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We start with the important concept of a 

Function.  A function is a mathematical 
relation for which, if given an input value (the 
"argument"), the result (the "output" value of 
the function for that argument) is given by 
exactly one number.  In the same way that we 
can refer generally to an arbitrary or unknown 
quantity as "x", we can refer generally to some 
arbitrary or unknown function using an 
abstraction like "F(x)".  A function can be 
thought of as a mathematical operation (or 
"rule") that produces a single output number 
for any input number in the domain of the 
function.  The specific relation, F(x) = x2 + 1 
is a function; for every value of the input, x, 
you can compute exactly one output value: 
F(3) = 32 + 1 = 10, for example.  The input 
value of a function is also called an 
"independent variable".  f(x) = x½ (the 
square root of x) is not a function, since the 
result, for example, for x=4 gives plus or 
minus 2 (two possible results, rather than 
exactly one result.  A function can be plotted 
as a graph showing a curve of any shape, as 
long as there is exactly one and only one value 
corresponding to each input value. We can 
also have functions with multiple arguments 
(or multiple independent variables), say a 
function of x, y, and z such that there is 
exactly one output result for any combination 
of input values x, y and z.   

 

For example, F(x, y, z) = 3 + 2xy2 – z4 is a 
function of x, y and z.  For x=1, y=3 and z=2, 
F(1, 3, 2) = 3 + 18 – 16 = 5, exactly one  
output number corresponding to the specific 
input values.  Sometimes a curve on a graph, 
say the circle in the x,y plane given by the 
equation x2 + y2 = R2, does not represent a 
function y(x).  However, this same curve 
could be considered a function r(θ) by 
changing from Cartesian coordinates to 
polar coordinates.  In that case, each value of 
θ corresponds to exactly one output value r. 

 

  
 
               

 
 

 
Trigonometry and polar coordinates 
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A vector function is basically the same as a regular (scalar) function, except that for every 
input value (or combination of input values, for functions of several variables) the output is 
exactly one vector rather than exactly one number as for scalar functions.  A vector,⎯v, has a size 
(magnitude) and a direction and is written as a symbol name in bold type, often with a little 
arrow or line above it.  A three-dimensional vector has three components, corresponding to the 
three spatial dimensions x, y, and z; the x, y, and z components of ⎯v are written as vx, vy, and vz, 
respectively.  A unit vector is a vector of magnitude equal to one, whose only job is to specify a 
direction for a vector component.  The unit vectors for specifying the x, y, and z directions are 
written as î ,  ĵ , and ǩ, or sometimes as⎯x,  ŷ, and ź respectively.  The vector,⎯v, is written in 
component form as ⎯v  = vx î  + vy ĵ  + vz ǩ .  A vector equation is just "shorthand" for three 
separate equations involving the respective components.  

 

An important characteristic of a function is how much the output changes for a given change 
of input value.  If you change the input from x to x+Δx (where Δx = "delta-x" represents some 
increment in the value of the input, x) what is the change in the output of the function?  The 
change in output value [F(x+Δx) – F(x)] divided by the change in input value, Δx, is called the 
average rate of change of the function with respect to x.  We also call this the average slope of 
the function, when drawn as a curve on a graph.    If the independent variable is time, t, we can 
consider the output of the function as the location of an object, say x as a function of t, or x(t).    
If we consider the change of location corresponding to a change in time  (t changing to t+Δt),  we 
refer to the change of location, x(t+Δt) – x(t), divided by the change of time, Δt, as the average 
velocity of the object over the interval from t to t+Δt.  If we imagine taking smaller and smaller 
increments, the average velocity typically gets closer and closer to a specific value.  But we can't 
just let Δt go all the way to zero.  Then the average velocity as defined above would be given by 
zero divided by zero, which is "nonsense".  As long as we don't go "all the way" to zero for the 
increment Δt, we get closer and closer to a fixed value for the average velocity, and we want to 
introduce the concept of this "limiting value" as Δt gets smaller and smaller, but doesn't become 
exactly zero.  We introduce the concept of a "limit" as a way of avoiding the "nonsense" of zero 
divided by zero.  Zero divided by zero is an example of what is called an "indeterminate form".  
0 d 0 doesn't have any meaning as such, but we assign a meaning to the "limiting value" of the 
ratio of two quantities, each of which individually "approaches" zero.   

 

 



Other indeterminate forms involve a special symbol, "∞", which we call "infinity".  The 
concept of infinity is that of a number that is bigger than any specific value you can name.  "∞" 
doesn't correspond to any real number, but we can often treat it as if it did.  We say that 1/∞ = 0, 

even though we can't really divide by a non-existent number.  What we mean by 1/∞ is           
1/ (a number that is bigger than any specific value you can name), and this quotient becomes as 
close to zero as you want, closer to zero than any specific number you can name, however small.  
If the difference between two values is as small as you want, smaller than any specific number 
you can name, they are said to be equal "in the limit".    

 

Other indeterminate forms, such as ∞ d ∞ , ∞ · 0, ∞ – ∞, 00, 1∞, and ∞0, can take on specific 
values "in the limit" as the individual parts "approach" the given values.  We introduce the 
concept of the derivative of a function F(x) with respect to x, as the limit as Δx approaches zero, 
of  [F(x+Δx) – F(x)] / Δx.  The derivative of F(x) with respect to x is the slope of the graph (or 
the slope of the "tangent line") of F(x) at the point F(x).  Likewise, the derivative of the 
function x(t) with respect to t is the rate of change of x at time t (or velocity at time t).  The 
process of taking a derivative is called Differentiation.  We use a special notation to denote the 
derivative of a function with respect to an independent variable: "dF(x)/dx" means "the limit as 
Δx approaches zero, of  [F(x+Δx) – F(x)] / Δx " or "the derivative of F(x) with respect to x".  It is 
useful to consider the computing of a derivative as a mathematical operation, and the symbol 
d/dx

( )
 or 

d( )/dx is said to operate on a function F(x) to produce another function, its derivative 
with respect to x.  This notation metaphorically invokes the concept of the indeterminate form    
0 ÷ 0 involved in the limiting process of taking the derivative.  A related notation, dF, refers to 
the "differential" of F, a "tiny" (or "infinitesimal") change in a quantity F, smaller than any 
specific change you could name.  Together, these notations allow us to metaphorically divide by 
"infinitesimal" (differential) quantities.  In this notation, we can "multiply and divide" by 
differential quantities as if they were real values without resulting in nonsensical indeterminate 
forms.  For F(x), whose derivative is the function G(x), we have 

dF(x)/dx = G(x), and we can 
symbolically "multiply both sides by" dx to obtain the differential of F(x),  dF(x) = G(x) dx.  
Sometimes it is convenient to "unclutter" the notation and simply use a capital "D" to denote 
differentiation.  In this notation, D[F(x)] means differentiation of F with respect to x.  We also 
sometimes suppress the explicit functional dependence on the independent variable, and simply 
write 

d/dx ( F ) (or 
dF/dx  or D[F] ) for 

d/dx ( F(x) ).  Similarly, the differential of F is, dF = G dx.  
Some elementary derivatives are listed here, (the letters a and n represent constants). 

 
d/dx ( a ) = 0               d/dx  ( x ) = 1                        

d/dx  ( x2 ) = 2·x           
d/dx  ( xn ) = n·xn-1           

 

d/dx  ( sin(x) ) = cos(x)      
d/dx  ( cos(x) ) = –sin(x)        

d/dx  ( ex ) = ex           
d/dx  ( ln(x) ) = 

1/x                  
 
Of course, once we have taken the derivative of a function F(x), to obtain its derivative, the 

function G(x), we can repeat the process and take the derivative of that function.  This is called 
taking the second derivative.  The notation we use for the second derivative is:  
d2( F(x) ) / dx2 = d( G(x) ) / dx.  As many higher derivatives as we want could be taken, but in 
the Physics 50 series we usually limit ourselves to the second derivative.   
 

 



If the graph of a smooth function F(x) has 
a peak at some location, we can see that the 
slope (derivative) of the function is zero there.  
Similarly, at the bottom of a valley in the 
function, the derivative is also zero.  In an 
important application of Differential Calculus, 
we can determine the locations of maxima or 
minima of F(x), without plotting F, by 
computing its derivative function and 
determining where that function is zero.  If the 
derivative of F(x) is G(x), we can set G(x) 
equal to zero and solve for the value(s) of x 
that satisfy the equation.  We just have to be 
careful to distinguish the maxima and minima.   

     
      Maxima and minima have zero derivatives 
     

 
 

In a famous example, an engineer wanted to optimize his design but in solving the equation for 
G(x) = 0 failed to notice that his selected solution was for the worst possible design (minimum 
point) rather than the best possible design (maximum point)!  If you think about it you can see 
that even though both maxima and minima have the same zero derivative at their locations, the 
maximum points have a negative second derivative, while the minima have positive second 
derivatives. 

 

Sometimes we have a "chain" of functional dependencies so that the input of one function 
comes from the output of some other function with respect to the independent variable.  So, we 
could have F(x), a function of x, with F(x) being the input for another function H, so that H(x), 
the dependence of H on x, is H(x) = H(F(x)). The derivative 

d/dx  (H(x) ) is given by the "Chain 

Rule": 
d/dx  (H( F(x)) ) =  

d/dF  (H(F) ) · 

d/dx  (F(x) ).  Don't let the "
d/dF  ( H(F) )" confuse you just 

because it doesn't involve "x". The function H is just a "rule" for converting inputs to outputs.  If 
the input is denoted as "F" you can take the derivative of H with respect to F just as you would 
take it with respect to x if the "rule" were operating on the input "x".  So if the rule of H is to take 
the sine of the input, 

d/dF  ( H(F) ) is equal to 
d/dF  ( sin(F) ) = cos(F).  (Just replace x with F in 

the "recipe" above.)  So the chain rule can be used, for example, to obtain the derivative of 
sin(x2).  This is just a "nested" pair of functions; first square x (the first function, F(x) = x2), and 
then take the sine of the result (the second function is H(F) = sin(F)).  The chain rule gives:  

 

d/dx ( sin(x2) ) = 
d/dx ( H(F(x)) ) =  

d/dF ( H(F) ) · 
d/dx ( F(x) )  =  cos(F) · 2·x  =  2·x · cos(x2) 

 

The chain rule can be extended to any depth of nested functions, so that if 4 function rules, 
[F, H, J, and K] are combined so that the dependence of F on x is F(x) = F(H(J(K(x)))), the 
derivative of F(x) with respect to x is:  

 

d/dx  ( F(G(H(J(x)))) ) =    
d/dH  ( F(H) ) · 

d/dJ  ( H(J) ) · 
d/dK  ( J(K) ) · 

d/dx  ( K(x) ). 
 
 

Another important rule for differentiation is the Product Rule, which holds that the 
derivative of a product of two functions 

d/dx  ( F · H ) = H · 
dF/dx  +  F · 

dH/dx  .  This rule will 
be used repeatedly in any real-world application of taking derivatives.  The Chain Rule and the 
Product Rule can be combined to prove the Quotient Rule of differentiation: 

 

d/dx  ( F d H ) = (H · 
dF/dx  –  F · 

dH/dx ) / H2. 



Differentiation is a linear operation.  This means that all of the normal arithmetic and 
algebraic rules of Distributivity, Commutativity and Associativity apply.  Therefore (taking a and 
b to be constants, and using the D[ ] notation for differentiation) we have that: 

 

D[FH] = D[HF]      D[F+H] = D[H+F]   D[a·(F+H)] = a·D[F+H] = a·D[F] + a·D[H] 
D[a·F + b·H] = a·D[F] + b·D[H]    (etc.) 

 

So we can extend, or generalize, our list of elementary derivatives to include: 
 

d/dx  ( a·F(x)n ) = a·n·F(x)n-1 · 
d/dx ( F(x) )    and    

d/dx  (a·eF(x) ) = a·eF(x) d/dx ( F(x) )    etc. 
 

Any time we have a mathematical operation, we can consider the "inverse" of that operation, 
an operation that "undoes" what the first operation did.  The inverse of taking a derivative is 
often referred to as an "anti-derivative".  If the derivative of x2 is [2 times x], then the anti-
derivative of [2 times x] is equal to x2.  But this anti-derivative is not unique.  An equally good 
anti-derivative of [2 times x] could be x2 + 2, or x2 + any constant, since x2 plus any constant has 
the same derivative, namely, [2 times x].   

 

An important thing to do in math and science is to add up individual things to find a total.  
We denote the taking of this sum with the upper case Greek letter sigma, Σ.  The sum of several 
items is written as Σi yi.  The letter i is the "index" distinguishing and enumerating the individual 
items to be summed.  But a difficulty arises if the number of things that need to be added 
together is infinite.  The Integral Calculus was invented to allow us to add together an infinite 
number of tiny (infinitesimal) pieces of something to get a correct final answer.  This is another 
of our dreaded "indeterminate forms": ∞ · 0 .  But we get around the "nonsense" of the 
indeterminate form in the same way we did in the definition of the derivative, using the same 
concept of the limit.  If we consider the graph of a function G(x) and want to determine the total 
area under the curve of the plot, we conceptually "chop up" the area into a large number of tiny 
slices of width Δx and height G(x) and add up the areas of the individual slices to obtain an 
approximation of the total area.  In the limit as Δx goes to zero we have an infinite sum of 
infinitesimal areas, and the limit of this sum is the area under the curve.  The word we use for the 
process of adding together an infinite number of infinitesimal pieces is  "integration",  and this is 
the essence of the Integral Calculus.  The 

notation for this integration is:  
G(x) dx

 .  
Compare this to the notation for the discrete 
sum Σi yi .  Instead of the Σ, we use the 
symbol ∫ to indicate an infinite sum of 
infinitesimals.  The independent variable, x, is 
used in place of i to distinguish and enumerate 
the infinite number of slices to be summed.  
The individual slices have a tiny (differential) 
width dx and a height given by the value of 
the function at x, G(x).  The product G(x) · dx 
is the area of one such slice, and the 
integration process takes the sum of the 
infinitely many pieces, starting at x1 on the left 
and ending at x2 on the right.  The values x1 
and x2 are called the "limits of integration".  
The function G(x) is called the integrand. 

 

The area under the curve of G(x), between the 
limits x1 and x2 is called the integral of G(x), and 
is equal, in the limit as Δx goes to zero, to the 
sum of the areas of all the little slivers of width 
Δx and height G(x). This sum is equal to the 
anti-derivative of G(x), evaluated between the 
limits as discussed in the main text. 
 



In fact, the process of integration is the inverse of differentiation, and the integral of a function 
G(x) is computed by the use of the anti-derivative of G(x).  How can you be convinced that this 
summation, or integration, is the same as the anti-derivative?  Consider a simple case of a person 
saving money.  Each week Bob puts some amount, say $7, into his piggy bank.  The rate of 
increase of money in the bank in dollars per week is equal to the amount put in weekly, $7.  The 
slope of the graph of the total dollars in the bank as a function of time is $7 per week.  The total 
amount in the bank and the amount put in per week are related in the same way as the integrals 
and derivatives of functions.  If the amount put in per week (which need not be constant) is a 
function called G(t), and the total amount in the bank is another function F(t), F(t) is the total 
(integral) of the deposits described by G(t).  And the rate of increase of the total, the slope 
(derivative) of F(t), is the function G(t).  G is the derivative of F, and F is the sum (integral) of G, 
so the integral must be the same as the anti-derivative.  The final detail to take care of is to be 
careful about the starting value of the money in the bank.  The summation only gives you the 
increment of the money in the bank, the difference between the amount at the end of some period 
compared to the amount at the beginning.  We evaluate the anti-derivative at the final time (or 
state) minus the anti-derivative at the initial time (or state) to obtain the increment over the 
period.  We have already seen that the anti-derivative of a function is not unique; any arbitrary 
constant can be added to it and it will still have the same derivative.  (This arbitrary constant is 
called the "constant of integration".)  But when we subtract the starting value of the anti-
derivative from the ending value to compute the integral, this constant will subtract out, 
regardless of its value.  So we don't have to worry at all about that little problem!   

 

It's now time to dispense with the cumbersome term "anti-derivative" and start calling it by 
the conventional name, the "indefinite integral".  If the indefinite integral of G(x) is the function 
F(x) (plus any arbitrary constant), the result of integrating G(x) (or computing the area under the 

curve of G) is indicated in this way:   
G(x) dx   =

   
F(x) 

  
=

  
F(x

2
) – F(x

1
)
  .  The "]" is used 

to indicate that the function F(x) is to be evaluated at the indicated values of the independent 
variable, x1 and x2 with the difference taken as shown.  This relationship between the integral of a 
function G(x) (the area under its curve) and its anti-derivative (indefinite integral) F(x) evaluated 
at the beginning and ending as shown, is called the Fundamental Theorem of Integral 
Calculus.  The process of evaluating the indefinite integral at the specific beginning and ending 
points and taking the difference is what turns the indefinite integral into a definite integral.   

 

Extensive tables of various functions and their indefinite integrals have been compiled, but it 
still frequently happens that the function we need to integrate in a specific application is not in 
the table.  We need to develop various "tricks" and methods to help us put an integrand into a 
form that appears in the table.  One such method is the method of substitution.  I won't go into 
great detail other than to say that it is sometimes useful to make a substitution of one function for 
another to rewrite the integrand.  For example, if we want to integrate ∫tan(x) dx and have no 
idea where to start, we can rewrite tan(x) in the integrand as sin(x) / cos(x) and note that the 
product of sin(x) dx is minus the differential of cos(x), –d[cos(x)].  If we substitute the function y 
= cos(x) we see that ∫tan(x) dx = ∫ [sin(x) / cos(x)] dx  = ∫–d[cos(x)] / cos(x) = –∫1/y dy.  The 

indefinite integral of 
1/y is known to be ln(y), so we have transformed a "hard" integral into an 

"easy" one by way of substitution.  Another method is called "integration by parts".  Without 
going into great detail, the basic result is that for functions u & v (suppressing the explicit 
dependence on x) ∫ u dv = uv – ∫ v du +C  for the indefinite integral (with arbitrary constant C 



added) and  
u dv  =

  
uv 

 
–
 

v du 

1

 for the definite integral, where du and dv are the 

differentials of the functions u and v, as explained above.  This can be very helpful if   ∫ v du  is 

in your table of integrals, but ∫ u dv  is not.  For example, we may want to integrate ∫ln(x) dx but 
have no idea how.  If we choose functions u=ln(x) and v=x we have (taking the differentials of u 
and v) that du = d[ln(x)] = /x dx  and dv = dx.  Our desired integral has the form  ∫ u dv  so we 

see that we can rewrite it as uv –  ∫ v du = x·ln(x) – ∫x/x dx =     x·ln(x) – ∫ dx = x·ln(x) – x + C 
which was easy to solve.  Again, all of the normal arithmetic and algebraic rules of 
Distributivity, etc., apply, and we have: 

 

 
[ F

1
(x) + F

2
(x) ] dx  =   

 
F

1
(x) dx  +   

 
F

2
(x) dx        &        

 
a · F(x) dx  =  a ·

 
F(x) dx  

etc., and we say that "we can integrate the terms of an integrand separately" and "we can take 
any constant out of the integral".  

 

Now, how do we deal with differentiation and integration for functions of more than one 
independent variable (Multivariate Calculus)?  Consider some scalar function of independent 
variables x, y, and z, F(x,y,z).  We want to know how the function changes as we let one or the 
other of the independent variables change.  The principle is straightforward.  To find out how 
much a multivariate function changes as we change one of the independent variables, we don't 
allow the others to vary.  This is called taking a partial derivative, and we use a special 

notation.  
∂F

/∂x denotes the partial derivative of F with respect to x.  The partial derivative with 
respect to x is the same as the regular derivative, but we "pretend" for the time being that the 
other independent variables are constants.  So the partial derivative of F(x,y,z) = 2xy – 3 z x2  

with respect to x is  
∂F

/∂x = 2y – 6 z x.  The partial derivative of F(x,y,z) with respect to y is 
∂F

/∂y = 2x – 0 = 2x, and the partial derivative of F(x,y,z) with respect to z is 
∂F

/∂z = – 3 x2.  If 
you follow the details, you will see that in each case we temporarily treated the "other" (non-
subject) independent variables as constants for the purpose of taking the indicated partial 
derivative.  Each partial derivative is the corresponding component of a vector function called 
the gradient of the function F.  The gradient of F is written as: 

Gradient(F) =⎯Î (F) = (∂F/∂x î + 
∂F/∂y ĵ +∂F/∂z ǩ) (the⎯Î symbol is called the "del" operator). 

 

We also can integrate functions of multiple independent variables.  Again, the basic principle 
is easy, and the difficulties are only in the details.  In the same way that an integral of a function 
of one variable is interpreted as the area under the curve, the integral of a function of two 
variables, say x and y, is interpreted as the volume under a two-dimensional surface.  We just 
have to "chop up" the volume in both the x and y dimensions into little (infinitesimally thin) 
"matchsticks" of width dx, breadth dy, and height F(x,y) and add up all of the little (infinitely 
many) pieces to get the final answer.  The notation is similar and looks as follows: 

 

  
F(x,y) dx dy  

 and the interpretation is similar.  The volume of the individual 
matchsticks is the product of F(x,y) (the height), multiplied by the width, dx, and the breadth dy.  

We do each integral sequentially in nested fashion:   
F(x,y) dx dy  =  

 (  
F(x,y) dx ) dy  

      where the integral in parentheses is done just as before with the only change being that we 



temporarily treat "y" as a constant for the time being.  In fact, the limits x1 and x2 can be explicit 
functions of y, and we just treat them symbolically as if y is a constant.  When we're done with 
the integral in parentheses, we proceed to do the next integral with respect to the next 
independent variable.  The process can be extended indefinitely with as many repeated integrals 
of as many independent variables as we want.  Each integral just treats the other variables as 
constants for the time being.   

 

The final subject is that of Differential Equations.  A differential equation is an equation 
involving the value of a function, say F(x), in addition to one or more of its derivatives.  The 
simplest differential equation of them all is    F(x) =  

dF(x)/dx  .  This equation can't be true for 
just any old function F(x).  If F(x) = 2x2, for example, we have the derivative of F(x) = 4x.  The 
equation says that the function is equal to its derivative, but 2x2 is not equal to 4x.  Whenever we 
have a differential equation, we will want to find some function that satisfies the equation.  We 
will also need to satisfy one or more "boundary conditions" which specify what the function is 
doing at some boundary, say x0.  In the example above, the boundary condition might be that the 
function must have a slope of – 3 at x=0.  How do we go about this?  The uncomfortable 
situation is that we must guess the answer.  But the good news is that there are many ways to be 
smart about how to guess an answer.  Once we guess an answer, it is easy to plug it into the 
differential equation to test if the equation and boundary condition(s) are satisfied.  The even 
better news is that once we verify that a guess satisfies the equation, we can be sure that we have 
found the one and only true solution.  This is because of a neat little theorem called the 
Uniqueness Theorem, which states that there can be only one solution to a differential equation.   
For our example above, since we know that the derivative of ex is equal to the same function ex, 
we will guess a solution of the form F(x) = c · ex  .  We know that  

dF(x)/dx   =  c · ex  .  In order 

for the slope, 
dF(x)/dx  = c · ex  to equal –3 at x=0, we must have that c = –3.  Now we're done.  

Our guess, with c set equal to –3 as we have determined is necessary, is that F(x) = –3 ex  and it 
is verified that this solution satisfies the differential equation as well as the boundary condition, 
so it is the one true answer.  We have solved this simplest of differential equations.   

 

The primary differential equation we will encounter in Physics 50 is a second order 
differential equation with respect to time, t:   d2( x(t) ) / dt2  = – (

k
 /m) x(t) .  This equation 

describes the position as a function of time, x(t), of a mass m on a spring with spring constant k, 
and we see that the second derivative of x with respect to t is proportional to the negative of x.  
We know that the derivative of sin(t) is cos(t) and the derivative of cos(t) is –sin(t), which gets us 
back to the same function, sin(t) with the required minus sign, so we can guess a solution of the 
form x(t) = A sin(ωt + c).  We can use the chain rule to find that the second derivative of x(t)     
is  –A ω2 sin(ωt + c).  We plug these functions into the equation and see that the only way for the 
                                                                                          _____________                                      ________________

equation to be satisfied is if  ω2 = 
k
/m, or ω = √  

k
/m  .  A and c can be anything, but some 

boundary conditions on the situation, such as the initial position and velocity of the motion will 
uniquely determine the solution.  We are done.  (You may object that you can find a function 
involving cos(ωt + c2) that also solves the equation, so the solution must not be unique.  But the 
value of c2 you find that satisfies the initial condition will be such that the cosine solution and the 
sine solution are exactly equivalent.)  It is an important and interesting fact that the angular 
frequency, ω, of the motion is completely determined by m and k, and has nothing to do with the 
boundary (initial) conditions.  In the physics 50 series, we will only encounter differential 
equations for which the form of the answer (the correct "guess" of the solution) is provided.  We 
can then do the easy part, plugging it in to verify the equation and relate the coefficients to the 
boundary (or initial) conditions.   


