Analysis of Statically Indeterminate Structures Using the Force Method

Steven Vukazich
San Jose State University
At the beginning of the course, we learned that a **stable structure** that contains **more unknowns than independent equations of equilibrium** is **Statically Indeterminate**.

Advantages
- Redundancy (several members must fail for the structure to become unstable);
- Often maximum stresses is certain members are reduced;
- Usually deflections are reduced.

Disadvantages
- Connections are often more expensive;
- Finding forces and deflections using hand analysis is much more complicated.
Steps in Solving an Indeterminate Structure using the Force Method

1. Determine degree of Indeterminacy
 Let \(n = \text{degree of indeterminacy} \)
 (i.e. the structure is indeterminate to the \(n \)th degree)

2. Define Primary Structure
 and the \(n \) Redundants

3. Define the Primary Problem

4. Solve for the \(n \) Relevant Deflections in Primary Problem

5. Define the \(n \) Redundant Problems

6. Solve for the \(n \) Relevant Deflections in each Redundant Problem

7. Write the \(n \) Compatibility Equations at Relevant Points

8. Solve the \(n \) Compatibility Equations to find the \(n \) Redundants

9. Use the Equations of Equilibrium to solve for the remaining unknowns

10. Construct Internal Force Diagrams (if necessary)

 - Chapters 3, 4, 5 then 7 or 8

 - Chapters 3, 4, 5 then 7 or 8

 - Chapters 3, 4, 5
Consider the beam

Force Method of Analysis

Beam is stable

\[X = 5 \]

\[3n = 3(1) = 3 \]

Statically Indeterminate to the 2nd degree
Define Primary Structure and Redundants

- Remove all applied loads from the actual structure;
- Remove support reactions or internal forces to define a primary structure;
- Removed reactions or internal forces are called redundants;
- Same number of redundants as degree of indeterminacy;
- Primary structure must be stable and statically determinate;
- Primary structure is not unique – there are several choices.
Define and Solve the Primary Problem

- Apply all loads on actual structure to the primary structure;
- Define a reference coordinate system;
- Calculate relevant deflections at points where redundants were removed.
Define and Solve the Redundant Problems

- There are the same number of redundant problems as degrees of indeterminacy;
- Define a reference coordinate system;
- Apply only one redundant to the primary structure;
- Write the redundant deflection in terms of the flexibility coefficient and the redundant for each redundant problem.
- Calculate the flexibility coefficient associated with the relevant deflections for each redundant problem;

\[\Delta_{CC} = C_y \delta_{CC} \]
\[\Delta_{DC} = C_y \delta_{DC} \]
Define and Solve the Redundant Problems

\[\Delta_{CD} = D_y \delta_{CD} \]
\[\Delta_{DD} = D_y \delta_{DD} \]
Compatibility Equations

Compatibility at Point C

\[\Delta_C + \Delta_{CC} + \Delta_{CD} = 0 \]

Compatibility at Point D

\[\Delta_D + \Delta_{DC} + \Delta_{DD} = 0 \]

Compatibility Equations in terms of Redundants and Flexibility Coefficients

\[\Delta_C + C_y \delta_{CC} + D_y \delta_{CD} = 0 \]
\[\Delta_D + C_y \delta_{DC} + D_y \delta_{DD} = 0 \]

Solve for \(C_y \) and \(D_y \)
The Force Method is Based on the Principle of Superposition

Indeterminate Problem

Primary Problem

Redundant Problem 1

Redundant Problem 2
For the indeterminate beam subject to the point load, \(P \), find the support reactions at A and C. \(EI \) is constant.

Beam is stable
\[X = 4 \]
\[3n = 3(1) = 3 \]

Statically Indeterminate to the 1\(^{st}\) degree
Define Primary Structure and Redundant

- Remove all applied loads from the actual structure;
- Remove support reactions or internal forces to define a primary structure;
- Removed reactions or internal forces are called redundants;
- Same number of redundants as degree of indeterminacy;
- Primary structure must be stable and statically determinate;
- Primary structure is not unique – there are several choices.

![Diagram of Primary Structure and Redundant](image-url)
Define and Solve the Primary Problem

- Apply all loads on actual structure to the primary structure;
- Define a reference coordinate system;
- Calculate relevant deflections at points where redundants were removed.

\[
\theta_A = -\frac{PL^2}{16EI}
\]

From Tabulated Solutions

Counter-clockwise rotations positive
Define and Solve the Redundant Problem

- There are the same number of redundant problems as degrees of indeterminacy;
- Define a reference coordinate system;
- Apply only one redundant to the primary structure;
- Write the redundant deflection in terms of the flexibility coefficient and the redundant for each redundant problem.
- Calculate the flexibility coefficient associated with the relevant deflections for each redundant problem;

\[\theta_{AA} = M_A \alpha_{AA} \]

From Tabulated Solutions

\[\alpha_{AA} = -\frac{L}{3EI} \]
Compatibility Equation at Point A

\[\theta_A + \theta_{AA} = 0 \]

Compatibility Equation in terms of Redundant and Flexibility Coefficient

\[\theta_A + M_A \alpha_{AA} = 0 \]

\[-\frac{PL^2}{16EI} + M_A \left(-\frac{L}{3EI}\right) = 0 \]

Solve for \(M_A \)

\[M_A = \frac{PL^2}{16EI} \left(-\frac{3EI}{L}\right) \]

\[M_A = -\frac{3}{16} PL \]
Can now use equilibrium equations to find the remaining three unknowns.

\[
M_A = -\frac{3}{16}PL
\]
Can now use equilibrium equations to find the remaining three unknowns.

\[M = 0 \]
\[F = 0 \]
\[F' = 0 \]
\[A_x = 0 \]
\[C_y = \frac{5}{16} P \]
\[A_y = \frac{11}{16} P \]
Draw V and M Diagrams of the Beam

\[V = \begin{cases} \frac{3}{16}PL, & x < \frac{L}{2} \\ \frac{11}{16}P, & \frac{L}{2} \leq x \leq \frac{3L}{4} \\ \frac{11}{16}P, & x > \frac{3L}{4} \end{cases} \]

\[M = \begin{cases} \frac{5}{32}PL, & x < \frac{L}{2} \\ -\frac{3}{16}PL + \frac{11}{32}PL, & \frac{L}{2} \leq x \leq \frac{3L}{4} \\ -\frac{5}{16}P, & x > \frac{3L}{4} \end{cases} \]

\[M_B - M_A = \left(\frac{11}{16}P\right)\left(\frac{L}{2}\right) \]
Superposition of Primary and Redundant Problems

Indeterminate Problem

Primary Problem

Redundant Problem

\[\frac{3}{16} PL \]

\[\frac{11}{16} P \]

\[\frac{11}{16} P \]

\[V \]

\[M \]

\[- \frac{3}{16} PL \]