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Radiation Heat Transfer 
in Participating Media 
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❑ Radiation energy passing at normal angle through area dA1 
over the time interval dt and wavelength range dη that will 
reach area dA2 at normal angle is 

❑ This radiation goes through dA2 at time t2=t1+(s2 – s1)/c 
where c is the speed of light. 
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Radiation Intensity in Vacuum 
❑ Equating these two equations gives 

❑ Since c is very large, t1 ≈  t2 and 

❑ Radiation intensity in vacuum, along any given direction, is 
constant along its path. 
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Participating Medium 
❑ A medium that absorbs, emits and scatters radiation is 

called a participating medium.  
❑ Water vapor, CO2, CO, CH4, combustion fuels, fog and cloud 

❑ Semitransparent solids such as doped silicon 

❑ Semitransparent liquids such as water   Particles 
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Absorption 
❑ The absolute amount of the radiation absorption is directly 

proportional to the magnitude of the incident energy and the 
distance the radiation beam travels through the medium; 

❑ κλ is called the absorption coefficient of the medium. 

❑ It depends on temperature and the number of molecules per unit 
volume. 

❑ Integrating this equation from 0 to s gives 

❑ Absorptivity of the medium for the path from 0 to s is 
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Out-Scattering 
❑ A part of the incoming radiation intensity is removed from 

the direction of propagation;  

❑ σsλ is called the scattering coefficient into all directions. 

❑ It depends on temperature and the number of molecules per unit 
volume. 

❑ Total attenuation of the radiation intensity by both 
absorption and scattering is known as extinction. 

❑ The extinction coefficient is defined as 
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Emission 
❑ The rate of emission from a volume element is proportional 

to the magnitude of the volume. 

❑ The emitted intensity along any path is proportional to 
❑ the length of the path and, 

❑ the local energy content in the medium. 

❑ Note that the proportionality constant for emission, κλ, is 
the same as for absorption. 
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Absorbing, Emitting and Non-Scattering Medium 

❑ Radiation Emission: 

❑ Radiation Absorption: 

❑ Combining the two gives 

❑ The solution of this equation for an isothermal gas layer of 
thickness s is 

❑ If only internal emission is considered, I(0)=0 and 

dsIdI abs λλλ κ−=)(

dsIdI bem λλλ κ=)(

)( λλλ
λ κ II
ds
dI

b −=

)1()0()( λλ τ
λ

τ
λλ

−− −+= eIeIsI b

λλ τ

λ

λ
λ

τ
λλ ε −− −=≡⇒−= e

I
sIeIsI
b

b 1)()1()(



Page 3 

215 Advanced Heat Transfer (ME 211)                                      Younes Shabany 

In-Scattering 

❑ Radiation intensity can be augmented by in-scattering from 
all directions. 

❑ Consider the radiation heat flux impinging on a volume 
element dV=dAds, from direction si. 

❑ The total spectral radiation heat flux impinging on area dA 
from direction si is 

❑ Note that                  , where θ is the angle between 
directions si and s. 

❑ The part of this energy which is scattered away from si 
while passing through the volume element is 
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Scattering Phase Function 

❑ The probability that the radiation ray from one direction, si, 
is scattered into a certain other direction, s, is described by 
scattering phase function;  Φλ(si, s). 

❑ The amount of radiation energy from the cone dωI that is 
scattered into the cone dω is 

❑ The total spectral radiation energy that is scattered from 
the cone dωi to all directions is 

❑ Therefore, 
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In-Scattered Radiation  

❑ The total spectral radiation energy that is scattered is 
direction s into the cone dω from all directions is 

❑ This is equal to the scattered radiation flux around the 
wavelength dλ that impinges upon area dA and passes 
through the solid angle dω; 

❑ Therefore, the amount of in-scattering into direction s from 
all directions is 
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The Equation of Transfer 

❑ Combining equations for absorption, emission, in-scattering 
and out-scattering, the equation of transfer of radiation 
intensity in as participating medium is 

❑ This is a first-order integro-differential equation for 
radiation intensity in direction s. 

❑ A boundary condition, such as radiation intensity in 
direction s on a surface of an enclosure that surrounds the 
medium, is needed for complete solution of this equation. 
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The Equation of Transfer in Optical Coordinates 

❑ The non-dimensional optical thickness is defined as 

❑ The single scattering albedo is defined as 

❑ It can be shown that the equation of transfer of radiation 
intensity in terms on optical thickness and single scattering 
albedo becomes 
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Non-Scattering Medium 

❑ For a non-scattering medium, ωλ=0, and the equation of 
transfer of radiation intensity becomes 

❑ The solution of this equation can be written as 
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Radiation Heat Flux Vector 

❑ The rate of incident and outgoing spectral radiation heat 
transfer through an area dA1 is 

 where  

❑ The spectral radiation heat flux is 

❑ The total radiation heat flux is 

❑ The spectral and total radiation heat flux vectors are 
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Conservation of Radiation Energy 

❑ The equation of transfer is a radiation balance for an 
infinitesimal pencil of rays: 

❑ If this equation is integrated over all solid angles, an spectral 
radiation balance for an infinitesimal volume is obtained: 
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Conservation of Radiation Energy 

❑ A total radiation balance is obtained by integrating this over 
all wavelengths: 

❑ For the special case of a gray medium where κλ=κ, 
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Molecular Internal Energy 

❑ The internal energy of atoms and molecules consists of 
❑ Energy of electrons spinning around the nucleus. 

❑ Energy of atoms spinning around one another. 

❑ Energy of atoms within a molecule vibrating against each other. 

❑ Energy levels for electron orbits and molecular rotation and 
vibration are quantized. 

❑ The energy of a photon is proportional to its frequency: 
❑ It must have a certain frequency to be captured or released. 

❑ Spectral lines for absorption and emission are discrete. 
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Change in Molecular Internal Energy 

❑ Changing the orbit of an electron requires a relatively large 
amount of energy on the order of several eV (1.602×10-19 J).   
❑ Absorption and emission of high frequency photons 

❑ Short wavelength spectral lines between UV and near IR               
(10-2 – 1.5  µm) 

❑ Vibrational energy level changes require energy levels on the 
order of 0.1 eV. 
❑ Spectral lines in the IR (1.5 – 20 µm) 

❑ Changes in rotational energy levels require small amount of 
energy on the order of 10-3 eV. 
❑ Spectral lines in the far IR (larger than 20 µm) 
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Rotational Spectra 

❑ The possible rotational energy levels 
for a diatomic molecule, based on 
the rigid-rotator model, are 

 where h is Plank constant, I is the 
moment of inertia of the molecule, 
and J is the rotational quantum 
number. 

❑ The allowed transitions are Δ J= ±1. 

❑ The frequency of the absorbed or 
emitted photon is 
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Vibrational Spectra 

❑  The possible vibrational energy levels 
for a diatomic molecule, based on the 
harmonic oscillator model, are 

 where υ is the vibrational quantum 
number and  

 

  

 is the equilibrium frequency of 
oscillation of such a two-body oscillator. 

❑  The allowed transitions are Δ υ = ±1. 

❑  The frequency of the absorbed or 
emitted photon is  
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Vibrational-Rotational Spectra 

❑ Vibrational energy changes always happen together with 
many simultaneous rotational energy changes. 

❑ The combined rotational and vibrational energy level of a 
diatomic molecule is 

❑ The allowed transitions are Δ υ = ±1 and Δ J = ±1 and 0. 

❑ The frequency of the spectral lines for υ = 0 to υ = 1 is 
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Vibrational-Rotational Spectra 

Vibrational-Rotational Spectra of CO 
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Total Emissivity and Absorptivity of CO2 and H2O  
❑ Total emissivity of CO2 or H2O at very low partial pressure 

pa , total pressure of p = 1 bar, and length L is 

❑ The emissivity at different pressure p is 

❑ The absorptivity at pressure p is 
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Correlation Constants for Water Vapor 
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Total Emissivity of Water Vapor 
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Correlation Constants for Carbon Dioxide 
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Total Emissivity of Carbon Dioxide 


