Name \qquad
KEY

Two concentric, hollow, spherical conducting shells are placed as shown in the figure at right. A total charge of -200 nano-Coulombs ($\mathrm{nC}=10^{-9} \mathrm{C}$) is placed on the outer conductor, a total charge of +500 nC is placed on the inner conductor, and a charge $\mathrm{Q}=-400 \mathrm{nC}$ is placed at the very center. First, what is the magnitude of the E-field (at equilibrium) on the interior of each conductor?

0

\qquad N/C

What is the net charge on the interior of each conductor? \qquad C

Find the total charge on each of the surfaces shown; A, B, C, and D.

$$
\mathrm{q}_{\mathrm{A}}+\mathrm{Q}=0 \quad \mathrm{q}_{\mathrm{A}}=-\mathrm{Q}=-(-400 \mathrm{nC})
$$

Charge on $\mathrm{A} \ldots+400 _n C$

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{B}}+\mathrm{q}_{\mathrm{A}}=+500 \mathrm{nC} \\
& \mathrm{q}_{\mathrm{B}}=+500 \mathrm{nC}-\mathrm{q}_{\mathrm{A}}=+500 \mathrm{nC}-(400 \mathrm{nC})=+100 \mathrm{nC}
\end{aligned}
$$

Charge on B \qquad nC

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{C}}+\mathrm{q}_{\mathrm{B}}+\mathrm{q}_{\mathrm{A}}+\mathrm{Q}=0 \\
& \mathrm{q}_{\mathrm{C}}=-\mathrm{q}_{\mathrm{B}}=-(100 \mathrm{nC})=-100 \mathrm{nC}
\end{aligned}
$$

Charge on C \qquad nC

$$
\begin{aligned}
& \mathrm{q}_{\mathrm{D}}+\mathrm{q}_{\mathrm{C}}=-200 \mathrm{nC} \\
& \mathrm{q}_{\mathrm{D}}=-200 \mathrm{nC}-\mathrm{q}_{\mathrm{C}}=-200 \mathrm{nC}-(-100 \mathrm{nC})=-100 \mathrm{nC}
\end{aligned}
$$

\qquad nC

