_Q M_P \, dx
\]

\[
\theta_{C^+} = \frac{72,191.95 \text{ k-in}^2}{2,000,000 \text{ k-in}^2} + \frac{4608 \text{ k-in}^2}{800,000 \text{ k-in}^2}
\]

\[
\theta_{C^+} = 0.0361 + 0.00576 \text{ rad} = 0.0419 \text{ rad}
\]

Positive result, so rotation is in the same direction of the virtual unit moment

\[
\theta_{C^+} = 0.0419 \text{ radians counter-clockwise}
\]
The overhanging beam shown has a fixed support at A, a roller support at C and an internal hinge at B. $EI_{ABC} = 2,000,000 \text{ k-in}^2$ and $EI_{CDE} = 800,000 \text{ k-in}^2$

For the loads shown, find the following:

1. The vertical deflection at point E;
2. The slope just to the left of the internal hinge at C;
3. The slope just to the right of the internal hinge at C

The beam deflection example results:

- 0.0419 radians
- 0.903 inches
- 0.0161 radians