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ABSTRACT

Multi-Pass Aerocapture Approach for Orbital Insertion
Bohdan O. Wesely

Aerocapture is an orbital insertion method that utilizes atmospheric drag to decrease an
interplanetary spacecraft’s (S/C) velocity into a captured orbit. The technique has been studied
for several decades but has yet to be utilized in a flight mission. Aerocapture has the potential to
significantly reduce S/C propellant mass, increase science payload mass, and/or reduce mission
duration, especially for large outer planet (Neptune, Uranus) missions. This study explores a
novel multi-pass aerocapture approach where initial entry would only reduce the velocity enough
for a minimum captured orbit. This would be followed by additional atmospheric passes to
sequentially bring the spacecraft apoapsis close to its target science orbit. Traditional aerocapture
is where the spacecraft apogee is at or near the required science orbit after just one atmospheric
entry. This project aims to construct conceptual first order trajectory and atmospheric entry
analysis tools to compare both approaches. A fair assessment would determine whether the
potential benefits of multi-pass such as reduced TPS mass and required control authority
outweigh the drawbacks such as increased mission duration.
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Nomenclature

= Normal Force Coefficient

Axial Force Coefficient

Side Force Coefficient

Drag Coefficient

Lift Coefficient

Velocity Oriented Side Force Coefficient
Pressure Coefficient

Shear Coefficient

Ballistic Coefficient

= Angle of Attack (deg)
= Angle of Sideslip (deg)
= Local Surface Inclination Angle (deg)

Entry Vehicle Diameter (m)

Sphere Cone Nose Radius (m)

Sphere Cone Half Angle (deg)

Free Stream Mach Number

Free Stream Pressure (Pa)

Free Stream Density (kg/m”3)

Free Stream Velocity (m/s)

Inertial Velocity (km/s)

Temperature (K)

Free Stream Temperature (K)

Wall Temperature (K)

Species Gibbs Free Energy (kJ/mole)
Species Total Enthalpy (kJ/mole)
Species Partial Pressure (Pa)

Species Entropy (kJ/mole K)

Species Mole-Mass Ratio

Species Stoichiometric Coefficient
Total Pressure (Pa)

Particle collision cross section (pm”2)
Species particle kinetic diameter (pm)
Universal Gas Constant (kJ/kmol K)
Specific Heat Ratio

Equilibrium Constant

Initial Ratio of Gas Particles
Stagnation point convective heating (W/cm”2)
Stagnation point total heat load (J/cm”2)
Aerothermal constant

Knudsen Number

Boltzmann Constant (J/K)

Particle Number Density (1/m”"3)
Mean Free Path (m)
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= Orbital Position Vector

Orbital Velocity Vector

Orbital Period

Gravitational Constant (km”3/s"2)
27 Zonal Harmonic

Radius at Apoapsis (km)

Radius at Periapsis (km)
Eccentricity

Semi Major Axis (km)

Inclination (deg)

Argument of Periapsis (deg)
Longitude of the Ascending Node (deg)
True Anomaly (deg)

Azimuth (deg)

Flight Path Angle (deg)

Change in Velocity (km/s)
Specific Impulse (s)

Specific Gravity (m/s"2)

Burn Time (s)
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1. Introduction

The 2023-2032 National Academies Planetary Science and Astrobiology Decadal Survey
listed the ice giants (Uranus, Neptune) as a top priority for science exploration missions [2].
These destinations have longer mission durations and higher arrival velocities compared to the
gas giants or inner planets and therefore demand a higher spacecraft mass fraction allocated to
the propulsion system and propellant. The mass penalty of a traditional propulsion systems
makes aerocapture of particular interest for these ice giant destinations. Venus, Mars, and Earth
return missions are also viable for aerocapture orbital insertion though with less mass savings
due to their proximity to Earth. A great deal of literature and concept studies exist on aerocapture
and the vast majority focus on a single pass approach (ref. [9]-[15], [19], [23], and [24]). The
main takeaways are that Aerocapture may require several new technologies related to low-
medium L/D entry vehicles, high performance thermal protection systems (TPS) such as
3DMCP, HEEET, etc. and novel guidance and control techniques to account for atmospheric
uncertainties. New technologies present a degree of risk when it comes to mission planning.

T~ Science Orhit

" Coast Phase i . . A Atmospheric Exit

+

b Sl . 8 Energy Dissipation
¢ '} Periapsis Raise Maneuver - v Wl J

Titania ‘1

: /  Apoapsis
Atmospheric Entry /  Correction
\ . " Interface £i iy
2 Transfer Orbit :
\ } \l\‘-
i S

Interplanetary Arrival Jettison Cruise Stage

Figure 1.1 Traditional Single-Pass Aerocapture from ref. [9]
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Figure 1.2 Multi-Pass Aerocapture Approach
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2. Literature Review
2.1. Aerocapture and Entry Descent and Landing (EDL)

The aerocapture concept shares much of the same technology requirements as traditional
entry descent and landing (EDL) through planetary atmospheres. Existing literature on
aerocapture based missions contains analysis, propositions, and design methodologies derived
from EDL. Atmospheric flight at orbital velocities creates extreme heating environments in both
aerocapture and EDL mandating the need for TPS. Guidance, navigation, and control (GN&C) is
similar for both mission cases. Aerocapture velocities remain in the orbital regime with a large
portion of the trajectory at high altitudes in non-continuum flow. In traditional EDL, navigation
and maneuvers can be performed at lower altitudes where the atmosphere is denser, offering
more control authority and flexibility in targeting a precise landing location. With Aerocapture,
all maneuvering action must be performed at orbital velocities in the outer fringes of the
atmosphere.

The main benefit of aerocapture as discussed in section 1 is the propellant mass savings
allowing for larger payloads and/or shorter mission durations. The TPS in traditional EDL is still
a significant vehicle mass fraction which is determined by the entry environment and materials
used. Systematic TPS and entry vehicle design methodologies have been used on all space
missions requiring entry descent and landing through a planetary atmosphere. Determination of
the TPS size and mass requirements allow for a quantitative comparison between traditional
chemical propulsion, single-pass aerocapture, and multi pass aerocapture, which is the objective
of this project.

2.2. Entry System Design

Characterize TPS
material. (properties,
thermal response, etc)

4

Mission Con-Ops, Characterize Material
Concept |:> Trajectory |:> Aerothermal |:> Selection,
Environment TPS Sizing
Final, Apply
margined <:| Margins
Design

Figure 2.1 Entry System Design Flow

Science and/or space exploration objectives typically drive a mission concept and
destination. The mission concept creates high level requirements and initiates the project

Page 13 of 107



preliminary design phase. At this point mission planners can design a preliminary trajectory and
navigation solution for the spacecraft to reach its destination. This spans from launch, injection
maneuvers, cruise, orbital insertion, and entry descent and landing. Orbits and trajectories can be
modeled in the simplest form by Kepler’s law of motion (eq. 2.1).

Gmym,
= ——

2.1)

r2

Orbit shapes are characterized by conic sections, ellipses and hyperbola being the most
common. Patched conic methods can be used to form a complete mission trajectory by stitching
together orbital segments [27]. In the conceptual design phase this offers a reasonable
approximation. Additional physics such as atmospheric drag, oblateness, gravitation forces from
other planets, and solar radiation can be added to the fundamental Kepler equations for increased
fidelity. Reference [22] describes modeling 2-body Keplerian orbits extensively and presents
algorithms for implementing models in a simulation environment such as MATLAB.

An atmospheric entry trajectory is also governed by Kepler’s laws with the key addition
of aerodynamic forces. Once a trajectory is outlined, the velocity magnitude and atmospheric
conditions drive the aerothermal heating environment. At orbital velocities, the extreme
compression as gases impinge on the entry vehicle and can produce temperatures up to 20000 K
behind the shock front [1]. Aerothermal heating of an entry vehicle is an energy balance
problem at the surface with convective and radiative heating being the dominant methods of heat
transfer from the flow field to the vehicle TPS.

Planetary Atmospheres
Mars&Venus: CO,/N,
Titan: N,/CH,
Giants: H,/He
Earth: N,/O,

Thermal Protection
System (TPS)

Hot Shock Layer
(up to 20000 K)
Thermochemical
nonequilibrium,
lonization, Radiatiol

Boundary Layer
(2-6000 K)
Transport properties, JPF
Ablation product ||
mixing, Radiation
blockage ‘

Design Problem: Minimize conduction
into vehicle to minimize TPS mass/risk

Geona =Te * Qrag> rerad — Amaot >

“Cool” Surface
(2=3000 K)
Surface kinetics,
Ablation

Incident Aeroheating

Material Response

Figure 2.2 Aerothermal Environment ref. [1]
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At the extreme environments of atmospheric entry, chemical reactions and diffusion greatly
affect energy transfer in the shock layer region. Hypersonic and High Temperature Gas
Dynamics” [17], by John D. Anderson describes the physics at play in these flow regimes in
detail and has been a key resource for this project. Predictive design tools are invaluable for EDL
mission designers to estimate how an entry vehicle will perform during atmospheric flight and
how much TPS is required. The state of the art of entry environment predictions is highly
parallelized CFD (Computational Fluid Dynamics) with extensive chemistry and radiation
models as well as Direct Simulation Monte Carlo (DSMC) for non-continuum flows. Lower
fidelity tools also exist such as the Sutton Graves approximation and generalized chapman
method, these are often used in conjunction with CFD anchor points [1]. Various methods exist
to predict the chemical reactions and resulting gas compositions in hypersonic flow fields.
References [3]-[5] outline computational methods of predicting chemical compositions based on
empirical thermodynamic data. Additional details on these first order aerothermal modeling tools
will be discussed in sections 4.2 and 4.3.

Accurate vehicle aerodynamic force data is necessary for accurate trajectory results,
especially for guided trajectories. CFD results can output lift, drag, and other aero coefficients
but first order tools like Modified Newtonian Theory are a reasonable first order approximation
[13]. Reference [17] describes a variety of aero force predictive methods in detail, [28] outlines a
Newtonian panel method and was used to validate methods discussed in section 4.

A recent NASA early career initiative (ECI) studied and proved the viability for
aerocapture at Uranus with present technologies, [9]-[15]. References [10], [13], and [14] discuss
the mission concept and aerothermal environment predictions while [12] discusses the TPS
design and sizing. A similar performance analysis for a Venus aerocapture is outlined in [23].
and is used one of the main validations for the methodologies described in section 4.

T,K
11000
10000
9000 Convective Radiative
500 456 W/cm? 11.2 W/em?

7000
6000
' 5000
4000
3000
~ | 2000
1000

Figure 2.3 CFD Heating Predictions for Uranus Aerocapture [14]
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3. Project Objective

This study aims to determine whether a multi-pass approach for a flagship outer planet or
Venus/Earth return mission presents less risk and is more viable with current technologies than a
traditional single-pass approach. The first phase of the study will incorporate rudimentary, first
order analysis tools with several key assumptions to perform a fair assessment between the two
approaches. The second phase will incorporate more advanced analysis tools, begin accounting
for uncertainties, and increase the overall level of fidelity. The primary comparison metrics will
be TPS mass and mission duration. The maximum heat flux and total heat load for each multi-
pass will be compared to the single pass and contribute to the TPS sizing methodology. Higher
fidelity models might assess whether each of the multiple passes introduces less trajectory
dispersion than a single higher intensity pass. In a single-pass aerocapture, the aeroshell can be
jettisoned immediately after atmospheric exit, but for a multi-pass approach it must be retained
which may introduce issues with thermal soak back and communications. These drawbacks will
also be assessed. In the end, the various analysis tools should demonstrate a clear assessment
between the two mission architectures. Any difference between the low and high fidelity analysis
tools will also be discussed.

3.1. Uranus and Venus for Multi-Pass Aerocapture

At the inception of this project, Uranus was chosen as the first mission destination to be
tested. The NASA early career initiative (ECI) studied and proved the viability for aerocapture at
Uranus with present technologies, [9]-[15]. The simulations run in the ECI targeted a post-
aerocapture orbit of 4000 x 550000 (5.5e5) km. One of the objectives of this high apogee is to
encounter Titania, the largest moon of Uranus. Brief 2-body orbital mechanics calculations
illustrate that the 5.5e5 km target apogee is already close to a minimum captured orbit. There
isn’t significant allowance for meaningful AV savings by taking multiple lighter passes to get to
the same apoapsis. Lower Uranus orbits can be achieved through gravity down-pumping
maneuvers via Titania and other moons albeit more slowly than aerobraking passes. The above
factors make a multi-pass aerocapture approach less viable for Uranus. Neptune, Jupiter, and
Saturn also have large natural satellites that can provide gravity assists and pump-down
maneuvers essentially for free, provided the initial orbit is high enough for a periodic encounter.
Venus, lacking a natural satellite could potentially be more attractive for a multi-pass approach
for low orbiting missions, and will therefore be the first destination to be analyzed. A concept
study outlining a single-pass Venus aerocapture is outlined in [23] targets a low 500x500km
orbit. Once a low fidelity simulation tool has been built and tested for the Venus case,
performance to lower Uranus orbits or other destinations may be assessed.

Page 16 of 107



4. Analysis Methodology
4.1. Orbital Mechanics

A simple 2-body orbital mechanics model will be used for the low fidelity flight
simulation in this study. The simulation will start with an interplanetary state vector that is pulled
from the data used in [23]. This will allow an initial comparison to current literature to validate
the simulation. An altitude of 150 km will be used as a cutoff for atmospheric flight effects, the
same as [23], though a higher cutoff may be considered in further refinements. The coordinate
system for the orbit propagation will be a cartesian, equatorial centric inertial (ECI) reference
frame (Figure 4.1). The following assumptions will be made in this 2-body model.

1) J2 spherical harmonic perturbations will be modeled, no perturbations from any other
bodies.

2) No solar radiation pressure or any other perturbing body forces on vehicle.
3) Maneuvers assume perfect thrust alignment with vehicle velocity vector, constant ISP.

4) Vehicle modeled as a point mass, no rigid body or attitude dynamics.

10000

5000

ec

Figure 4.1 Coordinate System for Flight Simulation

X ec,
r=|Yec, (4.1)
Z ec,
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u=GM (4.2)

?zf—3r (4.3)
Fr

fz%r+— (4.4)
r mr

4.2. Hypersonic Atmospheric Flight

Once the altitude threshold is reached, the simulation will switch to a separate integration
scheme to account for atmospheric effects. The atmospheric drag model used in the initial low
fidelity study is spelled out in eq. 4.5. This assumes a constant drag coefficient and constant
vehicle orientation with the drag vector, P, acting opposite to the velocity vector. The velocity
vector V,.; shown in 4.6 factors in winds and planetary rotation.

i=Lrip (4.5)
T
1 Vel
P = 5 polvrell*CpA— = (4.6)
Vrel

4.2.1. Modified Newtonian Method

Figure 4.3 Vehicle Force Coefficients Figure 4.2 Newtonian Method Concept [17]
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Validated aerodynamic data for the entry vehicle is critical to accurately predict a post
aerocapture trajectory. Typically, blunt body entry vehicles are flown at a small angle of attack
to allow for some form of control authority such as bank angle modulation. For simplicity, the
initial analysis will assume the vehicle is at a constant zero angle of attack with the center of
mass along the geometric centerline. With this assumption, C, = Cp, (@ = 0), making Cj, the
only aerodynamic coefficient that requires an accurate prediction. The Modified Newtonian
Method is often utilized as a first order approximation for hypersonic aerodynamics. It assumes
that the pressure coefficient at any point on a body surface is proportional to the sine squared of
the local inclination angle to the flow, 6 in Figure 4.2, (eq. 4.7). Modified refers to the addition
of C which comes from the isentropic relation shown in eq. 4.8, in the traditional Newtonian

Pmax

method the relationship is simply C,, = 2 sin? . As the Mach number increases the more
accurate this prediction tends to be [17]. The Venus aerocapture study [23] that will be used for
model validation utilizes a 60° sphere cone with a nose radius 25% of the vehicle diameter. A
panel based Modified Newtonian method was used to achieve a first order approximation of the
drag coefficient for this geometry. Derivation of this model is shown below.

Pressure coefficient of one segment i

Cp, = Cp,. .. Sin*6; (4.7)
2 Tpo
C = [—2 - 1] 4.8
Pmax VMgo Poo ( )
Pi = Poo
Cp, = - (4.9)
Cp = b (4.10)
D — qOOS .
Drag of single segment i
D; = (pi — p)Si (4.11)

Shadow area for an axisymmetric vehicle profile at « = 0

Si=n(yf —yiy) (4.12)

Combine 8, 8b, 8d, and 8e and sum all panel segments

n
D= qoon,maxT’: Z(ylz - yiz—l) sin? 0, (4.13)

=2
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CpmaxT 2i=2 (¥ — yi1) sin? 6;
S

Cp = (4.14)

Equation 4.14 was solved numerically in MATLAB for the 60° sphere cone geometry
which led to a drag coefficient of 1.3933. After ~Mach 10 C,, becomes essentially Mach

independent. [29] presents a similar Newtonian prediction method and in one section studied a
vehicle with a 70° sphere cone. This case was mimicked with the internally developed tool and a
Cp of 1.624 at 0° a was generated. The results from [29] are shown in Figure 4.4 and indicate
good agreement with the internal model, adding confidence to the 1.3933 figure to be used for
the aerocapture simulation. The modified Newtonian method is most accurate in continuum flow
regimes which only partly represent aerocapture trajectories, though it is where the aerodynamic
forces are greatest and have the most influence. Methods for modeling rarefied and free
molecular flow are discussed in 9.2.
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Figure 4.4 Force Coefficients for Model Validation [29]

Page 20 of 107



4.2.2. Modified Newtonian Method a # 0

The panel method described in 0 must be significantly expanded for a vehicle in 3
dimensions to model aerodynamic effects of angle of attack or sideslip. This additional modeling
allows for realistic lift-up and lift-down cases to be considered. L/D ratios can also be compared
for different vehicle geometries. This opens the door to modeling moments, stability, and
rudimentary guidance algorithms, though those topics are out of scope for this project. For entry
vehicles, the AOA convention is opposite of traditional aircraft with positive a pointing below
the velocity vector (Figure 4.3). For the 3D case a more general relationship must be built for
axisymmetric bodies. Equation 4.15 describes the Newtonian method for any body shape in 3
dimensions to determine aerodynamic force coefficients [29]. Parameterization of the vehicle
surface is needed to calculate the local inclination angle 8 and normal vector n.

_CA 1 nT/x\
[CN =L [[ |73 aa (4.15)
_CS Aref S nTﬁ
ind Ver (4.16)
Sin =——"n .
Vool

The methodology is similar to the &« = 0 case, where the geometry is broken into panels,
though an additional summation revolved around the body is necessary as sinf will vary radially
for the ¢ # 0, # 0 case. Both summations essentially solve the surface integral in 4.15
numerically, which adds flexibility for more complex shapes over an analytical solution. In [29],
the surface integral is solved analytically using Mathematica tools. The origin for the
discretization can be arbitrary as long as the XYZ convention is the same as the force coefficient
reference frame. If moment coefficients are desired a reference point must be chosen. The
process involves a series of vector rotations to sum the normal vectors and their reference areas.

Figure 4.5 Side View Discretization with 4 Nose Segments
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58 f1ank Pseg(2i—1) .
Pseg = * Neog ¢ =—""— Xi+1 = Ry — Rycos (¢seql)
cosg;
Yiv1 = RNSin(¢segi) n; = [sing;
0

The above relations are all that are necessary for the @ = 0 case where n is the same at
any axisymmetric position around the vehicle body. If @ # 0 or f # 0, n varies and each radial
segment contributes a different force component on the vehicle, necessitating an additional
summation.

X141, Yit1) |

: (In Board)

Figure 4.6 Nose View Discretization Example

( ) 1 0 0
2 seg(2j-1 ,
Pseg = M_" @ = % nj=|0 cosp; sing;|n,
*ed 0 —sing; cosy;
Aoy = md Agog = — )2 —x)>2 A, . = Atot
tot = TAYViz1 + Y1) seg = N i1 — Y% + (41 — X)) ij

Nseg
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After the normal vector for each panel is computed, an additional rotation about a and
must be performed to obtain the final normal vector with respect to the vehicle velocity vector
(4.17). The area of each segment (4; ;) is the area of the entire frustrum (A, ) that represents
each lengthwise segment (i) divided by the desired number of radial divisions. After this rotation,
the primary coordinate system remains in the velocity frame (X parallel with velocity vector), so
the first force coefficients calculated are drag, lift, and sideslip. The reference area (A, ) is just
the vehicle surface area projected onto the Y-Z plane at « = 0 which for an axisymmetric body
is simply mR?. The body force coefficients can be obtained by reversing the transformation in
(12), represented by (14). As a and f increase, vehicle surfaces may become obscured from the
flow, since the coordinate system remains in the velocity frame, a simple conditional statement
can be implemented to check each panel for N; ;X < 0 and assign C,, = 0 for those cases per
Newtonian theory.

cosp 0 —sinfl[cosa —sina 0
N;j=1 0 1 0 sina  cosa 0|ny; (4.17)
sinf 0 cosf 0 0 1
CD Nseg Mseg ”x
[—CL Comax Z Z (N2 | N; ,y Ay (4.18)
CZ ref G

lel [ ] sme—m n=N;;X

Ca cosa —sina 01" [cosB 0 —sinB1" [Cp
Cv|=|sina cosa 0 0 1 0 —Cy, (4.19)

Cs 0 0 sinB 0 cosp Cy,

While this method adds complexity over the @ = 0 case, the matrix math is easily
handled in MATLAB and can quickly run through various angle of attack and sideslip for a
variety vehicle geometries. This is a powerful first order design tool that allows for quick
generation of an aerodynamic database for axisymmetric entry vehicles. Setting the model up to
compare with the sphere-cone case on page 14 of [29] with an initial 20° sideslip angle shows
near exact agreement using 10 nose divisions and 20 radial divisions (Figure 4.8). Additional
validations with [29] are discussed in appendix 9.1.1. The model was also compared with the
pre-CFD aerodynamic modeling in [13] and the results are in family, though as previously
mentioned the Newtonian method is only valid for continuum flow regimes (Figure 4.7). Ref.
[13] discusses a Uranus aerocapture and utilizes a MSL like entry vehicle with a 70° cone angle.
Integration of this model into the trajectory simulation is discussed in 4.2.4.
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4.2.3. NASA Global Atmospheric Reference Model (GRAM)

The NASA developed Global Atmospheric Reference Model (GRAM) is an engineering
design tool that can compute atmospheric data for every planet in the solar system that contains
an atmosphere [7]. The program takes position and time inputs and utilizes ephemeris
calculations and a host of empirical data to output conditions such as density, pressure,
temperature, chemical mass fractions, winds, and more. GRAM can support monte carlo runs
and 3-sigma dispersions on all properties, though only the nominal mean values are used for this
initial study. This project is utilizing the latest 2.1 release from October 2024 that includes a
MATLAB interface. Specifically, VenusGRAM [7] will be used in the initial analysis and
validation with [23]. The following assumptions will be made for atmospheric flight.

1) Aerodynamic force coefficients C;, Cp, and Cg allowed to vary with o and 3
2) 3 DOF, Constant Vehicle Orientation, no GNC uncertainties or modeling
3) Temporal and special variations and winds will be modeled within GRAM

4) Atmospheric uncertainties and perturbations are not modeled
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Figure 4.10 Venus Atmosphere Profile (ref. [7])
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The winds on Venus are significant at higher altitudes and are faster than the planet’s
rotation. GRAM outputs winds in three components, north to south, east to west, and vertical.
The wind velocities can reach well above 100 m/s which must be considered for accurate
trajectory modeling. The winds show a clear difference between the day and night sides of the
planet and are the strongest at the equator. The winds at lower altitudes move consistently
against the planet’s rotation though at higher altitudes (80+ km) there are significant variations
and direction changes which can have a non-negligible effect on entry and aerocapture flight
mechanics. Trajectories with and without winds are shown in Figure 4.15.
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Figure 4.11 Venus Winds vs. Altitude
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Wind Direction at 100 km
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Figure 4.12 Venusian Wind Direction at 100 km Altitude (JD 2459138)
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Figure 4.13 Venusian Wind Magnitude at 100 km Altitude (JD 2459138)
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With the addition of aero coefficients in 3 dimensions, the effect of how the winds
interact with the vehicle required evaluation. If the vehicle is flying at a nominal ballistic
trajectory @ = 8 = 0, winds and to a small extend the Coriolis effect will produce a relative
velocity vector different from the inertial velocity which will induce an effective angle of attack
or sideslip on the vehicle, this is assuming 3DOF mechanics where the vehicle’s orientation is
fixed to the velocity frame. At a high-altitude condition on Venus with significant east to west
winds around 200 m/s (~150 km), the worst case crosswind scenario would be an azimuth of 0°
where the entry vehicle is flying south to north in a polar orbit. An entry velocity of 11 km/s
would produce an effective sideslip angle of ~1.04°, which is non-negligible. To model this
effect, an additional transform between the inertial and relative velocity frame had to be
developed. With a sufficiently blunt body (~70° half angle), the a vs. C;, lift slope is the opposite
of a slender body due to the blunt frontal forebody producing lift instead of the lengthwise chord
surface area. This effect results in the entry vehicle being pulled in the direction of the wind with
a net component to the resulting force in the +Y direction, almost like a sailboat sailing upwind
(Figure 4.14). While counter intuitive at first, the effect checks out when the appropriate rotation
matrices and conventions are applied.

ﬁeff‘\ Sy > 4

7 Net Force
Vrel 4, 'y |
%\: ;:“'._ oo} X ; | gA
Vinertial \ C G. .;‘ ﬁeff

Figure 4.14 Blunt Body Crosswind Illustration

Page 28 of 107



Polar Orbit

V =11/km/s, Alt =150 km, Fpa =-5.61°
Final Azimuth (Winds): 173.257°

Final Azimuth (No Winds): 174.242°

Winds Enabled

Equatorial Orbit

V = 11/km/s, Alt =150 km, Fpa =-5.61°
Final Altitude (Winds): 828.1516 km
Final Altitude (No Winds): 375.0636 km

Winds Enabled

—— Atmospheric Flight 8000 —— Atmospheric Flight
6000 Winds Disabled Winds Disabled
/\, . 6000 f
- o NN
S X 4500.75 | *
, 4000 |
2000, g
=
= 2000
oM 0.
(0] —_
| = = 0 e
-2000 . o N ]
(0]
-4000 . e /
-4000 | £
5000 . ‘ =
\ -6000 ~————
0 —
;:7 e~ —~ 6000 8000 1 L L L L L L J
ec (km) 00 2000 O 2000 4000 -8000 -6000 -4000 -2000 0 2000 4000 6000 8000
g -4000
ec, (km) ec, (km)

Figure 4.15 Polar and Equatorial Trajectory Wind Dispersions (JD =2459138)

4.2.4. Reference Frames

The position inputs and outputs to GRAM are in the topocentric frame utilizing longitude
and latitude coordinates. A conversion to the base ECI frame that the simulation runs on was
necessary. A reference frame transposition was derived that also required the local sidereal time
of the planet to account for rotation in comparison to the fixed inertial ECI frame. The rotation
matrix QXx and its transpose shown in Figure 4.16 were used to convert to the East North Zenith
(ENZ) topocentric frame necessary for the GRAM inputs. This transform was also used to
support trajectory inputs in the form of azimuth, entry flight path angle, and velocity magnitude.

A time component was also necessary to extract the correct prime meridian location of
Venus (0° Longitude). The latest report from the International Astronomical Union (IAU) [30]
outlines measurements for planetary rotation positions at time since standard epoch (1/1/2000).
The standard reference direction for this frame is Earth’s vernal equinox at the time of epoch,
this is known as the J2000 reference frame. The rotation angle (sidereal time) of Venus is given
by eq. 4.20 from [30].

W = 160.20 — 1.4813688d (4.20)
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This is good approximation for the initial analysis over short timespans, investigation into
seasonal atmospheric variations is possible in the GRAM model. GRAM is also capable of
outputting an ephemeris state with various properties that can be used to calculate the exact
sidereal time, though this has not yet been implemented. Figure 4.17 shows the sidereal time in
relation to the J2000 frame. Point Q in the illustration corresponds to the +X axis in Figure 4.1
and Figure 4.16 since the simulation is using a fixed inertial frame rather than a rotating frame as

shown in Figure 4.17.
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Figure 4.16 ENZ and ECI Reference Frames [22]
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Figure 4.17 Reference System for Time Dependent Planet Orientation [30]
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Matrix rotations between frames need to be carried out carefully as matrix multiplication
is not commutative. To obtain the rotation matrix between the enz frame and inertial velocity
frame (Figure 4.18), a rotation about the flight path angle and azimuth is performed to derive
Qenz- The convention is switched due to 0° Az corresponding with due north Y+ in the enz frame
which results in a row swap in the matrix.

Venz = Qenzvvfi (4.21)
cos(fpa)sin (Az) —cos(Az) —sin(fpa)sin (Az)
Qenz = |cos(fra)cos (Az) sin(Az) —sin(fpa)cos (Az) (4.22)
sin(fpa) 0 cos(fpa)

To get from the inertial velocity frame to the relative velocity frame, another series of
rotations is necessary about « and £, similar to the transform used in the panel aerodynamics (eq.
4.17). To perform a complete transformation to the ECI frame from the relative velocity frame,
4.24 is required. This transform is necessary as the aerodynamic coefficients Cp, C5, and C; are
expressed relative to the velocity vector. The vehicle body frame coefficients (Cy4, Cs, and Cy)
are important for a 6DOF simulation but in this case would simply add another transform.

cos(B)cos (a) sin(a) cos(B)sin (a)

Qufi = | sin(B) cos(a) cos(B) —sin(p)sin(a) (4.23)
—sin(@) 0 cos(a)
Veci = QXxQeanvfivvfr (4.24)
:Beff = Sin_l(vvfry) (4.25)
VyrrX
Aefr = cos™! <m> (4 26)

Figure 4.18 shows the simulation output with all forces on the vehicle shown as vectors.
EClI is the equatorial centered inertial frame that the simulation runs on, VFi is the inertial
velocity frame where +x is the direction of travel. The conditions were artificially set to
exaggerate the effects of the winds for illustration purposes. To calculate the net perturbation
vector on the vehicle which considers lift, drag, side force, and relative velocity eq. 4.5 and 4.6
can be expanded to produce the net perturbation vector in eq. 4.28. Due the relative velocity,
Cp(a,B), Cs(a, B), C.(a, B) are recalculated at each time step which adds computation time, a
fixed L/D mode option was added that neglects these effects for speed. Eq. 4.27 represents the
relative velocity vector in the ECI frame. The three wind components, east to west (eww), north
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to south (nsw), and vertical (vw) are expressed in the ENZ frame from GRAM and are converted
to the ECI frame with the rotation matrix in Figure 4.16.

0 —eww
Vyel = Veei = |0 X Reci — Qxx [—TLSWI (4.27)
w vw
1 Y J | Y J
Coriolis Effect Winds
1 —Cb
— 2
Pvfr - Epmlvrell CZ (4'- 28)
CL
Peci = QXxQeanvfinfr (4.29)
P=tr+p (4.30)
r= -3 r eci .
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Figure 4.18 Inertial Velocity Frame and Forces on Entry Vehicle
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4.3. Aerodynamic Heating and TPS Sizing

Aerodynamic heating at atmospheric entry velocities is a complex modeling problem.
The state of the art is highly parallelized CFD with extensive chemistry and radiation models as
well as Direct Simulation Monte Carlo (DSMC) for non-continuum flows. At the opposite end of
the fidelity scale there are many first order approximate calculations for stagnation heat flux,
radiative heating, and shock temperature based on a few key inputs like the vehicle radius of
curvature, velocity, and atmospheric chemistry. These tools will be the primary means of
determining the heating environment during the aerocapture atmospheric flight phase which will
in turn drive the TPS material type and sizing.

4.3.1. Sutton Graves Approximation

1

g =k <R£>2 V3 (4.31)
n

One method of approximating convective heating, k is a constant that is derived for the
planetary body and R,, is the effective nose radius. This approximation will be the first tool used
based on the vehicle state vector to approximate heating. The Sutton graves formula can be
expanded into the generalized chapman method which incorporates additional exponents and a
hot wall correction [1]. Modern, higher fidelity correlations have been derived from CFD runs
and can be tailored for an individual planetary atmosphere, see [37], [38], and [39].

4.3.2. Normal Shock Wave Calculation for Thermochemical Equilibrium.

For hypersonic flow, the typical isentropic relations must be expanded to account for
chemical reactions. If the concentrations of each chemical species in the atmosphere are known,
equations 4.32-4.33 can be used to calculate the temperature and pressure just behind the shock
at the stagnation point [17]. These properties are useful for TPS sizing at the vehicle stagnation
point and can be scaled for other surface locations. Expanded relations exist for conical flow. To
solve for the species enthalpy, thermodynamic table lookups or curve fit approximations must be
performed [3]-[5]. Thermodynamic properties such as species entropy and enthalpy and are used
to determine the Gibbs free energy and subsequent equilibrium constants, this allows for the
calculation of partial pressures, mole fractions, and enthalpy of each species (eqns. 4.34-4.39).
The species assumed to be in the flight environment on Venus are CO2, CO, N2, O2, N, O, and
their respective ions [7]. These mass fractions can change drastically within the aerocapture
flight corridor (Figure 4.10) so an accurate atmospheric model is necessary. The Uranus
atmosphere is much simpler containing the species H2, He, H, H+, He+, and e- [6]. The mole
fraction variations in the altitude flight corridor aren’t as significant as Venus so it’s possible that
the calorically perfect case of H2/He, y=1.45 is a good enough approximation.

p
py = py + pyul (1 —~ i) (4.32)

Page 34 of 107



hy = hy + 2|1 - (ﬁ)z] (4.33)

2 P2

AGP=1 = Z v GPi™t (4.35)
i

] AGP=!

[[pr=c"7 (4.36)
i
K,(T) = 1_[ ! (4.37)
i

=) p (4.38)

h= Z Cihi = Z T’iHl' (4‘ 39)

As a proof of concept, a basic chemistry model for air was developed using only the
species N, 0,,0, N, and NO. The three reactions that are modeled are shown below.

N,=22N 0,=22N O0+N=NO

P
Ky =—> (4. 40)

Py,

P§
Ky = =2 (4.41)

Po,

Py P
Kps = —— (4.42)

PNO
pt:PN2+P02+PN+P0+PNO (443)

2Py, + Py + P

MR=—12 N "NO (4.44)

2Py, + Py + Pyo
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Utilizing equation 4.37, equilibrium constant balance equations can be constructed based
on the stoichiometric ratios of the reactants and products. Equation. 4.38 can be used to construct
a pressure balance constraint and the known initial ratio of nitrogen and oxygen atoms can be
used to construct a mole balance constraint. Equations 4.40-4.44 represent a system of 5
nonlinear equations with 5 unknowns. These can be solved independently through a numerical
method such as newton Raphson or successive substitution, however the system is sensitive to
how the equations are represented. When one or more chemical species are sufficiently low in
concentration, it’s not uncommon for the equilibrium constant to be in the realm of 1e-16 or less
which can cause instability in the numerical method. The most robust solution is to reduce the
system so that only the species that are expected to be present in the highest concentrations are
solved for. It is possible to compile 4.40-4.44 into one singular equation as a function of N, N2,
02, or O through a symbolic math engine such as Mathematica or the MATLAB symbolic
toolbox. N2 was solved for lower temperature conditions and N was used for high temperature, a
cutoff of 5000-6000 K works well. Once the composition equations are derived the
thermodynamic properties of each species must be obtained through an empirical data source.
The database contained in [4] was used for this initial proof of concept chemistry model and
specifies 7" order polynomial approximations listed in 4.45 and 4.46. A simple validation of the
proof-of-concept chemistry model was performed by computing the mole fractions of each of the
constituents from 1000K to 9000 K. Comparison with a plot in [17] indicates strong agreement.
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Figure 4.19 Chemistry Model Validation ([17], Fig 11.12, P.541)
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Hz a as, .., 4,3 45 _, Qe
R—T—a1+7T+?T +IT +?T +? (4.45)
? as 2 Qay 3 as 4

§:a11HT+a2T+7T +?T +ZT + a, (446)

The properties contained in [3] are much more extensive than [4] and are used in the
industry standard CEA (Chemical Equilibrium Applications) software. An expanded chemistry
model utilizing [3] was developed for fast calculations at each timestep in the trajectory code to
improve the aerothermal environment predictions. The expanded polynomial curve fits specified
by [3] are shown in eqns. 4.47-4.49 and utilize 9 coefficients. A database was generated from [3]
so that the 9 coefficients could be queried for any chemical species used in an analysis. The
coefficients are provided over three temperature ranges with cutoffs at 1000K and 6000K. A
normal shock wave solver was programmed with the same chemical species equations listed in
eqns. 4.40-4.44 using the symbolic math method. CEA utilizes a scheme described in [5] that
iteratively minimizes the Gibbs free energy term for each reaction, this method is extremely
versatile and robust for any number of chemical species and reactions though is computationally
expensive for the inner loop of a trajectory program. The NASA Ames developed TRAJ
trajectory program utilizes a pre-generated Mollier diagram to determine the equilibrium
thermodynamic state behind the shock at the stagnation point. The approach taken here falls in
between the above two approaches where the exact expressions for the fixed quantity of species
in the atmosphere are manipulated through symbolic math to allow the fastest possible numerical
convergence for only a single species.

C(T

ng ) _ a, T2 +a, T +as +a,T+asT? + agT3 + a,T* (4.47)

H?(T) a,InT ay as ae a; b,
= —a, T2 taz+—=T+=T?*+—=T3+—=T*"+—= 4.48
RT “ T BTN 4 5 T (4.48)

S7(T) a, T2 _ as ag a;

7 =Ty @l 1+a3lnT+a4T+7T2+?T3+IT4+b2 (4.49)
PN2 = f(KpllPN) (4.50)
Poz = f(KPZIPO) (4.51)
Pno = f(Kps, P, Po) (4.52)
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Equations 4.50-4.52 are formed algebraically from 4.40-4.42 and are plugged into 4.43 to
generate an expression that is only a function of Py and P, this expression can then be solved
symbolically for Py, the intent is to isolate Py which is expected to be the species of the highest
concentration at high temperatures, the same reduction scheme can be performed for Py, for
lower temperatures. 4.50-4.54 are all substituted into 4.44 to form an expression where Py is the
only unknown. This expression (4.55) can be solved efficiently with a minimization function like
MATLARB?’s fzero function and the remaining species concentrations can be determined through
simple expression evaluations. An additional increase in computation efficiency could be
achieved if 4.55 could be solved for Py, however due to the various root and exponential terms
such a solution is not practical to reach with a symbolic math engine.

Pt = f(Kplr KpZ: Kp3r PN; Po) (4 53)
Py = f(Kpp Kp2, Kps, Py, Pt) (4.54)
fon = f(Kp1, Kp2, Kp3, Py, Pr, MR) (4.55)
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A validation case was prepared with CEA using conditions chosen to match an Earth
altitude of 80 km. As shown in Figure 4.20, the agreement of the symbolic math model with
CEA is excellent. All output parameters were tested and errors between the two models are 1e-4
or less for all property ratios and species concentrations. Figure 4.21 shows a comparison with
the calorically perfect gas case which illustrates the importance of chemical reaction effects with
high speed, hypersonic applications. Note that the pressure ratio is not strongly dependent on
chemical effects as it is a “mechanical” property rather than a thermodynamically driven
property. The current model still makes the significant assumption that the gas mixture is in
thermochemical equilibrium just behind the shock, in reality equilibrium takes a set amount of
time to reach. State of the art CFD solvers such as DPLR model non-equilibrium chemical
effects which are important in determining the radiative heating environment.
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Another assumption at this stage is that ionization reactions are neglected. At high
temperatures, gasses can ionize or lose electrons, in air the first dominant ionization reaction that
begins to occur at higher temperatures is O = 0, + e_. To include ionization effects, an
additional charge balance constraint equation must be added to the set of equilibrium relations.
a,; 1s the excess or deficiency of electrons, so a,; = —1 for O, +1 for e_, and +2 for a species
like N, ., in other words it is the level of ionizations that have occurred.

NG
ZXiaei =0 (4‘56)
i=1

The case in Figure 4.20 was re-run with the inclusion of ions and the CEA default
composition for air, which models Argon, CO2 and other trace species. This is to evaluate the
level of fidelity of a simple N,, O, model. After around 9 km/s, the density and temperature
ratios diverge significantly. It is evident that for Earth entry trajectories at super-orbital velocities
such as lunar returns, ionization reactions can have a significant effect on the equilibrium
environment.
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The inclusion of ionization reactions and effects into the air model represented by
equations 4.40-4.44 would significantly increase the complexity of the symbolic math engine
calculations. Venus and Mars also have atmospheres of similar complexity with the inclusion of
CO2 and its related compounds. The Uranus/Neptune upper atmosphere is almost entirely
H,/He which simplifies the modeling and inclusion of ionization effects. A Uranus aerocapture
trajectory was tested as an initial study into the equilibrium chemistry effects on the heating
environment, the results are presented in Appendix 9.4.

4.4. Geometry

Rn=0.25m

Figure 4.23 Validation Entry Vehicle Geometry (ref. [11])

The entry vehicle for the initial trajectory validations will consist of a standard sphere
cone aeroshell with the same forebody geometry specified in [23]. Different geometries will be
investigated such as a 70° sphere cone similar to the Mars Science Lab (MSL) vehicle. The
forebody geometry is fed into the modified Newtonian aerodynamics calculations discussed in
section 4.2 and the effective nose radius is used in the Sutton graves correlation. A scaled up
MSL vehicle type was used in ECI study on a single-pass aerocapture approach for outer planets
missions [12], [15]. TPS material candidates for the forebody are PICA-D (domestic materials),
C-PICA (conformal), and HEEET (Heatshield for Extreme Entry Environment Technology),
which is a high performance woven TPS [12]. Material selection and sizing will be determined
by the entry environment. The aerothermal analysis and TPS sizing will need to take into
consideration the effects of multiple entry pulses and any progressive degradation.
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4.5. Simulation Framework

4.5.1. Simulation Version 1.0
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Figure 4.24 Aerobraking Model with Key Additions (red)

A past AE242 Orbital Mechanics project partially modeled an aerobraking trajectory for
Earth and Mars cases and is a primary inspiration for this multi-pass aerocapture study. The
program was written in MATLAB and has been reworked into an object-oriented format to allow
for easier implementation of different calculations like aero heating and trajectory optimization.
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The framework was validated with a flight proven trajectory analysis and TPS design tool such
as BATSPEED in section 5.2.
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Figure 4.25 Model Framework (Version 1.0)

The simulation framework was developed in an object-oriented approach in MATLAB.
The initial intent was to use system object blocks to build out the algorithm in Simulink. This has
not been implemented yet as handing large blocks of vectorized data along with numerous other
parameters was tedious in Simulink, a traditional scripted approach was used for the initial build
of the simulation framework.

The aerocapture and circularization routines contain the core trajectory propagation
methods, using a Runge Kutta (RK) 4/5 variable step integrator such as MATLAB’s ODE45.
Version 2.0 of the simulation allows the user to choose from a set of integrators within
MATLAB, ODERS?9 is especially accurate for long duration smooth orbits. Event functions are
implemented to command the integrator stop at critical points like atmospheric interface or
apoapsis. Trajectory correction, perigee raise, and other propulsive maneuvers are modeled using
eqn. 4.7. Additional methods within the orbit propagator class of objects generate new initial
conditions and stitch time history results to previous orbit segments for post processing and
visualization. The time history results are passed on to an Aerothermal calculations object.

The trajectory optimization routine is called after the atmospheric exit of each aero-pass.
This routine will assess the current vehicle state and simulate a small perigee adjustment burn at
apoapsis and the following aero-pass. This “look forward” trajectory will be iterated while

Page 43 of 107



adjusting the maneuver burn time until the desired apoapsis is achieved. The output of this
optimization is the AV and burn time for an optimal periapsis adjustment, typically on the order
of 1-2 m/s. At the beginning of the simulation, an optimization routine determines the optimal
number of passes based on the AV required for the initial orbital insertion pass. The outputs of
this optimization are the number of aero-passes and the target apoapsis after each pass, this data
is fed into the periapsis adjust routine.

Extensive literature exists on guidance and control methods for aerocapture ([10], [23],
[26], [27]). Popular methods are bank angle modulation (BAM) and direct force control (DFC).
One common control algorithm is fully numeric predictor corrector aerocapture guidance
(FNPAG). Nominal unguided trajectories will be used for the initial analysis as developing and
simulating a complete closed loop guidance system is at the edge of scope for this project.
NASA developed tools such as GENESIS [17] already exist and can run 6-DOF simulations
utilizing these guidance methods.
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Figure 4.26 MATLAB Object Oriented Class Structure (Version 1.0)
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Figure 4.27 Expanded Model with Subsystems (Version 1.0)
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4.5.2. Simulation Version 2.0

The first version of the multi-pass trajectory program utilized object oriented
programming techniques but did not take full advantage of the various built-in aspects of the
class and object formats within MATLAB. The two primary class types are value classes and
handle classes. Value classes behave like normal variables where property values are tied to the
variable name, if an object of a value class is assigned to a new variable, a new independent
object is created. Modifying the properties of the new object do not affect those of the original
object. Use of value classes in a simulation architecture requires objects to be passed in and out
of functions to be modified and can be limiting for an environment that requires large numbers of
parameters and state variables to be in sync at all times. Version 1.0 of the simulation
environment utilized value classes for the majority of data management.

MATLAB handle classes can create multiple objects that are references to a single object.
A handle object can be copied to new variables and passed into functions or assigned as
properties and all instances reference the same underlying object. Any change to properties of a
handle object will be reflected in all instances of that object. This behavior enables a massive
amount of flexibility in the simulation environment. Handle classes are created by deriving them
from the handle superclass.

1. classdef MyHandleClass < handle
2.
3. end

An even more specialized type of handle objects are MATLAB system objects. They are
of a handle class by definition but contain various built in features that allow them to be re-used
in loops with step and reset functions as well as expanded load and save capabilities. This allows
them to be used as system blocks within Simulink however the current simulation has not been
implemented in Simulink and is run through a script. All the class definition files in version 2.0
were converted to the matlab system object format. A top level, encapsulating object was created
to initialize the simulation and pass various objects as properties to other objects to enable the
interconnected nature of handle classes. Once the handle objects were mutually shared, the
simulation could be run continuously with all relevant properties like the spacecraft state,
geometry, and trajectory results seamlessly shared between objects without having to pass inputs
and outputs through the various functions and methods. Handle objects also enable other
advanced behavior such as listeners and events that can automatically trigger callback functions
when properties are changed. One example of this behavior is when the planet property is
updated in an object of the BodyInputs class, the GRAM and time objects are automatically
updated with the new planet and the GRAM interface is re-initialized with a new atmosphere.
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Table 4.1 Program Class Summary

Shared Handle Classes
SCInputs Spacecraft geometry, aerodynamics, and rocket propulsion
BodyInputs Planetary constants, shape model, atmospheric threshold
SCState All state parameters, coordinates, frame transformations, etc.
TrajResults Time history trajectory results, contains labels and names for plotting
timeMgr Handles elapsed time and all time dependent planet orientations
gramMgr Contains the GRAM interface library and all shared objects
chemMgr Handles all atmospheric chemistry and thermodynamic calculations
Trajectory Propagation Classes
OrbitProp Superclass for any trajectory propagation, contains the numerical
integration scheme and all associated properties
AeroPass Subclass of OrbitProp for atmospheric flight
Burn Subclass of OrbitProp for propulsive maneuvers
Post Processing and Visualization Classes
plotProps Generates 2D plots and handles all plotting options
Aerothermal Primary trajectory postprocesser, handles all time history and
aerothermal calculations
AerothermalStep | Subclass of aerothermal, performs calculations at one trajectory point
TrajPlot Generates the 3D trajectory plots and stores all run history results for
all previous trajectory segments
Optimization Classes
MissionPlan Contains all shooting method trajectory optimization routines,
contains specific logic and maneuver calculations for a multi-pass
aerocapture type mission
Low Level Helper Classes
InitState Initializes default values when a new configuration is created
AeroDB Constructed by the SCInputs class, handles all aerodynamics
calculations
inputSpecies Contains properties of the chemical species within GRAM
optoIln Creates and formats inputs to the trajectory optimizer
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Figure 4.28 Version 2.0 Class Inheritance Hierarchy

In version 2.0, only a few classes utilize inheritance such as the trajectory propagators
and aerothermal classes, compared to almost all the value classes in 1.0 (Figure 4.26). This
streamlines the overall architecture and prevents subclasses from inheriting excessive properties
and methods when most are not needed. Only objects with closely related functionality benefit
from a sub-superclass hierarchy. Most of the classes contain other classes as properties so that
the same set of simulation data can be readily available for any class method at any point.
Without the reference behavior of handle objects, the amount of variables and structs that need to
be passed between different classes and functions would be extremely cumbersome.
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Figure 4.29 Class Containment Structure
To create a new simulation, the master hand constructor is called which initializes all 15

of the primary system objects and creates the connections shown in Figure 4.29. The master hand
contains methods such as listener callbacks which handle unique interactions between the system
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objects. Once a configuration is created, any instance of a particular handle object such as
SCState will always contain the most up to date values as they are all references to the same
object. This allows an atmospheric flight trajectory to be run and any following segments such as
a coast or burn trajectory will already contain the updated state and initial conditions necessary
to run. The same is true with the results as any of the three trajectory objects populate the same
results object (TrajResults) which is also accessible from the post processing, aerothermal, and
plotting objects. The save and load functions of system objects allow a masterhand object to be
seamlessly saved to and loaded from a .MAT file which is useful for organizing different
configurations. Lower level objects such as a spacecraft configuration (SCInputs) can also be
saved and loaded into a simulation on their own. The mission plan object contains all the
trajectory propagation objects to compute shooting trajectory optimizations. The multi pass
routine contained within the mission plan still reflects the general functionality shown in Figure
4.27. The State object supports saving previous states as structs to allow resets at the start of
another iteration or after an optimization.

A special method was implemented within masterhand using the “assignin” matlab
function to flatten the architecture and assign the 15 primary system objects into the matlab base
workspace, this makes for easier access to the various properties. There are hundreds of
individual properties contained within the various objects, to ease in creating and managing
individual missions and simulation setups a property editor was created within the MATLAB
app designer. The property editor allows important input properties to be edited and is organized
into 5 tabs, State, Spacecraft, Aerodynamics, Planet, and Options. The editor can create, load,
and save MAT files which can then be easily loaded into a script running a simulation. A sample
script as well as the source code for most of the system objects is contained in Appendix 9.6

4. MATLAB App - O b

|' Create Config ‘ State Spacecraft Aerodynamics Planet Options

| Load Config | Topocentric Coordinates Keplerian Elements

| save Config | Flight Path Angle (deg) -1 Eccentricity 2.011
= mamn i i inati 143
| Save As ‘ Inertial Velocity (km/s) 24.5 Inclination (deg)

Geocentric Altitude (km) 4000 Arg. of Periapsis (deg) 106.4435

| Assign in Base | ‘ —
E— Geocentric Latitude (deg) 37 Ascending Node (deg) 128.0619

UranusTest.mat

Longitude (deg) 47.5 True Anomaly (deg) 343.6
Azimuth (deg) -90 SemiMajor Axis (km) | -2.822e+04
Minimum Altitude (km) 2981

ECI Position and Velocity Start Time

Position Vector (km) | 18450.3317 1 Julian Date | 2.467e+06

Velocity Vector (km/s) | 11.8875 -21.2¢|  UTG Datetime |20-May-2041 09:03:08 |

To use a date string format, setthe juliandate 0 | ypgate State | | ResetState |
zero

| New Init. State |

Figure 4.30 Configuration Editor
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5. Model Validation and Comparison
5.1. Model Validation with SCITECH Venus Aerocapture Performance Analysis

The simulation methodology outlined in chapter 4 requires a robust validation scheme to
verify the physics and modeling methods are sound. Recall reference [23] assesses the
performance of various GN&C methods for a smallsat Venus aerocapture and presents
preliminary aerothermal environment predictions. To capture the guided bank angle trajectory
space in [23], lift-up, lift-down, and bank 90° trajectories were run using the 10° trim angle of
attack specified in the paper. The initial conditions are shown in Figure 5.1 and were pulled
directly from [23].

Parameter Value
Velocity 11 km/s
Azimuth -90°
Flight path angle -5°
Altitude 150 km
Latitude 0
Longitude 0

Julian date 2455504.0

Figure 5.1 Model Validation Trajectory Inputs [23]
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Figure 5.2 Unguided Aerocapture Validation Trajectory
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Stagnation Heat Flux vs. Time
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Figure 5.4 Trajectory Velocity Validation (Internal Model: left Ref. [23]: right)
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Geocentric Altitude vs. Time
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Figure 5.5 Trajectory Altitude Validation (Internal Model: left Ref. [23]: right)

Using the flight path angle as an optimization parameter, the simulation was able to
achieve the 500 km target apogee altitude within 100 meters. The trajectory and aerothermal
results are bounding of the results from [23] which utilized flight proven software tools. The heat
flux and total heat load were calculated using Sutton graves outlined in section 4.3 using the
same aerothermal constant provided in [23]. While the current simulation does not model
guidance, navigation or 6 degrees of freedom, it is a reasonable 1* order estimate and allows for
expansion to new entry conditions.

Table 5.1 Venus Aerocapture Validation Summary

Peak Conv. Heat

Conv. Heat Load

AV Lost Due to

FPA at Entry

Flux (W/cm~2) (J/cmn2) Drag (km/s) Interface (deg)
Lift Down 392.29 49653 3.6558 -5.4233
Bank 90° 474.32 39900 3.6304 -5.6182
Lift Up 590.60 32103 3.5535 -5.9737

5.2. Comparison with NASA TRAJ Software

The Entry Systems and Technology Division at the NASA Ames Research Center is the
agency’s hub for entry systems modeling and TPS materials research. The division has
developed numerous software tools over the years to simulate atmospheric entry and model TPS
material response. One of the internal tools to the materials branch (TSM) is a code called
BATSPEED (Broad A priori TPS Sizing for Proposals and Efficient Engineering Design). This
tool combines earlier developed codes TRAJ (Trajectory Analysis Program) with FIAT (Fully
Implicit Ablation and Thermal Analysis Program). TRAJ is intended to simulate the entry
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trajectory and generate aerothermal environments, almost an analogy to the MATLAB trajectory
code developed as part of this project. TRAJ does support skip-out but does not simulate
propulsive maneuvers or multiple atmospheric entries. FIAT is the TPS material response tool
that reads the entry environment and spits out a required TPS thickness and can recommend TPS
material options. BATSPEED combines these two codes in a convenient mission design tool that
allows the user to specify an atmospheric entry state and simulate a range of trajectories to
generate a bounded TPS design space. TRAJ was used as an initial validation for the MATLAB
trajectory tool for multi-pass aerocapture. Future work will involve running FIAT for the entry
environments of a single pass and multi pass aerocapture and comparing the resulting TPS
thickness of each. BATSPEED is run in a linux ubuntu shell environment and all the various
outputs and data are still being explored. Currently, TRAIJ is able to simulate an aerocapture
trajectory and target a post-capture apoapsis but requires a non-zero angle of attack to generate
lift-up and lift-down results. TRAJ has a variety of options for atmosphere models and entry
vehicle geometries with many based on empirical flight data. For an initial comparison, TRAJ
was run at 0.5° a and the resulting entry flight path angles for the lift up and lift down
trajectories should evenly split the 0° a case. The same entry vehicle geometry was used as the
comparison with [23] in section 5.1 but the Julian date and longitude and latitude had to be
updated as the values in Figure 5.1 were throwing errors in TRAJ.

The results of the MATLAB and TRAJ trajectories are in-family and there are many
physics assumptions that differ between the two that likely make up the differences. The
MATLAB EFPA result is slightly skewed towards the lift-up TRAJ result rather than splitting
the difference. The MATLAB model also overpredicts the heating environment by around 20%,
though this could be due to a slightly different aerothermal constant being used in TRAJ.
Typically, uncertainties are high with heating predictions and appropriate margins are applied
accordingly. Familiarity with the TRAJ and BATSPEED codes is low and there is much to learn
for future simulations. Once issue is that when viewing the time history results of the TRAJ lift
up trajectory, the vehicle does not actually skip out and falls all the way to the surface. TRAJ
uses an iterative method similar to the in-house developed MATLAB script to home in on the
EFPA for the post-capture apoapsis. More trial and error is necessary to diagnose this issue.

Table 5.2 MATLAB-TRAJ Comparison Inputs

Inputs

Velocity 11 km/s
Azimuth -90°
Longitude 305.61606°
Latitude 5.170641°
Julian Date 2456755
Mass 150 kg
Cone Half Angle 60°
Diameter 1m

Nose Radius 0.25m
Target Apoapsis 500 km
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Table 5.3 MATLAB-TRAJ Comparison Results

MATLAB NASA TRAJ (Lift NASA TRAJ (Lift
Up) down)
Angle of Attack 0° 0.5° -0.5°
Resulting EFPA -5.6149 -5.6122 -5.586

Peak Convective Heat Flux

451.641 W/cm”2

386.53 W/cm”2

375.58 W/cm”2

Peak Radiative Heat Flux

15.75 W/cm”2

14.94 W/cm~2

TRAJ (Lift Down)

Total Heat Load (Conv.) 38394.7 J/cmA2 41498.96 J/cm”™2 | 34019.71 J/cm~2
15 Ve!ocity vs. Time ‘ 160 AI'tltude VS. 'I"lme '
MATLAB MATLAB
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150
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Figure 5.7 TRAJ-MATLAB Velocity Comparison
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An additional comparison study was conducted with TRAJ with lift up and lift down
conditions, the same vehicle configuration and input state were used as Table 5.2 with a = 10°,
15°, and 20° targeting a 500 km post aerocapture apoapsis. The error between any of the two
resulting entry flight path angles is under 0.02° (Table 5.4) which is less than observed
differences from varying the entry long, lat or Julian date. This agreement adds additional
confidence to the MATLAB model and is a strong indication that the physics and modeling
methods are sound. There are numerous assumptions and modeling methods that are different
between the two solvers and the degree of variation seen between the two is expected. Both
models match the expected behavior of trading higher total heat load for decreased maximum
heat flux for decreasing a. Figure 5.10 and Figure 5.11 illustrates close agreement in the
trajectory space in terms of velocity and altitude while the aerothermal environments are around
10-20% higher for the MATLAB model. While TRAJ does offer an option for Venus GRAM in
its atmosphere selection, discussion with colleagues suggested that this is an altitude profile that
was extracted from a separate run of GRAM and not an individual query of the GRAM model at
each time step; this and possibly the aerodynamics model may account for some of the small
differences.
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Table 5.4 MATLAB-TRAJ Lift Up, Lift Down Comparison

Lift Down Resulting EFPA Peak Peak Radiative Total Heat Load
Lift Up (deg) Convective Heat | Heat Flux (Conv. J/cm~2)
Flux (W/cm”2) | (W/cmn2)

MATLAB (-10°) | -5.424 382.25 - 48521.66

TRAJ (-10°) -5.410 326.70 11.16 43108.42
MATLAB (-15°) | -5.368 361.27 - 54560.16

TRAJ (-15°) -5.354 302.84 9.320 48836.38
MATLAB (-20°) | -5.329 347.80 - 61161.99

TRAJ (-20°) -5.315 301.17 9.590 55053.46
MATLAB (10°) | -5.976 572.89 - 31264.45

TRAJ (10°) -5.962 464.67 24.49 26578.55
MATLAB (15°) | -6.248 648.38 - 28883.92

TRAJ (15°) -6.234 518.04 32.14 24242.16
MATLAB (20°) | -6.592 735.47 - 27123.57

TRAJ (20°) -6.576 578.46 66.14 22462.20
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6. Preliminary Results

6.1. Preliminary Multi-Pass Venus Aerocapture Trajectory

A test multi pass trajectory was implemented to achieve the same initial state as the

validation run at atmospheric interface (Figure 5.1). The orbit was backed out to an altitude of
~300,000 km to allow for a small trajectory correction maneuver to adjust the perigee to target a
500,000 km apoapsis after the initial acro-pass. The spacecraft state class can readily convert
between classical orbital elements, a position and velocity state vector, and the topocentric
coordinates (Table 4.1). The mission plan object produced 4 intermediate braking orbits before
the final 500 km science orbit was reached. These were automatically scaled to match the delta V
lost on the first orbital insertion pass. The spacecraft was given the same initial mass and
configuration as the validation run. Propulsion system parameters were estimated, the system
needed a high thrust propulsion system for the perigee raise maneuver and low thrust
maneuvering system for the high accuracy TCM’s.

257

s fg°

Interplaneidrjz TCM

5 4 3 2 A 0
ec, (km) x10°

Figure 6.1 Full Venus Multi-Pass Trajectory
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Figure 6.2 Venus Multi Pass Trajectory Planet Centered

Table 6.1 Spacecraft Inputs

Table 6.2 Con-Ops Summary

Spacecraft Input Parameters

Maneuvers Summary

Parameter Value
Eccentricity (e) 1.307
Semi Major Axis (a) -2.00e4 km
Inclination (i) 0°
Argument of Periapsis (w) 0°
Long. of Ascending Node ({2) 0°
True Anomaly (0) 137°
Hyperbolic Excess Velocity 4.030 km/s
Julian Date 2455504

Parameter Value Maneuver Duration Av
Initial Mass 150 kg (s) (m/s)
High Thrust System 300 N Interplanetary TCM 2.27 0.15
Low Thrust System 10N 15t Periapsis Adjust 0.14 0.01
ISP (both systems) 300s 2" Periapsis Adjust 0.85 0.06
Drag Coefficient (a=0°) 1.393 3" Periapsis Adjust 2.85 0.19
Diameter 1m 4% Periapsis Adjust 9.11 0.61
Nose Radius 0.25m Final Perigee Raise 55.21 112.20
Sphere Cone Angle 60° Totals
Mission Duration (days) 17.78
Table 6.3 Initial State AV Expenditure (m/s) 113.20
Interplanetary Orbital Elements Propellant Expenditure (kg) 5.67
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implementation of the final trajectory raise burn could be improved. Overall the mission performance is

The final science orbit was slightly off from the target of 500 km at ~494 x 506 km, the

satisfactory with only a small percentage of the initial spacecraft mass being expended chemical
propellant. The mission duration is also manageable and is a small fraction of the interplanetary cruise
phase. The duration figure is measured from the initial interplanetary state all the way to one completion
of the final science orbit. Disadvantages to this architecture include the need for orbital maneuvers and
navigation measurements while the spacecraft is still contained within the TPS aeroshell.
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Preliminary results comparing the aerothermal environments of multi and single-pass
aerocapture missions indicate a significant reduction in total heat load for each atmospheric
entry. The target apogee of 500,000 km appeared to be a point of diminishing returns of reduced
heating vs. mission duration, this value is further optimized in section 6.2. While the
environments of each pass are more benign, the sum of the total energy absorbed by the TPS
throughout the multiple passes is higher than the single pass. Given the orbital periods are on the
order of several days, the heatshield would have sufficient time to cool down, though with an
ablative TPS there would be a finite and compounding amount of material lost on each pass. This
approach could be enabling for re-usable TPS such as flexible carbon weaves that have a lower
maximum heat flux tolerance but can survive multiple insertions. A thorough TPS sizing effort is
required to fully assess any mass savings (if any) with the multi-pass method.
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6.2. Aerocapture Sensitivity Analysis

From previous results it is apparent that the first atmospheric entry from an interplanetary
state is the driving case in terms of the heating environment and reduction in velocity. The
spacecraft must become captured on this pass which puts a lower bound on the overall intensity
of the heating environment. A study was conducted to examine the design and trajectory space of
amulti-pass aerocapture by looking at the initial pass bounding case in terms of the target
apoapsis, vehicle ballistic coefficient, and entry velocity. These are the primary driving factors
for the maximum heat load which determines the type of TPS material required. The target
apoapsis of 500,000 km used in previous cases was a qualitative estimate based on engineering
judgement. An optimal value requires a balance between the orbital period of the post-exit orbit,
which drives the mission duration and the peak heat flux which dictates the TPS material.
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Figure 6.5 Peak Stag. Heat Flux to Orbital Period Tradeoff

Page 63 of 107



Figure 6.5 shows a series of trajectories run for different post-exit apoapsis targets from
an interplanetary trajectory, the vehicle configuration and initial state are the same as Table 6.1
and Table 6.3. Figure 6.5 shows significant diminishing returns in terms of heating reduction
after around 200,000 km while the orbital period continues to rise nonlinearly. The first post
capture orbit is also dominant in terms of the total multi-pass con-ops duration. An obvious
visual choice for the ideal post-capture apoapsis would be the intersection of the two curves but a
more quantitative approach would be to construct a weight function between normalized values
of peak heat flux (gy) and orbital period (zy).

an (Ta) _ CI(Ta) — Qmin (6. 1)

Qmax — 9min

() = 2080~ Tmin (6.2)

max — Tmin

W) =[5+ df (6.3)
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Figure 6.6 qy-ty Weight Function
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The weight function shown in eqn. 6.3 is based on the peak heat flux and orbital period at
chosen apoapsis limits Ty max aNd Gmin max- The values are normalized over the entire range.
The lower apoapsis limit was set to 500 km, as that is a standard low science orbit described in
[23], the upper limit was set to 800000 km, which is near the limit of a bounded Venusian orbit.
The minimum of this weighting function is the point where peak heat flux is minimized without
the expense of a significant increase in mission duration. Figure 6.6 shows the weight function
plotted with the same x axis values as Figure 6.5. The minimum occurs at ~175000 km with a
peak stagnation heat flux of ~313 W/cm”2 and orbital period of ~88 hrs. The weight function
limits can be adjusted depending on mission requirements.
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The ballistic coefficient, shown in eqn. 6.4 is a way to normalize several aerodynamic
characteristics of the entry vehicle into one parameter. Figure 6.8 and Figure 6.9 illustrate low
sensitivity of the weight function minimum to ballistic coefficient and entry velocity. This
“sweet spot” of apoapsis altitudes is almost entirely dependent on the planetary destination, with
the obvious condition that it is above the target science orbit for the mission. It should be noted
that the sensitivity analysis trajectories run in this section were ballistic entries at « = § = 0.
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Figure 6.10 Venus Aerocapture Design Space

An optimal target apoapsis altitude is tied to a particular trajectory and resulting heating
environment. This allows for an aerocapture mission design space to be calculated where the
peak heat flux can be visualized as a function of ballistic coefficient and entry velocity. The
weight function analysis shows that additional constraints are not necessary as the apoapsis range
is only strongly dependent on the destination. One exception is the entry vehicle effective nose
radius which factors into the Sutton Graves heating correlation but does not have a significant
impact on the vehicle ballistic coefficient. A vehicle with a smaller nose radius will produce
higher stagnation heat fluxes for the same ballistic coefficient and all else being equal. With this
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in mind new design spaces should be generated for different classes of entry vehicles or new
planetary destinations.

The design space in Figure 6.10 indicates vehicle configuration (B.) and arrival velocity
can have a significant influence on the heating environment. The values are valid for any target
apoapsis above the weight function predictions, Entry vehicles like MSL and Mars 2020 have
ballistic coefficients ~150 kg/m”2, if such a vehicle was used for a Venus aerocapture, ablative
TPS would be necessary for peak heating rates >300 W/cm”2.

6.2.1. Uncertainty Modeling

So far only nominal values have been used in the analysis, though uncertainty
propagation is necessary to gauge the various sensitivities of the design space. GRAM supports
monte carlo runs and perturbations on all atmospheric properties. Assessing how the
aerodynamic coefficients respond to a normal distribution of angles of attack, and free stream
conditions could allow a 3¢ envelope of trajectories to be plotted. One of the potential
advantages to multi-pass aerocapture is the higher initial target apoapsis leaves more room for
trajectory or guidance dispersions. Directly targeting a low 500 km orbit after an aerocapture
requires a much tighter flight corridor than a 200,000 km orbit. The flexible object oriented
nature of the simulation and perturbation ready parameters of GRAM would make the addition
of uncertainties straight forward. However, quantifying the uncertainties and utilizing them for
mission design is more involved and is out of the scope of this current project.

6.3. Mission Concept: SmallSat Venus Aerocapture with Deployable TPS

NASA’s Adaptable, Deployable Entry Placement Technology (ADEPT) [25] is an
attractive candidate for a low ballistic coefficient entry vehicle that can withstand multiple
atmospheric entries. The technology utilizes a flexible carbon weave as a TPS that can be folded
to allow for efficient packing in launch vehicle fairings. This TPS was tested in the NASA ARC
Arc Jet facility at conditions of over 150 W/cm”2 of stagnation point convective heating though
50 W/em”2 is a more realistic re-usable limit [25].

To home in on a basic entry vehicle configuration, a second batch run was conducted to
narrow down the design window to the lower left corner of Figure 6.10. This focused design
space is shown in Figure 6.11. In the spirit of choosing round numbers, a 3 m diameter aeroshell
with a mass of 200 kg would have a ballistic coefficient of 17.55 kg/m”"2. This is almost 8 times
lower than the ballistic coefficient of the MSL entry vehicle and is likely close to the limit of
materials and mass constraints for a flexible, deployable entry system. Additional system design
work would be necessary to determine the feasibility of vehicles in this range. Assuming a TPS
mass fraction of 30-40% would allow for 120-140 kg science payload orbiter. A trim angle of
attack of 10° was chosen arbitrarily as optimizing for angle of attack requires stability, mass
properties, and other vehicle characteristics that aren’t modeled by the simulation. If this vehicle
targeted an optimized post capture apoapsis of 200,000 km it would encounter a peak stagnation
heat flux of ~59.5 W/cm”2 for the lift down case and ~70 W/cm”2 for the lift up case which is in
the ballpark for a re-usable, deployable entry system.
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A multi-pass architecture analyzing this configuration was setup with values shown in
Table 6.4 through 6.7. The entry state (Table 6.6) is identical to the mission studied in section
6.3. The mission planner solution with a 200,000 km initial apoapsis yields only 3 passes instead
of 4, bringing the mission duration down to ~5.5 days. Note that the drag and lift coefficients
shown in Table 6.4 are nominal values and can vary slightly due to the effects discussed in
section 4.2.4. A small 100 kg satellite would likely consist of a pressure fed monopropellant
system with space for only a few kgs of propellant. A large cruise stage would be necessary for a
purely propulsive orbital insertion. The advantage of a deployable system is the back shell can be
opened to the space environment to allow for easier communication and maneuvers. The
aerothermal plots shown in Figure 6.16 illustrate the flight corridor between the extreme lift up
and lift down cases. The aerothermal heating metrics trend as expected, with heat flux
dominating the lift-up trajectory and total heat load the lift-down trajectory. The delta between
the lift-up and lift down stagnation heat flux and total heat load is significantly higher for the
single pass trajectory. The multi-pass configuration offers a smaller range of heating
environments that the TPS needs to be sized for, which can be attractive to mission designers.
The nominal entry trajectory will fall somewhere between the two cases depending on the bank
angle profile. Provided that the carbon weave TPS can cool down between passes this may be
enabling for such a system that only comprises of a few layers of fabric to maintain flexibility
and cannot absorb excessive amounts of energy. An additional multi pass trajectory with an even
lower ballistic coefficient vehicle is presented in Appendix 9.3.
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Table 6.4 Spacecraft Inputs

Table 6.5 Con-Ops Summary

Spacecraft Input Parameters

Maneuvers Summary

Parameter Value Maneuver Duration AV
Initial Mass 200 kg (s) (m/s)
High Thrust System 120 N Lift Up
Low Thrust System 10 N Interplanetary TCM 10.49 0.525
ISP (both systems) 300 s 15t Periapsis Adjust 0.128 0.006
Trim Angle of Attack (a) 10°/-10° 2" Periapsis Adjust 2.000 0.100
Cp at a=10°/-10° 1.550 3™ Periapsis Adjust 10.15 0.507
C, at a=10°/-10° +0.237 Final Perigee Raise 190.0 116.3
Diameter 3m Lift Down
Nose Radius 0.75m Interplanetary TCM 12.17 0.610
Sphere Cone Angle 70° 15t Periapsis Adjust 0.194 0.010
B, at a=0° 17.55 kg/mA2 2" Periapsis Adjust 2.141 0.110
B, at a=10°/-10° 18.26 kg/m~2 3™ Periapsis Adjust 8.137 0.407
Final Perigee Raise 177.1 108.2
Totals Lift Lift
Up Down
Mission Duration 5.461 5.468
(days)
Maneuvers AV (m/s) 117.4 109.4
Propellant Usage (kg) 7.832 7.304
Table 6.6 Initial State Table 6.7 Atmospheric Entries
Interplanetary Orbital Elements Aero-Pass Summary
Parameter Value Pass Qmax Is av
Eccentricity (e) 1.3074 (W/ecmA2) | (J/ecm”2) | (km/s)
Semi Major Axis (a) -2.0005e4 km Lift Up
Inclination (i) 0° Insertion 70.05 4022 0.916
Argument of Periapsis (w) 0° 15t Pass 53.74 3645 0.914
Long. of Ascending Node 0° 2" Pass 39.55 3350 0.912
(2) 3™ Pass 26.58 3340 0.892
True Anomaly (©) 137° Lift Down
Hyperbolic Excess Velocity | 4.0298 km/s Insertion 61.66 4416 | 0.916
Julian Date 2455504 1t Pass 46.05 4085 0.915
Initial Target Apoapsis (km) 200000 2" Pass 32.30 3903 | 0.914
3™ Pass 19.22 4445 0.912

Page 71 of 107




ecy (km)

4+
6 | I | | I I I I | I I
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
ec, (km) %104
Figure 6.14 Venus Deployable TPS Multi-Pass Trajectory
—-ECx
—-ECy
2 3<104 e EC
=== Thrust Vector
Burn Trajectory
1.5¢ Coast Trajectory
Aero Trajectory
1k
05 - 5000
£ E
= N
- L
g~ 0 ® 5000
-0.5
At x10*
157

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
ec, (km) x10*

Figure 6.15 Venus Deployable TPS Additional Trajectory Views

Page 72 of 107



Altitude (km)

Heat Flux (W/cm?)
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7. Next Steps

In the first phase of this project an extensive MATLAB object oriented simulation
framework was developed to study multiple atmospheric insertions to achieve a target orbit. The
simulation utilizes the NASA Global Atmospheric Reference Model and is based on validated
physics and prediction methods. In the second half of the project some improvements were made
to the overall architecture and robustness to different inputs. The code was compared to the
NASA TRAJ flight validated trajectory program and other results from literature with results that
are in-family.

The aerodynamic database was significantly expanded to model aerodynamic forces in 3
dimensions and at angles of attack and sideslip. Additional validations on the modified
Newtonian model have been performed and lift and drag cases have been compared with TRAJ
and indicate strong agreement. The rarefied flow modeling has been implemented and tested.
GRAM has been tested for all 7 atmospheric destinations. Uncertainty modeling is a major next
step that would need to be addressed for this modeling tool be used in real conceptual design.

On the Aerothermal side the chemistry model methodology described in 4.3 needs to be
expanded to include all constituents from each planetary atmosphere while utilizing the
thermodynamic data from [3]. This would add additional properties to compare like temperature
and pressure behind the shock at the stagnation point and flank. The ultimate longer term goal is
to size TPS for a conceptual mission based on the predicted aerothermal environments. The
NASA developed tool FIAT is an industry standard for TPS sizing. Additional longer term goals
involve expanding the simulation reference frames to include SPICE kernals for modeling time
dependent planetary effects such nutation.

A simulation architecture utilizing multi-body mechanics of the entire solar system would
allow for a macro level of mission planning and generation of initial states for atmospheric
entries. This would allow direct coupling between elements such as launch, transfer windows,
and gravity assists to aerothermal environments to assess the feasibility of various orbital
insertion methods. While numerous mission planning software tools exist, EDL focused tools
with an emphasis on preliminary design and optimization are less common. So far, the modeling
and simulation skills learned during this project have been invaluable.
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9. Appendix
9.1. Modified Newtonian Aerodynamics: Additional Validation and Convergence

9.1.1. Additional validation with [29], cone and spherical segment
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9.1.2. Panel Method Convergence

A convergence study was conducted on the modified Newtonian panel method discussed
in 4.2.2 to assess performance and optimize the number of divisions. Recall lengthwise divisions
are applied to curved sections along the x-axis (Figure 4.5) and radial divisions are revolved
around the x axis (Figure 4.6). Straight frustrum sections are represented by only one lengthwise
division. The solver was setup with a 60° sphere cone and a nose to body radius ratio of 0.5 at
a = B = 15°. The model shows strong convergence performance with the aero coefficients
settling within 3 decimal places after just 5 divisions. In this configuration the normal and axial
forces depend on both divisions while the side force is dominated by the number of radial
divisions. The analysis was repeated for a 25° sphere cone, the results Figure 9.8 illustrate that
the performance is slightly worse for more slender bodies but still robust. 8-10 divisions are
likely more than sufficient for blunt bodies at low angles of attack. Overall this convergence
study adds additional confidence to the aerodynamic model.
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Figure 9.5 Normal Force vs. Number of Divisions (60° sphere cone)
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9.2. Free Molecular and Rarefied Flow Aerodynamics

An entry vehicle flying through a planetary atmosphere encounters various flow regimes
that vary with altitude. The two primary bounding flow regimes are continuum and free
molecular. In the continuum regime, the distance between individual molecules is much smaller
than defining features of the flow field allowing it treated as a continuous medium. Continuum
flow is described by the Navier Stokes equations and disturbances and direction changes
propagate smoothly through the flow field. Free molecular flow is defined by large distances
between individual particles where collisions do not propagate or affect adjacent particles. The
Knudsen number is a defining nondimensional parameter for free molecular, transitional, or
continuum flow where A4 is the mean free path and L is a physical length scale, often the entry
vehicle diameter.

A
Kn = Z (9 1)
2= ol (9.2)
V2md?p '

The mean free path can be defined from the Boltzmann constant k;,, temperature,
pressure, and the particle kinetic diameter, d, which is available in literature for common
substances [17]. There are no strict Knudsen number limits to free molecular and continuum
flow but a general guideline is a K;,, < 0.01 defines continuum flow and K,, > 10 defines free
molecular flow [17]. These limits often require refinement based on flow geometry and
atmospheric characteristics, comparison with empirical data is usually required. The large region
between free molecular and continuum flow is known as the transitional or rarefied flow regime
and can be difficult to model. Direct simulation monte carlo (DSMC) is a widely used but
computationally expensive way of modeling free molecular and rarefied flow by simulating the
kinetic collisions and interactions between individual particles.
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Aerocapture and skip-out trajectories remain at high altitudes and often a large
portion of the trajectory is in the rarefied and free molecular flow regimes. As discussed in
4.2, the modified Newtonian method is most accurate for continuum flow. In the search of
higher fidelity trajectory modeling an analytical scheme for predicting free molecular and
rarefied flow needed to be implemented. [31][32], and [33] describe an approach to modeling
aerodynamic coefficients in free molecular flow based on a Maxwellian distribution of
spectral and diffuse particle collisions with the vehicle surface. The pressure and shear
coefficients are calculated and integrated over the surface. This allows the same paneling
algorithm to be reused with the free molecular pressure and shear coefficients as shown in

9.6. The normal vector is the same as is shown in Figure 4.5 and the tangential vector is
calculated through 9.7.

_1|{2-0oy | N |Tw |  _(ssine))?
C, =3 = ssin(0) + 2 |T. e
1 T
+1@=a)(ssinO)? +5+50 |5 ssin@) (L rerf(ssn@)| (g3
0 .
= SO s 4 s sin(8)(1 + exf(s sin(6)))] (9.4)
sVm
Voo

S =

JaRT. (9.5)
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The Maxwellian distribution model described above applies to free molecular flow and
was validated with DSMC in [32] and [33], however this isn’t necessarily accurate in the
transitional region which is a large part of any entry trajectory. [34] and [35] describe various
methods of “blending” the two flow regimes to predict aerodynamic coefficients at any trajectory
point as a function of K,,. The theory states that a local or global aerodynamic coefficient can be
described as a weighted average of that coefficient at the free molecular and continuum limits. A
commonly used bridging function based on the sine squared law is shown in 9.8-9.10, P, = 1 at
the free molecular limit and 0 at the continuum limt. The two constants a, and a, are related to
the free molecular and continuum K,, values and are calculated with 9.11. More accurate
bridging functions exist though they require a DSMC anchor point at the middle of the
transitional regime. This sine squared function was used for the MATLAB trajectory code
aerodynamics database.

Cor = PyCrm + (1 = Pp) * Coony (9.8)

P, = sin?y (9.9)

Y =n(a, + aylog10K,_ ) (9.10)

1=[1 o] e ©.11)
910K, |la
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9.2.1.

Validation of Rarefied Flow Mechanics

With the relationships established for free molecular and transitional flow mechanics, test
cases can be run and the results can be compared/validated with literature. The existing paneling
method for Newtonian flow is easily utilized for the free molecular conditions and allows for a
variety of vehicle shapes to be quickly tested. [32] and [33] present the exact equations 9.3-9.7
and an initial simple test of the drag coefficient of a sphere while varying the velocity, wall
temperature, and specular and diffuse ratio to assess sensitivity. With each comparison,
parameters were set to the same values as the reference literature where possible. Comparison of
Figure 9.10Figure 9.11indicates the results are in family, however [32] does not present values
used for the specific gas constant which is required for 9.5, so a value of 287.058 J/(kg-K) for air

was assumed.
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Ref. [33] was written by some of the same SME’s and they go into greater detail on
plotting more complex geometries. The results for the decreasing bi-conic were replicated in the
internally developed simulation and the results indicate excellent agreement with [33]. While T,
Ty, and V,, were provided, R was not and was again set to the standard value for air. [33] also
presents results from the sphere-cone geometry of the mars microprobe and the results agree up
to around 45° where the spherical backshell becomes exposed to the flow. This backshell is not
modeled in this comparison case as the panel solver currently only supports a single spherical
segment on the nose of the body followed by straight frustrum segments. Angles of attack were
only run out to 90° due to this limitation. Development is underway to allow for any number of
frustrum or radiused segments to be superimposed to allow a much wider range of axisymmetric
bodies to be modeled. Pre-generated X and Y lengthwise coordinates can also be provided to the
solver to create a revolved grid.

ty

d,~25
d, ;~15° r,=0.73 m
o TP r,=0.27 m
[,=1 m [,=1m

Figure 9.12 Increasing Bi-conic Geometry from [33]
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Prediction of the Knudsen number vs. altitude was necessary for implementation of the
bridging function which integrates the continuum and free molecular flow mechanisms. [36]
studies the low density aerodynamics of the stardust sample return vehicle and was used to
validate the rarefied flow aerodynamics. For gas mixtures with multiple species, higher fidelity
tools like DSMC will often use complex collision mechanics like the variable soft sphere model
(VSS) to determine the mean free path which is required for the Knudsen number. In the
aerodynamics modeling for this project the assumption is made that the mean free path is based
on a weighted average of the species particle kinetic diameters (d;) and mole fractions (X;). An
expansion of 9.2 is for gas mixtures can be simplified as GRAM can output the particle number
density directly. More accurate methods of calculating the mean free path exist but are more
computationally expensive. 9.12 — 9.14 were tested against the results in [36]. EarthGRAM was
setup with the same time and position of the stardust landing of January 15th, 2006 and an
approximate longitude and latitude of the Utah desert landing site. Comparison of Figure 9.18
and Table 9.1 show some non-negligible differences in the atmospheric properties from [36] and
the GRAM output. The Knudsen number was re-calculated based on the conditions from [36] to
get a true comparison of the mean free path calculation methods. There is variation in the
absolute values of the Knudsen numbers between the two methods with the weighted average
calculation trending high by up to 50%. Considering the multiple orders of magnitude of the
Knudsen number scale within the transitional regime, the differences seen here are acceptable.
Validation of the sine squared bridging function is shown in Figure 9.19 and Figure 9.20 with
free molecular and continuum Kn bounds of 10 and 0.001. Comparison with the results from
[36] indicates strong agreement of the aero-coefficients vs. Kn. This adds confidence to the
rarefied flow techniques developed thus far, especially given the high-fidelity tools used in [36].

P

_ 9.12
n kT (9.12)
m
o= Z 42X, (9.13)
i=1
PR (9.14)
B \/ET[O' .
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Altitude, Velocity, Number Mole Fractions Thss Tw, Knudsen Mach
km m/s Density, 1/m? 0, N; 0 K K Number  Number
134.75 12,597.1  1.48832x10'" 0.0659 0.6716 0.2625 577.23 400 12.8 23.96
120.45 12,607.7  5.93941x10'7  0.0845 0.7327 0.1828 381.15 500 2.92 30.27
100.90 12,620.2  1.09988x10*°  0.1768 0.7844 0.0388 199.37 1,000 0.136 43.94
92.00 12,618.5  4.98474x10"  0.2056 0.7873 0.0071 202.05 1,200  0.0301 44.10
83.68 12,591.5  1.77978x10%°  0.2385 0.7615 0.0000 216.54 1,500 0.00857 42.68
75.98 12,486.8  5.73854x10%°  0.2385 0.7615 0.0000 218.14 1,800 0.00266 42.17
Figure 9.18 Flight Conditions from [36]
Table 9.1 Knudsen Number Validation with [36]
Altitude | Number Density o0, N, o T, (K) Ky Ky
(km) (1/m?) [36] conditions
134.75 1.133222e+17 0.0434 0.6175 0.3376 648.63 19.2 14.58
12045 | 3.840013e+17 | 0.0715 | 0.6866 | 0.2393 | 409.33 5.6 3.63
100.90 | 1.027121e+19 | 0.1537 | 0.7847 | 0.0543 | 188.14 | 0.208 0.194
92.00 4.976260e+19 0.1890 0.7967 0.0057 197.25 0.0428 0.0428
83.68 1.807716e+20 0.2038 0.7861 2.5e-4 213.11 0.0118 0.0120
75.98 5.926458e+20 0.2094 0.7808 2.5e-5 216.49 0.0036 0.0037
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The final validation of the rarefied flow aerodynamics database is with the NASA ECI
work studying Uranus aerocapture outlined in [9]-[15]. The study utilizes a MSL like vehicle
with a 70° sphere cone and a combination of modified Newtonian and empirical flight data for
aerodynamics. Reference [13] lays out the aerodynamics implications for Uranus aerocapture
and presents results on the aero-coefficients vs. angle of attack and Knudsen number. These
figures were replicated to generate a reasonable comparison. In [13], the transitional flow regime
is extended to free molecular and continuum bounds of 100 and 0.001. While the exact numbers
from [13] were not obtained, visual comparison of the plots in Figure 9.21 and Figure 9.22
indicate strong agreement. The free molecular flow characteristics modeled in equations 9.3-9.7
match up well with a variety of other data sources including DSMC and flight data. Moment
coefficients have not been modeled as part of this study as the focus is strictly on 3DOF however
adding them in the future is straightforward.

Figure 9.23 shows a comparison trajectory aerocapture trajectory targeting 500 km with
rarefied flow effects enabled and disabled, the vehicle and entry state are the same as in Table
9.2 and Table 9.4 but with a=0°. The trajectory dispersion effects are amplified with decreasing
vehicle ballistic coefficients though they are still small. The slightly higher drag from the free
molecular flow effects results in a slightly shallower entry angle to achieve the same target
apoapsis altitude of 500 km.

a=0° Qmax (W/cmA2) | J¢ (J/cmA2) EFPA (deg)
Rarefied flow on | 96.567 7860 -5.168
Rarefied flow off | 97.631 7941 -5.172

Stagnation Heat Flux vs. Time Geocentric Altitude vs. Time

100 155

Rarefied Flow On
90 - Rarefied Flow Off | ] 150

8o | 1 145
70 F 1 140 |
€
S 60r 4 F35t
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< L [0}
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Figure 9.23 Rarefied Flow Effects Comparison
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Figure 9.24 Knudsen Number Trajectory Space
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9.3. Ultra Low Ballistic Coefficient Venus Multi-Pass Trajectory

Table 9.2 Spacecraft Inputs (Ultra Low B)

Table 9.3 Con-Ops Summary (Ultra Low B)

Spacecraft Input Parameters

Maneuvers Summary

Parameter Value
Initial Mass 50 kg
High Thrust System 100 N
Low Thrust System 4N
ISP (both systems) 300s
Drag Coefficient a=-10 1.5332
Lift Coefficient a=-10 -0.2337
Diameter 3m
Nose Radius 0.75m
Sphere Cone Angle 70°

Table 9.4 Initial State

Interplanetary Orbital Elements

Maneuver Duration (s) Av
(m/s)
Interplanetary TCM 6.576 0.526
1t Perigee Adjust 0.124 0.01
2"d Perigee Adjust 0.675 0.054
3™ Perigee Adjust 2.038 0.163
4t perigee Adjust 5.817 0.466
Final Perigee Raise 52.34 106.64
Totals
Mission Duration (days) 17.79
AV Expenditure (m/s) 107.86
Propellant Expenditure (kg) 1.8
Table 9.5 Atmospheric Entries
Aero-Pass Summary
Pass Qmax Is av
(W/cm~2) | (J/cm”2) | (km/s)
Insertion 61.66 4416 0.916
1t Pass 46.05 4085 0.915
2" Pass 32.30 3903 0.914
37 Pass 19.22 4445 0.912

Parameter Value
Eccentricity (e) 1.3074
Semi Major Axis (a) -2.0005e4 km
Inclination (i) 0°
Argument of Periapsis (w) 0°
Long. of Ascending Node 0°
(2)
True Anomaly (8) 137°
Hyperbolic Excess Velocity 4.0298 km/s
Julian Date 2455504
Post Capture Apoapsis (km) 500000
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9.4. Uranus Aerocapture Analysis
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Figure 9.27 Uranus Aerocapture Design Space
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The species to be modeled for the Uranus entry are H,, He, H, H+, and e-, He+ was
initially considered though initial CEA testing showed mole concentrations well below 1e-5 up
to 12000 K so it was dropped for simplicity. The effects of chemical reactions on the vehicle
aerodynamics was evaluated at one trajectory point close to the time of peak heating, the results
are shown in Table 9.7. While the effect on the aero-coefficients is non-negligible, there is still a
computation time penalty despite the optimized symbolic math expressions. The iterative method
utilizing equations 4.32 and 4.33 requires a high number of thermodynamic property evaluations
through equations 4.48 and 4.49. The object oriented simulation architecture allows for
numerous physics effects to be turned on and off and tolerance properties for the various iterative
methods to be adjusted. The most efficient trajectory design method involves turning most of the
higher fidelity effects off for batch runs and trajectory optimization and then re-enabling them
for the final trajectory design and aerothermal analysis. The rarefied flow and chemical
equilibrium effects have the highest impact on the computation time of one trajectory point.

Table 9.6 Uranus Test Trajectory Inputs

Spacecraft Input Parameters Entry State
Initial Mass 4064 kg Inertial Velocity 24.5 km/s
Trim Angle of Attack (a) 17°/-17° Lift up EFPA -23.806°
Cp at a=17°/-17° 1.436 Lift down EFPA -23.509°
Cp at a=17°/-17° +0.378 Geocentric Altitude 4000 km
Diameter 5m Longitude (deg) 47.5°
Nose Radius 1.25m Azimuth (deg) -90°
Sphere Cone Angle 70° Geocentric Latitude 37°
B at a=0° 128.4 kg/m~2 | Target Apoapsis Altitude 500000 km
B at a=17°/-17° 144.1 kg/m"2 Atmosphere Cutoff 4000 km

Table 9.7 Chemically Reacting Flow Effects on Aerodynamics for Uranus Aerocapture Trajectory

0=17°, alt = 310 km, Calorically Perfect Chemical Equilibrium
Mach=26.93 (y=1.45) (H,/He)

Cy 1.4836 1.5840

Cy 0.0587 0.0627

Cp 1.4360 1.5331

Cy 0.3776 0.4032
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Figure 9.28 Uranus Test Trajectory Results

Figure 9.28 illustrates several abrupt changes in the species mole fraction and
temperature behind the stagnation shock front. This appears unusual at first but after inspection
of the nominal mole fractions of H, and He vs. altitude from UranusGRAM, much of the abrupt
changes correspond with the onset of higher Helium concentrations around 500km. There is a
small amount of atomic hydrogen ionization that occurs around 550 s for the lift down trajectory
and 525 s for the lift up with peak mole fractions of e- and H+ of ~0.005. At the onset of entry
interface, virtually all the H, dissociates though at the lower velocities close to atmospheric exit
only around 75% of the hydrogen is dissociated. For the aerothermal heating results, modern
stagnation heating correlations for H, /He atmospheres [37] were employed utilizing the
equilibrium chemistry results and compared to the standard Sutton Graves correlation (eq. 4.31).
The results match up surprisingly well though additional evaluation is necessary over a wider
trajectory space (Figure 9.31). For the analysis in sections 5 and 6, only the Sutton Graves
correlation was used.
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9.5. Basic Equations for Orbital Mechanics and Rocket Propulsion

/2
V= 4k (9.15)
T, a

9.12 is fundamental and can be used to calculate the required delta V for basic
propulsive maneuvers like a Hohmann transfer.

124
Hyperbolic Excess Velocity Voo = |- E (9 16)
21
T="_ (9.17)
Orbital Period U
/g
T, — T
eccentricity e = - P (9 18)
s + Tp

9.5.1. Conversion of Keplerian Orbital Elements to Position and Velocity Vector

Angular Momentum h = /‘u_a(l — eZ) (9 19)

h2 cos(0)
R,r = ' 9.20
PI™ u(1 + e cos(8)) sin(6) (9.20)
Perifocal Frame 0
Transformation
—sin(0)
Vor = mlet cos(6) (9.21)
0
cosw sinw 0
Q,=|—sinw cosw 0 (9.22)
0 0 1
_ 1 0 0
fomesamgomaron Q2 =0 cosi sini (9.23)
' ' 0 —sini cosi
cosf? sinn O
Q3 =|—sin2 cosn O (9.24)
0 0 1
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Qgcr = Q1QT2Q3
Ricr = Qgcr Rpf

Veer = QECITfo

9.5.2. Conversion of Position and Velocity Vector to Keplerian Elements

Radial Velocity

Momentum Vector

Nodal Vector

Ascending node with
quadrant ambiguity

Eccentricity Vector

Argument of Periapsis
with quadrant ambiguity

True Anomaly with
quadrant ambiguity

6 =

Voo Ricr Ve
rad |Rgci |

H = Rgci X Vier

h=+/cos™1(H-H)

, _, (Hk
L = COS —_
h

0
K=10 N=KxH n=|N|
1
(N )
cos (—), Nj=>0
0= i
Ni A
360 — cos™? <7>, Nj<o0
Ve X H
E=—F7— e=|E|
_Rea
=
_(NE _
cos ( ), k>0
o= ne
N-E -
360—cos‘1( ), Ek<0
ne
E R
cos™! (z - %), Viaa =0
E R
360—cos—1<z-%), Vega <0
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9.5.3. Spherical Harmonics and Oblateness Effects

Oblateness effects are incorporated into the gravity model of the trajectory program.
The model only considers the 2" zonal harmonic, J2 as it has the greatest effect by several
orders of magnitude. Expanded calculations and derivations to obtain 9.39 are shown in pp.
660-664 of [22]. Note that ¢ here refers to the angle between the position vector and polar
axis, not to be confused with the geometric angle used in section 4.2.2.

R 2
Gravitational perturbation CI)(T, ¢)) = 1325 (?> (3 COS2 d) - 1) (9 37)

based on J2 term only.

dd b AD,

erturbing Acceleration =-Vo=——171-——j——Kk 9.38
};ecl;or ¢ t P 0x ! ay 0z ( )
, _ 3L,uR? [x [ _z? y [ z* z(_ z* .
Final perturbation — — I 7 z —_ 7 — N
vectofin ihe EtC[ﬁﬂame p= 2 r4 r 5 r2 i+ r 5 72 1 ) + r 5 r2 3|k (9 39)

9.5.4. Basic Elements of Rocket Propulsion

. . m
Tsiolkovsky rocket equation: — f
mf'is the initial mass and me is AV = Sp Yo In (m (9 40)
the final or dry mass e
Calculate propellant mass -7 Av
usage Mp Mp =ms —mse spYo (9 41)
AV
Calculate burn time for a _ _ “Ipg
specified AV, 9.36 is used ty = mg —mge spee (9 42)

in conjunction with 9.12 to
calculate the perigee raise
maneuver.

9.6. Source Code

The trajectory analysis program that was developed to support this project has been
rigorously validated and tested and works for all GRAM supported planets with an
atmosphere. Rudimentary property validation and error checking has been implemented but it
is still at a development level and is not intended for redistribution or re-use. Below are the
core trajectory propagation and shared handle object class definition files. There are
numerous development scripts and supporting functions that are not included to limit
excessive page length.
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5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 1 of 9

classdef AeroDB < matlab.System

Aerodynamics Database Object. Contains a modified newtonian and free
molecular panel codes as well as a sine squared bridging function for
the transitional regime.

Paneling algorithm supports basic
axisymmetric bodies with radiused or straight frustrum lengthwise
segments

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

A o0 o A A° A° OO o° o° oo

o°

Public, tunable properties

properties
g = 1.45; % Specific heat ratio
Mi = 30; % freestream mach
Pinf = 10; % (Pa) freestream pressure
R = 2.5; % Aeroshell Radius
R2 = 3; % Biconic Radius
RN = 1.25; $ (m) span
tcl = 70; % deg
tc2 = 5.2; % deg
seg = 8; % nose segments
rseg = 8; % radial axisymmetric divisions
pan = 1; % straight panel segments
trimBeta = 0; $ trim sideslip angle

trimAlpha = 0; % trim angle of attack

% Rarefied gas parameters

Vi = 9000; % freestream velocity (m/s)

Tw = 1000; % (K) Wall temperature

Ti = 300; % (K) Freestream temperature

Rspec = 287.058; % J/kg K

sigN = 1; % normal momentum accommodation coefficient (0 for specular 1 for¥
diffuse)

sigT = 1; % tangential momentum accommodation coefficient (0 for specular 1 forv
diffuse)

kn = 1; % free stream knudsen number

rarefiedGasEffects = 'off';

al % Bridging Function Constant

a2 % Bridging Function Constant

Xc % Lengthwise X coodinates

Yc % Lengthwise Y coodinates

plotX = ["Xc", "alph", "alph", "kn"]; $ X axis properties to plot

plotY = ["Yc", "CA", "CN", "kn"]; % Y axis properties to plot

end

properties (SetObservable, AbortSet)
knFm = 10; % knudsen number free molecular bound
knCont = 0.001; % knudsen number continuum bound
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end

properties
CD % Drag Coefficient
CL % Lift Coefficient
CZ % Side Force Coefficient
CA % Axial Force Coefficient
CN % Normal Force Coefficient
CS % Side Slip Coefficient
alph % Angle of attack
beta % Angle of sideslip

end

methods (Access = protected)

function setupImpl (ob7j)
% Convert Angles to radians
radConvert (obj)

% Set up transitional flow regime bridging function
bridgeSetup (obj)
end

function stepImpl (obj)

% create vectors
Tc = [obj.tcl obj.tc2];
H = [ob]j.R obj.R2];

% find angle of one segment
tseg = (pi/2-obj.tcl)/obj.seg;

% Freestream molecular Speed Ratio
s = obj.Vi/sqgrt (2*obj.Rspec*ob]j.Ti) ;
% Isentropic Pressure Ratio
Pratio = ((obj.g+l)"2*0obj.Mi"2/ (4*obj.g*obj.Mi*2-2* (obj.g-1))) " (obj.g/ (obj.¥
g-1))*((l-obj.g+2*obj.g*obj.Mi"2)/ (obj.g+l));

% Subsonic Error Check
if ~isreal (Pratio)
error ([ 'Imaginary Number detected for isentropic Pressure ratio, '
'Potentially means vehicle is subsonic, increase velocityf
termination cutoff']);

end

% Modified Newtonian Multipliers (CpMax)
Pratio chem = 515.9397;

CpMax (1) = 2/ (obj.g*obj.Mi”2)* (Pratio-1);
CpMax (2) = 2/ (obj.g*obj.Mi”2)* (Pratio chem-1);
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% Disable any transitional effects if flow is fully free
% molecular or continuum
if strcmp (obj.rarefiedGasEffects, 'on')
if obj.kn > obj.knFm
aeroTyp = '"FM';
elseif obj.kn < obj.knCont

aeroTyp 'Cont';

else

aeroTyp = 'both';
end
else
aeroTyp = 'Cont';
end

**Initialize body length parameterization**
x coordinate, y coordinate, and total distance along body surface
xb = zeros(l,obj.segt+2*obj.pan); yb = xb; db = xb;

o
°
o
°

Q

% angle of each panel and Cp for each panel, CpN is for regular newtonian,
thetai = zeros(l,obj.seg+2*obj.pan);

% **Initialize Coefficients **

CVFi fm = zeros(3,0bj.seg+2*obj.pan); CVFi cont = CVFi fm;

for i2 = 1:0bj.seg
% because nose is circular, an angle index can define panels of equal
% length
thetai (i2) = pi/2-tseg* (2*12-1)/2;
% X and Y parameterization
xb (12+1) = obj.RN-obj.RN*cos (tseg*i2); yb(i2+1l) = obj.RN*sin(tseg*iZ);f
db (i2+1) = obj.RN*tseg*i2;

% Call paneling function to calculate coefficients
[CVFi fm(:,1i2), CVFi cont(:,1i2)] = panelCalc (obj.alph, ob]j.beta,obj. ¥
rseg, thetai (i2)
,yb(i2),yb(i2+1),0bj.RN*tseqg,s,obj.Tw,obj.Ti, obj.sigT, obj.sigN, ¥
aeroTyp) ;
end
% set conditions for straight segments
jl = 1;
for 12 = obj.seg+l:2:2*0bj.pantobj.seqg
% set conditions the same at the beginning and end of each panel
thetai (i2) = Tc(jl);

X and Y parameterization
xb (1i2+1), yb(i2+1), dnew] = PointSlope(xb(i2), yb(i2), H(j1l), thetaiv?

[
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(12));

[

Call paneling function to calculate coefficients

CVFi fm(:,1i2), CVFi cont(:,1i2)] = panelCalc (obj.alph, obj.beta,obj. ¥

rseqg, thetai(i2),yb(i2),yb(i2+1),dnew, s,obj.Tw,0bj.Ti,0bj.sigT,obj.sigN,aeroTyp) ;

o

°

Distance between nodes

db(i2+1) = dnew + db(i2);

Q

°

avoids creating duplicate point at end of panel

if 12 < 2*obj.pantobj.seg-1

xb (12+2) = xb(i2+1); yb(i2+2) = yb(i2+1);
db (i2+2) = db(i2+1);

end

j1 = 31 + 1;

end

% RAero coefficients in velocity vector frame (first term is newtonian
o
o

multiplier, 2 for standard and CpMax for modified)

switch aeroTyp

case 'FM' $ Free molecular

CVF = sum(CVFi fm,2)/ (pi*max (yb)"2);

case 'Cont' % Continuum

CVF = CpMax (1) *sum(CVFi cont,2)/ (pi*max (yb)"2);

case 'both' % Transitional Region

end

)

obj.Xc

)

CBF =

Q

Q

functi
Tw,Ti, sigT, sigN, ae

Q

°

CVFfm = sum(CVFi fm, 2)/ (pi*max (yb)"2);
CVFcont = CpMax (1) *sum(CVFi cont,2)/ (pi*max (yb)"2);

% Bridging function
Pb = sin(pi* (obj.al+tobj.a2*logll (obj.kn)))."2;
CVF = Pb*CVFfm+ (1-Pb) *CVFcont;

% Lengthwise coordinates

= xb; obj.Yc = yb;

% Aero coefficients in body frame

RZZ (obj.alph) ' *RYY (ob7j .beta) ' *CVF;

% Extract body frame coefficients
obj.CA

= CBF(l); obj.CN = CBF(2); obj.CS = CBF(3);

% Extravt Velocity frame coefficients
obj.CD

= CVF(1l); obj.CL = -CVF(2); obj.CZ = CVF(3);
on [CVFi fm, CVFi cont] = panelCalc (alpha,beta, rseg, theta,yvl,y2,d,s, ¥
roTyp)

Calculate area of one panel
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~2);

Atot = pi*d* (y2+yl);

Arseg = Atot/rseg;

% create series of normal angles for rseg number of panels
inc = 2*pi/rseg;

Rang = linspace(0.5*inc,2*pi-0.5*1inc, rseq);

% Local Cone angle
Norm = pi/2-theta;

% Initial normal vector to vehicle surfrace
V = [cos (Norm)

sin (Norm)

017

% Create 3D matrix to revolve normal vector around axisymmetric body
Rx = [ones(l,rseqg); zeros(l,rseqg); zeros(l,rseqg);

zeros (1, rseqg); cos(Rang); sin(Rang);

zeros (l,rseg); -sin(Rang); cos(Rang); ];
Rx = reshape(Rx,3,3,[1);

% Initialize series of normal vectors

7Z = zeros(3,rseqg); T = Z;
Vinf = [-1 0 0]';
for i = l:rseqg

% Revolve around body
Z(:,1) = Rx(:,:,1)*V;

% Rotate normal vector with respect to velocity vector frame
(:,1i) = RYY(beta)*RZZ (alpha)*Z(:,1);

N

if vehicle surface is in the shadow area, no aero forces are

o° o

applied per newtonian mechanics
if Z2(1,1) < O
Zz(:,1) = [0;0;0];
end
% calc tangential vector
if strcmp(aeroTyp, 'FM') || strcmp (aeroTyp, 'both'")

T(:,1) = (Z(:,1)*dot(Vinf,Z(:,1i))-Vinf)/sqrt(l-dot (Vinf,z(:,i))¥

end
end
% Calculate velocity frame coefficients
switch aeroTyp
case 'FM'
CVFi fm = getCoeFm;
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CVFi cont = [0;0;0];
case 'Cont'
CVFi fm = [0;0;0];

CVFi _cont = getCoeCont;
case 'both'
CVFi fm = getCoeFm;
CVFi cont = getCoeCont;
end
% Free Molecular
function cOut = getCoeFm

% Pressure Coefficient

Cp = (2-sigN)*1/s"2*% (s*Z(1,:)/sqrt(pi).*exp(-(s*Z(1,:))."2)+(0.5+¢
(s*Z(1,:))."2) . *(1l+erf(s*Z(1,:)))) ...
+sigN/(2*sA2)*sqrt(Tw/Ti)*(s*Z(l,:).*sqrt(pi).*(l+erf(s*zf
(1,:)))+exp(=(s*Z(1,:))."2))-1/s"2;

% Shear Coefficient
Ct = sigT*cos(asin(z(1,:)))/s.*(1/sqrt(pi)*exp (- (s*Z(1,:))."2)+s*z2¢

cOut = sum((Cp.*Z+Ct.*T) *Arseqg,2);
end
% Continuum (Newtonian)
function cOut = getCoeCont

cOut = sum(Z(1l,:)."2.*Z2*Arseq,2);
end

Free molecular aero coefficients are calculated using a Maxwellian
distribution of specular or diffuse particle collisions

o o°

o\

Kenneth A. Hart, Kyle R. Simonis, Bradley A. Steinfeldt, and Robert ¥
D. Braun.

o)

% “Analytic Free-Molecular Aerodynamics for Rapid Propagation of¥
Resident Space Objects,

” Journal of Spacecraft and Rockets 2018 55:1, 27-36

o
o\

oe  oe

<https://doi.org/10.2514/1.A33606>
end
% Z axis rotation matrix
function Rz = RZZ (ang)
% for a sphere cone EV, 1lift up is CCW rotation of alpha (neg sign
% swap)
Rz = [cos(ang) sin(ang) O
-sin(ang) cos(ang) 0
0 0 11
end
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o)

% Y axis rotation matrix
function Ry = RYY (ang)
Ry = [cos(ang) 0 -sin(ang)
0 1 0
sin(ang) 0 cos(ang)];
end

% Create connecting points for straight segments

function [x2, y2, d] = PointSlope(xl, yl, H, theta)
y2 = H;
x2 = (y2-yl)/tan (theta)+x1;
d = sqgrt((x2-x1)"2+(y2-yl)"2);
end
end
end
methods

Q

% convert to radians

function radConvert (ob7j)
obj.beta = obj.trimBeta*pi/180;
obj.alph = obj.trimAlpha*pi/180;
obj.trimBeta = obj.trimBeta*pi/180;
obj.trimAlpha = obj.trimAlpha*pi/180;
obj.tcl = obj.tcl*pi/180;
obj.tc2 = obj.tc2*pi/180;

end

% setup bridging function

function bridgeSetup (obj)

A = [1 loglO(obj.knFm);1 1loglO (obj.knCont)];
B = [0.5;0];
Al2 = A\B;

obj.al = A12(1); obj.a2 = Al2(2);
end

% Generate Sample plots of Aerodatabase
function plotAero (obj)

% initialize, save current properties in temp variables
alphTemp = obj.alph; KNtemp = obj.kn;

setTemp = obj.rarefiedGasEffects;

obj.Vi; sigTtemp = obj.sigT; sigNtemp = obj.sigN;

viTemp
tWtemp

obj.Tw;

% Preallocate

m = 50; alphaSet = 10*pi/180;

xRange = linspace (0,30,m);

kNrange = logspace (1logl0 (obj.knCont/10),10gl0 (obj.knFm*10),m) ;
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CAfm = zeros(l,m); CAcont = CAfm;
CNfm = CAfm; CNcont = CAfm; CAkn = CAfm; CNkn = CAfm;
for 11 = 1:m

obj. (obj.plotX(2)) = xRange(il)*pi/180;

)

% Continuum Bound

obj.rarefiedGasEffects 'off';
step (obj) ;
CAcont (i1) obj.CA;

CNcont (il) = obj.CN;

Q

% Free Molecular Bound
obj.rarefiedGasEffects
step (obj) ;

CAfm(il) = obj.CA;
CNfm (i1l) obj.CN;

|on|;

end

obj.rarefiedGasEffects = 'on';
obj. (obj.plotX(2)) = alphaSet;

% Vary Knudsen Number

for il = 1:m
obj.kn = kNrange (il);
step (obj) ;
CAkn (1i1l) = obj.CA;
CNkn (il) = ob3j.CN;
end
hold on

o)

% plot geometry

subplot(2,2,1)

plot (obj.Xc,obj.Yc, "LineWidth',2);
daspect ([1 1 11])

grid on

xlabel ('X (m)");

ylabel ('Y (m) ") ;

title ('Geometry');

grid on

% Plot CA

subplot (2,2,2)

plot (xRange, CAcont, xRange, CAfm, 'LineWidth', 2)
title('Axial Force Coefficient')

xlabel ('\alpha (deg) ')

ylabel ('C A')

legend ('Continuum Bound', 'Free Molecular Bound')
grid on
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end

end

end

% Plot CN

subplot (2,2, 3)

plot (xRange,CNcont, xRange,CNfm, 'LineWidth', 2)
title('Normal Force Coefficient')

xlabel ('\alpha (deg)")

ylabel ('C N')

legend ('Continuum Bound', 'Free Molecular Bound')
grid on

% Plot Coefficients vs.
subplot (2,2,4)

semilogx (kNrange, CAkn, kNrange, CNkn, 'LineWidth', 2)

Kn

title(['RAero Coefficients vs. K n at 10',char(176), '\alpha'l)

xlabel ('K n'");

ylabel ('Coefficient');
legend('C A ', 'C N");
grid on

% Restore coefficients
obj
obj

.alph = alphTemp; obj.kn = KNtemp;
setTemp;

obj.sigT = sigTtemp;

.rarefiedGasEffects =
obj.Vi viTemp;
obj.Tw tWtemp;
step (obj) ;

obj.sigN =

sigNtemp;
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classdef AeroPass < OrbitProp

o° o

0% o°

Atmospheric Flight Trajectory Propagation Object (subclass of
OrbitProp)

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

properties

= 2000 % (s) Maximum time for atmospheric flight
)

AeroSpd = 'slow' % fast: fixed L/D, slow: CL,CD,CA, etc. are reclaculated at

each time step

end

methods
function P = Perturb(obj,t,P,R)

AeroStep = 0.5; % Default time step for atmospheric flight

(Access = protected)

% Convert and extract topo coordinates from state object
obj.Time.elTime = t;

obj.State.Reci = R(1:3);

obj.State.Veci = R(4:6);

obj.State.ECItoLLA;

% Extract Vars from shared objects

A = obj.SC DB.A; m = obj.State.ScM; W = obj.Body DB.W;

alt = obj.State.Alt; lat = obj.State.lLat; long = obj.State.Long;
fpa = obj.State.FPA; Az = obj.State.Az; Qmat = obj.State.Qmat;

% Set position/time in GRAM
obj.GRAM.position.height = alt;
obj.GRAM.position.latitude = lat;
obj.GRAM.position.longitude = long;
obj.GRAM.position.elapsedTime = t;
obj.GRAM.body.setPosition (obj.GRAM.position) ;

% update GRAM model
obj.GRAM.body.update () ;

% Extract Winds from GRAM
nsw = obj.GRAM.atmos.nsWind;
eww = obj.GRAM.atmos.ewWind;

vw = obj.GRAM.atmos.verticalWind; % vertical wind

north south wind

o
°
o
°

east west wind

% Velocity vector in the ENZ frame (north south winds are

% negative as north to south and east to west expressed as a positive
% values in GRAM, also convert to km/s

[-eww/1000

-nsw/1000

vw/10007;

Wvec = Qmat*Venz;

Venz
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% Formulate relative velocity vector
Vrel = R(4:6) - cross(W',R(1:3)); % account for planet rotation

o)

Vrel = Vrel - Wvec; % account for winds

Q

vrel = norm(Vrel); % magnitude

Uv = Vrel/vrel; % unit vector
% Uvinr = R(4:6)/norm(R(4:6)) ;

% Relative and Inertial Velocity vectors in Velocity frame
UVE = ROTY (fpa) *ROTZ (90-Az) '*Qmat'*Uv;
% UVFinr = ROTY (fpa) *ROTZ (90-Az) '*Qmat'*Uvinr;

% Calculate effective angle of attack and sideslip angle based
% on winds and relative velocity
dBeta = real(asin(UVF(2))); dAlpha = real(acos(UVF(l)/cos (dBeta)));

% Update Aero coefficients at each timestep
if strcmp (obj.AeroSpd, 'slow'")
% Update aerodatabase with effective angles of attack and
% sideslip
obj.SC DB.Aero DB.beta

obj.SC DB.Aero DB.alph

obj.SC DB.Aero DB.trimBeta + dBeta;
obj.SC DB.Aero DB.trimAlpha + dAlpha;

)

% Update Aero data needed for coefficients

obj.SC DB.Aero DB.g = obj.GRAM.atmos.specificHeatRatio;
aCurr = obj.GRAM.atmos.speedOfSound;

obj.SC DB.Aero DB.Mi = vrel*1000/aCurr;

% Rarefied Gas Effects
if strcmp(obj.SC DB.Aero DB.rarefiedGasEffects, 'on')
% Query additional properties from GRAM
obj.SC DB.Aero DB.Vi = vrel*1000;
obj.SC DB.Aero DB.Rspec = obj.GRAM.atmos.specificGasConstant;
obj.SC DB.Aero DB.Ti = obj.GRAM.atmos.temperature;
% Calculate Knudsen number
obj.chemObj.GRAMatmos = obj.GRAM.atmos;
lamda = obj.chemObj.getMeanFreePath;
Kn = lamda/ob3j.SC_DB.D;
obj.SC DB.Aero DB.kn = Kn;
end
% Calculate aero coefficients
obj.SC DB.Aero DB.step;
end

% Aero Coefficients

CL = obj.SC DB.Aero DB.CL;
CZ = obj.SC DB.Aero DB.CZ;
CD = obj.SC DB.Aero DB.CD;

2 of
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end

end

methods

)

% Extract density from GRAM
rho = obj.GRAM.atmos.density;

% Perturbation vector in the relative velocity frame with aero
% coefficients
PVF = [-CD

CZ

CL]*A/m*0.5*rho* (1000*vrel)~2/1000;
% Convert from relative velocity to inertial velocity frame
PVFinr = ROTZ (dBeta*180/pi) '*ROTY (dAlpha*180/pi) *PVF;

% Convert to ECI frame
PECI = Qmat*ROTZ (90-Az) *ROTY (fpa) ' *PVFinr;

% Net Perturbation vector
P = P + PECI;

% Setup function, initialize chemistry object

function setupfun (obj)

end
end
end

obj.PhysTyp = 'RAero';

obj.tstep = obj.AeroStep;
obj.chemObj.GRAMatmos = obj.GRAM.atmos;
obj.chemObj.setupInds;
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classdef Aerothermal < matlab.System
Primary trajectory post-processer and plotter, re-runs trajectory
position and time data through GRAM to calculate aerothermal and any

o° o o°

other time history results

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o°  oP

% Public, tunable properties

properties
TrajPoint % subclass to perform aerotherm calculations at one trajectory point
plotYN = true % switch to turn on or off plotting

end

% Shared handle objects
properties
State % handle object for current spacecraft state
Results % handle object for trajectory results/outputs
Body DB % handle object for planetary body parameters database
SC_DB % handle object for spacecraft parameters database
GRAM % handle object for the GRAM interface
Time % handle object for tracking elapsed time and time dependent planetv
orientation
chemObj % handle object for atmospheric chemistry calculations
plotData % handle object for managing plotting options
end

methods

% Constructor: Pass State and Result Handle objects

function obj = Aerothermal (varargin)

% No inputs case, creates default reference objects internally

if nargin == 0

% Provide values for superclass constructor

% and initialize other inputs

obj.State = SCState;

obj.Results = TrajResults;

obj.Body DB = BodyInputs;

obj.SC DB = SCInputs;

obj.GRAM = gramMgr;

obj.Time

obj.chemObj = chemMgr;

obj.plotData = plotProps;

timeMgr;

% Individaul reference objects passed to constructor as inputs args
elseif nargin == 8
% When nargin ~= 0, assign to cell array,
% which is passed to supclass constructor
for i1 = 1:8
if isa(varargin{il}, 'SCState'); obj.State = varargin{il};
elseif isa(varargin{il}, 'TrajResults'); obj.Results = varargin{il};
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elseif isa(varargin{il}, 'BodyInputs'); obj.Body DB = varargin{il};
elseif isa(varargin{il}, 'SCInputs'); obj.SC DB = varargin{il};
elseif isa(varargin{il}, 'gramMgr'); obj.GRAM = varargin{il};
elseif isa(varargin{il}, 'timeMgr'); obj.Time = varargin{il};
elseif isa(varargin{il}, 'chemMgr'); obj.chemObj = varargin{il};
elseif isa(varargin{il}, 'plotProps'); obj.plotData = varargin{il};
else; error('Invalid shared object inputs');
end

end

% Reference objects passed as a masterHand encapsulating object

elseif nargin == 1 && isa(varargin{l}, 'masterHand')
obj.State = varargin{l}.State;
obj.Results = varargin{l}.Results;

obj.Body DB = varargin{l}.Body;
obj.SC DB = varargin{l}.S C;
obj.GRAM = varargin{l}.GRAM;
obj.Time = varargin{l}.Time;
obj.chemObj = varargin{l}.chemData;
obj.plotData = varargin{l}.plotData;

else
error ('Invalid Constructor Inputs')

end

end
end

methods (Access = protected)
function setupImpl (obj)
% Perform one-time calculations, such as computing constants
setupfun (obj) ;
end

function stepImpl (obj)

% Will only plot results for atmospheric flight
if strcmp(obj.Results.Type, 'Aero')

% Save current vehicle state to reset to after aerothermal
% calculations

obj.State.saveState;

Loop through generated trajectory to post process

o° o

aerothermal and other results

t = obj.Results.t; n = length(t);
Js = zeros(n,1);

out (n) = obj.TrajPoint.step(1l);
for i1l = 1l:length(t)

out (i1l) = obj.TrajPoint.step(il);
gsI = out(il) .gs;
if i1 > 1
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Js(il) = Js(il-1) + gsI*(t(il)-t(il-1)); % total heat load
end
end

% Reset State
obj.State.reset;

% Reset fallback state to beginning of simulation
obj.State.revertState;

% Populate results

obj.Results.alt = [out.alt];

obj.Results.gs = [out.gs];

obj.Results.gsMax = max([out.gs]);

obj.Results.Jds = Js;

obj.Results.jsMax = Js(end);

obj.Results.fpa = [out.fpal;
obj.Results.fpal = obj.Results.fpa(l);
obj.Results.rho = [out.rho];
obj.Results.Kn = [out.kn];

obj.Results.BC = obj.SC DB.BC;

Calculate delta V lost with each pass (change in velocity

o°  oP

at periapsis)

mu = obj.Body DB.mu;

[aPre,ePre] = ECItoKep (obj.Results.Rt(1,1:3)"',0bj.Results.Rt(1,4:6)',¢
mu) ;

[aPost,ePost] = ECItoKep (obj.Results.Rt(end,1:3)"',obj.Results.Rt(end,4:¥¢
6)',mu) ;

rpPre = aPre* (l-ePre);

rpPost = aPost* (l-ePost);

Vpre = sqrt (2*mu/rpPre-mu/aPre) ;

Vpost = sqrt(2*mu/rpPost-mu/aPost) ;

obj.Results.dVaero = Vpre-Vpost;

obj.Results.tPost = 2*pi/sqrt (mu/aPost”"3);

% Plot results
if obj.plot¥N
obj.plotData.step
end
end
end
end

methods

function setupfun (obj)
obj.TrajPoint = AerothermStep (obj) ;
end
end
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end
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classdef AerothermStep < Aerothermal
Sub class of aerothermal which calls GRAM for one trajectory point

o° o

and generates aerothermal and other time history results

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

0% o°

methods
% Constructor
function obj = AerothermStep (varargin)
if nargin == 1 && isa(varargin{l}, '"Aerothermal')
obj.State = varargin{l}.State;
obj.Results = varargin{l}.Results;
obj.Body DB = varargin{l}.Body DB;
obj.SC DB = varargin{l}.SC DB;
obj.GRAM = varargin{l}.GRAM;
obj.Time = varargin{l}.Time;
obj.chemObj = varargin{l}.chemObj;
else
error ('Invalid Constructor Inputs')
end
end
end

methods (Access = protected)

function outStrct = stepImpl (obj,inc)
% Convert and extract topo coordinates from state object

obj.Time.elTime = obj.Results.t (inc);

obj.State.Reci = obj.Results.Rt(inc,1:3)"';

obj.State.Veci = obj.Results.Rt(inc,4:6)"';

obj.State.ECItoLLA;

% Extract Vars from shared objects

W = obj.Body DB.W; k = obj.Body DB.k; QOmat = obj.State.Qmat;

alt = obj.State.Alt; lat = obj.State.lLat; long = obj.State.Long;
t = obj.Results.t (inc); Reci = obj.State.Reci;

Veci = obj.State.Veci; Rn = obj.SC DB.RN;

% Set position/time in GRAM
obj.GRAM.position.height = alt;
obj.GRAM.position.latitude = lat;
obj.GRAM.position.longitude = long;
obj.GRAM.position.elapsedTime = t;
obj.GRAM.body.setPosition (obj.GRAM.position) ;

% update GRAM model
obj.GRAM.body.update () ;

% Calculate Winds
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end

end

methods

end
end

Q

nsw = obj.GRAM.atmos.nsWind; % north south wind
eww = obj.GRAM.atmos.ewWind; % east west wind

vw = obj.GRAM.atmos.verticalWind; % vertical wind

% Velocity vector in the ENZ frame (north south winds are
% negative as north to south and east to west expressed as a positive
% values in GRAM, also convert to km/s
Venz = [-eww/1000
-nsw/1000
vw/1000];
Wvec = Qmat*Venz;

Q

% Formulate relative velocity vector

Vrel = Veci - cross(W',Reci); % account for planet rotation
Vrel = Vrel - Wvec; % account for winds

vrel norm (Vrel); % magnitude

% Extract Knudsen Number
obj.chemObj.GRAMatmos = obj.GRAM.atmos;
lamda = obj.chemObj.getMeanFreePath;

Kn = lamda/obj.SC DB.D;

% Extract density from GRAM

rho = obj.GRAM.atmos.density;

% calculate stagnation heat flux (sutton graves correlation)
gs = k*sqgrt(rho/Rn)* (vrel*1000)"3/1e4;

% Struct can be populated with more time resolved properties (long, lat,
% stag pressure, temperature, etc.

outStrct.gs = gs;

outStrct.alt = obj.State.Alt;

outStrct.fpa = obj.State.FPA;

outStrct.rho = rho;

outStrct.kn = Kn;

% Setup Chemistry solver

function setupfun (obj)

end

obj.chemObj.GRAMatmos = obj.GRAM.atmos;
obj.chemObj.setupInds;
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classdef BodyInputs < matlab.System

o)

% Class that handles planetary constants and associated properties

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o° o

o\

Public, tunable properties
properties
mu $km~3/s"2 G*M so specific grav constant

Re % (km) primary body equatorial radius
Rp % (km) primary body polar radius

W % Planet angular velocity vector (rad/s)
J2 % 2nd Zonal Harmonic

k % Aerothermal Constant

AltThr = 150; % (km) altitude threshold where drag comes into effect

termSpd = 1; % km/s if velocity falls below this value (in aeropass) simulation¥
is terminated

planModel = 'ellipse' % planet shape model (sphere or ellipse) a
% spherical model assumes the equatorial

radius Rp is the spherical radius

RGB % Planet Display Color
end

Observable property so other objects can update when planet is
changed

properties (SetObservable, AbortSet, Dependent)

planet

o
°
o
°

end

properties (Access = private)
storePlanet
end

methods (Access = protected)
% Output properties as struct if necessary
function BodyDB = stepImpl (obj)
BodyDB = struct;
publicProperties = properties (obj);
for fi = 1l:numel (publicProperties)
BodyDB. (publicProperties{fi}) = obj. (publicProperties{fi});
end
end
% Save Object
function s = saveObjectImpl (obj)
s = saveObjectImpl@matlab.System(obj);
s.storePlanet = obj.storePlanet;
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end

% Load Object
function loadObjectImpl (obj,s,isInUse)
loadObjectImpl@matlab.System(obj,s,isInUse) ;
obj.storePlanet = s.storePlanet;
end
end

methods

% Planet Shape Model
function set.planModel (obj,val)
if strcmp(val, 'ellipse') || strcmp(val, 'sphere')
obj.planModel = val;
else
error ('Planet shape model must either be "ellipse" or "sphere"f
lowercase"')
end
end
% Pull planet string from privated non-dependent property
function planetOut = get.planet (obj)
planetOut = obj.storePlanet;
end

Planet set method containing all planetary constants
Source: NASA Planetary Fact Sheet
https://nssdc.gsfc.nasa.gov/planetary/factsheet/
function set.planet (obj,body)

obj.storePlanet = body;

switch body

o° o° o°

case 'Venus'
obj.mu = 324858.592; %km"3/s"2 G*M so specific grav constant
obj.Re = 6051.8; % (km) primary body radius
obj.Rp 6051.8; % (km) primary body polar radius
obj.W = [ 0 0 -2.9924e-07]; % Planet angular velocity (rad/s)
obj.J2 = 4.458E-06; % 2nd Zonal Harmonic
obj.k = 0.00019; % Aerothermal Constant
obj.RGB = [0.9290 0.6940 0.1250];
case 'Uranus'

obj.mu = 5.7940e6; %km"3/s"2 G*M so specific grav constant
obj.Re = 25559; % (km) primary body equatorial radius
obj.Rp 24973; % (km) primary body polar radius
obj.W = [ 0 0 -1.0124e-04]; % Planet angular velocity (rad/s)
ob7j. 3343.43E-06; % 2nd Zonal Harmonic
obj.k = 8.645E-5; % Aerothermal Constant
obj.RGB = [192 236 240]1/255;
case 'Neptune'
obj.mu = 6.8351e6; %km"3/s”2 G*M so specific grav constant

<
)
Il
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obj.Re 24764; % (km) primary body equatorial radius
obj.Rp = 24341; % (km) primary body polar radius
obj.W [ 0 0 1.0834e-04]; % Planet angular velocity (rad/s)
obj.J2 = 3411E-06; % 2nd Zonal Harmonic
obj.k = 8.645E-5; % Aerothermal Constant *unverified for neptune, ¢
set the same as Uranus
obj.RGB = [90 145 226]/255;

case 'Jupiter'

obj.mu

obj.Re 71492; % (km) primary body equatorial radius

obj.Rp = 66854; % (km) primary body polar radius

obj.W = [ 0 0 1.7584e-04]1; % Planet angular velocity (rad/s)

obj.J2 = 14736E-06; % 2nd Zonal Harmonic

obj.k = 8.645E-5; % Aerothermal Constant *unverified for neptune, ¥
set the same as Uranus

obj.RGB = [220 174 66]/255;

case 'Earth'

126.687e6; %$km”"3/s"2 G*M so specific grav constant

obj.mu 0.39860e6; %$km"3/s"2 G*M so specific grav constant
obj.Re = 6378.137; % (km) primary body equatorial radius
obj.Rp = 6356.752; % (km) primary body polar radius
obj.W = [ 0 0 7.2921e-05]; % Planet angular velocity (rad/s)
obj.J2 = 1082.63E-06; % 2nd Zonal Harmonic
obj.k = 1.7415e-4; % Aerothermal Constant
obj.RGB = [58 218 250]/255;

case 'Mars'
obj.mu = 0.042828e6; %km"3/s"2 G*M so specific grav constant
obj.Re = 3396.2; % (km) primary body equatorial radius
obj.Rp = 3376.2; % (km) primary body polar radius

obj.W = [ 0 0 7.0882e-05]; % Planet angular velocity (rad/s)
obj.J2 = 1960.45E-06; $ 2nd Zonal Harmonic

obj.k = 1.9027e-4; % Aerothermal Constant

obj.RGB = [240 118 47]/255;

case 'Titan'
obj.mu = 0.0089781384e6; %km"3/s”2 G*M so specific grav constant
obj.Re = 2.5747e+03; % (km) primary body equatorial radius
obj.Rp = 2.5747e+03; % (km) primary body polar radius
obj.W = [0 0 4.5607e-06]; % Planet angular velocity (rad/s)
obj.J2 = 0.315E-06; % 2nd Zonal Harmonic
obj.k = 1.9e-4; % Rerothermal Constant
obj.RGB = [250 199 58]/255;
end
end
end
end
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classdef Burn < OrbitProp
Propulsive Maneuvers Trajectory Propagation Object (subclass of
OrbitProp)

o° o

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

0% o°

methods
function setupfun (obj)
obj.PhysTyp = 'Burn';
end
end

methods (Access = protected)

% Main Integration replaces superclass to allow for finite time burn
function mainInt (ob7j)
% Extract Vars from shared objects
Reci = obj.State.Reci; Veci = obj.State.Veci;
t _curr = obj.State.elTime; Tb = obj.State.Tb;
m o = obj.State.ScM;
% Warn user if burn time is set to 0 and skip segment
if Tb == 0
warning ('Burn time (Tb) must be greater than zero, skipping burn¥
segment') ;
return;
end

% establish timeframe accounting for possibility of burn time being
% less than 1 time step
tsteb b = Tb*obj.tstep f; % rounding creates potential inaccuracy
% Setup main trajectory segment timespan
if strcmp(obj.calcSpd, 'continuous')
tspan = t curr:tsteb b:t curr+Tb;
elseif strcmp(obj.calcSpd, 'jump')
tspan = [t _curr t curr + Tb];
else
error ('property "calcSpd" set incorrectly')
end

% Main trajectory integrator call
[t,Rt] = obj.ODEfun (@ (t,R) TwoBody(obj,t,R),tspan, [Reci; Veci; m_o],obj.l
optsl) ;
% Populate Results if necessary
if strcmp (obj.resultPop, 'on')
obj.Results.t = t; obj.Results.Rt = Rt; obj.Results.te = 0; obj.¥
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Results.ye = 0; obj.Results.ie = 0;
obj.Results.Tb Tb; obj.Results.dVec = obj.State.dVec;
% calculate delta V of burn

ISP = obj.SC DB.ISP; go = obj.SC DB.go; me = Rt(end,7); mf = Rt(1,7);

obj.Results.dV = ISP*go*log (mf/me) ;

end
% Populate shared handle objects with new trajectory data
obj.State.Reci = Rt(end,1:3)"';

obj.State.Veci = Rt(end,4:6)"';

obj.State.ScM = Rt (end,7);

obj.State.Tb = 0;

obj.Time.elTime = t (end);

% Update State
obj.State.step;

end

function P = Perturb(obj,~,P,R)

% Extract Vars from state object
dVec = obj.State.dVec;
v = norm(R(4:6));
% Set thrust value
if strcmp(obj.Thruster, 'Low')

T = obj.SC DB.LowThr;
elseif strcmp (obj.Thruster, 'High')

T = obj.sSC DB.Thr;
else

error ('property "Thruster" set incorrectly')
end
% Purturbation Vector

Tvec = T/ (1000*R(7) *v) ;
P =P + [Tvec*R(4)*dVec (1)
Tvec*R (5) *dVec (2)
Tvec*R(6) *dVec (3) ];
end

end

end
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classdef chemMgr < matlab.System

o)

% Manages all atmospheric chemistry calcuations,

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems

o° o

o\

and Technology Division, May 2025, MATLAB 2024Db.

Public, tunable properties

properties

end

eqChem = 'off'

GRAMatmos % GRAM atmospheric state object

inputSpecies % Property database for species supported by GRAM
speciesInd logical % Filters GRAM atmos state for consituient gases
speciesProps % Names of species present in the current atmosphere

)

len % Number of species present

methods

end

% Function to calculate the mean free path
function lamda = getMeanFreePath (obj)
spNames = obj.speciesProps;
sigTot = 0;

for il = 1l:0bj.len

% Get Species data from GRAM
species = obj.GRAMatmos. (spNames{il});

Compute a weighted average kinetic cross section based on

o°  oP

the species mole fractions
o)

dK = obj.inputSpecies. (spNames{il}) .kinDia; % kinetic diameter
sigTot = (dK*le-12)"2*species.moleFraction + sigTot;

end

% Number density from GRAM
n = obj.GRAMatmos.totalNumberDensity;

% Final mean free path
lamda = 1/ (sqgrt(2)*pi*sigTot*n);
end

methods

Q

% Import species properties
function obj = chemMgr

obj.inputSpecies = inputSpecies;
end

% Initialize the chemistry calculations by predetermining which
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% species are present in the current planetary atmosphere, ignores
% species that are not present
function setupInds (obj)
props = properties (obj.GRAMatmos) ;
% Filter by GRAM consituent gas objects
for il = 1:length(props)
if isa(obj.GRAMatmos. (props{il}), 'clib.GRAMmi.GRAM.ConstituentGas') &&¥
obj.GRAMatmos. (props{il}) .isPresent
obj.speciesInd(il)

true;
else
obj.speciesInd(il) = false;
end
end
% Names and number of species
obj.speciesProps = props (obj.speciesInd);
obj.len = length(obj.speciesProps);
end
end
end
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% Simple example script of a 1lift up and lift down simulation of a Venus

aerocapture to 500000 km

clear

close all

% Load file and set all handle objects to base workspace
load ('VenusAerocapt.mat')

saveFile.getHands

% Set apoapsis target for optimizer

apoapsis_targ = 500000;

ra targ = apoapsis targ + State.Rad;

\

% LIFT DOWN CASE

% Optimizer input format

altOpt = optoIn('order','AO','targ',ra targ, 'objective', 'ra','adjust', '"FPA'");

Q

% Optimize trajectory
missionPlan.lookForward (altOpt) ;
% Atmospheric Entry Pass

aeroProp.step;

% Post process trajectory, aerothermal calcs, plots
aeroTherm.step;

% 3D trajectory plot and store results
visPlot.step

% Set coast orbit to stop at apoapsis
orbProp.EventTyp = 'Re';

% Propagate coast orbit and plot result
orbProp.step;

visPlot.step

% Reset state

State.reset

% LIFT UP CASE

% Set angle of attack
S C.alpha = 10;

% Optimize Trajectory
missionPlan.lookForward(altOpt) ;

Q

% Propagate Atmospheric entry
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aeroProp.step;
aeroTherm.step;
visPlot.step

orbProp.EventTyp = 'Ae';

)

% Propagate coast orbit
orbProp.step;
visPlot.step
State.reset

o)

visPlot.AeroTab;

% Generate output summary table
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classdef gramMgr < matlab.System
% Handles the GRAM interface and all initializations

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o° o

o\

Public, tunable properties
properties
% Below parameters are GRAM interface parameters

Q

inputParameters % GRAM inputs

reader % Namelist reader

body % Planet specific object

ttime % Start time object

position % position object

atmos % atmosphere object, contains all relevant atomospheric data normally in¥
output file

Time % Time manager object

end

% Pre-—-computed constants or internal states
properties (Dependent)

planet
end

properties (Access = private)
storePlanet
end

methods (Access = protected)
function s = saveObjectImpl (obj)
s.Time = obj.Time;
end
end

methods
function planetOut = get.planet (obj)
planetOut = obj.storePlanet;
end

% Sets up GRAM based on planet entry
function set.planet (obj,body)
if isempty(obj.Time); error ('Time handle not set in GRAM manager class') ;¥

end

obj.storePlanet = body;
switch body
case 'Venus'
obj.inputParameters = clib.GRAMmi.GRAM.VenusInputParameters();
obj.reader = clib.GRAMmi.GRAM.VenusNamelistReader () ;
obj.body = clib.GRAMmi.GRAM.VenusAtmosphere () ;
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case 'Uranus'
obj.inputParameters = clib.GRAMmi.GRAM.UranusInputParameters();
obj.reader = clib.GRAMmi.GRAM.UranusNamelistReader () ;
obj.body = clib.GRAMmi.GRAM.UranusAtmosphere () ;

case 'Neptune'
obj.inputParameters = clib.GRAMmi.GRAM.NeptunelInputParameters();
obj.reader = clib.GRAMmi.GRAM.NeptuneNamelistReader () ;
obj.body = clib.GRAMmi.GRAM.NeptuneAtmosphere () ;

case 'Jupiter'
obj.inputParameters = clib.GRAMmi.GRAM.JupiterInputParameters();
obj.reader = clib.GRAMmi.GRAM.JupiterNamelistReader () ;
obj.body = clib.GRAMmi.GRAM.JupiterAtmosphere () ;

case 'Earth'
obj.inputParameters = clib.GRAMmi.GRAM.EarthInputParameters();
obj.reader = clib.GRAMmi.GRAM.EarthNamelistReader () ;
obj.body = clib.GRAMmi.GRAM.EarthAtmosphere () ;

obj.inputParameters.useNCEP = true;
% inputParameters.NCEPPath = '../NCEPdata/FixedBin';
obj.inputParameters.dataPath = 'C:¢

\Users\bohda\OneDrive\Desktop\SJSU\AE295\Simulation Draft VO5\GRAM Matlab\GRAMmi';
case 'Mars'
obj.inputParameters = clib.GRAMmi.GRAM.MarsInputParameters () ;
obj.reader = clib.GRAMmi.GRAM.MarsNamelistReader () ;
obj.body = clib.GRAMmi.GRAM.MarsAtmosphere () ;
obj.inputParameters.dataPath = "C:¢
\Users\bohda\OneDrive\Desktop\SJSU\AE295\Simulation Draft VO5\GRAM Matlab\GRAMmi\data";
case 'Titan'
obj.inputParameters = clib.GRAMmi.GRAM.TitanInputParameters();
obj.reader = clib.GRAMmi.GRAM.TitanNamelistReader () ;
obj.body = clib.GRAMmi.GRAM.TitanAtmosphere() ;
end

obj.reader.tryGetSpicePath (obj.inputParameters) ;
% Create a venus atmosphere object
obj.body.setInputParameters (obj.inputParameters);
% Set the start time of the trajectory

obj.ttime = clib.GRAMmi.GRAM.GramTime () ;

obj.ttime.setStartTime (0bj.Time.JDO, clib.GRAMmi.GRAM.GRAM TIME SCALE.UTC, ¢
clib.GRAMmi .GRAM.GRAM TIME FRAME.ERT) ;

obj.body.setStartTime (obj.ttime) ;

% create position and atmosphere output objects
obj.position = clib.GRAMmi.GRAM.Position();
obj.atmos = obj.body.getAtmosphereState ()

% Display version and confirmation message
fprintf ('GRAM Initialized Sucessfully\n')
disp (obj.body.getVersionString()) ;

end
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end
end
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classdef InitState < matlab.System

o° o

configuration is created

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

0% o°

o

Public, tunable properties
properties
planet = 'Venus';

% TOPOCENTRIC COORDINATES

FPA = -5; % Flight Path Angle

V = 11; % Velocity Magnitude

Alt = 150; % Altitude
5

Lat = 5; % Latitude
Long = 47; % Longitude
Az = =-90; % Azimuth

% ORBITAL ELEMENTS
e = 1.3074; % eccentricity

minalt = 97.6157; % altitude at periapsis Change between 120 and 150 km

o

inc inclination
Arg
Asc

theta = 137; % true anamoly

~e

arguement of periapsis

Il
o O O
~

~.
o° o

ascension of ascending node

% POSITION AND VELOCITY VECTORS
Reci

o)

Vehicle Position Vector

Veci % Vehicle Velocity Vector

% START TIME
startTime = datetime (2041,05,20,9,3,8);
JD = 0; % Julian Date

COORDINATE SELECTION

o
°
o
°

and velocity vector
Opt = 'Topo'

end
methods (Access = protected)
function stepImpl (obj,Body,State, Time, GRAM)
% Set planet

Body.planet = obj.planet;
Time.planet = obj.planet;

Initial state class for handling default values when a new simulation

Topo for topocentric, Kepl for keplerial/orbital elements, ECIv for positon«
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% Set initial Julian date

if isempty(obj.JD) || obj.JD == 0
Time.JDO = juliandate(obj.startTime);
Time.startTime = obj.startTime;

else

Time.JDO = obj.JD;
end

% Update GRAM after planet and Julian date have been set
GRAM.planet = obj.planet;

% Intialize state
State.step;

% Populate the rest of state based on coordinate selection
switch obj.Opt
case 'Topo'
State.FPA = obj.FPA;
State.V = obj.V;
State.Alt = obj.Alt;
State.lLat obj.Lat;
State.Long = obj.Long;
State.Az = obj.Az;
case 'Kepl'

Q

rp = obj.minalt+Body.Re; % periapsis
State.a = rp/(l-obj.e);
State.e = obj.e;
State.inc = obj.inc;
State.Arg obj.Arg;
State.Asc = obj.Asc;
State.theta = obj.theta;
case 'ECIv'
State.Reci = obj.Reci;
State.Veci = obj.Veci;

otherwise
error ('Invalid Input Coordinate Option')
end
end
end
end
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classdef inputSpecies < matlab.System
Database for molecular weights and kinetic diameters of all species
listed within GRAM.

Reference: https://cccbdb.nist.gov/introx.asp

Future Work: Merge properties with those provided in GRAM or

o0 o° o 00 o o° o°

in McBride CEA coefficients Database

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o°  oP

o

Public, tunable properties
properties

species
end

properties (Access=private)

o\

Reduction in kinetic diameter for free atomic species vs. their
diatomic molecules, initially used the spacing between atoms as
an offset however using the same diameter showed better agreement

o° o° oe

with literature on knudsen number calculations

hOffset = 74.14

% o0Offset = 120.75
% nOffset = 109.77
hOffset = 0
oOffset = 0
nOffset = 0
end
methods
function fl1 = argon(~)
fl.molWeight = 39.948;
fl.kinDia = 340; % picometer (pm)
end
function fl = carbonDioxide (~)
fl.molWeight = 44.0095;
fl.kinDia = 330; % picometer (pm)
end
function fl = carbonMonoxide (~)
fl.molWeight = 28.0101;
fl.kinDia = 376; % picometer (pm)
end

function fl = dihydrogen (~)
fl.molWeight = 2.01588;

Q

fl.kinDia = 289; % picometer (pm)



5/11/25 7:59 PM C:\Users\bohda\OneDriv...\inputSpecies.m 2 of 3

end

function fl = dinitrogen (~)
fl.molWeight = 28.0134;
fl.kinDia = 364; % picometer (pm)
end

function fl = dioxygen (~)
fl.molWeight = 31.9988;
fl.kinDia = 346; % picometer (pm)
end

function f1 = helium(~)
fl.molWeight = 4.002602;
fl.kinDia = 260; % picometer (pm)
end

function fl = hydrogen (obj)

fl.molWeight = 1.00794;

fl.kinDia = 289-0bj.hOffset; % picometer (pm)
ref: https://cccbdb.nist.gov/exp2x.asp
dN2 - distance between atoms

o° o°

end

function fl1 = methane (~)

fl.molWeight = 16.0425;

fl.kinDia = 380; % picometer (pm)
end

function fl = nitrogen (obj)

fl.molWeight = 14.0067;

fl.kinDia = 364-0bj.nOffset; % picometer (pm)
end

function fl = oxygen (obij)

fl.molWeight = 15.9994;

fl.kinDia = 346-0bj.o0ffset; % picometer (pm)
end

function fl1 = ozone (~)

fl.molWeight = 47.9982;

fl.kinDia = 344; % picometer (pm)
end

function fl = nitrousOxide (~)
fl.molWeight = 44.0128;
fl.kinDia = 330; % picometer (pm)
end

function f1 = water(~)
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fl.molWeight = 18.0153;
fl.kinDia = 265; % picometer (pm)
end
end
end



5/11/25 8:04 PM C:\Users\bohda\OneDrive\...\masterHand.m 1 of

classdef masterHand < matlab.System
All encompassing system object that sets up and contains all handle

o° o

objects necessary to run the simulation.

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

0% o°

o

Public, tunable properties
properties
S C % spacecraft inputs class
Body $ body inputs
State % current spacecraft state
Results % Results object
GRAM % GRAM interface object
Time $ handle object for tracking elapsed time and time dependent planet¥
orientation
Inputs % Sets up default values when setting up a new configuration
orbProp % Coast trajectory
aeroProp % Atmospheric flight trajectory
burnProp % Burn/Maneuver Trajectory
aeroTherm % Aerothermal postprocessor
visPlot % 3D Trajectory plotter and results storage
missionPlan $ Trajectory optomization and multi-pass mission planner
plotData % Handle object containing all 2D trajectory plot options
chemData % handle object for atmospheric chemistry calculations

end

% Pre-—-computed constants or internal states
properties (Access = private)
lis event.proplistener % listeners for S C property changes

configWindow % object for configuration editor window
end

methods

function obj = masterHand
% Create low level shared handles
obj.S C = SCInputs;
obj.Body = BodyInputs;
obj.State = SCState;
obj.Results = TrajResults;
obj.Time = timeMgr;
obj.Inputs = InitState;
obj.GRAM = gramMgr;
obj.chembData chemMgr;
obj.plotData plotProps;

% Initialize low level shared handles
stateSetup (ob7j)

obj.GRAM.Time = obj.Time;

obj.S C.step;
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o)

% Create orbit propagation shared handles
obj.orbProp = OrbitProp(obj):;

obj.aeroProp = AeroPass (obj);

obj.burnProp = Burn (obj);

obj.aeroTherm = Aerothermal (obj);

obj.visPlot = TrajPlot (obj);

% Create mission planner

obj.missionPlan = MissionPlan (obj) ;

% populate shared objects with input parameters
processInputs (obj) ;

% create listeners to automatically update
listenScInputs (obj) ;

end

% Setup state object

function stateSetup (obj)
obj.State.ScM = obj.S C.m o; % Initialize S/C mass
obj.State.setBody (obj.Body) ;
obj.State.setTime (obj.Time) ;

end

% Automatically flattens class structure and populates workspace

% with shared objects

function getHands (obj)
publicProperties = properties (obj);
for fi = l:numel (publicProperties)

assignin('base',publicProperties{fi},obj. (publicProperties{fi}))

end

end

% Setup Default Values

function processInputs (obj)

% Initialize body, state and time shared handle objects
obj.Inputs.step (obj.Body,obj.State,ob]j.Time, obj.GRAM) ;
% Uodate and save initial state

obj.State.step;

obj.State.saveState;

obj.Time.step;

obj.plotData.Results = obj.Results;
end

Opens a configuration editor window and populates with current
setup
function configEditor (ob7j)

o
°
o
°

obj.configWindow = configurationEditor;
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obj.configWindow.getData (obj) ;
end
% Save a default values class
function savelInputs (obj)
savelnputs = obj.Inputs;
save ('SimInputs', 'savelnputs');
end
% Load a default values class
function loadInputs (ob7j)
inputsIn = load('SimInputs', 'savelnputs');
obj.Inputs = inputsIn.savelnputs;
processInputs (obj) ;
end

Set the integration tolerance for all three trajectory
propagation objects
function setIntTol (obj, relTol,absTol)
obj.orbProp.RelTol = relTol; obj.orbProp.AbsTol = absTol;
obj.aeroProp.RelTol = relTol; obj.aeroProp.AbsTol = absTol;
obj.burnProp.RelTol = relTol; obj.burnProp.AbsTol = absTol;
end

o
°
o
°

Change the ODE solver function for all three trajectory
propagation objects
function setODEfun (obj, func)
obj.orbProp.0ODEfun = func;
obj.aeroProp.ODEfun
obj.burnProp.ODEfun
end

o°  oP

func;

func;

function listenScInputs (obj)

% Create listeners for all Spacecraft object observable
% properties
propsSC = properties (obj.S C);
for i1 = 1:length (propsSC)
obj.lis(il) = addlistener(obj.S_C,propsSC{il},'PostSet',@(src,evnt)obj.l
scEvents (src,evnt,obj)) ;
end

% Upate the aerodynamics bridging function if the knudsen
% number bounds are changed

obj.lis(il+1l) = addlistener(obj.Sic.AeroiDB,'knFm','PostSet',@(src,evnt)K
obj.scEvents (src,evnt,obj));
obj.lis(il1+2) = addlistener(obj.S_C.Aero_DB,‘knCont',‘PostSet',@(src,evnt)f

obj.scEvents (src,evnt,o0bj));

Q

% Update time and GRAM objects if planet is changed
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obj.lis(il1l+3) = addlistener (obj.Body, 'planet', 'PostSet',Q (src,evnt)obj.¥
scEvents (src,evnt,obj)) ;
end
end

methods (Static)
function scEvents (src,evnt,master)

Q

% terminology

rocket = ["ISP","Thr","LowThr"];

geometry = ["D","halfAng","RN","alpha", "beta"];
KN = ["knFm", "knCont"];

mass = "m o"; planSet = "planet";

)

% Object triggering event
inOBJ = evnt.AffectedObject;

% update s/c rocket engine parameters if a property is changed
if contains (src.Name, rocket)
inOBJ.updateEnginePerf;
% update s/c geometry and aero parameters if a property is changed
elseif contains (src.Name, geometry)
inOBJ.updateGeometry;
inOBJ.Aero DB.radConvert;
inOBJ.Aero DB.step;
inOBJ.updateBC;
% update ballistic coefficient and mass in state object
elseif contains (src.Name,mass)
inOBJ.updateBC;
master.State.ScM = inOBJ.m o;
% update bridging function if kn limits are changed
elseif contains (src.Name, KN)
inOBJ.bridgeSetup;
% update planet in GRAM and time objects if body is updated
elseif strcmp(src.Name,planSet)
master.Time.planet = inOBJ.planet;
master.GRAM.planet = inOBJ.planet;

end
end
end

methods (Access = protected)

% Save a master handle object which effectively saves the entire
% configuration and current state of the simulation
function s = saveObjectImpl (obj)

s = saveObjectImpl@matlab.System(obj) ;
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end
% Load a master handle object
function loadObjectImpl (obj,s,isInUse)
loadObjectImpl@matlab.System(obj,s,isInUse) ;
% Re-initialize GRAM since GRAM C++ objects are not saved
obj.GRAM = gramMgr;
obj.GRAM.Time = obj.Time;
obj.GRAM.planet = obj.Body.planet;

obj.orbProp.GRAM = obj.GRAM;

obj.aeroProp.GRAM = obj.GRAM;
obj.burnProp.GRAM = obj.GRAM;
obj.aeroTherm.GRAM = obj.GRAM;

% Re-populate listeners
listenScInputs (obj);
end
end
end
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classdef MissionPlan < matlab.System
Contains all trajectory optomization functions and some specific
manuever calculations to support a multi-pass aerocapture orbital

o° o o°

insertion simulation.

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o°  oP

Mission parameters geared towards a multi-pass

o° oo

orbital insertion
properties
raPost = 500000; % Apoapsis of initial post capture orbit (km)
TCMdelay = 2500; % (s) initial cruise prior to TCM
% Set calc speed to jump for faster calculation of final states for
% trajectory optomization (accuracy may suffer)
optsl = struct¥
('calcSpd', 'continuous', 'EventTyp', 'ARero', 'output', 'off', 'resultPop', 'off');
opts2 = structy
('calcSpd', 'continuous', 'EventTyp', 'RAe', 'output', 'off', 'resultPop', 'off'");

psiInt = [-180 180]; % initial attidude guess for burn attitude optomizer
raTarg % vector of apogee targets for each aeropass
tolX = 1le-8; % Convergence tolerance for traj optomization

fzOpts $ fzero options struct

end

% Optomization Inputs

properties
check % inputs to look forward and assess current state
intTCM % inputs for interplanetary perigee trim TCM

peOpt % inputs for perigee trim between aero passes
end

% Shared handle objects

properties
State % handle object for current spacecraft state
SC_DB % handle object for spacecraft parameters database
Body DB % handle object for planetary body parameters database
orbProp % handle object for coast trajectory
aeroProp % handle object for atmospheric flight trajectory
burnProp % handle object for simulating maneuvers

end
% Pre-computed constants or internal states
properties (Access = private)

currPass = 1 % Current pass number
end

methods

% Constructor: Pass State and Result Handle objects
function obj = MissionPlan (varargin)
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2 of

if nargin ==

o° o

obj
obj
obj
obj
obj
obj

Provide values for superclass constructor
and initialize other inputs

.State = SCState;
.Body DB = BodylInputs;
.SC_ DB = SCInputs;
.orbProp = OrbitProp;
.aeroProp = AeroPass;
.burnProp = Burn;

% Individaul reference objects passed to constructor as inputs args

elseif nargin

== 6

% When nargin ~= 0, assign to cell array,
% which is passed to supclass constructor
for i1 = 1:6

end

if isa(varargin{il}, 'SCState'); obj.State = varargin{il};

elseif isa(varargin{il}, 'BodyInputs'); obj.Body DB = varargin{il};

elseif isa(varargin{il}, 'SCInputs'); obj.SC DB = varargin{il};
elseif isa(varargin{il}, 'OrbitProp'); obj.orbProp = varargin{il};
elseif isa(varargin{il}, "AeroPass'); obj.aeroProp = varargin{il};
elseif isa(varargin{il}, 'Burn'); obj.burnProp = varargin{il};
else; error('Invalid shared object inputs');

end

% Reference objects passed as a masterHand encapsulating object

elseif nargin

obj
obj
obj
obj
obj
obj

else

error ('Invalid

end

obj.fz0pts =

1 && isa(varargin{l}, 'masterHand')

.State = varargin{l}.State;
.Body DB = varargin{l}.Body;

.SC DB = varargin{l}.Ss C;
.orbProp = varargin{l}.orbProp;
.aeroProp = varargin{l}.aeroProp;
.burnProp = varargin{l}.burnProp;

Constructor Inputs')

optimset ('Tolx',obj.tolX);

optionSet (obj) ;

end
end

methods

oo
°

function

[Ntp,

s MISSION PLANNING FUNCTIONS

dvtp] = numPassCalc (obj, statel,stateF)

% calculate current orbit properties

rakF =

abPost =

statelF.ra;

rpl = statel.rp; al = statel.a; mu = obj.Body DB.mu;

(rpI+obj.raPost)/2; % Calculate semi major axis of post capture¥
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orbit

aFinal = (raF+rpl)/2; % Calculate semi major axis of final target orbit

o)

Vpl = sqrt(mu* (2/rpl-1/al)); % Velocity at perigee for hyperbolic¥

trajectory

VpPost = sqrt (mu* (2/rpI-1/aPost)); % Velocity at perigee of post capture¥

orbit

Q

VpFinal = sqrt (mu* (2/rpI-1/aFinal)); % Velocity at perigee of final aero¥

pass orbit

o)

dvCapt = VpI-VpPost; % delta V required to get into initial captured orbit
dVRest = VpPost-VpFinal; % delta V required to get from initial captured¥

orbit to final target science apogee

Ntp = ceil (dVRest/dVCapt); % Number of Aeropasses
dvtp = dVRest/Ntp; % dV per aeropass

)

ratp = zeros(1,Ntp); % apoapsis of each aeropass

fprintf ('Mission Planner found a solution with %d aeropasses,
per pass\n',Ntp,dvtp) ;
fprintf¢

('*******************************************************************\n' ),-

~%0.3f km/s¥¢

fprintf ('Post capture apoapsis altitude: %0.3f km\n',obj.raPost-obj.¥

Body DB.Re);
for il = 1:Ntp
Vptp = VpPost-dVtp*il;

atp = (2/rpI-Vptp”2/mu)” (-1);
ratp(il) = 2*atp-rpl;

fprintf ('Pass %d apoapsis altitude: %0.3f km\n',il,ratp(il)-obj.¥

Body DB.Re);
end

obj.raTarg = ratp;
obj.currPass = 1;

o)

% set thruster to low for TCM and correction maneuvers
obj.burnProp.Thruster = 'Low';
optionSet (obj) ;

end
%% ORBITAL MANEUVER CALCULATION FUNCTIONS
function Pe Raise(obj, stateF)

)

% Break out some variables from shared objects
ra = obj.State.ra; a = obj.State.a;
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rp2 = stateF.rp; a2 = stateF.a;

mu = obj.Body DB.mu; m o = obj.State.ScM;

ISP = obj.SC DB.ISP; go = obj.SC DB.go; m dot = obj.SC DB.m dot;
% transfer orbit properties
at = (ra+rp2)/2;

% Calculate delta V requirements
Va = sqrt(2*mu/ra-mu/a); % initial orbit velocity at apoapsis (where we¥
want initial burn)

Vpt = sqgrt(2*mu/ra-mu/at); % transfer orbit velocity at periapsis
Vat = sqgrt(2*mu/rp2-mu/at); % transfer orbit velocity at apoapsis
Vp2 = sqgrt(2*mu/rp2-mu/a2); % Final orbit velocity at periapsis
dvl = Vpt-Va; % Sum delta V for first burn

dv2 = Vp2-Vat; % Sum delta V for second burn

o)

% calculate propellant masses and burn times

Mpl = m o-m o*exp (-dv1*1000/ (ISP*go));

Tbl -Mpl/m dot; % m _dot expressed as negative value
ml = m o-Mpl;

Mp2 ml-ml*exp (-dv2*1000/ (ISP*go)) ;

Tb2 -Mp2/m_dot;

array for two circularization burn times

o
°
o
°

obj.State.Tb = [Tbl Tb2 0];
obj.State.Tb = Tbl;
obj.State.dvec = [1 1 11°';

o)

% Print periapsis raise data
fprintf ('\nFinal perigee raise solution found: %0.1f s burn for %0.2f¢
km/s\n', Tbl,dVvl)

end

function Intpl TCM(obj)
% Save current state
obj.State.saveState;
% Determine optimal attitude to execute TCM maneuver
[psiOpt, delta] = fminbnd (@ (psi) -dVecOpt (obj,psi), obj.psiInt(l), obj.¥
psiInt (2));

Reci obj.State.Reci;
obj.State.Veci;
v = norm(Veci);

Uv = [Veci(l)/v; Veci(2)/v; Veci(3)/v];

Veci
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ROT = [cosd(psiOpt) -sind(psiOpt) O
sind (psiOpt) cosd(psiOpt) O
0 0 11;

dvVec = ROT*Uv;

obj.State.dVec = dVec;

)

% Reset Burn Object

obj.burnProp.calcSpd = 'continuous'; obj.burnProp.output

Q

% Determine current unadjusted trajectory
obj.lookForward (obj.check);

o°  oP

apoapsis

if obj.State.ra < obj.raPost && obj.State.e < 1

interplanetary
obj.State.reset;
% Optomize prograde burn time
out = lookForward(obj,obj.intTCM) ;

fprintf ('\nInterplanetary periapsis raise TCM necessary,

converged after %d iterations\n',obj.State.Tb,out);
else
obj.State.reset;

)

obj.State.dVec = -obj.State.dVec;

o)

% Optomize retrograde burn time
out = lookForward(obj,obj.intTCM) ;

fprintf ('\nInterplanetary periapsis lower TCM necessary,

converged after %d iterations\n',obj.State.Tb,out);
end

% burn attitude optimization (optomization of all three euler

angles needs to be added)
function delta = dVecOpt (obj,psi)
% Rotate abount velocity vector
Vopt = obj.State.Veci;
vopt = norm(Vopt) ;

Uvopt = [Vopt (1) /vopt; Vopt(2)/vopt; Vopt (3)/vopt];
ROTopt = [cosd(psi) -sind(psi) O

sind(psi) cosd(psi) O

0 0 115

UvN = ROTopt*Uvopt;

B quiver3(Reci(1),Reci(2),Reci(3),UvN(l),UvN(2),UvN(3),f

750, 'g', "LineWidth', 1) ;

Is current trajectory leading us above or below the target

% Retrograde burn necessary to lower periapsis

‘onV;

verify spacecraft isn't¥

$0.1f s burn¥

$0.1f s burn¥¢
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end

% create test burn to determine optimal burn vector
obj.State.dVec = UvVN;

obj.State.Tb = 5;

rp _old = obj.State.rp;

% Set a few options, propage maneuver trajectory
obj.burnProp.calcSpd = '"jump'; obj.burnProp.output = 'off';
obj.burnProp.step;

% Reset for next iteration
rp _new = obj.State.rp;
delta = rp new-rp old;
obj.State.reset;

end

function Aeropass_ TCM (obj)

% burn will be inline with velocity vector
obj.State.dvec = [1 1 11°';

% determine if periapsis altitude must be raised or decreased
obj.lookForward (obj.check);

% set the optomizer to target a predetermined altitude after

each pass
obj.pelpt.targ = obj.raTarg(obj.currPass);

Is current trajectory leading us above or below the target

o°  oP

apoapsis
if obj.State.ra < obj.raTarg(obj.currPass)
obj.State.reset;

% Optomize prograde burn time
out = lookForward (obj,obj.pelpt);
fprintf ('\nPass %d periapsis raise TCM necessary, %0.1f s burn«

converged after %d iterations\n',obj.currPass,ob]j.State.Tb,out);

else
obj.State.reset;

% Retrograde burn necessary to lower periapsis
obj.State.dVec = -obj.State.dVec;

% Optomize retrograde burn time
out = lookForward (obj,obj.pelpt);
fprintf ('\nPass %d periapsis lower TCM necessary, %0.1f s burn¥

converged after %d iterations\n',obj.currPass,ob]j.State.Tb,out);

end
obj.currPass = obj.currPass + 1;
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fzOpts) ;

TRAJECTORY OPTOMIZATION FUNCTION

function out = lookForward(obj,optIn)

Q

% Save current state before any optomizations
obj.State.saveState;

% break out variables from options object
order = optlIn.order;

objective = optIn.objective;

targ = optlIn.targ;

adjust = optIn.adjust;

% No optomization, just a forward propagation of current
% trajectory
if ~optIn.opt

propForward;

out = [];

% Perform optomization
elseif optIn.opt

Shooting method trajectory optomization optomize the

"adjust" property until the "objective" property equals

the "target" property

~,~,output] = fzero(Q(adj) propForward(adj), optIn.range,obi.¥

— o° o° o°

[©)
o
o+

o)

% Number of iterations required
out = output.iterations;

% Update state with the optomized parameter
obj.State. (adjust) = Opt;
obj.State.step;

% Delete the pre-optomization saved state and revert back to the
% saved state at the start of the simulation
obj.State.revertState;

end

function min = propForward (adj)
n = length(order);

% Will optomization be performed
if optIn.opt
obj.State. (adjust) = adj;
obj.State.step;
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for i1 = 1:n

o)

% Bake in a few special cases, i.e. if a burn segment is set

°
>
°

to follow a coast segment, stop at apoapsis

if 11 < n && order(il) == '0' && order(il+l) == 'B'
opts = obj.opts2;

elseif i1 == n && order(il) == 'O’
opts = obj.opts2;

else

opts = obj.optsl;

end
% opts.output = 'on';
% obj.optsl.output = 'on';

switch (order (il))
case 'O' % Coast segment
obj.orbProp.step (opts) ;
case 'A' % Atmospheric flight segment
obj.aeroProp.step (opts);
case 'B' % Propulsive maneuver segment
obj.burnProp.step (obj.optsl);
end
end
% Generate outputs
if optIn.opt
switch adjust
case 'FPA' % Flight path angle option
fprintf ('Apoapsis Altitude: %.3f km at %.3f deg\n',obj.¥
State. (objective) -obj.Body DB.Re,adj)
case 'Tb' % Burn time option
fprintf ('Apoapsis Altitude: %.3f km at $.3f s burn\n',obj.¥
State. (objective) -obj.Body DB.Re,adj)
end
% Primary objective function
min = obj.State. (objective)-targ;
% covers special interplanetary case
if strcmp(objective, 'ra') && obj.State.e >= 1
min = 5e6;
end
% Reset State for next iteration
obj.State.reset;
% No optomization case
else
min = [];
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end
end
end

function optionSet (obj)
% Forward propagation of current trajectory
obj.check = optoIn('order','OA");
% interplanetary periapsis trim TCM
obj.intTCM = optoIn('order', 'BOA', 'targ',obj.¥
raPost, 'objective', 'ra', 'adjust', 'Tb");
% periapsis trim between aero passes
ob7j.peOpt = optoIn('order', 'OBOA', 'targ',obj.¥
raPost, 'objective', 'ra', 'adjust', 'Tb'");
end
end

end
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classdef optoIn < matlab.System

o)

o° o

and Technology Division, May 2025, MATLAB 2024Db.

properties

% Format for inputs to trajectory optomization function

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems

order % Order of trajectory segments to perform A: Atmospheric flight, B:¢

Burn/Maneuver, O: Coast Orbit

targ % Target or "Objective" of optomization
end

properties (Dependent)

range % Initial values for optomizer
objective % Objective Function

adjust $ Input parameter to optomize to the objective

)

opt % false (0) only one propagation will be performed true

will be performed
end

)

properties (Access = private)

stateProps

objectiveStore

adjustStore

fpaRgdef = [-4 -25] % Starting range of flight path angles

TbRgdef = [0.01 200]
end

methods (Access = protected)

% Save Object
function s = saveObjectImpl (obj)

s = saveObjectImpl@matlab.System(obj) ;
.stateProps = obj.stateProps;
.objectiveStore = obj.objectiveStore;
.adjustStore = obj.adjustStore;
.fpaRgdef = obj.fpaRgdef;

.TbRgdef = obj.TbRgdef;

n n n n n

end

% Load Object

function loadObjectImpl (obj,s,isInUse)
obj.stateProps = s.stateProps;
obj.objectiveStore = s.objectiveStore;
obj.adjustStore = s.adjustStore;
obj.fpaRgdef = s.fpaRgdef;
obj.TbRgdef = s.TbRgdef;
loadObjectImpl@matlab.System(obj,s,isInUse) ;

end

end

% Private properties to store values for dependent properties

optomization¥
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methods
% Create names of state properties that can be used as objectives
% for optomization
function obj = optoln(varargin)
state = SCState;
obj.stateProps = properties(state);
setProperties (obj,nargin,varargin{:});
end
% Verify that order inputs are only either 'B','O', or 'A'
function set.order (obj,val)
if ischar(val)

BB = ismember (val, 'B');
OO0 = ismember (val, 'O'");
AA = ismember (val, 'A'");

idx = AA | BB | 00;
if ~any(~idx)
obj.order = val;
else
error ('First arguement must only contain O, A, or B: 0:¢
cruise/orbit, A: Aerodynamic pass, B: Maneuver')
end
else
error ('First arguement must be a character vector: O: cruise/orbit, A:¢
Aerodynamic pass, B: Maneuver')
end
end
% Verify that objective is a char and is a state property
function set.objective (obj,val)
if ischar(val) && ismember (val,obj.stateProps)
obj.objectiveStore = val;
else
error ('Objective must be a state object property character vector')
end
end
% Validate target as a numeric double
function set.targ(obj,val)
if isa(val, "double")
obj.targ = val;
else
error ('Target must be a double')
end
end
% Validate adjust as a char and a state property
function set.adjust (obj,val)
if ischar(val) && ismember (val,obj.stateProps)
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3

of

obj.adjustStore = val;
else

error ('adjust must be a state object property character vector')

end
end
% Get private stored property for objective
function val = get.objective (obj)
val = obj.objectiveStore;
end
% Get private stored property for adjust
function val = get.adjust (obj)
val = obj.adjustStore;
end

o
°
o
°

path angle and burn time

function val = get.range (obj)

if ~isempty(obj.adjust)
switch obj.adjust

case 'FPA'
val = obj.fpaRgdef;
case 'Tb'

val = obj.TbRgdef;
end
else
val = [];
end
end
% Option to either optomize or simply propagate a trajectory
function val = get.opt(obj)
optProps = [{obj.targ} {obj.adjust} {obj.objectivel}];
valid = cellfun (Q@isempty,optProps);

if ~any(~valid)

val = false;
elseif ~any(valid)

val = true;
else

o)

% error ('Three optomization properties must be provided,
optomization is desired, only supply the order input')
end
end
end
end

Currently default initial values are only supported for flight

if nov
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classdef OrbitProp < matlab.System

% This object propogates a trajectory segment, the superclass contains
% physics for a coast under gravity only. Thrust or atmospheric flight
% propagations are subclasses of the upper OrbitProp superclass Class
% Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
% and Technology Division, May 2025, MATLAB 2024Db.
% Public, tunable properties
properties

Thruster = 'Low'

PhysTyp = 'Cruise'

EventTyp = 'Aero'; % Location to stop integration

laps = 5; % time to move past event to prevent false trigger

Q

tstep = 60; % (s) timestep

tstep £ = 0.05; % factor to divide burn time by to create custom timestep for¥
burn integrations to ensure start and end points are accurate

calcSpd = 'continuous'; % 'continuous' specifies a tspan to the ODE integratory
as a vector, 'jump' specifies only a start and end point

output = 'on'; % print output option (typically off for optomization runs)

resultPop = 'on'; % populate results option (typically off for optomization¥
runs)

optsl % options struct for ODE integrator

% 2nd options struct that contains the ODE event function

ODEfun = @oded45 % ODE integrator function
warnFlg = true; % Altitude warning flag (prevents repeat warning messages)
RelTol = le-7; % Relative Tolerance
AbsTol = 1le-8; % Absoluate Tolerance

it was found with a relative and absolute tolerance of le-5
and le-7 respectively that the error between the first and
4th orbit is on the order of a few hundred meters.

o° o° o° oe

le-7 and le-8 tols did fix some integration issues
end

properties
State % handle object for current spacecraft state
Results handle object for trajectory results/outputs
Body DB handle object for planetary body parameters database
SC_DB % handle object for spacecraft parameters database
GRAM handle object for the GRAM interface
Time handle object for tracking elapsed time and time dependent planet«

o° oo

orientation
chemObj % handle object for atmospheric chemistry calculations
end
% Pre-computed constants or internal states
properties (Access = private)

Q

stop % stopping criteria vector
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saveStrct % struct to save overwrite options
end

methods
% Constructor: Pass State and Result Handle objects
function obj = OrbitProp(varargin)
% No inputs case, creates default reference objects internally
if nargin ==
% Provide values for superclass constructor
% and initialize other inputs
obj.State = SCState;
obj.Results = TrajResults;
obj.Body DB = BodyInputs;
obj.SC DB = SCInputs;
obj .GRAM gramMgr;
obj.Time timeMgr;
obj.chemObj = chemMgr;

% Individaul reference objects passed to constructor as inputs args
elseif nargin ==
% When nargin ~= 0, assign to cell array,
% which is passed to supclass constructor
for i1 = 1:7
if isa(varargin{il}, 'SCState'); obj.State = varargin{il};
elseif isa(varargin{il}, 'TrajResults'); obj.Results = varargin{il};
elseif isa(varargin{il}, 'BodyInputs'); obj.Body DB = varargin{il};
elseif isa(varargin{il}, 'SCInputs'); obj.SC DB = varargin{il};
elseif isa(varargin{il}, 'gramMgr'); obj.GRAM = varargin{il};
elseif isa(varargin{il}, 'timeMgr'); obj.Time = varargin{il};
elseif isa(varargin{il}, 'chemMgr'); obj.chemObj = varargin{il};
else; error('Invalid shared object inputs');
end
end
% Reference objects passed as a masterHand encapsulating object
elseif nargin == 1 && isa(varargin{l}, 'masterHand')
obj.State = varargin{l}.State;
obj.Results = varargin{l}.Results;
obj.Body DB = varargin{l}.Body;
obj.SC DB = varargin{l}.S C;
obj.GRAM = varargin{l}.GRAM;
obj.Time = varargin{l}.Time;
obj.chemObj = varargin{l}.chemData;
else
error ('Invalid Constructor Inputs')
end
end
end

methods (Access = protected)
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function setupImpl (ob7j)
% Setup solver options and events
obj.optsl = odeset('RelTol',obj.RelTol, "'AbsTol',obj.AbsTol);
obj.opts2 = obj.optsl;
obj.opts2.Events = @ (t,R) Event_fcn(t,R,obj.stop,obj.Body_DB,obj.State,obj.K
Time) ;

% placeholder function for subclasses
setupfun (obj) ;
end

function stepImpl (obj,varargin)

% Skips atmospheric flight integration if altitude is over
% threshold
if strcmp (obj.PhysTyp,
if strcmp (obj.output, 'on')
warning ('Attempting to enter atmospheric flight phase while above¢

'Aero') && obj.State.Alt > obj.Body DB.AltThr+l

threshold, skipping propagation segment')
end
return;

end

% populate properties based on options struct
if nargin > 0 && ~isempty(varargin)
optsGen (obj,varargin{l});

&& isa(varargin{l}, "struct'")

end

% Generate stopping criteria for event functions

switch obj.EventTyp

'Pe' %
obj.stop
'Ae' %
obj.stop
'Asc' %
obj.stop

Q

'Dsc' %

case

case

case

case

periapsis

=[1000001100];

apoapsis

=[0100001100];
ascending node
=[0010001100];
descending node

times

[0 00100110 0];
(stops at certain altitude)

obj.stop =

Q

case 'Aero' % aerobrake
% Enable velocity stop if vehicle is in atmosphere
if strcmp (obj.PhysTyp, 'Aero')

obj.stop = [0000111111];

else

obj.stop [0O0O0O01111001];
end
cruise option, do not stop at any orbital nodes

[0 0OOO0OO0OO0O11O0O0];

case 'Crz' B
obj.stop =

case

'Trans' % Transfer Orbit, waits 1/2 period and accounts for burn¥
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obj.stop = [0 00000110 0];
otherwise
error ('Invalid BrnTyp Value')
end
% Main orbit propagation integration
mainInt (obj) ;
% Populate shared results object if needed
if strcmp(obj.resultPop, 'on')
obj.Results.Type = obj.PhysTyp;
obj.Results.Vi = norm(obj.Results.Rt(1,4:6));

obj.Results.raAlt = obj.State.ra-obj.Body DB.Re; % Warning: result is¥

approximation if in ellipsoid planet mode
end

% Print outputs

if strcmp (obj.output, 'on')
Outputs (obj) % print

end

% Reset options properties to defaults

if nargin > 0 && ~isempty(varargin) && isa(varargin{l}, 'struct')

optsReset (obj,varargin{l});

end

% Reset Altitude warning flag
obj.warnFlg = true;

end

% Save object to MAT file
function s = saveObjectImpl (obj)
s = saveObjectImpl@matlab.System(obj) ;
s.stop = matlab.System.saveObject (obj.stop)
s.saveStrct = matlab.System.saveObject (obj.saveStrct) ;
end

% Load object from MAT file
function loadObjectImpl (obj,s,isInUse)
obj.stop = s.stop;
obj.saveStrct = s.saveStrct;
loadObjectImpl@matlab.System(obj, s, isInUse) ;
end

end
methods (Access = protected)

function mainInt (ob7j)
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o

Break out a few state object properties

T = obj.State.T; Reci = obj.State.Reci; Veci = obj.State.Veci;

t curr = obj.Time.elTime;

% Perform a short integration to bring vehicle slightly past critical
% point to prevent double triggering of event fcn

m o = obj.State.ScM;

tspand = [t _curr t curr+obj.laps/2 t curr+obj.laps];
[t jump,Rt jump] = obj.ODEfun(Q(t,R) TwoBody(obj,t,R),tspand, [Reci; Veci; ¢
m o],obj.optsl);

o)

% Reset initial conditions after short step

Reci = Rt jump(end,1:3)"';

Veci = Rt _jump(end,4:6)"';

t curr = t jump (end);

% Setup main trajectory segment timespan

if strcmp(obj.calcSpd, 'continuous')
if strcmp (obj.PhysTyp, 'Aero'); T = obj.Tmax; end
tspan = t curr:obj.tstep:t curr + T;

elseif strcmp (obj.calcSpd, 'jump')
if strcmp (obj.PhysTyp, 'Aero'); T = obj.Tmax; end
tspan = [t _curr t curr + T];

else
error ('property "calcSpd" set incorrectly')

end

% Main trajectory integrator call

[t,Rt,te,ye,ie] = obj.ODEfun (@ (t,R) TwoBody (obj,t,R),tspan, [Reci; Veci; V¢
m o],obj.opts2);

% Stitch together short integration and main integration

t = [t _Jjump; t]; Rt = [Rt jump; Rt];

% If next orbital segment is a burn
if obj.State.Tb > 0
% go back and find conditions 1/2 the burn time back in orbit to ensure«
burn splits event
[~,1ix] = min (abs (t-(t (end)-obj.State.Tb/2)));

% populate total array up until burn start
Rt = Rt(l:ix,:);
t = t(liix,:);
end
% Populate Results if necessary
if strcmp (obj.resultPop, 'on')
obj.Results.t = t; obj.Results.Rt = Rt; obj.Results.te = te; obj.¥
Results.ye = ye; obj.Results.ie = ie;
obj.Results.Tb = 0; obj.Results.dVec = 0; obj.Results.dVv = 0;
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end

end

% Populate shared handle objects with new trajectory data
obj.State.Reci = Rt(end,1:3)"';

obj.State.Veci = Rt(end,4:6)"';

obj.State.ScM = Rt (end,7);

obj.Time.elTime = t (end);

% Update State
obj.State.step;

function drdt = TwoBody (obj, t,R)

% Extract Vars from struct inputs
mu = obj.Body DB.mu; Re = obj.Body DB.Re;

Set the massflow rate to zero for cruise and aero orbits

o° o

when rocket engine isn't burning and S/C isn't loosing mass
if strcmp(obj.PhysTyp, 'Cruise') || strcmp(obj.PhysTyp, 'Aero')
m_dot = 0;
elseif strcmp(obj.Thruster, 'Low')
m _dot = obj.SC DB.m dot low;
elseif strcmp (obj.Thruster, 'High')
m _dot = obj.SC DB.m dot;
else
error ('property "Thruster" set incorrectly')
end

Warns user if crossing below altitude threshold while in

o o°

cruise or burn phase
if (strcmp(obj.PhysTyp, 'Burn') || strcmp(obj.PhysTyp, 'Cruise')) && obj.¥

State.Alt < obj.Body DB.AltThr-1 && strcmp(obj.output, 'on') && obj.warnFlg

physics

warning ('Below atmospheric threshold while in cruise or maneuver¥

(vacuum only) check stopping criteria')

obj.warnFlg = false;
end

o

Initialization

= norm(R(1:3)); % calculate magnitude
= norm(R(4:6));

< B

% OBLATENESS EFFECTS
J2 = obj.Body DB.J2; % second zonal harmonic

x =R(1); vy =R(2); z = R(3);
pl = x/r*(5*z"2/r"2-1);
p2 = y/r*(5*z°2/r"2-1);
p3 = z/r*(5*z72/r"2-3);
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o\

Perturbation vector

= 3/2*J2*mu*Re”2/r"4.* [pl
P2
p31;

lav]

Disable J2 perturbations
P = [0;0;0];

o° o

lav]

= Perturb(obj,t,P,R);

% Kepler ODE in state space form
drdt = [R(4)

R(5)

R (6)

-mu/r"3*R(1)+P (1)
-mu/r"3*R(2)+P(2)
-mu/r"3*R(3)+P(3)

m_dot];
end
function P = Perturb(~,~,P,~)
% Default superclass is for a cruise orbit so unperturbed
end
end
methods

function setupfun (~)

Q

% placeholder for subclasses
end

Q

% Print termination criteria
function termfun(~,ie)
if ~isempty(ie)
switch ie (end)
case 1 % periapsis
fprintf ('Integration Stopped: Periapsis Reached\n')
case 2 % apoapsis
fprintf ('Integration Stopped: Apoapsis Reached\n')
case 3 % ascending node
fprintf ('Integration Stopped: Ascending Node Reached\n')
case 4 % descending node
fprintf ('Integration Stopped: Descending Node Reached\n')
case 5 % aerobrake (stops at certain altitude)
fprintf ('Integration Stopped: Atmospheric Cutoff Altitude¥
Reached (Descending) \n')
case 6 % aerobrake (stops at certain altitude)
fprintf ('Integration Stopped: Atmospheric Cutoff Altitude¥

Reached (Ascending) \n')
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Q

case 7 % spacecraft has impacted surface
fprintf ('Integration Stopped: Spacecraft Impacted Surfacev
(Descending) \n'")
case 8 % spacecraft has impacted surface from below (If you seeV
this, something is really screwed up)
fprintf ('Integration Stopped: Spacecraft Impacted Surface«
(Ascending) \n')
case 9 % Termination Velocity Reached
fprintf ('Integration Stopped: Termination Velocity Reached \n')
case 10 % Termination Velocity Reached
fprintf ('Integration Stopped: Termination Velocity Reached \n')
otherwise % Termination Velocity Reached
fprintf ('Integration Stopped: Maximum time step or number or¥
orbits reached \n')
end
end
end
% Prints the current state after completing a trajectory segment
function Outputs (obj)
fmt = "%$-20s %$-10.3f %-5s\n";
fprintf ('\nIntegrator completed %s trajectory segment\n', obj.PhysTyp)
fprintf ("Current Vehicle State:\n");
fprintf (fmt, "Altitude:",obj.State.Alt, "km")
fprintf (fmt, "Velocity:",ob]j.State.V, "km/s")
fprintf (fmt, "Flight Path Angle:",obj.State.FPA, "deg")
fprintf (fmt, "Azimuth:",obj.State.Az, '"deg")
(

fprintf (fmt, "Elapsed Time:",obj.State.elTime, "s")

if strcmp (obj.PhysTyp, 'Burn')
fprintf (fmt, "Burn Time:",obj.Results.Tb, "s")
fprintf (fmt, "Delta V:",obj.Results.dv, "m/s")
end
termfun (obj,obj.Results.ie)
end
% populates properties based on a struct input
function optsGen (obj,options)

optFields = fieldnames (options);

for fi = l:numel (optFields)
obj.saveStrct. (optFields{fi}) = obj. (optFields{fi});
obj. (optFields{fi}) = options. (optFields{fi});

end
end
% Reset properties to previous values after run.
function optsReset (obj,options)
optFields = fieldnames (options);
for fi = l:numel (optFields)
obj. (optFields{fi}) = obj.saveStrct. (optFields{fi});
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end
end
end
end
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classdef plotProps < matlab.System
Contains all colors and plotting poperties for 2D aerothermal and
trajectory plots

o° oo

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o°  o°

o°

Public, tunable properties

properties
Axes % Axis handle
numPlots = 6; % Number of aerothermal plots
aeroYax = ["gs","Jgs","V","alt","alt","alt"]; % x axis data

aeroXax = ["t", "t", "t", "t","fpa","V"]; % y aXiS data

resultYax = ["gsMax"]; % Batch plot run X axis data

resultXax = ["raAlt"]; % Batch plot run Y axis data

resultLeg = ["BC","Vi"]; % Legend Properties for batch run plot
weightFactor = ["tPost"]; % Weight function property

titles $ Title array for plots

pAxes % Axis handle for batch run plot

pXaxes % X axis handle for batch run plot
% Y axis handle for batch run plot

pLlegend % Legend for batch run plot

plegCt % Legend index

pYaxes

linewidth = 2; % Line width

coloFun = @hsv % color array function (jet, hsv, parula, etc)

pallette = "gem" $ color pallete string (see MATLAB documentation)

colorOpt = "pal" % grad (hsv, parula, jet, etc.) or pal (gem, reef, etc.)
numColors = 4; % Number of colors before switching line style

linestyles = ["=-", "—-=" "— " ":"]; % Line styles

styleOrder = 'aftercolor'; % aftercolor runs through colors before linestyles,f

beforecolor runs through linestyles first
col % Matrix of RGB triplets for color
end

properties

Results % trajectory results shared object
end
% Pre-computed constants or internal states
properties (Access = private)

end

methods (Access = protected)
% Generate plots for initial setup
function setupImpl (ob7j)

plotQuery (obj) ;
end
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function stepImpl (obj)

% regen plots if deleted
if ~isvalid(obj.Axes)

end

°

for

plotQuery (obj)

% Plot results

i2 = l:0bj.numPlots
% X axis
Xx = obj.Results. (obj.aeroXax (i2));
% crop to time since entry interface
if strcmp(obj.aeroXax(i2),"t")
Xx = Xx-Xx(1);
end
% Y axis
Yx = obj.Results. (obj.aeroYax(i2));
% Get title and x/y label strings from results object
xLab = obj.Results.plotLabels. (obj.aeroXax(i2)) .label;
yLab = obj.Results.plotLabels. (obj.aeroYax (i2)) .label;

Title = strcat(obj.Results.plotLabels. (obj.aeroYax (i2)).title, " vs.

obj.Results.plotlLabels. (obj.aeroXax (i2)) .title);

end

end

end

Q

% query colors and styles
linestyleorder (obj.Axes (i2),0obJj.linestyles)
linestyleorder (obj.Axes (1i2),0obj.linestyles,obj.styleOrder);
colororder (obj.Axes (i2) ,0bj.col)
% generate plots, allow for log plots with knudsen number
if strcmp(obj.aeroXax (i2), '"Kn')

semilogx (obj.Axes (12),Xx,¥x, 'LineWidth',obj.linewidth)
elseif strcmp (obj.aeroYax (i2), '"Kn')

semilogy (obj.Axes (i2),Xx,¥Y¥x, 'LineWidth', obj.linewidth)
else

plot (obj.Axes (i2) ,Xx,¥Yx, 'LineWidth', obj.linewidth)
end
% Plot formatting
title (obj.Axes (12),Title)
xlabel (obj.Axes (i2) , xLab)
ylabel (obj.Axes (i2), yLab)
grid(obj.Axes (i2), "on")
hold (obj.Axes (i2), "on")
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% Plot select properties from batch runs
function plotResults (obj, xX, yY)
% Re-create figure if it has been deleted
if isempty(obj.pAxes) || ~isvalid(obj.pAxes)
figure
obj.pAxes = axes(); obj.pLegCt = 1;
end
% Get title and x/y label strings from results object
xLab = obj.Results.plotLabels. (obj.resultXax).label;
yLab = obj.Results.plotLabels. (obj.resultYax) .label;
Title = strcat (obj.Results.plotLabels. (obj.resultYax).title," vs. ",0bj.¥

Results.plotLabels. (obj.resultXax) .title);

end

% query colors and styles

linestyleorder (obj.pAxes,obj.linestyles)

linestyleorder (obj.pAxes,obj.linestyles,obj.styleOrder) ;
colororder (obj.pAxes,obj.col)

% generate plots

plot (obj.pAxes,xX,yY, 'LineWidth',obj.linewidth)
title (obj.pAxes,Title)

xlabel (obj.pAxes, xLab)

ylabel (obj.pAxes, yLab)

grid(obj.pAxes, "on")

hold (obj.pAxes, "on")

% Setup plot color and style options
function colOut = get.col (obj)

end

switch obj.colorOpt
case 'grad'
colOut = obj.coloFun (obj.numColors) ;
case 'pal'
colOut = orderedcolors (obj.pallette);

otherwise
colOut = orderedcolors ("gem");
colOut = colOut(l:obj.numColors, :);
end

Q

% Crop color array 1if needed

if obj.numColors < height (colOut)
colOut = colOut(l:obj.numColors, :);

end
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Q

% Iteratively populate legend labels

function setlLegend(obj,str)
obj.plegend{obj.plLegCt} = str;
obj.pLegCt = obj.pLegCt + 1;

end

% Generate legend

function createlegend (ob7j)

o)

% legend (obj.pAxes,ob]j.pLegend) ;

legend (obj.pAxes, obj.pLegend (1:3))

(
% plot (
% plot (
% plot( ,'Color','k','LineStyle', '~

end
% Generate and setup figures and axes
function plotQuery (obj)
figure
obj.Axes = axes();
for il = 1l:0bj.numPlots
if i1 ~=1
figure
obj.Axes (il) = axes|();
end
end
end
end
end

1,1,'Color','k', 'LineStyle','=", "LineWidth', 2)
1,1,'Color','k','LineStyle', '-=", 'LineWidth"', 2)
1,1

.', 'LineWidth', 2)
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classdef SCInputs < matlab.System
Manages the spacecraft and entry vehicle geometry, contains an
aerodatabase object to perform all aerodynamic calculations

o° oo

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o°  o°

o°

Public, tunable properties

properties (SetObservable, AbortSet)

% Rocket Engine and satellite Parameters

Thr = 100; % N Thrust

LowThr = 4; % N Low thrust output for small maneuvers
m o = 300; % kg Initial spacecraft mass

ISP = 300; %

Q

go = 9.8; % gravity m/s”"2

seconds specific impulse

D =1; % Diameter (m)
halfAng = 70; % Cone angle (deqg)

biCon = 30; % 2nd biconic angle (deg) Parameter must be set in aeroDB to use
alpha = 0; % Trim Angle of Attack (deg) % potentially add conversion to¥

bank/roll angle
beta = 0;
RN = .25;
m _dot % mass flow rate (kg/s)
m _dot low % low thruster mass flow rate (kg/s)

Trim Angle of Sideslip (deq)
Nose radius

o
°
o
°

A % Frontal area (m"2)
BC % Ballistic Coefficient (kg/m"2)
Aero DB % Aero-database object
end
% Pre-computed constants or internal states
properties (Access = private)
SCDB
end

methods (Access = protected)

function setupImpl (obj)
% Initialize rocket engine parameters

°

updateEnginePerf (obj)

% Update Aero-database based on geometry inputs
obj.Aero DB = AeroDB;

updateGeometry (obj)

obj.Aero DB.step;

% Update ballistic coefficient
updateBC (ob7j)

end

function stepImpl (~)
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end

end

end

% Save object

function s = saveObjectImpl (obj)
s = saveObjectImpl@matlab.System(obj) ;

end

% Load object

function loadObjectImpl (obj,s,isInUse)
loadObjectImpl@matlab.System(obj, s, isInUse) ;

end

methods

end

)

% Export current object properties as a struct
function strctOut = get.SCDB(ob7j)
strctOut = struct;
publicProperties = properties (obj);
for fi = l:numel (publicProperties)
strctOut. (publicProperties{fi}) = obj. (publicProperties{fi});
end
end
% Update rocket engine parameters
function updateEnginePerf (obj)
obj.m dot = -obj.Thr/ (obj.ISP*obj.go); % kg/s
obj.m dot low = -obj.LowThr/ (obj.ISP*obj.go); % kg/s
end
% Update geometry and aerodatabase
function updateGeometry (obj)
obj.A = pi/4*(obj.D"2); %Frontal area (m"2)
obj.Aero DB.R = 0bj.D/2; % Diameter (m)
obj.Aero DB.RN = obj.RN; % Nose Radius (m)
obj.Aero DB.tcl = obj.halfAng; % Sphere cone half angle (deg)
obj.Aero DB.tc2 = obj.biCon; % Bi-conic half angle (deg)
obj.Aero DB.trimAlpha = obj.alpha; % trim angle of attack (deg)
obj.Aero DB.trimBeta = obj.beta; % trim angle of sideslip (deg)
end
% Update Ballistic Coefficient
function updateBC (obj)
obj.BC = obj.m o/ (obj.RAero DB.CD*obj.A); %kg/m"2
end
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classdef SCState < matlab.System

o° o o°

o°  oP

% Public,

properties
TOPOCENTRIC COORDINATES

A = 0; % Flight Path Angle

= 0; % Velocity Magnitude

end

oo

° 0

oo
[Clye)

mi

% Altitude
t = 0; % Latitude

This object represents all orbital elements, state vectors and
properties needed to pass from one orbit propagation to another. The
methods are used to calculate other properties given a few

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

tunable properties

ng = 0; % Longitude

= 0; % Azimuth

Q

Keplerian Elements
0; % eccentricity

= 0; % Semi Major Axis

Q
|

o O O
~.

o° o o°

Q

inclination
arguement of periapsis
ascension of ascending node

eta = 0; % true anamoly

ADDITIONAL ORBITAL PARAMETERS
nalt = 0; % altitude at periapsis Change between 120 and 150 km

:O;

Radius at perigee

= 0; % Radius at apogee

o
°
o
°

Q

Angular Momentum
Orbital Period

v inf = 0; % Escape Velocity

Re
Ve
QE

Qmat

R

oo
[Slye)

el

oo
© 0

POSITION AND VELOCITY VECTORS

ci = zeros(3,1);
zeros (3,1);
zeros (3,3);
zeros (3,3);

ci
CI

Vehicle Position Vector
Vehicle Velocity Vector
ECI to Perifocal Coordinate Transformation Matrix

o° o o° oo

ECI to ENZ Coordinate Transformation Matrix

= 0; % Position Magnitude

TIME PARAMETERS

Time = 0; % Elapsed time

MASS AND MANEUVERING PARAMETERS
M = 0; % Spacecraft Mass

= 0; % Burn Time

dvec = zeros(3,1);

% Burn Vector
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properties (Dependent)
Rad % local body radius dependent on whether spherical or ellipsoid

end

%% Shared Handle Objects and Internal States
properties (Access = private)
radSave % Stored value for local body radius
prevState $ Previous saved states

StStrct % Struct Representing all elements in state

Body DB % Planetary parameters shared handle object

timeObj % Time dependent property shared handle object

resetFlag = false; % Flag indicating wheter object has just reset
end
methods

% Constructor: Pass State and Result Handle objects
function obj = SCState(InState)
% Create a state based on struct input
if nargin ~= 0
popState (obj, InState)
end

end

0]
o]
(o}

o

Protected System Object Methods
System object specific methods like stepImpl, resetImpl,
processTunedPropertiesImpl, saveObjectImpl, and loadObjectImpl

o° o° o

methods (Access = protected)

function processTunedPropertiesImpl (obj)
if obj.resetFlag
obj.resetFlag = false;
else

% Check if position and velocity vectors have changed
rChg = isChangedProperty(obj, 'Reci');
vChg = isChangedProperty (obj, 'Veci');
if rChg && vChg
ECItoKep (0bj)
ECItoLLA (obj)
else

% Check if keplerian elements have changed
aChg = isChangedProperty (obj, 'a');

eChg = isChangedProperty (obj, ")
incChg = 1sChangedProperty(obj, inc');
ArgChg = isChangedProperty(obj, "'Arg');
AscChg = isChangedProperty(obj, "Asc');
ThetaChg = isChangedProperty(obj, 'theta');
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minaltChg = isChangedProperty (obj, 'minalt');

if aChg || eChg || incChg || ArgChg || AscChg || ThetaChg ||V¢
minaltChg
% allows adjustment of minimum altitude
if minaltChg
obj.rp = obj.minalt+obj.Rad; % periapsis
obj.a = obj.rp/(l-obj.e);
obj.e = obj.e;
end
KeptoECI (obj)
ECItoLLA (obj)
else
% Check if topocentric coordinates have changed
VChg = isChangedProperty(obj, 'V'");
AltChg = isChangedProperty(obj, "Alt');
LongChg = isChangedProperty (obj, 'Long');
LatChg = isChangedProperty (obj, 'Lat');
fpaChg = isChangedProperty(obj, "FPA');
AzChg = isChangedProperty(obj, "Az");
if VChg || AltChg || LongChg || LatChg || fpaChg || AzChg
LLAtOECI (obj)
ECItoKep (ob7j)
end
end
end
ExtraProps (obj)
end
end

function stepImpl (~)
end

reset supports only two saved states, one as an initial starting
state, and one prior to any optomization or look-forward

o0 o° oo

functions
function resetImpl (obj)
if length(obj.prevState) == 2
popState (obj,obj.prevState (2))
obj.timeObj.elTime = obj.prevState(2).elTime;
% update state to reinitialize properties
obj.resetFlag = true; obj.step;
elseif isscalar (obj.prevState)
popState (obj,obj.prevState)
obj.timeObj.elTime = obj.prevState.elTime;

Q

% update state to reinitialize properties
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end

obj.resetFlag = true; obj.step;
end
end
% Save state object
function s = saveObjectImpl (obj)
s = saveObjectImpl@matlab.System(obj);
.Body DB = obj.Body DB;
.timeObj = obj.timeObj;
.prevState = obj.prevState;
.resetFlag = obj.resetFlag;

n n n n

end

% Load state object

function loadObjectImpl (obj,s,isInUse)
obj.Body DB = s.Body DB;
obj.timeObj .timeObj;
obj.prevState = s.prevState;
obj.resetFlag = s.resetFlag;
loadObjectImpl@matlab.System(obj,s,isInUse) ;

Il
)

end

methods

o

SAVED STATE MANAGEMENT
State object supports up to two saved states one at the start of
the trajectory, and a 2nd prior to any optomizations

o o° o°

Clears previous states and sets the current state to the initial

o° o

state
function newState (obj)
obj.prevState = [];
obj.saveState;
end
% Stores previous states in structs
function saveState (obj)
% supports storing of two previous states
if isempty(obj.prevState)
obj.prevState = obj.StStrct;
else
obj.prevState = [obj.prevState(l) obj.StStrct];
end
end
% reduces the number of saved states from 2 to 1
function revertState (ob7j)
if length(obj.prevState) == 2
obj.prevState = obj.prevState(l);
end
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end
% Populates properties from struct
function popState (obj, inStruct)

publicProperties = properties (obj);

if length(fieldnames (inStruct)) == numel (publicProperties)

for fi = l:numel (publicProperties)
obj. (publicProperties{fi}) = inStruct. (publicProperties{fi});
end

end
end
%% COORDINATE TRANSFORMATION FUNCTIONS
% Keplerian Elements to ECI position and velocity Vector
function KeptoECI (obj)

% Extract Gravitational Parameter

mu = obj.Body DB.mu;

% Angular momentum

obj.h = sqgrt(obj.a*mu)*sqrt (l-obj.e”2); % km"2/s

% Calculate r and v in perifocal frame

RpF = obj.h"2/ (mu* (1+obj.e*cosd (obj.theta))).*[cosd (obj.theta);sind(obj.¥

theta);0];

VpF = mu/obj.h.*[-sind(obj.theta); obj.e+cosd(obj.theta); 0];

Q

% formulate perifocal to ECI transform matrix

Qecil = [cosd(obj.Arg) sind(obj.Arg) 0
-sind (obj.Arg) cosd(obj.Arg) O
00 171;

Qeci2 = [1 0 O

0 cosd(obj.inc) sind(obj.inc)
0 -sind(obj.inc) cosd(obj.inc)];

Qeci3 = [cosd(obj.Asc) sind(obj.Asc) 0
-sind (obj.Asc) cosd(obj.Asc) O
00 171;

)

% Formulate matrix

obj.QECI = Qecil*Qeci2*Qeci3;

% compute transpose

0bj.QECI = obj.QECI';

% ECI Position and Velocity vector
obj.Reci = obj.QECI*RpF;

obj.Veci = obj.QECI*VpF;

obj.R = norm(obj.Reci);
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end
% ECI position and velocity Vector to keplerian Elements
function ECItoKep (obj)

% Extract Gravitational Parameter
mu = obj.Body DB.mu;

% Total Radius

obj.R = norm(obj.Reci); % km

% radial velocity

vrad = dot (obj.Reci,obj.Veci)/obj.R;

% calculating angular momentum

H = cross(obj.Reci,obj.Veci); % km"2/s

obj.h = sqrt(dot(H,H)); % km"2/s

% inclination

obj.inc = acosd(H(3)/obj.h);

if obj.inc == 180 % establish that 0 and 180 inclinationa are the same
obj.inc = 0;

end

o

Nodal Vector
= [0 0 1];
= cross (K,H);
= norm(N) ;

5 =z =N

o

Calculate ascending node with quadrant ambiguity

if N(2) >= 0
obj.Asc

else

obj.Asc = 360-acosd(N(1)/n);

acosd (N(1) /n);

end

% calculating eccentricity vector and magnitude
E = cross (obj.Veci,H)./mu-obj.Reci./ob]j.R;
obj.e = norm(E);
% calculate argument of periapsis with quadrant ambiguity
if E(3) >= 0
obj.Arg = acosd(dot(N,E)/(n*obj.e));
else

obj.Arg 360-acosd (dot (N, E) / (n*obj.e));

end
% calculate true anamoly with quadrant ambiguity (use radial velocity)
if vrad >= 0

obj.theta = acosd(dot (E/obj.e,obj.Reci/obj.R));
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end

Q

else
obj.theta = 360-acosd(dot (E/obj.e,obj.Reci/obj.R));
end
% Semi major axis
obj.a = obj.h"2/ (mu* (1-obj.e"2));

Q

% Formulate Matrix

Qecil = [cosd(obj.Arg) sind(obj.Arg) 0
-sind (obj.Arg) cosd(obj.Arg) O
00 171;

Qeci2 = [1 0 O

0 cosd(obj.inc) sind(obj.inc)
0 -sind(obj.inc) cosd(obj.inc)];

Qeci3 = [cosd(obj.Asc) sind(obj.Asc) 0
-sind (obj.Asc) cosd(obj.Asc) O
00 171;

obj.QECI = Qecil*Qeci2*Qeci3;

% compute transpose
obj.QECI = obj.QECI';

% Topocentric coordinates to ECI position and velocity Vector

function LLAtoECI (obj)

% Get current sidereal time from time object
W = obj.timeObj.Wcurr;

)

sid = W + obj.Long;

o° o° o°

to radians for slight performance boost)

O

0 cosd (obj.Lat) sind(obj.Lat)
% Position vector in the ENZ frame
Renz = [0; 0; obj.Radtobj.Alt];
% Create ECI position Vector
obj.Reci = Q*Renz;

Q

% Velocity vector in the ENZ frame

= [-sind(sid) -sind(obj.Lat)*cosd(sid) cosd(obj.Lat) *cosd(sid)
cosd(sid) -sind(obj.Lat)*sind(sid) cosd(obj.Lat)*sind(sid)

% longitude (long) must be expressed in 0-360 scale for this calculation

Rotation matrix from the ENZ (East, North, Zenith) frame to the ECI
(Equator Centered Inertial) Frame (switch away from cosd/sind

17
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Venz = [cosd(ob]j.FPA)*sind(obj.Az)
cosd (obj.FPA) *cosd (obj.Az)
sind(obj.FPA)];

% Create ECI velocity Vector

obj.Veci = obj.V*Q*Venz;

end

% ECI position and velocity Vector to topocentric coordinates

function ECItoLLA (obj)

% Get current sidereal time from time object

W = obj.timeObj.Wcurr;

% Enforce longitude convention is 0 to 360

sid = atan2d(obj.Reci(2),0bj.Reci(l));

if sid < 0

sid = 360 + sid;

end

% Calculate Longitude

obj.Long = sid-W;

if obj.Long < 0 % Longitude convention is 0 to 360

obj.Long = 360 + obj.Long;

end

% Calculate Geocentric Latitude

obj.Lat = 90-atan2d(sqrt (obj.Reci (1) "2+obj.Reci (2)"2),0bj.Reci(3));

% Geocentric Altitude

obj.Alt = norm(obj.Reci)-obj.Rad;

Rotation matrix from the ENZ (East, North, Zenith) frame to the ECI
(Equator Centered Inertial) Frame (switch away from cosd/sind

o° o o°

to radians for slight performance boost)

= [-sind(sid) -sind(obj.Lat)*cosd(sid) cosd(obj.Lat) *cosd(sid)
cosd(sid) -sind(obj.Lat)*sind(sid) cosd(obj.Lat)*sind(sid)
0 cosd (obj.Lat) sind (obj.Lat) 1;

O

Inertial Velocity

o\°

obj.V = norm(obj.Veci);
Venz = Q'*obj.Veci/obj.V;

% Flight Path Angle
obj.FPA = asind(Venz (3));

Necessary to force a real value here as roundoff errors can produce a
value slightly above 1 (on order of 1+le-16) and acos will spit out
an imaginary value (often occurs near north pole)

Azimuth

obj.Az = real (acosd(Venz (2) /cosd(obj.FPA)));

o° o o° oo
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maximum

% Quadrant Check (supports -180 to 180 convention)
if Venz (1) < 0
obj.Az = -obj.Az;
end
obj.Qmat = Q;
end
% Additional orbital parameters dependent on keplerian elements
function ExtraProps (obj)
% Bounded Orbit
if obj.e < 1
obj.T = 2*pi/sqgrt (obj.Body DB.mu/obj.a"3);

Q

% Interplanetary Hyperbolic Orbit

)

else % bad practice hardcoded limit, need additional property to limit¢

time
obj.T = 2*pi/sqgrt(obj.Body DB.mu/900000"3);
obj.v_inf = sqgrt(-obj.Body DB.mu/obj.a);
end
obj.rp = obj.a*(l-obj.e);
obj.ra obj.a* (1+obj.e);
obj.minalt = obj.rp - obj.Body DB.Re;

end

%% GET/SET METHODS
% Create a struct of all current state properties
function Out = get.StStrct (obj)

publicProperties = properties (obj);

for fi = 1l:numel (publicProperties)

Out. (publicProperties{fi}) = obj. (publicProperties{fi});

end
end
% Extract struct private property
function Out = passStrct (obj)
Out = obj.StStrct;
end

)

% Extract Elapsed time from time manager object

function timeOut = get.elTime (0obj)
if isempty(obj.timeOb7j)
timeOut = [];

elseif isa(obj.timeObj, 'timeMgr')
timeOut = obj.timeObj.elTime;
else
error ('Invalid State inputs, time manager object may be

incorrectly')

end

set¥
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end

end

end

% Position dependent body radius, variable if ellipsoid planet
% model is used
function radOut = get.Rad(obj)
if isempty (obj.Body DB)
radOut = [];
elseif strcmp (obj.Body DB.planModel, 'sphere')
radOut = obj.Body DB.Re; obj.radSave = radOut;
elseif strcmp (obj.Body DB.planModel, 'ellipse')
Re = obj.Body DB.Re; Rp = obj.Body DB.Rp;
radOut = Re*Rp/ (sgrt ((Rp*cosd(obj.Lat)) "2+ (Re*sind (obj.Lat))"2));
obj.radSave = radOut;
else
error ('Planet shape model must be either "ellipse" or "sphere" ')
end
end
% Set private property to store value
function set.Rad(obj,val)
obj.radSave = val;
end
% Shared handle object for planetary body inputs
function setBody (obj,bodIn)
obj.Body DB = bodIn;
end
% Shared handle object time dependent properties
function setTime (obj, timelIn)
obj.timeObj = timeln;
end
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classdef timeMgr < matlab.System

o)

% Handles time dependent planetary properties

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o° o

o\

Public, tunable properties
properties

planet % Planet
a0 % Polar axis orientation angle
d0 % Polar axis orientation angle
Wcurr % Current sidereal time
WO % Initial sidereal time
JDcurr % Current Julian date

Q

JDelapse % Julian date since standard epoch

elTime = 0; % elapsed time
Epoch = 2451545; % Standard Epoch 2000 January 1 12 h TDB
wNut = 'off' % model nutation of planetary body rotation rate

ICRF = 'off' Model trajectory propagations in the high accuracy
ICRF inertial frame, Z axis points normal to the ICRF
equator and the tilt and precession of the planetary

rotation axis 1s modeled with the a0 and dO

o0 o° Ao o° o°

parameters
setFlag = false
end

properties (SetObservable, AbortSet)

JDO0

startTime = datetime (2025,3,25,12,0,0);
end

methods (Access = protected)
function setupImpl (obj)
setW0 (obj) ;
end

function stepImpl (~)

end
end

methods

function obj = timeMgr
% allows the julian date or UTC time to automatically update
% when the other is set

addlistener (obj, 'dJD0', '"PostSet', @obj.setdJDO) ;

addlistener (obj, 'startTime', 'PostSet',@obj.setStartTime) ;

end
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function setWO0 (obj)
obj.WO0 = obj.Wcurr; $ initialize sidereal time
end

function jOut = get.JDcurr (obj)
jout = obj.JD0 + obj.elTime/86400;
end

function jOut = get.JDelapse (obj)
jout = obj.JDcurr-obj.Epoch;
end

function wOut = get.Wcurr (obj)
if isempty(obj.planet); error('planet not set in time object'); end
switch obj.planet
case 'Venus'
wOut = 160.20 - 1.4813688*0obj.JDelapse;
case 'Uranus'
wOut = 203.81 - 501.1600928*0cbj.JDelapse;
case 'Neptune'
N = 357.85 + 52.316*0obj.JDelapse/36525;
wOut = 249.978+541.1397757*0obj.JDelapse-0.48*sin (N) ;
case 'Jupiter'
wOut = 284.95+870.536*0obj.JDelapse;
case 'Earth'
wout = 360.9852%0obj.JDelapse; % Warning, Earth rotation model¥
should refer to IERS data
case 'Mars'
wOut = 176.049863 + 350.891982443297*0bj.JDelapse + 0.555;
if strcmp (wOut, 'on'")
T = obj.JDelapse/36525;
wOut = 176.049863 + 350.891982443297*0bj.JDelapse...
0.000145*sin(129.071773 + 19140.0328244*T ) ...
.000157*sin(36.352167 + 38281.0473591*T ) ...
.000040*sin (56.668646 + 57420.9295360*T ) ...
.000001*sin(67.364003 + 76560.2552215*T ) ...
.000001*sin(104.792680 + 95700.4387578*T ) ...
.584542*%sin(95.391654 + 0.5042615*T );

+ o+ o+ o+ o+
O O O O O

(
(
(
(

end
case 'Titan'
wOut = 186.5855 + 22.5769768*0obj.JDelapse;
otherwise
error ('Invalid Planet Entry')
end

% sidereal time in degrees from 0 to 360
wOut wOut/360;
wout (wOut-floor (wOut) ) *360;

% Archinal, B.A., Acton, C.H., A’Hearn, M.F. et al. Report of the AU
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Working Group on Cartographic Coordinates and
% Rotational Elements: 2015. Celest Mech Dyn Astr 130, 22 (2018). https:l
//doi.org/10.1007/s10569-017-9805-5

end
end

methods (Static)
function setJDO (~,evnt)
if ~evnt.AffectedObject.setFlag
jd = evnt.AffectedObject.JDO;
evnt.AffectedObject.setFlag = true;
evnt.AffectedObject.startTime = datetime¥
(jd, 'convertfrom', 'juliandate');
evnt.AffectedObject.setFlag = false;
setW0 (evnt.AffectedObject) ;
end
end

function setStartTime (~,evnt)
if isa(evnt.AffectedObject.startTime, 'datetime')
if ~evnt.AffectedObject.setFlag
evnt.AffectedObject.setFlag = true;
evnt.AffectedObject.JD0 = juliandate (evnt.AffectedObject.¥
startTime) ;
evnt.AffectedObject.setFlag = false;
setWO (evnt.AffectedObject) ;
end
else
warning ('Attempted to set start time in time manager with a non¥
datetime formatted object')
end
end
end
end



5/11/25 8:00 PM C:\Users\bohda\OneDrive\Des...\TrajPlot.m

classdef TrajPlot < matlab.System

Handles 3D plotting of trajectory results. Tabulates and store

o° oo

results across multiple trajectory segments

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o°  o°

o°

Pre-computed constants or internal states
properties
resultCell % Run history cell array of all trajectory segments

1 of 6

stateCell % Run history cell array of state values at nodes between trajectoryf

segments

ResultsStr $ output struct array of entire trajectory history
StateStr output struct array of all vehicle states at trajectory nodes
seg = 1;

)

Axes % 3D plot axes handle

profileResults % Cell array for batch run results
profileAxes $ Axis handle for batch run results plot

o
°
o
°

Number of trajectory segments

end

properties
State % Object Handle for Current Vehicle State Between Segments
Results % Object handle for Trajectory Outputs of one orbital segment
Body DB % handle object for planetary body parameters database
SC_DB % handle object for spacecraft parameters database
plotData % handle object for managing plotting options

end

methods
% Constructor: Pass State and Result Handle objects
function obj = TrajPlot (varargin)

o)

% No inputs case, creates default reference objects internally
if nargin == 0

% Provide values for superclass constructor

% and initialize other inputs

obj.State = SCState;

obj.Results = TrajResults;

obj.Body DB = BodyInputs;

obj.SC DB = SCInputs;

obj.plotData = plotProps;
% Individaul reference objects passed to constructor as inputs args
elseif nargin ==

)

% When nargin ~= 0, assign to cell array,
% which is passed to supclass constructor
for i1 = 1:5

if isa(varargin{il}, 'SCState'); obj.State = varargin{il};

elseif isa(varargin{il}, 'TrajResults'); obj.Results = varargin{il};
elseif isa(varargin{il}, 'BodyInputs'); obj.Body DB = varargin{il};

elseif isa(varargin{il}, 'SCInputs'); obj.SC DB = varargin{il};
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elseif isa(varargin{il}, 'plotProps'); obj.plotData = varargin{il};
else; error('Invalid shared object inputs');
end

end

Q

% Reference objects passed as a masterHand encapsulating object

elseif nargin == 1 && isa(varargin{l}, 'masterHand')
obj.State = varargin{l}.State;
obj.Results = varargin{l}.Results;

obj.Body DB = varargin{l}.Body;
obj.SC DB = varargin{l}.S C;
obj.plotDhata = varargin{l}.plotData;

else
error ('Invalid Constructor Inputs')

end

end
end

methods (Access = protected)

% Setup, called only once upon first step
function setupImpl (ob7j)

initPlot (obj)
end

Step: plots the trajectory contained within the results shared
handle object
function stepImpl (obj)

o
°
o
°

% Skip plot if results are empty
if ~isempty(obj.Results.Rt)
Rt = obj.Results.Rt;

Red for aero segment, blue for coast, and green for burn
(Make adjustable in future)
switch obj.Results.Type

o
°
o
°

case 'Aero'
cC="r';
case 'Cruise'
cC = "b'";
case 'Burn'
c="g";
otherwise
end

% If plot has been closed or axes deleted, create a new
% figure window and plot
if ~isvalid(obj.Axes)

initPlot (obj)

end
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o)

% Plot trajectory
plot3 (obj.Axes,Rt(:,1),Rt(:,2),Rt(:,3), 'LineWidth',1.25, "Coloxr"',C);
hold on

end

% Populate results and current state into a run history cell
% array
obj.resultCell{obj.seg} = obj.Results.step;
obj.stateCell{obj.seg} = obj.State.passStrct;
obj.seg = obj.seg + 1;

end

% Clear run history results and state data
function resetImpl (obj)

obj.resultCell = [];

obj.stateCell = [];

obj.seg = 1;

end
end

methods

% Setup function for 3D trajectory plot
function initPlot (obj)

Re = obj.Body DB.Re;

figure

obj.Axes = axes();

% plot primary body location

scatter(0,0,'r");
hold on

% Label formatting

xlabel ('ec {x} (km)'"'); ylabel('ec {y} (km)'); zlabel('ec {z} (km)");
% plot event locations
scatter3(Ye(:,1),Ye(:,2),Ye(:,3));
hold on

o° o° oe

o

Add orgin and ECI reference frame

quiver3(0,0,0,1,0,0,Ret0.25*Re, 'r', "'LineWidth', 3, "MaxHeadSize', 1)
quiver3(0,0,0,0,1,0,Re+0.25*Re, 'g', 'LineWidth', 3, 'MaxHeadSize', 1)
quiver3(0,0,0,0,0,1,Ret0.25*Re, 'b', "LineWidth', 3, "MaxHeadSize', 1)

o\

Add a wiremesh around planet
[X,Y,2] = sphere;
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Y2 =Y * r;
722 = 7 * r;
% Create planet visualization and format the 3D plot
mesh (X2+5,Y2-5,22, 'FaceAlpha',0.1, 'EdgeColor',0.75*0obj.Body DB.RGB) ;
surf (X2+5,Y2-5,22, 'FaceAlpha',0.35, 'EdgeColor', 'none', 'FaceColor',obj.¥
Body DB.RGB, 'LineWidth',.1);
ax = gca;

ax.ClippingStyle = "rectangle";
daspect ([1 1 1]) % fix aspect ratio
grid on

end

)

% Function to export all trajectory results and node states as structs

function [ResultsStr, StateStr] = getResults (obj)
ResultsStr = [obj.resultCell{:}];
StateStr = [obj.stateCell{:}];

end

Q

% Plots results from batch runs (warning: experimental)
function optOut = plotResult (obj,n)

% n is the amount of profiles in each x-y plot step
m = length(obj.resultCell);

resultProfile = [obj.resultCell{m-n+l:m}];

xDat = obj.plotData.resultXax;
xX = [resultProfile. (xDat)];

yDat = obj.plotData.resultYax;

yWeight = obj.plotData.weightFactor;

yW = [resultProfile. (yWeight)];

yP = [resultProfile. (yDat)];

% yY = [resultProfile. (yDat)];

% % Create a weighted profile between two constraints
wRange = [yW (end) yW(l)];

[yP(1l) yP(end)];

S
s}
Y
=1

Q
D

Il

yY = sqrt (((yW-wRange (2)) ./ (wRange (1) -wRange (2)))."2 + ((yP-yRange (2))./¢
(yRange (1) ~yRange (2))) .*2) ;

[~,I] = min(yY);

optOut = yP(I);

% obj.plotData.plotResults (xX,vyY);

obj.plotData.plotResults (xX, yP);
% yyaxis right

% obj.plotData.plotResults (xX,yW/3600) ;
ticks = [500 100000:100000:9000007;
xticks (ticks) ;
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xticklabels (string(ticks));
xlabel ('Apoapsis Altitude (km) ') ;
% Create Legend Labels
varl = obj.plotData.resultlLeg(l);
var2 = obj.plotData.resultlLeg(2);
label = join([varl, '=',resultProfile(n). (varl),',',var2,'=',resultProfile¢
(n) . (var2)1);
obj.plotData.setlLegend(label)
end
% Creates an output summary table of all atmospheric entries
function AeroTab (obj)

% Number of trajectory segments
n = length (obj.resultCell);
% Column labels

aeroLabel = {'Pass';'Peak Conv. Heat Flux (W/cm"2)';'Conv. Heat Loady
(J/cm”2)';'Delta V Lost (km/s)';'EFPA (deg)'};

kl = 1;
for i1 = 1:n
% Filter by atmospheric flight segments only
if ~isempty (obj.resultCell{il}) && strcmp(obj.resultCell{il}.¥
Type, "Aero')

% Heat Rate and Heat Load
Qs (kl) = obj.resultCell{il}.gsMax;
Js (k1) obj.resultCell{il}.JjsMax;

Q

% Delta V lost with each pass
dv (kl) = obj.resultCell{il}.dVaero;
% Flight Path angle at entry interface
EFPA (k1) = obj.resultCell{il}.fpal;
% Pass number
pass (kl) = append("Pass ",num2str (kl));
kl = k1 + 1;
end
end
% Generate and display table
fprintf ('*****Atmospheric Entries Summary*****\n')
aeroTab = table(pass',Qs',Jds',dV',EFPA', 'VariableNames',aeroLabel)
disp (aeroTab) ;
end
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% Creates an output summary table of all propulsive maneuvers
function BurnTab (ob7j)

% Number of trajectory segments
n = length(obj.resultCell);

% Column labels
burnLabel = {'Maneuver';'Delta V (m/s)';'Burn Time (s)';'Propellant (kg)'};

jl = 1;
for i1 = 1:n

% Filter by atmospheric flight segments only
if strcmp(obj.resultCell{il}.Type, 'Burn')

% Index

burn(jl) = string(jl);

% Delta V

DV(jl) = obj.resultCell{il}.dv;

o)

% Burn Time
TB(jl) = obj.resultCell{il}.Tb;

% Propellant mass usage
Prop(jl) = obj.stateCell{il-1}.ScM - obj.stateCell{il}.ScM;
J1 = 31 + 1;
end
end

% Calculate totals

burn(jl) = 'Totals'; DV(jl) = sum(DV); TB(jl) = sum(TB); Prop(jl) = sum¥’
(Prop);
% Generate and display table
fprintf ('\n*****Maneuver Con-Ops Summary*****\n')
burnTab = table (burn',DV',TB',Prop', 'VariableNames',burnLabel)
disp (burnTab) ;
end
end

end



5/11/25 8:01 PM C:\Users\bohda\OneDrive...\TrajResults.m 1

classdef TrajResults < matlab.System

o)

% Stores and manages trajectory time history results

Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
and Technology Division, May 2025, MATLAB 2024Db.

o° oo

% Public, tunable properties
properties
Type % Obital Segment Type (Cruise, Aero, or Burn)
Rt % Trajectory position and velocity array (km, km/s)

t % Trajectory time array (s)

ye % Position and velocity at event (km, km/s)
ie % Event type indication

te % Time of Event (s)

gs % Stagnation heat flux (W/cm”"2)

Js % stagnation heat load (J/cm”2)

gsMax % Maximum Stag heat flux (W/cm”"2)

jsMax % Maximum Stag heat load (J/cm”2)

dVvec % Attitude vector for burns (km/s)

Tb % Burn time for burns (s)

dv % Total delta V for burns (m/s)
dVaero % Delta V lost from drag (km/s)
alt % Geocentric Altitude (km)

V % Inertial Velocity (km/s)
Vi % Initial Velocity (km/s)
fpa % Flight Path Angle (degqg)
fpal % Initial Flight Path Angle (deg)
tPost % Orbital period of post exit trajectory (s)
rho % Density (kg/m”3)
Kn % Knudsen Number
BC % Ballistic Coefficient (kg/m"2)
raAlt % Apoapsis Altitude (km)
end

properties
plotLabels % Property storing all labels and units for plotting
StStrct % Property for outputting Results in struct format

end

methods
% Class Constructor
function obj = TrajResults
populatelabels (obj) ;
end

end

methods (Access = protected)
% Create a Struct of all time history Properties
function Out = stepImpl (obj)

publicProperties = properties (obj);
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for fi

1:numel (publicPr
if ~strcmp (publicProp
(publicProperties{fi}, 'StStrct'")
obj.StStrct. (publ
end
end
Out

obj.StStrct;
end
end

methods

o)

% Label database for all resu

% possible time history resul

function populateLabels (obj)
obj.plotLabels struct ()
obj.plotLabels.t.label =
obj.plotLabels.t.title
obj.plotLabels.gs.label
obj.plotLabels.gs.title
obj.plotLabels.Js.label
obj.plotLabels.Js.title =
obj.plotLabels.alt.label
obj.plotLabels.alt.title
obj.plotLabels.V.label =
obj.plotLabels.V.title
obj.plotLabels.fpa.label
obj.plotLabels.fpa.title
obj.plotLabels.rho.label
obj.plotLabels.rho.title
obj.plotLabels.Kn.label
obj.plotLabels.Kn.title
obj.plotLabels.Vi.label
obj.plotLabels.Vi.title
obj.plotLabels.BC.label
obj.plotLabels.BC.title =
obj.plotLabels.ralAlt.labe
obj.plotLabels.raAlt.titl
obj.plotLabels.gsMax.labe
obj.plotLabels.gsMax.titl
obj.plotLabels.jsMax.labe
obj.plotLabels.jsMax.titl
obj.plotLabels.dVaero.lab
obj.plotLabels.dVaero.tit
obj.plotLabels.fpal.label
obj.plotLabels.fpal.title
obj.plotLabels.tPost.labe
obj.plotLabels.tPost.titl

end

Q

°

calculates inertial velocit

operties)

erties{fi}, 'plotLabels') && ~strcmp¥

icProperties{fi}) obj. (publicProperties{fi});

1ts
ts)

(currently only a fraction of all

"Time Since Entry Interface (s)";
"Time";

"Heat Flux (W/cm"2)";
"Stagnation Heat Flux";

"Heat Load (J/cm”2)";
"Stagnation Heat Load";
"Altitude (km)";

"Geocentric Altitude";

(km/s)";

"Velocity";

"Flight Path Angle (deq)";
"Entry Flight Path Angle";
(kg/m"3)";

"Density";

"K n";

"Knudsen Number";

"voi";

"Entry Velocity
"B C";
"Ballistic Coefficient
"R_a (km)";
"Apoapsis Altitude (km)";
"Heat Flux (W/cm"2)";

"Peak Conv. Heat Flux";
"Heat Load (J/cm”2)";
"Conv. Heat Load";

"Delta V (km/s)";

le = "Delta V due to Drag";
"Flight Path Angle (deq)";
"Initial Flight Path Angle";
"Orbital Period (hr)";
"Post-Exit Orbital Period";

"Velocity

"Density

(km/s)";

(kg/m~2)";
1
e
1
e
1
e
el

1
e

y from trajectory data
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function vOut = get.V(obj)
if isempty(obj.Rt)
vout = [];
else
vOut = vecnorm(obj.Rt(:,4:6),2,2);
end
end
end
end
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