Physics 51"Study Guide" for Midterm 1 ("Laundry List" of important concepts)Todd SaukeConcept(important concepts in bold; vectors also shown in bold)Symbol or EquationPrerequisites:

Prerequisites:	
Physics quantities are typ. either scalars or vectors (magnitude & direction)	-
From mechanics , total external force on a body = mass x acceleration	$\Sigma \mathbf{F}_{\text{ext}} = \mathbf{m} \mathbf{a}$ (SI newton, "N")
Mass (SI kilogram, "kg") resists change in motion (via "momentum", p)	$\mathbf{p} = \mathbf{mv}, \mathbf{F}_{ext} = d\mathbf{p}/dt$
A mass moving in a circle undergoes centripetal acceleration	$a_{centr} = v^2 / r$
Conservation of linear momentum: Isolated system ($\Sigma \mathbf{F}_{ext} = 0$) $\Rightarrow \Delta \mathbf{p}=0$; $\mathbf{p}_f=\mathbf{p}_i$	$m_1 v_{f1} + m_2 v_{f2} = m_1 v_{i1} + m_2 v_{i2}$
A moving mass has energy of motion, "Kinetic Energy" (SI joule, "J")	$KE = \frac{1}{2} m v^2$ (a scalar)
A spring being compressed pushes back proportional to compression	$\mathbf{F} = -\mathbf{k} \mathbf{x}$
A compressed spring has energy of compression, elastic "Potential Energy	
For conservative forces, mechanical energy is conserved	$E = KE + PE = constant (W_{nc} = 0)$
Electromagnetics:	
Electric Charge is the fundamental quantity in Electrostatics	Q (SI coulomb, "C")
Charge is conserved, quantized, and comes in "positive" and "negative"	$e = 1.602 \times 10^{-19} C$
Like charges repel (radially); opposite charges attract; Coulomb's Law	$F = \frac{1}{(4 \pi \epsilon_0)} q_1 q_2 / r^2$
The constant ε_0 is numerically related (by definition) to the speed of light, c	
All "normal" matter is made up of protons , neutrons and electrons	Coulomb's $k=1/(4\pi \epsilon_0)=8.99 \times 10^9$
Protons have +e charge; electrons have –e. Their mutual attraction holds	$m_p = 1.67 \times 10^{-27} \text{ kg}$
everything together. In a conductor, electrons are free to move around.	$m_e = 9.11 \times 10^{-31} \text{ kg}$
Total force (vector) is the vector sum of individual forces (superposition)	$\mathbf{F} = \Sigma \mathbf{F}_{i}$ $\mathbf{F} = \mathbf{F}_{i} / \mathbf{F}_{i}$
The Electric field vector is the force per unit charge on a "test charge", q_0	$\mathbf{E} = \mathbf{F}_0 / \mathbf{q}_0 \qquad \mathbf{F} = \mathbf{q} \mathbf{E}$
For distributions of charge (eg. λ , σ), vector integrate over the distribution	$\mathbf{E} = \int d\mathbf{E} = \int dq / (4 \pi \varepsilon_0 r^2) \mathbf{\hat{r}}$
Field lines provide a graphical representation of E (and B) fields	E strong where lines are dense
An Electric Dipole is a separation of equal magnitude, opposite charges	$\mathbf{p} = q\mathbf{d} (\mathbf{d} = separation - \mathbf{i})$
An Electric Dipole, p , in an Electric field, E , experiences a torque	$\boldsymbol{\tau} = \mathbf{p} \mathbf{x} \mathbf{E}$ $\boldsymbol{\tau} = \mathbf{p} \mathbf{E} \sin(\boldsymbol{\phi})$
An Electric Dipole oriented in an Electric field has potential energy, U	$\mathbf{U} = -\mathbf{p} \cdot \mathbf{E} = -\mathbf{p} \operatorname{E} \cos(\phi)$
Electric Flux ; "flow" of E through a surface. (d A is a vector \perp to surface)	$\Phi_{\rm E} = \int \mathbf{E} \cdot d\mathbf{A} \text{ (through surface)}$
Gauss's Law expresses the fact that the source of (static) flux is charge	$\Phi_{\rm E} = \int \mathbf{E} \cdot d\mathbf{A} = Q_{\rm encl} / \varepsilon_0$
Charge on a conductor at rest resides on its <i>surface</i> . Also for conductor \rightarrow	$\mathbf{E}_{\text{inside}} = 0$ (for static case)
Use Gauss's Law to determine E field for symmetric charge distributions	eg. $E = \sigma / 2\epsilon_0$ (for sheet)
Gauss's Law easily shows E from a line of charge (instead of nasty integral)	$\mathbf{E} = \lambda / (2 \pi \varepsilon_0 \mathbf{r})$
A symmetric distribution will be easier to solve for E using Gauss's Law	$eg.E=\sigma/\epsilon_0$ (between two cond. plates)
Electric force from a static charge distribution is a conservative force	
Work done on "test charge" is path-independent change in potential energy	$V U=qV U=q_0/(4\pi\epsilon_0)\Sigma q_i/r_i$
Electric Potential is potential energy per unit charge (SI volt, "V")	V=U/q V=1/ $(4\pi\epsilon_0)\Sigma q_i/r_i$
We always speak of " potential difference " (the zero is chosen for convenience)	$V_a - V_b = \int E \cdot dl$
The reverse of this is that E field is the (minus) gradient of the potential	$\mathbf{E} = -\mathbf{Grad} (\mathbf{V})$
Equipotential surfaces are everywhere perpendicular to the E field lines	
A capacitor (any pair of separated conductors) holds charge per volt	$C = Q / V_{ab}$ (SI farad, "F")
Capacitance depends ONLY on geometry (& what's between conductors)	$C = \varepsilon_0 A / d$ (parallel plates)
When capacitors are connected in parallel , the equivalent capacitance is:	$C_{eq} = C_1 + C_2 + C_3 + \dots$
When in series, capacitors have an equivalent capacitance given by:	$C_{eq} = C_1 + C_2 + C_3 + \dots$ ¹ /C _{eq} = ¹ /C ₁ + ¹ /C ₂ + ¹ /C ₃ +
It takes work (energy) to charge a capacitor. $W = potential energy, U$	$U = \frac{1}{2}Q^{2}/C = \frac{1}{2}CV^{2} = \frac{1}{2}QV$
Energy (U) stored in a capacitor "resides" in the electric field	$u = \frac{1}{2} \epsilon_0 E^2$ (u = U-density)
If the insulation separating capacitor conductors is dielectric not vacuum.	iust replace ε_0 with $\varepsilon = k \varepsilon_0$

If the insulation separating capacitor conductors is dielectric, not vacuum: just replace ε_0 with $\varepsilon = k \varepsilon_0 !$ version 1-22-2014(7)