




<text><list-item><list-item><list-item><list-item><equation-block><text>

Absorbing, Emitting and Non-Scattering Medium Radiation Emission:  $(dI_{\lambda})_{em} = \kappa_{\lambda}I_{b\lambda}ds$ Radiation Absorption:  $(dI_{\lambda})_{abs} = -\kappa_{\lambda}I_{\lambda}ds$ Combining the two gives  $\frac{dI_{\lambda}}{ds} = \kappa_{\lambda}(I_{b\lambda} - I_{\lambda})$ The solution of this equation for an isothermal gas layer of thickness *s* is  $I_{\lambda}(s) = I_{\lambda}(0)e^{-\tau_{\lambda}} + I_{b\lambda}(1 - e^{-\tau_{\lambda}})$ If only internal emission is considered, I(0)=0 and  $I_{\lambda}(s) = I_{b\lambda}(1 - e^{-\tau_{\lambda}}) \Rightarrow \epsilon_{\lambda} = \frac{I_{\lambda}(s)}{I_{b\lambda}} = 1 - e^{-\tau_{\lambda}}$ 





**In-Scattered Radiation** The total spectral radiation energy that is scattered is direction **s** into the cone  $d\omega$  from all directions is  $\int_{4\pi} \sigma_{s\lambda} I_{\lambda}(\hat{s}_{i}) dA d\omega_{i} d\lambda ds \Phi_{\lambda}(\hat{s}_{i}, \hat{s}) \frac{d\omega}{4\pi}.$ This is equal to the scattered radiation flux around the wavelength  $d\lambda$  that impinges upon area dA and passes through the solid angle  $d\omega$ ;  $(dI_{\lambda})_{in-sca}(\hat{s}) dA d\omega d\lambda$ Therefore, the amount of in-scattering into direction **s** from all directions is  $(dI_{\lambda})_{in-sca}(\hat{s}) = ds \frac{\sigma_{s\lambda}}{4\pi} \int_{4\pi} I_{\lambda}(\hat{s}_{i}) \Phi_{\lambda}(\hat{s}_{i}, \hat{s}) d\omega_{i}.$ 

Younes Shahany

Advanced Heat Transfer (ME 211)

## The Equation of Transfer

Combining equations for absorption, emission, in-scattering and out-scattering, the equation of transfer of radiation intensity in as participating medium is

$$dI_{\lambda} = (dI_{\lambda})_{em} + (dI_{\lambda})_{abs} + (dI_{\lambda})_{out-sca} + (dI_{\lambda})_{in-sca}(s).$$

$$\frac{dI_{\lambda}}{ds} = \kappa_{\lambda}I_{b\lambda} - (\kappa_{\lambda} + \sigma_{s\lambda})I_{\lambda} + \frac{\sigma_{s\lambda}}{4\pi}\int_{4\pi}I_{\lambda}(\hat{s}_{i})\Phi_{\lambda}(\hat{s}_{i},\hat{s})d\omega_{i}.$$


- □ This is a first-order integro-differential equation for radiation intensity in direction **s**.
- A boundary condition, such as radiation intensity in direction s on a surface of an enclosure that surrounds the medium, is needed for complete solution of this equation.

Younes Shahany

Advanced Heat Transfer (ME 211)

218

217



## **Non-Scattering Medium**

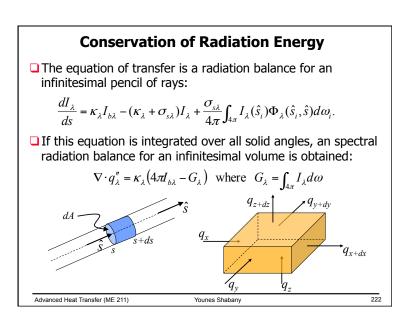
□ For a non-scattering medium,  $\omega_{\lambda}$ =0, and the equation of transfer of radiation intensity becomes

$$\frac{dI_{\lambda}}{d\tau_{\lambda}} + I_{\lambda} = I_{b\lambda}$$

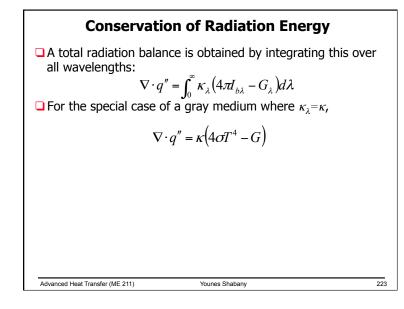
The solution of this equation can be written as

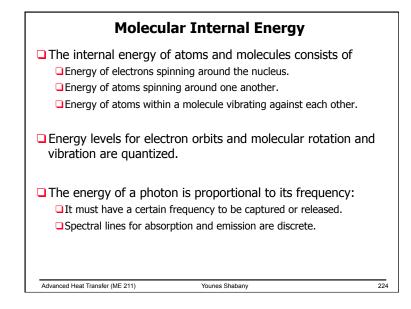
Advanced Heat Transfer (ME 211)

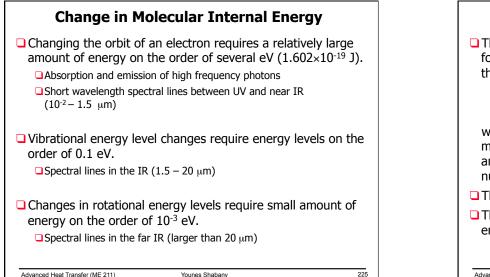
$$I_{\lambda}(\tau_{\lambda}) = I_{\lambda}(0)e^{-\tau_{\lambda}} + e^{-\tau_{\lambda}}\int_{0}^{\tau_{\lambda}}I_{b\lambda}(\tau_{\lambda}')e^{\tau_{\lambda}'}d\tau_{\lambda}'.$$

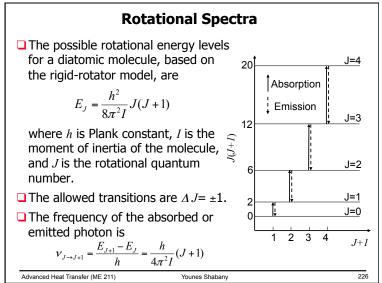

Younes Shabany

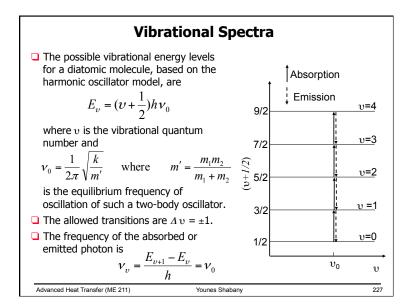
220

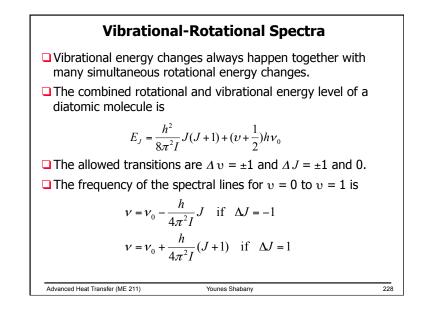

**Radiation Heat Flux Vector** The rate of incident and outgoing spectral radiation heat transfer through an area  $dA_1$  is  $dq_{\lambda} = I_{\lambda}(\hat{s})dA_1\cos\theta d\omega$ where  $\cos\theta = \hat{s}\cdot\hat{n}$ . The spectral radiation heat flux is  $q_{\lambda}'' = \int_{4\pi} I_{\lambda}(\hat{s})\hat{s}\cdot\hat{n} d\omega d\lambda$ . The total radiation heat flux is  $q'' = \int_{0}^{\infty} \int_{4\pi} I_{\lambda}(\hat{s})\hat{s}\cdot\hat{n} d\omega d\lambda$ . The spectral and total radiation heat flux vectors are  $\vec{q}_{\lambda}'' = \int_{4\pi} I_{\lambda}(\hat{s})\hat{s}d\omega$ .  $\vec{q}'' = \int_{0}^{\infty} \int_{4\pi} I_{\lambda}(\hat{s})\hat{s}d\omega d\lambda$ .

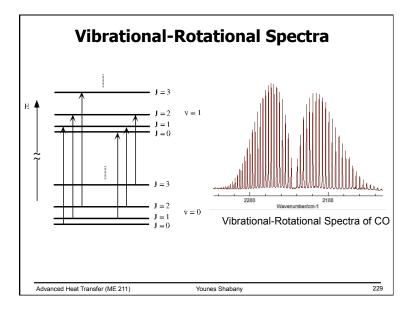

Younes Shabany


Advanced Heat Transfer (ME 211)





221







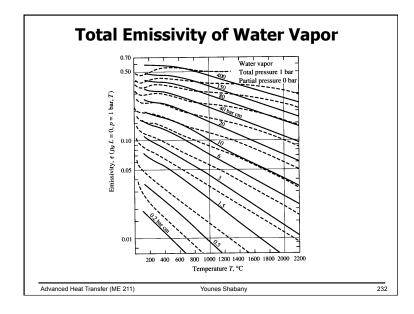




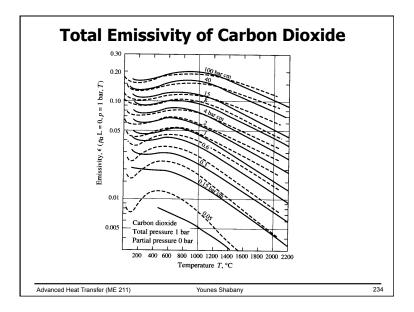



Total Emissivity and Absorptivity of CO<sub>2</sub> and H<sub>2</sub>O

 $\Box$  Total emissivity of CO<sub>2</sub> or H<sub>2</sub>O at very low partial pressure  $p_a$ , total pressure of p = 1 bar, and length L is


$$\varepsilon_0(p_a L, p = 1 \text{ bar}, T_g) = \exp\left[\sum_{i=0}^M \sum_{j=0}^N c_{ji} \left(\frac{T_g}{T_0}\right)^j \left(\log_{10} \frac{p_a L}{(p_a L)_0}\right)^i\right]$$

 $\Box$  The emissivity at different pressure p is


$$\frac{\varepsilon(p_a L, p, T_g)}{\varepsilon_0(p_a L, p = 1 \text{ bar}, T_g)} = 1 - \frac{(a-1)(1-P_E)}{a+b-1+P_E} \exp\left[-c\left(\log_{10}\frac{(p_a L)_m}{p_a L}\right)^2\right]$$
  
The absorptivity at pressure p is  

$$\alpha = \left(\frac{T_g}{T_s}\right)^{1/2} \varepsilon_0(p_a L \frac{T_g}{T_s}, p = 1 \text{ bar}, T_s) \left(\frac{\varepsilon}{\varepsilon_0}\right)$$
Advanced Heat Transfer (ME 211) Younes Shabany 230

| M , N                                                                   | 2,2                                                                                                                                              |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_{00} \dots c_{0M}$<br>$\vdots \dots \vdots$<br>$c_{N0} \dots c_{NM}$ | -2.2118         -1.1987         0.035596           0.85667         0.93048         -0.14391           -0.10838         -0.17156         0.045915 |
| P <sub>E</sub>                                                          | $(p+2.56 p_a/\sqrt{t})/p_0$                                                                                                                      |
| $(p_a L)_m / (p_a L)_0$                                                 | 13.2 <i>t</i> <sup>2</sup>                                                                                                                       |
| a                                                                       | 2.479, $t < 0.75$<br>1.888 - 2.053 log <sub>10</sub> t, $t > 0.75$                                                                               |
| b                                                                       | $1.10/t^{1.4}$                                                                                                                                   |
| с                                                                       | 0.5                                                                                                                                              |



| Correlation Constants for Carbon Dioxide                                                                         |                                                                                                        |  |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| <i>M</i> , <i>N</i>                                                                                              | 2,3                                                                                                    |  |
| $\begin{array}{cccc} c_{00} & \dots & c_{0M} \\ \vdots & \ddots & \vdots \\ c_{N0} & \dots & c_{NM} \end{array}$ | -3.9893 2.7669 -2.1081 0.39163<br>1.2710 -1.1090 1.0195 -0.21897<br>-0.23678 0.19731 -0.19544 0.044644 |  |
| $P_E$                                                                                                            | $(p + 0.28 p_a)/p_0$                                                                                   |  |
| $(p_a L)_m/(p_a L)_0$                                                                                            | $\begin{array}{ccc} 0.054/t^2, & t < 0.7\\ 0.225t^2, & t > 0.7 \end{array}$                            |  |
| а                                                                                                                | $1 + 0.1/t^{1.45}$                                                                                     |  |
| b                                                                                                                | 0.23                                                                                                   |  |
| с                                                                                                                | 1.47                                                                                                   |  |
| $T_0 = 1000 \mathrm{K},$                                                                                         | $p_0 = 1$ bar, $t = T/T_0$ , $(p_a L)_0 = 1$ bar cm                                                    |  |
| Advanced Heat Transfer (ME 211)                                                                                  | Younes Shabany 23                                                                                      |  |

