San José State University
Department of Elementary Education
EDTE 230, MATHEMATICS: TEACHING COMMON CORE
GRDES K-3
Summer 2014

Instructor: Patricia Swanson
Office Location: SH341
Telephone: (408) 924-3769
Email: patricia.swanson@sjsu.edu
Office Hours: 3:30-5:00 (TBA)
Class Days/Time: 7 days, June, 9:00am – 3:30pm
Classroom: TBA

Course Description
This course focuses on mathematical knowledge for teaching Kindergarten through 3rd grade Common Core content standards and mathematical practices. The course is designed for practicing teachers. Coursework will emphasize the development of mathematical knowledge and the use of “high leverage” mathematical practices in classroom teaching (Ball, 2011). The purpose of this course is to support and enhance teachers’ classroom instruction of mathematics at their grade level, and develop an understanding of key mathematics concepts preceding and following their grade level.

This course focuses primarily in the Common Core domains of number, operations, and algebraic thinking. A companion course EDTE 231, designed to support classroom implementation of Common Core standards during the academic year, will address the domains of measurement, data, and geometry.

Within the context of the rigorous content and mathematical practices outlined by Common Core standards, this course emphasizes the critical need for teachers to enhance all students’ access to and interest in mathematics, enabling all students to learn mathematics well. Consequently, a primary goal of this course is to increase teachers’ interest in and understanding of mathematics, such that their knowledge and enthusiasm for the subject infuses their classroom teaching.

Two key features of effective mathematics teaching will be embedded throughout the course: developing students’ academic language within mathematics and addressing the social-emotional dimensions of teaching and learning mathematics.
Language is an essential tool enabling students to both learn and do mathematics. In this course we will focus on simultaneous teaching of mathematics content and the language of mathematics. Practical strategies for teaching vocabulary in context, using language frames, structuring group and paired work and efficiently using manipulative materials will be addressed for their potential to foster conceptual understanding and the use of academic language in mathematics.

Finally, mathematics, and how it is taught, has the power to shape students’ self-efficacy, resiliency, and beliefs about themselves and their intelligence. In no other subject is the interaction of social-emotional factors so tied to learning and disposition to learn. In this course we will examine the social and emotional dimensions of teaching and learning mathematics and develop strategies to enhance students’ productive disposition towards learning and doing mathematics.

Course Goals and Student Learning Objectives

1) Students will demonstrate both conceptual understanding and the ability to teach essential Common Core content and mathematical practices for students’ in Kindergarten through 3rd grade.

2) Students will demonstrate the ability to strategically integrate pedagogical strategies, curricular activities, and management systems introduced in class with the existing mathematics programs used in their district.

3) Students will demonstrate the ability to design and implement mathematics lessons reflecting a variety of pedagogical strategies and designed to enhance access to learning in academically and linguistically diverse classrooms.

4) Students will develop classroom organizational systems and instructional plans to foster cooperative skills, organize and maintain efficient use of manipulatives, and enhance meaningful communication in the mathematics classroom. Specific emphasis will be placed on materials, methods, and instructional strategies that provide second language learners with access to grade appropriate mathematics content while fostering the development of both oral and written English language skills.

5) Students will demonstrate the ability to use pedagogical strategies that foster the development of social and emotional learning skills within the context of teaching and learning mathematics. Specifically, students will learn to 1) foster self-awareness and resiliency when faced with challenging mathematics tasks 2) teach norms for group interaction and mathematical discourse, 3) model a growth mindset, develop multidimensional mathematics tasks, and recognize a variety of intellectual aptitudes relevant to doing mathematics, and 4) teach study skills that promote goal setting, planning, and self regulation in the mathematics classroom.
6) The following “high leverage” practices (Ball, 2011) will be taught and practiced throughout the course:

a. Choosing and using mathematical tasks that entail complex mathematical work and build basic skills
b. Choosing examples
c. Teaching and using academic language
d. Leading a productive whole-class math discussion
e. Responding productively to students “errors”
f. Using homework equitably
g. Using specific mathematically-focused positive reinforcement
h. Using public recording (posters, whiteboard)
i. Diagnosing common patterns of student thinking (and not-so-common)
j. Assessing students’ mathematical proficiency and teaching responsively

An underlying focus of this course will be on preparing teachers to work in culturally, linguistically, and academically diverse classrooms.

Required Texts/Readings

Textbook

Common Core State Standards Initiative. Standards for Mathematical Practice and The Standards >> Mathematics (available online @ www.corestandards.org/the-standards/mathematics)

Other Readings
All other readings, required or suggested, are on course e-reserves at MLK library and can be accessed from your computer. http://library.sjsu.edu (services tab, course reserves, type professor’s name)

Classroom Protocol
Please arrive to class on time and notify the instructor if you will be absent. For information on students’ rights, responsibilities and grievance procedures, Please refer to “Policies and Procedures” in the University Schedule of Classes.

Dropping and Adding
Students are responsible for understanding the policies and procedures about add/drops, academic renewal, etc. Information on add/drops are available at http://info.sjsu.edu/web-dbgen/narr/soc-fall/rec-324.html . Information about late drop is available at http://www.sjsu.edu/sac/advising/latedrops/policy/. Students should be aware of the current deadlines and penalties for adding and dropping classes.
Assignments and Grading Policy
Assignments total 100 points. Assignments are graded on quality and completeness. Late assignments will be reduced 10% from the total point value. A grade of C or higher is required.

Grading

<table>
<thead>
<tr>
<th>Points</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 - 100</td>
<td>A</td>
</tr>
<tr>
<td>80 - 89</td>
<td>B</td>
</tr>
<tr>
<td>70 - 79</td>
<td>C</td>
</tr>
</tbody>
</table>

A brief description of each assignment, its value, and related learning objectives is provided below.

Active Informed Participation (10 points) (obj. 1-6)
Participation in class discussion, actively involved in mathematics activities

School/Technology Scavenger Hunt (5 points) (obj. 4)
Investigate school mathematics resources and web-based resources

Analysis of Sample CCSSM Balanced Assessment Task (10 points) (obj. 1 & 6j)
Describe your assigned assessment task. Analyze the skills required to complete the task; describe the mathematical properties embedded in the task; describe the mathematical uses and applications; identify the mathematical representations. (obj. 1)
Examine the student’s work sample from the task. Assess the student’s mathematical proficiency and write what you would say to provide the student with feedback and guide further learning. Describe the mathematical practices you will need to teach to prepare students for tasks like this. (obj. 6j)

High Leverage Practices (35 points) (obj. 1 & 4-6)
In class modeling (in grade level groups) of high leverage mathematical practices. Credit based upon self-assessment, group feedback, and instructor observation. (CR/NC)
- Teaching Cooperative Norms (obj. 4 & 6d) 5
- Leading a Mathematics Discussion (obj. 6d) 5
- Modeling Computational Algorithms (obj. 6a) 5
- Teaching and Using Academic Language (obj. 4 & 6c) 5
- Responding to Student Work (obj. 6e+j) 5
- Teaching Study Skills (obj. 5) 5
- Designing Equitable Homework Policies (obj. 6f) 5

Mathematics Unit Outline (20 points) (obj. 1-6: Signature Assignment)
Integrate Common Core content and practices and instructional strategies learned in this course with the grade level mathematics text used by your district. Create an integrated instructional unit that significantly enhances the student text, making mathematics conceptually strong, accessible, and engaging to a wide range of learners.
1. Choose one of the content areas covered in your Van de Walle text.
2. Find the corresponding chapter(s) in a grade level mathematics text and compare it to the Van de Walle chapter. Write a 1-2 page analysis identifying the strengths and
weaknesses of the student text and the adaptations and additions you will need to
make to teach Common Core content well, using strategies and activities that make
mathematics accessible and promote strong conceptual understanding.
3. Create a 5-day instructional sequence that combines your selected math program/text
with specific instructional strategies and mathematics content learned in this course
(utilizing Van de Walle, and/or ideas presented in class.)
Use your Van de Walle book to research the big ideas and the suggested instructional
sequence for your content area. Decide on essential competencies for your students and
craft learning objectives. How will you teach essential mathematics ideas to promote
conceptual understanding, procedural competence, and problem solving? For each day
you should identify the academic language and specific instructional strategies you will
use to scaffold language development for English language learners. Your unit outline
should provide a clear teaching sequence with a brief description of the specific activities
(appropriately cited) that you will use. Finally, include the formative and summative
assessments will you use to assess student learning throughout the unit.

Final (20 points) (Obj. 1-6)
The final will include 20 multiple choice and short answer questions. It is comprehensive,
covering content and pedagogical practices addressed in the course.

University Policies

Credit Hour Policy

Success in this course is based on the expectation that students will spend, for each
unit of credit, a minimum of forty-five hours over the length of the course
(normally 3 hours per unit per week with 1 of the hours used for lecture) for
instruction or preparation/studying or course related activities including but not
limited to internships, labs, clinical practica. Other course structures will have
equivalent workload expectations as described in the syllabus.

Academic integrity

Students should know that the University’s Academic Integrity Policy is availabe at
Your own commitment to learning, as evidenced by your enrollment at San Jose State
University and the University’s integrity policy, require you to be honest in all your
academic course work. Faculty members are required to report all infractions to the office
of Student Conduct and Ethical Development. The website for Student Conduct and
Ethical Development is available at http://www.sa.sjsu.edu/judicial_affairs/index.html.

Instances of academic dishonesty will not be tolerated. Cheating on exams or plagiarism
(presenting the work of another as your own, or the use of another person’s ideas without
giving proper credit) will result in a failing grade and sanctions by the University. For
this class, all assignments are to be completed by the individual student unless otherwise
specified. If you would like to include in your assignment any material you have
submitted, or plan to submit for another class, please note that SJSU’s Academic Policy
F06-1 requires approval of instructors.
Campus Policy in Compliance with the American Disabilities Act

If you need course adaptations or accommodations because of a disability, or if you need to make special arrangements in case the building must be evacuated, please make an appointment with me as soon as possible, or see me during office hours. Presidential Directive 97-03 requires that students with disabilities requesting accommodations must register with the DRC (Disability Resource Center) to establish a record of their disability.
Note: The following Schedule provides a preliminary outline of topics and assignments. This schedule may be modified by the instructor as necessary.

EDTE 230 / Mathematics: Teaching Common Core: Grades K-3

Course Schedule.

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topics, Readings, Assignments, Deadlines</th>
</tr>
</thead>
</table>
| 1 | | Early Number Concepts: Developing a Rich Schema for Numbers 1-10
Introduction and Review of the Course
Mathematics Proficiency: Grades K-3, What does the research say?
The Mathematical Knowledge for Teaching and Common Core Issues of Language and Productive Disposition
Beginning the Year: Classroom Community and Knowing Your Students
Developing Course Norms/Classroom Norms
Social and Sociomathematical Norms (Yackel & Cobb, 1996)
* Skillbuilders
(CC mathematical practice #3: Construct viable arguments and critique the reasoning of others)
Counting & Cardinality
Number Relationships
Patterned Sets
Anchoring on 5 &10
Part-Part Whole
* Using part-part-whole triangles
Multiple Representations for Numbers 1-10: Operations and Algebraic Thinking
*Story Problems – Counters – Equations
Jigsaw Teaching: Creating Relevant Story Problems and Practicing Multiple Representations
Children’s Literature for Developing Early Number Concepts
*Gallery Walk: Student work samples for integrated mathematics-literature lessons
Responding with a “math focus” to student work
• High Leverage Practice: Responding to Student Work
Reading:
<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topics, Readings, Assignments, Deadlines</th>
</tr>
</thead>
</table>
| 2 | | **Developing Base 10 Concepts for Larger Numbers (Place Value)**
 | | Building Classroom Community
 | | *Master Designer: "Explain by telling how (specifically)"
 | | "Ask specific questions"
 | | (CC mathematical practice #6: Attend to precision)
 | | For Cooperative Skillbuilders see Course Handouts (on reserve)
 | | Grouping and Skip-Counting by 2’s, 5’s, and 10’s
 | | Counting Groups of 10 and Leftovers “Ten and some more…”
 | | * Making and Using: Base 10 Bean Sticks
 | | *Using a 1-100 chart
 | | * Representing and Using “really big” numbers
 | | * Benchmark Numbers and Estimation
 | | *Human Number Lines and “Rounding to the nearest…”
 | | (CC mathematical practice #4: Model with mathematics)
 | | * Exploring Children’s Literature Contextualizing Large Numbers
 | | Linking Content: Money: The Value of Coins and Fair Trades
 | | Jigsaw Planning: Model and Teach Academic Language
 | | Creating a Multiple-Representation Word Wall for Numbers
 | | • High Leverage Practice: Teaching and Using Academic Language
 | | Reading
| 3 | | **Addition & Subtraction**
 | | Addition and Subtraction Problem Structures
 | | Multiple Representations: Stories, Manipulatives, and Symbols
 | | (CC mathematical practice #2: Reason abstractly and quantitatively)
 | | Number Talks: Addition & Subtraction
 | | • High Leverage Practice: Leading a Mathematics Discussion and “Talk Moves”
 | | **Measurement and & Using Cooperative Groupwork**
 | | Groupwork in Heterogeneous Classrooms
 | | Management through Norms and Roles
 | | Addressing Classroom Status Issues
 | | “Groupworthy” Mathematics Tasks
<pre><code> | | *Groupwork Simulation: Measurement: |
</code></pre>
<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topics, Readings, Assignments, Deadlines</th>
</tr>
</thead>
</table>
| | | Using Addition and Subtraction in Meaningful Contexts
 | | (CC mathematical practice # 5: Use appropriate tools strategically)
 | |
 | | • High Leverage Practice: Teaching Cooperative Norms
 | |
 | | • Due: School/Technology Resources Scavenger Hunt
 | |
 | | Reading:
 | |
 | 4 | Whole Number Computation
 | | Teaching Addition and Subtraction Basic Facts Strategies
 | | Mastering Basic Facts: Strategies and Strategy Selection
 | | Basic Fact Remediation
 | | Goal Setting and Developing Study Skills
 | | • High Leverage Practice: Teaching Study Skills
 | |
 | | Whole Number Computation with Addition and Subtraction
 | | Algorithms Versus Invented Strategies
 | | * Problem Solving Exercise: Inventing a Strategy
 | | Practice: Leading a Mathematics Discussion
 | | (CC mathematical practice #3: Construct viable arguments and critique the reasoning of others.)
 | |
 | | Linking Concrete and Symbolic Representations for Addition and Subtraction
 | | Jigsaw Teaching: Modeling Addition and Subtraction
 | | Algorithms with Base 10 Blocks
 | | • High Leverage Practice: Modeling Computational Algorithms with Manipulatives
 | |
 | | • Due: Analysis of CCSSM Balanced Mathematics Assessment Task

<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topics, Readings, Assignments, Deadlines</th>
</tr>
</thead>
</table>
| | | **Reading:**
| | | **Recommended Reading:**
| 5 | | **Multiplication & Division**
| | | Multiplication: The Meaning of the Operation
| | | Multiple Representations:
| | | Equal Sets, Array’s, Number Line, and Area Models
| | | The Distributive Property for Basic Facts and Mental Math
| | | (CC mathematical practice #7: Look for and make use of structure)
| | | Teaching Two Problem Structures for Division through Children’s Literature
| | | *Divide and Ride & The Doorbell Rang*
| | | Story Problems and the Remainder Dilemma
| | | Problem Solving through Children’s Literature
| | | *The King’s Elephants*
| | | The Challenges of Story Problems: Teaching Perseverance in Problem Solving
| | | (CC mathematical practice #1: Make sense of problems and persevere in solving them)
| | | Planning: Integration with District Adopted Text
| | | Creating Equitable and Productive Homework Policies
| | | • *High Leverage Practice: Designing an Equitable Homework Policy*
| | | **Recommended Reading:**
| | | *Elementary and Middle School Mathematics, “Developing Meanings for the Operations: Multiplication and Division” pp. 158-169.* |
| 6 | | **Fractions**
| | | Building Conceptual Understanding of Fractions
| | | An Instructional Sequence for Building Understanding Multiple Representations
| | | • *Exploration: Set Models with Counters; Area Models with*
<table>
<thead>
<tr>
<th>Day</th>
<th>Date</th>
<th>Topics, Readings, Assignments, Deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Geoboards; Length Models with Cuisenaire Rods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Making and Using Fraction Kits</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Extending Marilyn Burns Fraction Kit Games</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Representatives for Conceptually Teaching Fraction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equivalence and Developing the Algorithm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparing Fractions and Reasonable Estimation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Benchmark Fractions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Human Fraction Number Lines and Card Matching</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Estimating Reasonable Answers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coming Soon: Decimals As Base 10 Fractions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit Outline Due</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommended Reading:</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Patterns and Functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>From Repeating to Growing Patterns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Language and Multiple Representations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*Building, Describing, Quantifying, and Graphing Growing Patterns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Linking Representations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Guess My Rule? (table to equation)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Developing Horizon Knowledge: Growing Patterns That Become Linear Equations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(CC mathematical practice #8: Look for and express regularity in repeated reasoning)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variables and Equalities</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Equalities with a Balance Scale</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* “Make It Balanced”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Modeling Variables with Cuisenaire Rods</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wrapping-Up: Taking It Back to the Classroom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Final</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recommended Reading:</td>
</tr>
</tbody>
</table>