Physics 51 "Study Guide" for Midterm 1 ("Laundry List" of important concepts) Todd Sauke Concept (important concepts in bold; vectors also shown in bold) Symbol or Equation Prerequisites:
Physics quantities are typ. either scalars or vectors (magnitude \& direction) components of vectors add From mechanics, total external force on a body $=$ mass x acceleration $\quad \Sigma \mathbf{F}_{\text {ext }}=\mathrm{m} \mathbf{a}$ (SI newton, " N ")
Mass (SI kilogram, "kg") resists change in motion (via "momentum", p)
A mass moving in a circle undergoes centripetal acceleration
$\mathbf{p}=\mathrm{mv}, \mathbf{F}_{\mathrm{ext}}=\mathrm{d} \mathbf{p} / \mathrm{dt}$
Conservation of linear momentum: Isolated system $\left(\Sigma \mathbf{F}_{\text {ext }}=0\right) \rightarrow \Delta \mathbf{p}=0 ; \mathbf{p}_{\mathrm{f}}=\mathbf{p}_{\mathrm{i}}$ $a_{\text {centr }}=v^{2} / r$

A moving mass has energy of motion, "Kinetic Energy" (SI joule, "J")
$\mathrm{m}_{1} \mathbf{v}_{\mathrm{f} 1}+\mathrm{m}_{2} \mathbf{v}_{\mathrm{f} 2}=\mathrm{m}_{1} \mathbf{v}_{\mathrm{i} 1}+\mathrm{m}_{2} \mathbf{v}_{\mathrm{i} 2}$
A spring being compressed pushes back proportional to compression
$\mathrm{KE}=1 / 2 \mathrm{mv}^{2} \quad$ (a scalar)
A compressed spring has energy of compression, elastic "Potential Energy" $U=1 / 2 k x^{2}$
For conservative forces, mechanical energy is conserved $\quad \mathrm{E}=\mathrm{KE}+\mathrm{PE}=$ constant $\left(\mathrm{W}_{\mathrm{nc}}=0\right)$

Electromagnetics:

Electric Charge is the fundamental quantity in Electrostatics \quad Q (SI coulomb, "C")
Charge is conserved, quantized, and comes in "positive" and "negative"
$\mathrm{e}=1.602 \times 10^{-19} \mathrm{C}$
Like charges repel (radially); opposite charges attract; Coulomb's Law
The constant ε_{0} is numerically related (by definition) to the speed of light, c All "normal" matter is made up of protons, neutrons and electrons
$\mathrm{F}=1 /\left(4 \pi \varepsilon_{0}\right) \mathrm{q}_{1} \mathrm{q}_{2} / \mathrm{r}^{2}$

Protons have +e charge; electrons have -e . Their mutual attraction holds
everything together. In a conductor, electrons are free to move around.
Total force (vector) is the vector sum of individual forces (superposition)
The Electric field vector is the force per unit charge on a "test charge", q_{0}
$\varepsilon_{0}=10^{7} /\left(4 \pi \mathrm{c}^{2}\right)=8.854 \times 10^{-12}$
Coulomb's $k=1 /\left(4 \pi \varepsilon_{0}\right)=8.99 \times 10^{9}$
$\mathrm{m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$
$\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$
$\mathbf{F}=\Sigma \mathbf{F}_{\mathrm{i}}$
$\mathbf{E}=\mathbf{F}_{0} / \mathrm{q}_{0} \quad \mathbf{F}=\mathrm{q} \mathbf{E}$
For distributions of charge (eg. λ, σ), vector integrate over the distribution
Field lines provide a graphical representation of \mathbf{E} (and \mathbf{B}) fields
An Electric Dipole is a separation of equal magnitude, opposite charges
$\mathbf{E}=\int_{\mathrm{d} \mathbf{E}}=\int_{\mathrm{dq}} /\left(4 \pi \varepsilon_{0} \mathrm{r}^{2}\right) \hat{\mathbf{r}}$

An Electric Dipole, p, in an Electric field, E, experiences a torque
E strong where lines are dense
$\mathbf{p}=\mathrm{qd}(\mathbf{d}=$ separation $-\rightarrow+)$

An Electric Dipole oriented in an Electric field has potential energy, U
$\boldsymbol{\tau}=\mathbf{p} \times \mathbf{E} \quad \tau=\mathrm{p} \mathrm{E} \sin (\phi)$
$\mathrm{U}=-\mathbf{p} \cdot \mathbf{E}=-\mathrm{p} \mathrm{E} \cos (\phi)$
Electric Flux; "flow" of \mathbf{E} through a surface. (d \mathbf{A} is a vector \perp to surface)
Gauss's Law expresses the fact that the source of (static) flux is charge Charge on a conductor at rest resides on its surface. Also for conductor \rightarrow Use Gauss's Law to determine \mathbf{E} field for symmetric charge distributions Gauss's Law easily shows E from a line of charge (instead of nasty integral) A symmetric distribution will be easier to solve for E using Gauss's Law $\Phi_{\mathrm{E}}=\int \mathbf{E} \cdot \mathrm{d} \mathbf{A}$ (through surface)
$\Phi_{\mathrm{E}}=\int \mathbf{E} \cdot \mathrm{d} \mathbf{A}=\mathrm{Q}_{\text {encl }} / \varepsilon_{0}$
$\mathbf{E}_{\text {inside }}=0 \quad$ (for static case)
eg. $E=\sigma / 2 \varepsilon_{0} \quad$ (for sheet)
$\mathrm{E}=\lambda /\left(2 \pi \varepsilon_{0} \mathrm{r}\right)$
eg. $\mathrm{E}=\sigma / \varepsilon_{0}$ (between two cond. plates) Electric force from a static charge distribution is a conservative force Work done on "test charge" is path-independent change in potential energy $U=q V \quad U=q_{0} /\left(4 \pi \varepsilon_{0}\right) \Sigma q_{i} / r_{i}$
Electric Potential is potential energy per unit charge (SI volt, "V") V=U/q V=1/(4 $\left.4 \varepsilon_{0}\right) \sum \mathrm{q}_{\mathrm{i}} / \mathrm{r}_{\mathrm{i}}$
We always speak of "potential difference" (the zero is chosen for convenience)
The reverse of this is that \mathbf{E} field is the (minus) gradient of the potential
Equipotential surfaces are everywhere perpendicular to the E field lines
A capacitor (any pair of separated conductors) holds charge per volt
Capacitance depends ONLY on geometry (\& what's between conductors)
When capacitors are connected in parallel, the equivalent capacitance is:
When in series, capacitors have an equivalent capacitance given by:
It takes work (energy) to charge a capacitor. $\mathrm{W}=$ potential energy, U
Energy (U) stored in a capacitor "resides" in the electric field
If the insulation separating capacitor conductors is dielectric, not vacuum:
$\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=\int \mathbf{E} \cdot \mathrm{d} \mathbf{l}$
$\mathbf{E}=-\boldsymbol{G r a d}(\mathrm{V})$
$\mathrm{C}=\mathrm{Q} / \mathrm{V}_{\mathrm{ab}}$ (SI farad, "F")
$\mathrm{C}=\varepsilon_{0} \mathrm{~A} / \mathrm{d}$ (parallel plates)
$\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots$
${ }^{1} / \mathrm{C}_{\mathrm{eq}}={ }^{1} / \mathrm{C}_{1}+{ }^{1} / \mathrm{C}_{2}+{ }^{1} / \mathrm{C}_{3}+\ldots$
$\mathrm{U}=1 / 2 \mathrm{Q}^{2} / \mathrm{C}=1 / 2 \mathrm{CV}^{2}=1 / 2 \mathrm{QV}$
$u=1 / 2 \varepsilon_{0} E^{2}$ ($u=$ U-density)
just replace ε_{0} with $\varepsilon=\mathrm{k} \varepsilon_{0}$!

