Mechanical system property
Electrical circuit property
Notes/relations
x (position)
x-motion - Change of position \downarrow
$\Delta \mathrm{x}=\left(\mathrm{x}_{\text {final }}-\mathrm{x}_{\text {initial }}\right)$
instantaneous velocity \downarrow
$\mathrm{v}=\operatorname{limit} \Delta \mathrm{t} \rightarrow 0 \Delta \mathrm{x} / \Delta \mathrm{t}=\mathrm{dx} / \mathrm{dt}$
instantaneous acceleration \downarrow
$\mathrm{a}=\operatorname{limit} \Delta \mathrm{t} \rightarrow 0 \Delta \mathrm{v} / \Delta \mathrm{t}=\mathrm{dv} / \mathrm{dt}$
force
mass, m
$\Sigma F_{x}=m a_{x}$
spring constant, k
$\mathrm{F}=\mathrm{kx}$
springs in series \downarrow (forces are equal)
$($ and Δ x's add)
$1 / \mathrm{k}_{\text {equiv }}=1 / \mathrm{k}_{1}+1 / \mathrm{k}_{2}$
springs in parallel \downarrow (forces add) (and $\Delta \mathrm{x}$'s are equal)
$\mathrm{k}_{\text {equiv }}=\mathrm{k}_{1}+\mathrm{k}_{2}$
resistance to motion through fluid
$F_{\text {fluid }}=-b v$
work (energy), $W=\int F(x) d x$
kinetic energy $=1 / 2 \mathrm{~m} \mathrm{v}^{2}$
spring potential energy $=1 / 2 \mathrm{kx}^{2}$
mechanical power, $\mathrm{P}=\mathrm{F} v$
q (charge)
q-motion - Change of charge \downarrow
$\Delta q=\left(q_{\text {final }}-q_{\text {initial }}\right)$
instantaneous current \downarrow
$\mathrm{i}=\operatorname{limit} \Delta \mathrm{t} \rightarrow 0 \Delta \mathrm{q} / \Delta \mathrm{t}=\mathrm{dq} / \mathrm{dt}$
we don't give it a name \downarrow
just use di/dt, or $d^{2} q / d t^{2}$
voltage
inductance, L
$\mathrm{V}=\mathrm{L} \mathrm{di} / \mathrm{dt}$
capacitance, C (is like $1 / \mathrm{k}$) we could call $1 / \mathrm{k}$ the spring "acceptance"
$\mathrm{V}_{\mathrm{C}}=\mathrm{q} / \mathrm{C}$
approach to equilibrium position of a light (massless, overdamped) spring in response to applied force
$x=x_{\text {max }}(1-\exp (-t / \tau))$
$\mathrm{x}_{\text {max }}=\mathrm{F} / \mathrm{k} \quad, \quad \tau=\mathrm{b} / \mathrm{k}$
mass on a spring oscillates
$x=x_{\text {max }} \cos (\omega t+\phi)$
$\mathrm{v}=-\mathrm{v}_{\mathrm{max}} \sin (\omega \mathrm{t}+\phi)$
$\omega=\sqrt{(\mathrm{k} / \mathrm{m})}$
add resistance : motion damps
$\mathrm{x}=\mathrm{x}_{\text {max }} \exp (\mathrm{t} / \tau) \cos \left(\omega^{\prime} \mathrm{t}+\phi\right)$
$\tau=2 \mathrm{~m} / \mathrm{b}$
$\omega^{\prime}=\sqrt{(k / m)-b^{2} /\left(4 m^{2}\right)}$
approach to terminal speed
$\mathrm{v}=\mathrm{v}_{\text {term }}(1-\exp (-\mathrm{t} / \tau))$
$\tau=m / b \quad, \quad i_{\text {final }}=(m g) / b$
driven mechanical oscillation with resonance
$\mathrm{A}=\mathrm{F}_{\text {max }} / \sqrt{\left(\mathrm{k}-\mathrm{m} \omega_{\mathrm{d}}{ }^{2}\right)^{2}+\mathrm{b}^{2} \omega_{\mathrm{d}}{ }^{2}}$
charging a capacitor
through a resistor
with an applied voltage (RC circuit)
$\mathrm{q}=\mathrm{q}_{\max }(1-\exp (-\mathrm{t} / \tau))$
$\mathrm{q}_{\max }=\mathrm{VC} \quad, \quad \tau=\mathrm{RC}$

L C circuit oscillates
$\mathrm{q}=\mathrm{q}_{\max } \cos (\omega \mathrm{t}+\phi)$
$\mathrm{i}=-\mathrm{i}_{\max } \sin (\omega \mathrm{t}+\phi)$
$\omega=\sqrt{1 /(\mathrm{LC})}$
add resistance : current damps
(R L C circuit)
$\mathrm{q}=\mathrm{q}_{\max } \exp (\mathrm{t} / \tau) \cos \left(\omega^{\prime} \mathrm{t}+\phi\right)$
$\tau=2 \mathrm{~L} / \mathrm{R}$
$\omega^{\prime}=\sqrt{1 /(\mathrm{L} \mathrm{C})-\mathrm{R}^{2} /\left(4 \mathrm{~L}^{2}\right)}$
approach to final current in RL circuit
$\mathrm{i}=\mathrm{i}_{\text {final }}(1-\exp (-\mathrm{t} / \tau))$
$\tau=\mathrm{L} / \mathrm{R}, \quad \mathrm{i}_{\text {final }}=\mathcal{E} / \mathrm{R} \quad(\mathrm{mg})=$ weight (force) of object
driven electrical oscillation with resonance
$\mathrm{q}_{\max }=\mathrm{V}_{\max } / \sqrt{\left(1 / \mathrm{C}-\mathrm{L} \omega_{\mathrm{d}}{ }^{2}\right)^{2}+\mathrm{R}^{2} \omega_{\mathrm{d}}{ }^{2}}$

