
Physics 51   "Study Guide" for Midterm 2 ("Laundry List" of important concepts)      Todd Sauke 
Concept      (important concepts in bold; vectors also shown in bold) Symbol or Equation 
Prerequisites:     
Physics quantities are typ. either scalars or vectors (magnitude & direction) components of vectors add 
From mechanics, total external force on a body  = mass x acceleration  Fext = m a (SI newton, "N") 
Mass (SI kilogram, "kg") resists change in motion (via "momentum", p) p = mv,  Fext = dp/dt 
A mass moving in a circle undergoes centripetal acceleration acentr = v2 / r 
Conservation of linear momentum: Isolated system (Fext = 0)  p=0 ; pf=pi  m1vf1 + m2vf2 = m1vi1 + m2vi2 
A moving mass has energy of motion, "Kinetic Energy" (SI joule, "J") KE = ½ m v2    (a scalar) 
A spring being compressed pushes back proportional to compression F = - k x 
A compressed spring has energy of compression, elastic "Potential Energy" U = ½ k x2 
For conservative forces, mechanical energy is conserved E = KE+PE = constant    (Wnc =0) 
                                                                                                                                                                                                                                                                                                    

Electromagnetics: 
Electric Charge is the fundamental quantity in Electrostatics Q  (SI coulomb, "C") 
Charge is conserved, quantized, and comes in "positive" and "negative" e = 1.602 x 10-19 C 
Like charges repel (radially); opposite charges attract; Coulomb's Law F = 1/(4  0) q1 q2 / r

2  
The constant 0 is numerically related (by definition) to the speed of light, c 0 = 107

 / (4  c2) = 8.854 x 10-12 
All "normal" matter is made up of protons, neutrons and electrons Coulomb's k=1/(4 0)=8.99x109 
Protons have +e charge; electrons have –e. Their mutual attraction holds  mp = 1.67 x 10-27 kg 
    everything together.  In a conductor, electrons are free to move around. me = 9.11 x 10-31 kg 
Total force (vector) is the vector sum of individual forces (superposition) F =  Fi 
The Electric field vector is the force per unit charge on a "test charge", q0 E = F0 / q0               F = q E 

For distributions of charge (eg. , ), vector integrate over the distribution E = ∫dE = ∫dq/(4  0 r
2) r̂  

Field lines provide a graphical representation of E (and B) fields E strong where lines are dense 
An Electric Dipole is a separation of equal magnitude, opposite charges p = qd (d=separation -  +) 

An Electric Dipole, p, in an Electric field, E, experiences a torque  = p x E        = p E sin() 
An Electric Dipole oriented in an Electric field has potential energy, U U = -p • E  = -p E cos() 

Electric Flux; "flow" of E through a surface. (dA is a vector ┴ to surface)  = ∫ E • dA (through surface) 

Gauss's Law expresses the fact that the source of (static) flux is charge  =  ∫ E • dA   = Qencl / 0 
Charge on a conductor at rest resides on its surface.  Also for conductor Einside =  0   (for static case) 
Use Gauss's Law to determine E field for symmetric charge distributions eg.  E =  / 20    (for sheet) 
Gauss's Law easily shows E from a line of charge (instead of nasty integral) E =  / (2  0 r) 
A symmetric distribution will be easier to solve for E using Gauss's Law eg.E=/0 (between two cond. plates) 
Electric force from a static charge distribution is a conservative force 

Work done on "test charge" is path-independent change in potential energy U=qV      U=q0/(40)qi/ri 

Electric Potential is potential energy per unit charge  (SI volt, "V") V=U/q     V=1/(40)qi/ri 

We always speak of "potential difference" (the zero is chosen for convenience) Va–Vb=∫E•dl  
The reverse of this is that E field is the (minus) gradient of the potential E = - Grad ( V )  
Equipotential surfaces are everywhere perpendicular to the E field lines 
A capacitor (any pair of separated conductors) holds charge per volt  C = Q / Vab (SI farad, "F") 
Capacitance depends ONLY on geometry (& what's between conductors) C = 0 A / d (parallel plates) 
When capacitors are connected in parallel, the equivalent capacitance is: Ceq  =  C1 + C2 + C3 + … 
When in series, capacitors have an equivalent capacitance given by: 1/Ceq=

1/C1 + 1/C2 + 1/C3+… 
It takes work (energy) to charge a capacitor.  W = potential energy, U U= ½Q2/C = ½CV2 = ½QV 
Energy (U) stored in a capacitor "resides" in the electric field u = ½  E2 (u = U-density) 
If the insulation separating capacitor conductors is dielectric, not vacuum: just replace 0 with  = k 0 ! 



Current is the amount of charge flowing through an area per unit time I = dQ/dt  (SI ampere, "A") 
In a conductor (non-static case now!), free charges (typ. electrons) can  I = n q vd A        (A = area) 
  move (with drift velocity, vd) in response to an Electric field  (above: n = charge density) 
The current per unit area is called current density (a vector!) J = n q vd 
Even conductors have resistance to the flow of charge (material dependent)  = E / J ( = "resistivity") 
The resistivity of a material is temperature dependent, typ. increasing w/ T (T) = 0 [1 + ( T – T0 ) ] 
A source of electromotive force (emf or E) makes current flow in a circuit E is provider of voltage, V 
For materials obeying Ohm's Law, current is proportional to voltage V = I R 
The ratio V/I is called resistance and is related to a material's resistivity R =  L / A  (SI ohm, "") 
Current flowing through a resistor is accompanied by a voltage drop  label R w/ '+' & '-' in diagrams! 
An "ideal" source of emf supplies a perfectly constant voltage to the circuit 
A real source of emf (eg. a battery) has internal resistance, r (voltage drop) Vab = E – I r 
A circuit element with potential difference, Vab, across it and current, I,  P=VabI=I2R=V2/R (SI watt, "W") 
   flowing through it is a source or sink of power depending on sign of I (a resistor always takes energy out) 
When resistors are connected in series, the equivalent resistance is: Req = R1 + R2 + R3 + . . . 
When in parallel, resistors have an equivalent resistance given by: 1/Req= 1/R1+

1/R2+
1/R3+ . . . 

Series resistors all have the same current; when in parallel, the same voltage 
Kirchhoff's junction rule (based on conservation of charge)   I   = 0   
Kirchhoff's loop rule (based on conservation of energy)   V  = 0   
Use Kirchoff's rules to generate equations ("n equations in n unknowns") 
An "ideal" ammeter has zero resistance and measures the current through it Vammeter = 0 
An "ideal" voltmeter has ∞ rin & measures voltage across probed points  Iin_voltmeter = 0  (admits no current) 
When a circuit ("RC circuit") has a capacitor being charged or discharged  q =CE(1-e-t/(RC))= Qf(1-e-t/(RC)) 
   by a series resistor, the current and charge are not constant.  Kirchhoff's i  = I0 e

-t/(RC)  (for charging) 
   loop-rule equation for the circuit results in a differential equation, q  = Q0 e

-t/(RC) 
   the solution of which involves decaying exponentials: i = I0 e

-t/(RC) (for discharging) 
The product of R & C has units of time and is called the "time constant"   = RC , (in e-t/) 
Magnetic interactions are interactions between moving charged particles 
Magnetic interactions are described by the vector field, B (SI tesla, "T") F = qv x B (right-hand-rule) 
The magnetic force is always perpendicular to v (and B): no work done  
Just like for E, field lines provide a graphical representation of B fields B field lines form closed loops 

Magnetic Flux; "flow" of B through a surface (again, just like with E)  mag =  ∫  B • dA    

Gauss's law for magnetism: there are no "magnetic monopoles" mag=∫B•dA=0 (closed surface) 
In a uniform B field: charged particle goes in circle (or spiral) of radius, R R = mv / (qB)  ;  = qB / m 
Crossed E and B fields: velocity selector (when Fnet(v) = 0, no deflection) vselected = E / B 

For a current carrying wire in a magnetic field, there is a force on the wire F = ∫dF = ∫ I dl x B 

A current loop of area A & current I in a uniform magnetic field B has Fnet = 0  n A (for n loops) 

But it does experience a torque, , in terms of magnetic moment, .  =  x B       =  B sin() 

The work done by the torque can be described as a potential energy U = - • B  =  -  B cos() 
A moving charge q with velocity v creates a magnetic field B that depends  

   on distance as 1/r2, & is perpendicular to both v and r ̂ the unit vector  B = (0 / 4  qv x r̂ / r2 

   from the "source point" (at q) to the "field point" (at B). 0 =  4 x 10-7  
The constant 0 is defined so that, together with 0, they relate to c c2 = 1 / (0 0) 
The total B from several moving charges is the vector sum of the fields   

   produced by the individual charges (superposition) B=∫dB=∫(0/4dqv x r ̂ / r2 

The Biot-Savart law gives the previous relations in terms of current in wire B=∫dB=∫(0/4 I dl x r̂ /r2 



From this law, the B field from a long, straight current carrying wire is: B= 0 I  / (2r) (at distance r) 
   and the right-hand-rule gives the direction that B curls around the wire 
The force per length between two long, parallel current carrying wires is F / L  =   0 I  I' / (2 r) 
   attractive if currents are in the same direction, repulsive if opposite 
B at distance x along axis of conducting loop (N turns, radius a, current I) Bx=0 N I a2 / 2 (x2 + a2)3/2 

Ampere's Law relates the line integral of B around any closed path to the ∫B•dl = 0 Ienc (closed loop)  
   net current through any area bounded (encircled) by the path Ienc includes displacement current 
We apply Ampere's law to a highly symmetric situation where we can choose the  Choose integration path through P 
   integration loop (through field point P) to have constant B aligned with the path (or ┴)    to make the integral easy 
The B field inside of a long solenoid with n turns per unit length is: B = 0 n I  (near the center) 
B inside a toroidal solenoid (N turns) at distance r from symmetry axis: B = 0 N I / (2  r) 
B field outside the space enclosed by a tightly wound solenoid is near 0 B ≈ 0 (outside solenoid)  
B field inside a long cylindrical conductor of radius R is easy using Ampere's Law B = 0 I r /(2  R2) inside cylinder 
When magnetic materials are present, there is an effect on the B field just replace 0 with  = Km 0! 
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