Solution 4.28

PROBLEM STATEMENT

Determine the reactions at A and C when (a) \(\alpha = 0 \), (b) \(\alpha = 30^\circ \).

(a) \(\alpha = 0 \) From F.B.D. of member ABC:

\[+ \sum M_C = 0: \quad (300 \text{ N})(0.2 \text{ m}) + (300 \text{ N})(0.4 \text{ m}) - A(0.8 \text{ m}) = 0 \]

\[A = 225 \text{ N} \quad \text{or} \quad A = 225 \text{ N} \uparrow \]

\[+ \sum F_y = 0: \quad C_y + 225 \text{ N} = 0 \]

\[C_y = -225 \text{ N} \quad \text{or} \quad C_y = 225 \text{ N} \downarrow \]

\[+ \sum F_x = 0: \quad 300 \text{ N} + 300 \text{ N} + C_x = 0 \]

\[C_x = -600 \text{ N} \quad \text{or} \quad C_x = 600 \text{ N} \rightarrow \]

Then

\[C = \sqrt{C_x^2 + C_y^2} = \sqrt{(600)^2 + (225)^2} = 640.80 \text{ N} \]

and

\[\theta = \tan^{-1} \left(\frac{C_y}{C_x} \right) = \tan^{-1} \left(\frac{-225}{-600} \right) = 20.556^\circ \]

\[\text{or} \quad C = 641 \text{ N} \rightarrow 20.6^\circ \uparrow \]

(b) \(\alpha = 30^\circ \)

From F.B.D. of member ABC:

\[+ \sum M_C = 0: \quad (300 \text{ N})(0.2 \text{ m}) + (300 \text{ N})(0.4 \text{ m}) - (A \cos 30^\circ)(0.8 \text{ m}) \\
+ (A \sin 30^\circ)(20 \text{ in.}) = 0 \]

\[A = 365.24 \text{ N} \quad \text{or} \quad A = 365 \text{ N} \nearrow 60.0^\circ \uparrow \]

\[+ \sum F_x = 0: \quad 300 \text{ N} + 300 \text{ N} + (365.24 \text{ N}) \sin 30^\circ + C_x = 0 \]

\[C_x = -782.62 \]

Solution continued on next page
\[\Sigma F_y = 0: \quad C_y + (365.24 \text{ N})\cos 30^\circ = 0 \]

\[C_y = -316.31 \text{ N} \quad \text{or} \quad C_y = 316 \text{ N} \downarrow \]

Then

\[C = \sqrt{C_x^2 + C_y^2} = \sqrt{(782.62)^2 + (316.31)^2} = 884.12 \text{ N} \]

and

\[\theta = \tan^{-1}\left(\frac{C_y}{C_x}\right) = \tan^{-1}\left(\frac{-316.31}{-782.62}\right) = 22.007^\circ \]

or

\[C = 884 \text{ N} \left\langle 22.0^\circ \right\rangle \]
PROBLEM 4.36

A light bar AD is suspended from a cable BE and supports a 20-kg block at C. The ends A and D of the bar are in contact with frictionless vertical walls. Determine the tension in cable BE and the reactions at A and D.

SOLUTION

Free-Body Diagram:

\[
W = (20 \text{ kg})(9.81 \text{ m/s}^2) = 196.20 \text{ N}
\]

\[
\Sigma F_x = 0: \quad A = D
\]

\[
\Sigma F_y = 0: \quad T_{BE} = W \quad T_{BE} = 196.2 \text{ N}
\]

We note that the forces shown form two couples.

\[
\sum M_A = 0: \quad A(200 \text{ mm}) - (196.20 \text{ N})(75 \text{ mm}) = 0
\]

\[
A = 73.575 \text{ N}
\]

\[
A = 73.6 \text{ N} \quad \text{and} \quad D = 73.6 \text{ N}
\]
PROBLEM 4.67

Determine the reactions at B and D when \(b = 60 \text{ mm} \).

SOLUTION

Since \(CD \) is a two-force member, the line of action of reaction at \(D \) must pass through Points \(C \) and \(D \).

Free-Body Diagram:

(Three-force body)

Reaction at \(B \) must pass through \(E \), where the reaction at \(D \) and the 80-N force intersect.

\[
\tan \beta = \frac{220 \text{ mm}}{250 \text{ mm}} \\
\beta = 41.348^\circ
\]

Force triangle

Law of sines:

\[
\frac{80 \text{ N}}{\sin 3.652^\circ} = \frac{B}{\sin 45^\circ} = \frac{D}{\sin 131.348^\circ}
\]

\(B = 888.0 \text{ N} \)

\(D = 942.8 \text{ N} \)

\(\mathbf{B} = 888 \text{ N} \uparrow 41.3^\circ \quad \mathbf{D} = 943 \text{ N} \uparrow 45.0^\circ \)