Appendix C: Review of Statistical Inference

- C.1 A Sample of Data
- C.2 An Econometric Model
- C.3 Estimating the Mean of a Population
- C.4 Estimating the Population Variance and Other Moments
- C.5 Interval Estimation
- C.6 Hypothesis Tests About a Population Mean
- C.7 Some Other Useful Tests
- C.8 Introduction to Maximum Likelihood Estimation
- C.9 Algebraic Supplements
C.1 A Sample of Data

<table>
<thead>
<tr>
<th>Year</th>
<th>Hip Sizes (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.96</td>
<td>14.76</td>
</tr>
<tr>
<td>17.44</td>
<td>17.09</td>
</tr>
<tr>
<td>16.60</td>
<td>18.30</td>
</tr>
<tr>
<td>19.23</td>
<td>17.80</td>
</tr>
<tr>
<td>17.99</td>
<td>16.64</td>
</tr>
<tr>
<td>17.50</td>
<td>20.23</td>
</tr>
<tr>
<td>15.54</td>
<td>16.08</td>
</tr>
<tr>
<td>16.89</td>
<td>16.25</td>
</tr>
<tr>
<td>18.63</td>
<td>14.23</td>
</tr>
<tr>
<td>15.55</td>
<td>20.33</td>
</tr>
</tbody>
</table>

Figure C.1 Histogram of Hip Sizes

C.2 An Econometric Model

\[E[Y] = \mu \]
\[\text{var}(Y) = E[(Y - E(Y))^2] = E[Y^2] - E^2[Y] = \sigma^2 \]
C.3 Estimating the Mean of a Population

\[\bar{y} = \frac{\sum y_i}{N} \] \hspace{1cm} (C.3)

\[\bar{y} = \frac{\sum \frac{y_i}{N}}{N} \] \hspace{1cm} (C.4)

C.3 Estimating the Mean of a Population

\[\bar{y} = \frac{\sum y_i}{N} \] \hspace{1cm} (C.3)

\[\bar{y} = \frac{\sum \frac{y_i}{N}}{N} \] \hspace{1cm} (C.4)

C.3 Estimating the Mean of a Population

Table C.2 Sample Means from 10 Samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.356</td>
</tr>
<tr>
<td>2</td>
<td>16.620</td>
</tr>
<tr>
<td>3</td>
<td>17.414</td>
</tr>
<tr>
<td>4</td>
<td>17.164</td>
</tr>
<tr>
<td>5</td>
<td>16.900</td>
</tr>
<tr>
<td>6</td>
<td>16.900</td>
</tr>
<tr>
<td>7</td>
<td>16.856</td>
</tr>
<tr>
<td>8</td>
<td>16.751</td>
</tr>
<tr>
<td>9</td>
<td>17.096</td>
</tr>
<tr>
<td>10</td>
<td>16.875</td>
</tr>
</tbody>
</table>
C.3.1 The Expected Value of \bar{Y}

$$\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i = \frac{1}{N} Y_1 + \frac{1}{N} Y_2 + \cdots + \frac{1}{N} Y_N \quad \text{(C.5)}$$

$$E[\bar{Y}] = E\left[\frac{1}{N} Y_1\right] + E\left[\frac{1}{N} Y_2\right] + \cdots + E\left[\frac{1}{N} Y_N\right]$$

$$= \frac{1}{N} E[Y_1] + \frac{1}{N} E[Y_2] + \cdots + \frac{1}{N} E[Y_N]$$

$$= \frac{1}{N} \mu + \frac{1}{N} \mu + \cdots + \frac{1}{N} \mu$$

$$= \mu$$

C.3.2 The Variance of \bar{Y}

$$\text{var}(\bar{Y}) = \text{var}\left(\frac{1}{N} Y_1 + \frac{1}{N} Y_2 + \cdots + \frac{1}{N} Y_N\right)$$

$$= \frac{1}{N^2} \text{var}(Y_1) + \frac{1}{N^2} \text{var}(Y_2) + \cdots + \frac{1}{N^2} \text{var}(Y_N)$$

$$= \frac{1}{N^2} \sigma^2 + \frac{1}{N^2} \sigma^2 + \cdots + \frac{1}{N^2} \sigma^2$$

$$= \frac{\sigma^2}{N} \quad \text{(C.6)}$$

C.3.3 The Sampling Distribution of \bar{Y}

Figure C.2 Increasing Sample Size and Sampling Distribution of \bar{Y}
C.3.3 The Sampling Distribution of \bar{Y}

$$P[\mu - 1 \leq \bar{Y} \leq \mu + 1] = P\left[\frac{-1}{\sigma / \sqrt{N}} \leq \frac{\bar{Y} - \mu}{\sigma / \sqrt{N}} \leq \frac{1}{\sigma / \sqrt{N}} \right]$$

$$= P\left[-\frac{1}{\sqrt{25}} \leq Z \leq \frac{1}{\sqrt{25}} \right]$$

$$= P[-2 \leq Z \leq 2] = .9544$$

- If we draw a random sample of size $N = 40$ from a normal population with variance 10, the least squares estimator will provide an estimate within 1 inch of the true value about 95% of the time. If $N = 80$ the probability that \bar{Y} is within 1 inch of μ increases to 0.995.

C.3.4 The Central Limit Theorem

Central Limit Theorem: If Y_1, \ldots, Y_N are independent and identically distributed random variables with mean μ and variance σ^2, and $\bar{Y} = \sum Y_i / N$, then $Z_N = \frac{\bar{Y} - \mu}{\sigma / \sqrt{N}}$ has a probability distribution that converges to the standard normal $N(0,1)$ as $N \to \infty$.

C.3.4 The Central Limit Theorem

$$f(y) = \begin{cases} 2y & 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$Z_N = \frac{\bar{Y} - 2/3}{\sqrt{1/18} / \sqrt{N}}$$
C.3.4 The Central Limit Theorem

A powerful finding about the estimator of the population mean is that it is the best of all possible estimators that are both linear and unbiased.

A linear estimator is simply one that is a weighted average of the Y_i's, such as $\hat{Y} = \sum a_i Y_i$, where the a_i are constants.

“Best” means that it is the linear unbiased estimator with the smallest possible variance.

C.3.5 Best Linear Unbiased Estimation

C.4 Estimating the Population Variance and Other Moments

\[\mu_1 = E[(Y - \mu)^1] \]
\[\mu_2 = E[(Y - \mu)^2] = \sigma^2 \]
\[\mu_3 = E[(Y - \mu)^3] \]
\[\mu_4 = E[(Y - \mu)^4] \]
C.4.1 Estimating the population variance

\[
\text{var}(Y) = \sigma^2 = E[(Y - \mu)^2]
\]

\[
\hat{\sigma}^2 = \frac{\sum (y_i - \bar{y})^2}{N}
\]

\[
\hat{\sigma}^2 = \frac{\sum (y_i - \bar{y})^2}{N-1} \quad (C.7)
\]

C.4.1 Estimating the population variance

\[
\text{var}(\bar{Y}) = \hat{\sigma}^2 / N \quad (C.8)
\]

\[
\text{se}(\bar{Y}) = \sqrt{\text{var}(\bar{Y})} = \hat{\sigma} / \sqrt{N} \quad (C.9)
\]

C.4.2 Estimating higher moments

\[
\mu_i = E[(Y - \mu)^i]
\]

In statistics the **Law of Large Numbers** says that sample means converge to population averages (expected values) as the sample size \(N \to \infty \).

\[
\hat{\mu}_2 = \frac{\sum (y_i - \bar{y})^2}{N} = \hat{\sigma}^2
\]

\[
\hat{\mu}_3 = \frac{\sum (y_i - \bar{y})^3}{N}
\]

\[
\hat{\mu}_4 = \frac{\sum (y_i - \bar{y})^4}{N}
\]
C.4.2 Estimating higher moments

\[\text{skewness } S = \frac{\bar{Y}_S}{\sigma} \]
\[\text{kurtosis } K = \frac{\bar{Y}_K}{\sigma^4} \]

C.4.3 The hip data

\[\hat{\sigma}^2 = \frac{\sum (Y - \bar{Y})^2}{N - 1} = \frac{\sum (Y_i - 17.1582)^2}{49} = 159.9995 \]
\[\text{var}(\bar{Y}) = \frac{\hat{\sigma}^2}{N} = \frac{3.2653}{50} = .0653 \]
\[\text{se}(\bar{Y}) = \frac{\hat{\sigma}}{\sqrt{N}} = .2556 \]

C.4.3 The hip data

\[\hat{\sigma} = \sqrt{\frac{\sum (Y_i - \bar{Y})^2}{N}} = \sqrt{\frac{159.9995}{50}} = 1.7889 \]
\[\bar{Y}_1 = \frac{\sum (Y_i - \bar{Y})^3}{N} = -.0791 \]
\[\bar{Y}_4 = \frac{\sum (Y_i - \bar{Y})^4}{N} = 23.8748 \]
C.4.4 Using the Estimates

\[P(Y > 18) = P\left(\frac{Y - \mu}{\sigma} > \frac{18 - \mu}{\sigma} \right) = .207 \]

\[P(Y > 18) = P\left(\frac{Y - 17.1582}{1.8070} > \frac{18 - 17.1582}{1.8070} \right) = P(Z > 0.4659) = .3207 \]

\[P(Y \leq y^*) = P\left(\frac{Y - y^* - 17.1582}{1.8070} = \frac{Z}{1.8070} \right) = .95 \]

\[\frac{y^* - 17.1582}{1.8070} = 1.645 \Rightarrow y^* = 20.1305 \]

C.5 Interval Estimation

- C.5.1 Interval Estimation: \(\sigma^2 \) Known

\[\bar{Y} = \frac{\sum Y_i}{N} \]

\[\bar{Y} \sim N(\mu, \sigma^2/N) \]

\[Z = \frac{\bar{Y} - \mu}{\sigma/\sqrt{N}} \sim N(0,1) \]

\[P[Z \leq z] = \Phi(z) \]

Figure C.4 Critical Values for the N(0,1) Distribution
C.5.1 Interval Estimation: \(\sigma^2 \) Known

\[
P[Z \geq 1.96] = P[Z \leq -1.96] = .025
\]

\[
P[-1.96 \leq Z \leq 1.96] = 1 - .05 = .95 \tag{C.11}
\]

\[
P \left[\frac{\bar{Y} - 1.96 \sigma}{\sqrt{N}} \leq \mu \leq \frac{\bar{Y} + 1.96 \sigma}{\sqrt{N}} \right] = .95
\]

C.5.1 Interval Estimation: \(\sigma^2 \) Known

\[
P \left[\bar{Y} - z_\alpha \frac{\sigma}{\sqrt{N}} \leq \mu \leq \bar{Y} + z_\alpha \frac{\sigma}{\sqrt{N}} \right] = 1 - \alpha \tag{C.12}
\]

\[\bar{Y} \pm z_\alpha \frac{\sigma}{\sqrt{N}} \tag{C.13}\]

C.5.2 A Simulation

<table>
<thead>
<tr>
<th>(T \times 10^{-6} \times C \times 3)</th>
<th>Values from (N(19, 10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.019</td>
<td>11.407</td>
</tr>
<tr>
<td>10.786</td>
<td>12.157</td>
</tr>
<tr>
<td>0.644</td>
<td>10.829</td>
</tr>
<tr>
<td>13.117</td>
<td>12.368</td>
</tr>
<tr>
<td>8.433</td>
<td>10.052</td>
</tr>
<tr>
<td>9.210</td>
<td>5.036</td>
</tr>
<tr>
<td>7.961</td>
<td>14.709</td>
</tr>
<tr>
<td>14.921</td>
<td>10.478</td>
</tr>
<tr>
<td>6.225</td>
<td>13.059</td>
</tr>
<tr>
<td>10.123</td>
<td>12.355</td>
</tr>
</tbody>
</table>
Any one interval estimate may or may not contain the true population parameter value.

If many samples of size N are obtained, and intervals are constructed using (C.13) with $(1-\alpha) = .95$, then 95% of them will contain the true parameter value.

A 95% level of "confidence" is the probability that the interval estimator will provide an interval containing the true parameter value. Our confidence is in the procedure, not in any one interval estimate.

When σ^2 is unknown it is natural to replace it with its estimator $\hat{\sigma}^2$.

$$\hat{\sigma}^2 = \frac{\sum (Y_i - \bar{Y})^2}{N-1}$$

$$t = \frac{\bar{Y} - \mu}{\hat{\sigma}/\sqrt{N}} t_{(N-1)}$$

(C.14)
C.5.3 Interval Estimation: \(\sigma^2 \) Unknown

\[
P \left[-t_{\alpha} \leq \frac{\bar{Y} - \mu}{\sigma / \sqrt{N}} \leq t_{\alpha} \right] = 1 - \alpha
\]

\[
P \left[Y - t_{\alpha} \frac{\sigma}{\sqrt{N}} \leq \mu \leq Y + t_{\alpha} \frac{\sigma}{\sqrt{N}} \right] = 1 - \alpha
\]

\[
\bar{Y} \pm t_{\alpha} \frac{\sigma}{\sqrt{N}} \text{ or } \bar{Y} \pm \text{se}(\bar{Y})
\]

Remark: The confidence interval (C.15) is based upon the assumption that the population is normally distributed, so that \(\bar{Y} \) is normally distributed. If the population is not normal, then we invoke the central limit theorem, and say that \(\bar{Y} \) is approximately normal in “large” samples, which from Figure C.3 you can see might be as few as 30 observations. In this case we can use (C.15), recognizing that there is an approximation error introduced in smaller samples.

C.5.4 A Simulation (continued)

<table>
<thead>
<tr>
<th>Sample</th>
<th>(\bar{Y})</th>
<th>(\sigma^2)</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.206</td>
<td>9.199</td>
<td>9.073</td>
<td>11.338</td>
</tr>
<tr>
<td>3</td>
<td>10.104</td>
<td>10.320</td>
<td>9.994</td>
<td>12.304</td>
</tr>
<tr>
<td>4</td>
<td>8.822</td>
<td>9.867</td>
<td>7.648</td>
<td>9.805</td>
</tr>
<tr>
<td>5</td>
<td>10.434</td>
<td>7.985</td>
<td>9.379</td>
<td>11.498</td>
</tr>
<tr>
<td>6</td>
<td>8.955</td>
<td>6.210</td>
<td>7.023</td>
<td>9.787</td>
</tr>
<tr>
<td>7</td>
<td>10.511</td>
<td>7.333</td>
<td>9.506</td>
<td>11.525</td>
</tr>
<tr>
<td>8</td>
<td>9.712</td>
<td>14.887</td>
<td>7.812</td>
<td>10.624</td>
</tr>
<tr>
<td>9</td>
<td>10.064</td>
<td>10.414</td>
<td>9.259</td>
<td>11.660</td>
</tr>
<tr>
<td>10</td>
<td>10.142</td>
<td>10.489</td>
<td>9.571</td>
<td>11.730</td>
</tr>
</tbody>
</table>
C.5.5 Interval estimation using the hip data

Given a random sample of size $N = 50$ we estimated the mean U.S. hip width to be $\hat{\mu} = 17.158$ inches.

$\hat{\sigma}^2 = 3.265$ therefore $\hat{\sigma} = 1.807$

$\hat{\sigma}/\sqrt{N} = 1.807/\sqrt{50} = .2556$

$\bar{y} \pm t \cdot \frac{\hat{\sigma}}{\sqrt{N}} = 17.158 \pm 2.01 \cdot \frac{1.807}{\sqrt{50}} = [16.6447, 17.6717]$

C.6 Hypothesis Tests About A Population Mean

Components of Hypothesis Tests

- A null hypothesis, H_0
- An alternative hypothesis, H_1
- A test statistic
- A rejection region
- A conclusion

C.6.1 Components of Hypothesis Tests

- The Null Hypothesis

The “null” hypothesis, which is denoted H_0 (H-naught), specifies a value c for a parameter. We write the null hypothesis as $H_0: \mu = c$. A null hypothesis is the belief we will maintain until we are convinced by the sample evidence that it is not true, in which case we reject the null hypothesis.
The Alternative Hypothesis

- $H_1: \mu > c$ If we reject the null hypothesis that $\mu = c$, we accept the alternative that μ is greater than c.
- $H_1: \mu < c$ If we reject the null hypothesis that $\mu = c$, we accept the alternative that μ is less than c.
- $H_1: \mu \neq c$ If we reject the null hypothesis that $\mu = c$, we accept the alternative that μ takes a value other than (not equal to) c.

The Test Statistic

A test statistic’s probability distribution is completely known when the null hypothesis is true, and it has some other distribution if the null hypothesis is not true.

$$ t = \frac{\bar{Y} - \mu}{\sigma/\sqrt{N}} \sim t_{(N-1)} $$

If $H_0: \mu = c$ is true then

$$ t = \frac{\bar{Y} - c}{\sigma/\sqrt{N}} \sim t_{(N-1)} $$

Remark: The test statistic distribution in (C.16) is based on an assumption that the population is normally distributed. If the population is not normal, then we invoke the central limit theorem, and say that \bar{Y} is approximately normal in “large” samples. We can use (C.16), recognizing that there is an approximation error introduced if our sample is small.
C.6.1 Components of Hypothesis Tests

- **The Rejection Region**
 - If a value of the test statistic is obtained that falls in a region of low probability, then it is unlikely that the test statistic has the assumed distribution, and thus it is unlikely that the null hypothesis is true.
 - If the alternative hypothesis is true, then values of the test statistic will tend to be unusually “large” or unusually “small”, determined by choosing a probability α, called the **level of significance** of the test.
 - The level of significance of the test α is usually chosen to be .01, .05 or .10.

- **A Conclusion**
 - When you have completed a hypothesis test you should state your conclusion, whether you reject, or do not reject, the null hypothesis.
 - Say what the conclusion means in the economic context of the problem you are working on, i.e., interpret the results in a meaningful way.

C.6.2 One-tail Tests with Alternative “Greater Than” (>)

Figure C.5 The rejection region for the one-tail test of $H_0: \mu = c$ against $H_1: \mu > c$
C.6.3 One-tail Tests with Alternative “Less Than” (<)

Figure C.6 The rejection region for the one-tail test of $H_0: \mu = c$ against $H_1: \mu < c$

C.6.4 Two-tail Tests with Alternative “Not Equal To” (≠)

Figure C.7 The rejection region for a test of $H_0: \mu = c$ against $H_1: \mu \neq c$

C.6.5 Example of a One-tail Test Using the Hip Data

- The null hypothesis is $H_0: \mu = 16.5$.
- The alternative hypothesis is $H_1: \mu > 16.5$.
- The test statistic $t = \frac{\bar{Y} - 16.5}{\sigma / \sqrt{N}} \sim t_{(\alpha, \nu)}$ if the null hypothesis is true.
- The level of significance $\alpha = .05$.
 $t_c = t_{(0.05, \nu)} = 1.6766$
C.6.5 Example of a One-tail Test Using the Hip Data

- The value of the test statistic is
 \[t = \frac{17.1582 - 16.5}{1.807/\sqrt{50}} = 2.5756. \]
- Conclusion: Since \(t = 2.5756 > 1.68 \) we reject the null hypothesis. The sample information we have is incompatible with the hypothesis that \(\mu = 16.5 \). We accept the alternative that the population mean hip size is greater than 16.5 inches, at the \(\alpha = .05 \) level of significance.

C.6.6 Example of a Two-tail Test Using the Hip Data

- The null hypothesis is \(H_0: \mu = 17 \).
 The alternative hypothesis is \(H_1: \mu \neq 17 \).
- The test statistic
 \[t = \frac{\bar{Y} - 17}{s/\sqrt{N}} \sim t_{(N-1)} \text{ if the null hypothesis is true.} \]
- The level of significance \(\alpha = .05 \), therefore \(\alpha/2 = .025 \).
 \[t = t_{(0.975, 49)} = 2.01 \]

C.6.6 Example of a Two-tail Test Using the Hip Data

- The value of the test statistic is
 \[t = \frac{17.1582 - 17}{1.807/\sqrt{50}} = .6191. \]
- Conclusion: Since \(-2.01 < t = .6191 < 2.01\) we do not reject the null hypothesis. The sample information we have is compatible with the hypothesis that the population mean hip size \(\mu = 17 \).
Warning: Care must be taken here in interpreting the outcome of a statistical test. One of the basic precepts of hypothesis testing is that finding a sample value of the test statistic in the non-rejection region does not make the null hypothesis true! The weaker statements “we do not reject the null hypothesis,” or “we fail to reject the null hypothesis,” do not send a misleading message.

p-value rule: Reject the null hypothesis when the p-value is less than, or equal to, the level of significance \(\alpha \). That is if \(p \leq \alpha \) then reject \(H_0 \). If \(p > \alpha \) then do not reject \(H_0 \).

How the p-value is computed depends on the alternative. If \(t \) is the calculated value [not the critical value \(t_c \)] of the \(t \)-statistic with \(N-1 \) degrees of freedom, then:

- if \(H_1: \mu > c \), \(p = \text{probability to the right of } t \)
- if \(H_1: \mu < c \), \(p = \text{probability to the left of } t \)
- if \(H_1: \mu \neq c \), \(p = \text{sum of probabilities to the right of } |t| \) and \(\text{to the left of } -|t| \)
A statistical test procedure cannot prove the truth of a null hypothesis. When we fail to reject a null hypothesis, all the hypothesis test can establish is that the information in a sample of data is compatible with the null hypothesis. On the other hand, a statistical test can lead us to reject the null hypothesis, with only a small probability, \(\alpha \), of rejecting the null hypothesis when it is actually true. Thus rejecting a null hypothesis is a stronger conclusion than failing to reject it.
C.6.9 Type I and Type II errors

Correct Decisions
The null hypothesis is false and we decide to reject it.
The null hypothesis is true and we decide not to reject it.

Incorrect Decisions
The null hypothesis is true and we decide to reject it (a Type I error)
The null hypothesis is false and we decide not to reject it (a Type II error)

- The probability of a Type II error varies inversely with the level of significance of the test, \(\alpha \), which is the probability of a Type I error. If you choose to make \(\alpha \) smaller, the probability of a Type II error increases.
- If the null hypothesis is \(\mu = c \), and if the true (unknown) value of \(\mu \) is close to \(c \), then the probability of a Type II error is high.
- The larger the sample size \(N \), the lower the probability of a Type II error, given a level of Type I error \(\alpha \).

C.6.10 A Relationship Between Hypothesis Testing and Confidence Intervals

\[H_0 : \mu = c \]
\[H_1 : \mu \neq c \]
- If we fail to reject the null hypothesis at the \(\alpha \) level of significance, then the value \(c \) will fall within a 100(1–\(\alpha \))% confidence interval estimate of \(\mu \).
- If we reject the null hypothesis, then \(c \) will fall outside the 100(1–\(\alpha \))% confidence interval estimate of \(\mu \).
C.6.10 A Relationship Between Hypothesis Testing and Confidence Intervals

- We fail to reject the null hypothesis when \(-t < t_n\) or when
 \[t_n \leq \frac{\bar{Y} - \mu}{\sigma/\sqrt{N}} \leq t_n \]
 \[\bar{Y} - t_n \frac{\sigma}{\sqrt{N}} \leq \mu \leq \bar{Y} + t_n \frac{\sigma}{\sqrt{N}} \]

C.7 Some Useful Tests

- C.7.1 Testing the population variance
 \[Y \sim \mathcal{N}(\mu, \sigma^2) \]
 \[\bar{Y} = \frac{\sum Y}{N} \]
 \[\hat{\sigma}^2 = \sum (Y_i - \bar{Y})^2 / (N - 1) \]
 \[H_0 : \sigma^2 = \sigma_0^2 \]
 \[V = \frac{(N - 1)\hat{\sigma}^2}{\sigma_0^2} \sim \chi^2_{(N-1)} \]

C.7.1 Testing the Population Variance

- If \(H_1 : \sigma^2 > \sigma_0^2 \), then the null hypothesis is rejected if
 \[V \geq \chi^2_{(0.05, N-1)} \]

- If \(H_1 : \sigma^2 \neq \sigma_0^2 \), then we carry out a two - tail test, and the null hypothesis is rejected if
 \[V \geq \chi^2_{(0.025, N-1)} \ or \ V \leq \chi^2_{(0.975, N-1)} \]
C.7.2 Testing the Equality of two Population Means

Case 1: Population variances are equal

\[\sigma_1^2 = \sigma_2^2 = \sigma^2 \]

\[\hat{\sigma}^2 = \frac{(N_1-1)\hat{\sigma}_1^2 + (N_2-1)\hat{\sigma}_2^2}{N_1 + N_2 - 2} \]

If the null hypothesis \(H_0 : \mu_1 - \mu_2 = c \) is true then

\[t = \frac{\bar{Y}_1 - \bar{Y}_2 - c}{\sqrt{\hat{\sigma}^2 \left(\frac{1}{N_1} + \frac{1}{N_2} \right)}} \text{ with }\ \frac{N_1}{N_1 - 1} + \frac{N_2}{N_2 - 1} \text{ df} \]

C.7.2 Testing the Equality of two Population Means

Case 2: Population variances are unequal

\[t' = \frac{\bar{Y}_1 - \bar{Y}_2 - c}{\sqrt{\hat{\sigma}_1^2/N_1 + \hat{\sigma}_2^2/N_2}} \]

\[df = \frac{\left(\frac{\hat{\sigma}_1^2}{N_1} \right)^2 + \left(\frac{\hat{\sigma}_2^2}{N_2} \right)^2}{\left(\frac{\hat{\sigma}_1^2}{N_1} \right)^2 \left(\frac{1}{N_1 - 1} + \frac{\hat{\sigma}_2^2}{N_2 - 1} \right)} \]

C.7.3 Testing the ratio of two population variances

\[F = \frac{(N_1-1)\hat{\sigma}_1^2/\sigma_1^2}{(N_2-1)\hat{\sigma}_2^2/\sigma_2^2} = \frac{\hat{\sigma}_1^2/\sigma_1^2}{\hat{\sigma}_2^2/\sigma_2^2} = F_{(N_1-1), (N_2-1)} \]
C.7.4 Testing the normality of a population

The normal distribution is symmetric, and has a bell-shape with a peakedness and tail-thickness leading to a kurtosis of 3. We can test for departures from normality by checking the skewness and kurtosis from a sample of data.

\[\text{skewness} = S = \frac{\bar{X}}{\sigma} \]
\[\text{kurtosis} = K = \frac{\mu_4}{\sigma^4} \]

The Jarque-Bera test statistic allows a joint test of these two characteristics,

\[JB = \frac{N}{6} \left(\frac{\mu_4}{\sigma^4} \right) - \frac{(K - 3)^2}{4} \]

If we reject the null hypothesis then we know the data have non-normal characteristics, but we do not know what distribution the population might have.

For the Hip data,

\[JB = \frac{N}{6} \left(\frac{\mu_4}{\sigma^4} \right) - \frac{(K - 3)^2}{4} = \frac{50}{6} \left(-0.0138 \right)^2 + \frac{2.3315 - 3)^2}{4} = 0.9325 \]

\[p = P \left[\chi^2_{10} \geq 0.9325 \right] = 0.6273 \]
For wheel A, with $p=1/4$, the probability of observing WIN, WIN, LOSS is
$$\frac{1}{4} \times \frac{1}{4} \times \frac{3}{4} = \frac{3}{64} = .0469$$

For wheel B, with $p=3/4$, the probability of observing WIN, WIN, LOSS is
$$\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4} = \frac{9}{64} = .1406$$

If we had to choose wheel A or B based on the available data, we would choose wheel B because it has a higher probability of having produced the observed data.

It is more likely that wheel B was spun than wheel A, and $\hat{p} = 3/4$ is called the maximum likelihood estimate of p.

The maximum likelihood principle seeks the parameter values that maximize the probability, or likelihood, of observing the outcomes actually obtained.
Suppose p can be any probability between zero and one. The probability of observing WIN, WIN, LOSS is the likelihood L, and is

$$L(p) = p \times p \times (1 - p) = p^2 - p^3$$ \hspace{1cm} (C.17)

We would like to find the value of p that maximizes the likelihood of observing the outcomes actually obtained.

There are two solutions to this equation, $p=0$ or $p=2/3$. The value that maximizes $L(p)$ is $\hat{p} = 2/3$, which is the maximum likelihood estimate.
Let us define the random variable X that takes the values $x=1$ (WIN) and $x=0$ (LOSS) with probabilities p and $1-p$.

$$P[X = x] = f(x | p) = p^x (1-p)^{1-x}, \quad x = 0,1$$

$$f(x_1, \ldots, x_N | p) = f(x_1 | p) \times \cdots \times f(x_N | p)$$

$$= p^{\sum x} (1-p)^{\sum x}$$

$$= L(p | x_1, \ldots, x_N)$$

$$(C.18)$$

$$\ln L(p) = \sum_{i=1}^N \ln f(x_i | p)$$

$$= \left(\sum x_i \right) \ln(p) + \left(N - \sum x_i \right) \ln(1-p)$$

$$(C.19)$$

$$\frac{d \ln L(p)}{dp} = \frac{\sum x_i}{p} - \frac{N - \sum x_i}{1-p}$$
C.8 Introduction to Maximum Likelihood Estimation

\[
\hat{\theta} = \frac{\sum x_i}{N} = \tau
\]

(C.20)

\[
\sum x_i \cdot \frac{N - \sum x_i}{1 - \hat{\theta}} = 0
\]

\[
(1 - \hat{\theta}) \sum x_i - \hat{\theta} (N - \sum x_i) = 0
\]

C.8.1 Inference with Maximum Likelihood Estimators

\[
\ln L(\theta) = \sum \ln f(x_i | \theta)
\]

\[
\hat{\theta} \sim N(0, V)
\]

(C.21)

\[
t = \frac{\hat{\theta} - \theta}{\text{se}(\hat{\theta})} \sim t_{N-1}
\]

(C.22)

REMARK: The asymptotic results in (C.21) and (C.22) hold only in large samples. The distribution of the test statistic can be approximated by a \(t\)-distribution with \(N-1\) degrees of freedom. If \(N\) is truly large then the \(t_{N-1}\) distribution converges to the standard normal distribution \(N(0,1)\). When the sample size \(N\) may not be large, we prefer using the \(t\)-distribution critical values, which are adjusted for small samples by the degrees of freedom correction, when obtaining interval estimates and carrying out hypothesis tests.
C.8.2 The Variance of the Maximum Likelihood Estimator

\[
V = \text{var}(\hat{\theta}) = \left[-E \left(\frac{d^2 \ln L(\theta)}{d\theta^2} \right) \right]^{-1}
\]

(C.23)

C.8.2 The Variance of the Maximum Likelihood Estimator

Figure C.13 Two Log-Likelihood Functions

C.8.3 The Distribution of the Sample Proportion

\[
\frac{d^3 \ln L(p)}{dp^3} = \frac{\sum x_i}{p^2} - \frac{N - \sum x_i}{(1 - p)^2}
\]

(C.24)

\[
E(x_i) = 1 \times P(x_i = 1) + 0 \times P(x_i = 0) = 1 \times p + 0 \times (1 - p) = p
\]
C.8.3 The Distribution of the Sample Proportion

\[
E\left(\frac{d^2 \ln L(p)}{dp^2} \right) = -\frac{\sum E(x_i)}{p^2} - \frac{N - \sum E(x_i)}{(1-p)^2}
\]
\[
= \frac{Np}{p^2} \cdot \frac{N - Np}{(1-p)^2}
\]
\[
= \frac{N}{p(1-p)}
\]

C.8.3 The Distribution of the Sample Proportion

\[
V = \text{var}(\hat{p}) = \left[-E\left(\frac{d^2 \ln L(p)}{dp^2} \right) \right]^{-1} = \frac{p(1-p)}{N}
\]
\[
\hat{p} \sim N\left(p, \frac{p(1-p)}{N} \right)
\]

C.8.3 The Distribution of the Sample Proportion

\[
\hat{v} = \frac{p(1-p)}{N}
\]
\[
\text{se}(\hat{p}) = \sqrt{\hat{v}} = \sqrt{\frac{p(1-p)}{N}}
\]
C.8.3 The Distribution of the Sample Proportion

\[\text{se}(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{N}} = \sqrt{\frac{.375 \times .625}{200}} = .0342 \]

\[t = \frac{\hat{p} - 4}{\text{se}(\hat{p})} = \frac{.375 - 4}{.0342} = -7.303 \]

\[\hat{p} \pm 1.96 \text{se}(\hat{p}) = .375 \pm 1.96(.0342) = [.3075, .4425] \]

C.8.4 Asymptotic Test Procedures

C.8.4a The likelihood ratio (LR) test

The likelihood ratio statistic which is twice the difference between \(\ln L(\hat{\theta}) \) and \(\ln L(c) \).

\[LR = 2\left[\ln L(\hat{\theta}) - \ln L(c) \right] \quad (C.25) \]

C.8.3a The likelihood ratio (LR) test

Figure C.14 The Likelihood Ratio Test
C.8.4a The likelihood ratio (LR) test

\[
\ln L(\hat{p}) = \left(\sum_{i=1}^{N} x_i \right) \ln \hat{p} + \left(N - \sum_{i=1}^{N} x_i \right) \ln (1 - \hat{p}) \\
= N\hat{p} \ln \hat{p} + (N - N\hat{p}) \ln (1 - \hat{p}) \\
= N \left[\hat{p} \ln \hat{p} + (1 - \hat{p}) \ln (1 - \hat{p}) \right]
\]

For the cereal box problem \(\hat{p} = .375 \) and \(N = 200 \).

\[
\ln L(\hat{p}) = 200 \left[.375 \times \ln(.375) + (1 - .375) \ln(1 - .375) \right] \\
= -132.3126
\]
The value of the log-likelihood function assuming \(H_0: \beta = .4 \) is true is:
\[
\ln L(\beta) = \left(\sum_{i=1}^{N} x_i \ln(.4) \right) + \left(N - \sum_{i=1}^{N} x_i \right) \ln(1-.4)
\]
\[
= 75 \times \ln(.4) + (200 - 75) \times \ln(.6)
\]
\[
= -132.5750
\]

The problem is to assess whether \(-132.3126\) is significantly different from \(-132.5750\).

The LR test statistic (C.25) is:
\[
LR = 2 \left[\ln L(\hat{\beta}) - \ln L(\beta) \right] = 2 \times \left(-132.3126 - (-132.5750) \right) = .5247
\]

The critical value is \(\chi^2_{.95,1} = 3.84 \).

Since \(.5247 < 3.84\) we do not reject the null hypothesis.

C.8.4b The Wald test

![Figure C.16 The Wald Statistic](Slide C-96)
C.8.4b The Wald test

\[W = \left(\hat{\theta} - c \right)^2 \left[-d^2 \ln L(\theta) \right] \]
\[(C.26) \]

If the null hypothesis is true then the Wald statistic (C.26) has a \(\chi^2_1 \) distribution, and we reject the null hypothesis if \(W \geq \chi^2_{(1,-\alpha)} \).

C.8.4b The Wald test

\[I(\theta) = -E \left[\frac{d^2 \ln L(\theta)}{d\theta^2} \right] = I^{-1} \]
\[(C.27) \]

\[W = \left(\hat{\theta} - c \right)^2 I(\theta) \]
\[(C.28) \]

\[W = \left(\hat{\theta} - c \right)^2 I^{-1} \left(\hat{\theta} - c \right)^2 I^{-1} \]
\[(C.29) \]

C.8.4b The Wald test

\[\hat{V} = \left[I(\hat{\theta}) \right]^{-1} \]
\[(C.30) \]

\[\sqrt{W} = \frac{\hat{\theta} - c}{\sqrt{\hat{V}}} = \frac{\hat{\theta} - c}{\text{se}(\hat{\theta})} = t \]
C.8.4b The Wald test

In the blue box-green box example:

\[I(\hat{\rho}) = \hat{\rho}^{-1} = \frac{N}{\hat{\rho}(1 - \hat{\rho})} = \frac{200}{.375(1 - .375)} = 853.3333 \]

\[W = (\hat{\rho} - c)^2 I(\hat{\rho}) = (.375 - .4)^2 \times 853.3333 = .5333 \]

C.8.4c The Lagrange multiplier (LM) test

Figure C.17 Motivating the Lagrange multiplier test

C.8.4c The Lagrange multiplier (LM) test

\[s(\theta) = \frac{d \ln L(\theta)}{d\theta} \quad (C.31) \]

\[LM = \frac{[s(\theta)]^2}{I(\theta)} = [s(\theta)]^2 [I(\theta)]^{-1} \quad (C.32) \]

\[LM = [s(\theta)]^2 [I(c)]^{-1} \]

\[W = (\hat{\theta} - c)^2 I(\hat{\theta}) \]
C.8.4c The Lagrange multiplier (LM) test

In the blue box-green box example:

\[s(A) = \frac{\sum x_i}{c} - \frac{N - \sum x_i}{1 - c} = \frac{75}{A} - \frac{200}{1 - A} = -20.8333 \]

\[I(A) = \frac{N}{c(1 - c)} = \frac{200}{4(1 - A)} = 833.3333 \]

\[LM = \left[s(A) \right]^T \left[I(A) \right]^{-1} = \left[-20.8333 \right]^T \left[833.3333 \right]^{-1} = .5208 \]

C.9 Algebraic Supplements

- C.9.1 Derivation of Least Squares Estimator

\[S = \sum_{i=1}^{N} (y_i - \mu)^2 \]

\[d_i = \sqrt{(y_i - \mu)^2} \]

\[d_i^2 = (y_i - \mu)^2 \]

C.9.1 Derivation of Least Squares Estimator

\[S(\mu) = \sum_{i=1}^{N} d_i^2 = \sum_{i=1}^{N} (y_i - \mu)^2 \]

\[S(\mu) = \sum_{i=1}^{N} y_i^2 - 2\mu \sum_{i=1}^{N} y_i + N\mu^2 = a_0 - 2a_1\mu + a_2\mu^2 \]

\[a_0 = \sum y_i^2 = 14880.1909, \quad a_1 = \sum y_i = 857.9100, \quad a_2 = N = 50 \]
Figure C.18 The Sum of Squares Parabola For the Hip Data

For the hip data in Table C.1

\[\hat{\mu} = \frac{\sum y_i}{N} = \frac{857.9100}{50} = 17.1582 \]

Thus we estimate that the average hip size in the population is 17.1582 inches.
C.9.2 Best Linear Unbiased Estimation

\[
\bar{Y} = \frac{1}{N} \sum_{i=1}^{N} Y_i = \frac{1}{N} Y_1 + \frac{1}{N} Y_2 + \ldots + \frac{1}{N} Y_N
\]

\[
= a_1 Y_1 + a_2 Y_2 + \ldots + a_N Y_N
\]

\[
= \sum_{i=1}^{N} a_i Y_i
\]

C.9.2 Best Linear Unbiased Estimation

\[
\hat{Y} = \sum_{i=1}^{N} a_i^* Y_i
\]

\[
a_i^* = a_i + c_i = \frac{1}{N} + c_i
\]

C.9.2 Best Linear Unbiased Estimation

\[
\hat{Y} = \sum_{i=1}^{N} a_i^* Y_i = \sum_{i=1}^{N} \left(\frac{1}{N} + c_i \right) Y_i
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} Y_i + \sum_{i=1}^{N} c_i Y_i
\]

\[
= \bar{Y} + \sum_{i=1}^{N} c_i Y_i
\]
C.9.2 Best Linear Unbiased Estimation

\[
E[\bar{Y}] = E\left[\bar{Y} + \sum_{i=1}^{N} c_i Y \right] = \mu + \sum_{i=1}^{N} c_i E[Y]
\]
\[
= \mu + \mu \sum_{i=1}^{N} c_i
\]

C.9.2 Best Linear Unbiased Estimation

\[
\text{var}(\bar{Y}) = \text{var} \left(\sum_{i=1}^{N} c_i Y \right) = \text{var} \left(\sum_{i=1}^{N} \left(\frac{1}{N} + c_i \right) Y \right) = \sum_{i=1}^{N} \left(\frac{1}{N} + c_i \right)^2 \text{var}(Y)
\]
\[
= \sigma^2 \sum_{i=1}^{N} \left(\frac{1}{N} + c_i \right)^2 = \sigma^2 \left(\frac{1}{N} + \frac{2}{N} \sum_{i=1}^{N} c_i + \sum_{i=1}^{N} c_i \right)
\]
\[
= \sigma^2 / N + \sigma^2 \sum_{i=1}^{N} c_i
\]
\[
= \text{var}(\bar{Y}) + \sigma^2 \sum_{i=1}^{N} c_i
\]

Keywords

- alternative hypothesis
- asymptotic distribution
- BLUE
- central limit theorem
- central moments
- estimate
- estimator
- experimental design
- information measure
- interval estimate
- Lagrange multiplier test
- Law of large numbers
- level of significance
- likelihood function
- likelihood ratio test
- linear estimator
- log likelihood function
- maximum likelihood estimation
- null hypothesis
- point estimate
- population parameter
- p-value
- random sample
- rejection region
- sample mean
- sample variance
- sampling distribution
- sampling variation
- standard error
- standard error of the mean
- standard error of the estimate
- statistical inference
- test statistic
- two-tail tests
- Type I error
- Type II error
- unbiased estimators
- Wald test