Moment of a Force About a Point
Steven Vukazich
San Jose State University
Which application of the force F would provide the most rotation to loosen the nut at point O?

Proof of the correct answer lies in the concept of the moment of a force about a point.

Position A

Position B

Position C
Moment of a Force F about a Point O

Magnitude of M_O is the area of the parallelogram defined by r and F.

Direction of M_O is perpendicular to the plane defined by r and F.

Sense of M_O is defined by the right-hand rule.

r is a position vector that must satisfy:
- Tail of r is at point O;
- Tip can be on any point on the line-of-action of F.

$$M_O = r \times F$$

$$M_O = rF \sin \theta$$
Moment of a Force F about Point O

$\mathbf{M}_O = \mathbf{r} \times \mathbf{F}$

$\mathbf{M}_O = \mathbf{r} \mathbf{F} \sin \theta$

$\mathbf{M}_O = r_1 \times \mathbf{F} = r_2 \times \mathbf{F} = r_3 \times \mathbf{F}$

Note that \mathbf{r}_2 is the position vector perpendicular to the line-of-action of \mathbf{F}. The length of this perpendicular position vector is usually denoted as d

$\mathbf{M}_O = \mathbf{r}_2 \mathbf{F} \sin 90^\circ = d \mathbf{F}$
Let’s Examine Our Initial Question Applying the Concept of Moment of a Force About a Point

\[r \theta = 30^\circ \]
\[\sin 30^\circ = 0.5 \]

\[\theta_A \approx 180^\circ \]
\[\sin 180^\circ = 0 \]

\[M^A_O \approx rF(0) \approx 0 \]

\[\theta_B \approx 90^\circ \]
\[\sin 90^\circ = 1.0 \]

\[M^B_O \approx rF(1.0) \approx rF \]

\[\theta_C \approx 30^\circ \]
\[\sin 30^\circ = 0.5 \]

\[M^C_O \approx rF(0.5) \approx 0.5rF \]
Moment of a Force about a Point for Planar Problems

\[M_O = r \times F \]

\[M_O = rF \sin \theta \]

\[M_O = dF \]

\(r \) is a position vector that must satisfy:
- Tail of \(r \) is at point \(O \);
- Tip can be on any point on the line-of-action of \(F \)

The direction of \(M_O \) will always be in the \(z \) direction

Sense of \(M_O \) is defined by the right-hand rule
The direction of M_o will always be in the z direction for a planar problem.

The sense of M_o is defined by the right-hand rule:
- Counter-clockwise (positive z direction)
- Clockwise (negative z direction)
Varignon’s Theorem

The moment about a given point O of the resultant of several concurrent forces is equal to the sum of the moments of the various forces about the same point O

\[M_0 = r \times F_1 + r \times F_2 + r \times F_3 = M_0 = r \times (F_1 + F_2 + F_3) = r \times R \]
Moment of a Force in Cartesian Vector Form about a Point

\[\mathbf{M}_0 = \mathbf{r} \times \mathbf{F} \]

\[\mathbf{M}_0 = \mathbf{r} \times \mathbf{F} = \mathbf{r} \times \mathbf{F}_x \mathbf{\hat{i}} + \mathbf{r} \times \mathbf{F}_y \mathbf{\hat{j}} + \mathbf{r} \times \mathbf{F}_z \mathbf{\hat{k}} \]
Moment of a Force about a Point when the Position Vector and Force Vector are in Cartesian Vector Form

\[M_o = r \times F \]

\[r = r_x \hat{i} + r_y \hat{j} + r_z \hat{k} \]
\[F = F_x \hat{i} + F_y \hat{j} + F_z \hat{k} \]

\[M_o = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix} \]

Almost always the best way to calculate the moment of a force about a point for three-dimensional problems

\[M_o = \left(r_y F_z - r_z F_y \right) \hat{i} + \left(r_z F_x - r_x F_z \right) \hat{j} + \left(r_x F_y - r_y F_x \right) \hat{k} \]
Moment of a Force about a Point for Planar Problems

Calculate the moment of each component of F using the perpendicular distance from point O.

Add the moment of each component (counter-clockwise rotation is positive and clockwise rotation is negative) to find the moment of the force F about point O.

$$M_O = +F_x r_y - F_y r_x$$