Name \qquad Section \# __KEY

The three charges shown below as black dots are the source of an electric field. The coordinates are measured in meters, and the charges are as indicated in units of nanoCoulombs ($\mathrm{nC}=10^{-9} \mathrm{C}$). Find the magnitude and direction of the electric field vector at the origin, \mathbf{O}. Pay particular attention to the sign of all quantities.
Use $\mathrm{k}=1 /\left(4 \pi \varepsilon_{0}\right)=9.0 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$.

We add the respective $x \& y$ components from the three charges, and use the fact that the x component is given by $-\mathrm{kq} / \mathrm{r}^{2}$ times the cosine of the angle the charge makes with the +x axis. The y component $=-\mathrm{kq} / \mathrm{r}^{2}$ times the sine of the angle.

$$
\begin{aligned}
\mathrm{E}_{\mathrm{x}} & =\mathrm{k}\left(2 \cdot 10^{-9} / 3^{2}-3 \cdot 10^{-9} / 4^{2}+\left(5 \cdot 10^{-9} /\left(2 \cdot 3^{2}\right)\right) \cos \left(45^{\circ}\right)\right) \quad \text { (note: cosine is in numerator!) } \\
& =9 \cdot 10^{9}\left(0.2222 \cdot 10^{-9}-0.1875 \cdot 10^{-9}+0.2778 \cdot 10^{-9} \cdot 0.707\right) \\
& =9(0.231)=2.080
\end{aligned}
$$

$$
\mathrm{E}_{\mathrm{y}}=\mathrm{k}\left(0.0+0.0+\left(5 \cdot 10^{-9} /\left(2 \cdot 3^{2}\right)\right) \sin \left(45^{\circ}\right)\right) \quad \text { (note: sine is in numerator! }
$$

$$
=9 \cdot 10^{9}\left(0.0+0.0+0.2778 \cdot 10^{-9} \cdot 0.707\right)
$$

$$
=9(0.1964)=1.768
$$

Magnitude $=\operatorname{sqrt}\left(\mathrm{Ex}^{2}+\mathrm{Ey}^{2}\right)=\operatorname{sqrt}\left(2.080^{2}+1.768^{2}\right)=2.730$
(you must check the quadrant of the angle!) $\theta=\tan ^{-1}(\mathrm{Ey} / \mathrm{Ex})=\tan ^{-1}(1.768 / 2.080)=40.4^{\circ}$
x-component at $\mathbf{O}=$ \qquad N/C y -component at $\mathbf{O}=$ \qquad N/C

