Correspondence Table for analogous physical properties in physics 51 By Todd Sauke

Mechanical system property	Electrical circuit property	Notes/relations
x (position)	q (charge)	
x-motion - Change of position \downarrow $\Delta x = (x_{\text{final}} - x_{\text{initial}})$	q-motion – Change of charge \downarrow $\Delta q = (q_{\text{final}} - q_{\text{initial}})$	always <u>final</u> - <u>initial</u>
instantaneous velocity $y = \text{limit } \Delta t \rightarrow 0 \Delta x \ /\Delta t = dx/dt$	instantaneous current \downarrow i = limit $\Delta t \rightarrow 0 \Delta q / \Delta t = dq/dt$	
instantaneous acceleration \downarrow a = limit $\Delta t \rightarrow 0$ $\Delta v / \Delta t = dv/dt$	we don't give it a name \downarrow just use di/dt, or d ² q/dt ²	
force	voltage	$\boldsymbol{\mathcal{E}}$ = electromotive <i>force</i>
mass, m	inductance, L	
$\Sigma F_x = m a_x$	V = L di/dt	
spring constant, k	capacitance, C (is like 1 / k)	we could call 1/k the spring
F = k x	$V_C = q / C$	acceptance
springs in <i>series</i> \downarrow (forces are equal) (and Δx 's add)	capacitors in <i>parallel</i> \downarrow (V's are c (and q's	equal) add)
$1 / k_{equiv} = 1 / k_1 + 1 / k_2$	$C_{equiv} = C_1 + C_2$	spring "acceptances" add
springs in <i>parallel</i> \downarrow (forces add) (and Δx 's are equal)	capacitors in <i>series</i> \downarrow (V's add) (and q's are equal)	
$k_{equiv} = k_1 + k_2$	$1 / C_{equiv} = 1 / C_1 + 1 / C_2$	inverse "acceptances" add
resistance to motion through fluid	electrical resistance, R	
$F_{fluid} = -b v$	V = (-) R I	(minus) because it's a voltage <i>drop</i>
work (energy), $W = \int F(x) dx$	electrical energy, $U = \int V(q) dq$	
kinetic energy = $\frac{1}{2}$ m v ²	energy of an inductor = $\frac{1}{2}$ L i ²	
spring potential energy = $\frac{1}{2}$ k x ²	energy of a capacitor = $\frac{1}{2} q^2 / C$	
mechanical power, $P = F v$	electrical power, $P = V I$	(V is voltage on the right)

approach to equilibrium position of a light (massless, overdamped) spring in response to applied force	charging a capacitor through a resistor with an applied voltage (RC circ	cuit)
$x = x_{max} (1 - exp(-t / \tau))$	$q = q_{max} \left(1 - exp(-t / \tau)\right)$	
$x_{max} = F / k$, $\tau = b/k$	$q_{max} = V C$, $\tau = RC$	
mass on a spring oscillates	L C circuit oscillates	
$x = x_{max} \cos(\omega t + \phi)$	$q = q_{max} \cos(\omega t + \phi)$	
$v = -v_{max} \sin(\omega t + \phi)$	$i = -i_{max} \sin(\omega t + \phi)$	
$\omega = \sqrt{(k / m)}$	$\omega = \sqrt{1 / (L C)}$	
add resistance : motion damps	add resistance : current damps	(R L C circuit)
$x = x_{max} \exp(t/\tau) \cos(\omega' t + \phi)$	$q = q_{max} \exp(t/\tau) \cos(\omega' t + \phi)$	
$\tau = 2 m / b$	$\tau = 2 L / R$	
$\omega' = \sqrt{(\mathbf{k} / \mathbf{m}) - \mathbf{b}^2 / (4 \mathbf{m}^2)}$	$\omega' = \sqrt{1 / (L C) - R^2 / (4 L^2)}$	
approach to terminal speed	approach to final current in RL c	ircuit
upprouch to terminal speed	upprouch to find current in feb c	noun
$v = v_{term} (1 - exp(-t / \tau))$	$i = i_{final} (1 - exp(-t / \tau))$	
$\tau = m/b$, $i_{final} = (mg) / b$	$ au = L/R$, $i_{final} = \boldsymbol{\mathcal{E}} / R$	(mg) = weight (force) of object
driven mechanical oscillation with resonance	driven electrical oscillation with resonance	driven at angular frequency ω_d
$\mathbf{A} = \mathbf{F}_{\text{max}} / \sqrt{(\mathbf{k} - \mathbf{m} \omega_{\text{d}}^2)^2 + \mathbf{b}^2 \omega_{\text{d}}^2}$	$q_{\text{max}} = V_{\text{max}} / \sqrt{(1/C - L \omega_d^2)^2 + 1}$	$R^2 \omega_d^2$