

 Page 1 of 107

Multi-Pass Aerocapture
Approach for Orbital Insertion

a project presented to
The Faculty of the Department of Aerospace Engineering

San José State University

in partial fulfillment of the requirements for the degree
Master of Science in Aerospace Engineering

by

Bohdan O. Wesely

May 2025

approved by

Dr. Perikilis Papadapolous
Faculty Advisor

 Page 2 of 107

Special thanks for additional
expertise and guidance on this project

Paul Wercinski

NASA Ames Research Center
Entry Vehicles and Systems Branch

 Page 3 of 107

© 2025

Bohdan .O Wesely
ALL RIGHTS RESERVED

 Page 4 of 107

ABSTRACT

Multi-Pass Aerocapture Approach for Orbital Insertion

Bohdan O. Wesely

Aerocapture is an orbital insertion method that utilizes atmospheric drag to decrease an
interplanetary spacecraft’s (S/C) velocity into a captured orbit. The technique has been studied
for several decades but has yet to be utilized in a flight mission. Aerocapture has the potential to
significantly reduce S/C propellant mass, increase science payload mass, and/or reduce mission
duration, especially for large outer planet (Neptune, Uranus) missions. This study explores a
novel multi-pass aerocapture approach where initial entry would only reduce the velocity enough
for a minimum captured orbit. This would be followed by additional atmospheric passes to
sequentially bring the spacecraft apoapsis close to its target science orbit. Traditional aerocapture
is where the spacecraft apogee is at or near the required science orbit after just one atmospheric
entry. This project aims to construct conceptual first order trajectory and atmospheric entry
analysis tools to compare both approaches. A fair assessment would determine whether the
potential benefits of multi-pass such as reduced TPS mass and required control authority
outweigh the drawbacks such as increased mission duration.

 Page 5 of 107

Table of Contents
1. Introduction ... 11

2. Literature Review.. 13

2.1. Aerocapture and Entry Descent and Landing (EDL) .. 13

2.2. Entry System Design... 13

3. Project Objective ... 16

3.1. Uranus and Venus for Multi-Pass Aerocapture .. 16

4. Analysis Methodology .. 17

4.1. Orbital Mechanics ... 17

4.2. Hypersonic Atmospheric Flight .. 18

4.2.1. Modified Newtonian Method .. 18

4.2.2. Modified Newtonian Method 𝛼 ≠ 0 ... 21

4.2.3. NASA Global Atmospheric Reference Model (GRAM) .. 25

4.2.4. Reference Frames.. 29

4.3. Aerodynamic Heating and TPS Sizing ... 34

4.3.1. Sutton Graves Approximation .. 34

4.3.2. Normal Shock Wave Calculation for Thermochemical Equilibrium. 34

4.4. Geometry... 41

4.5. Simulation Framework.. 42

4.5.1. Simulation Version 1.0 ... 42

4.5.2. Simulation Version 2.0 ... 45

5. Model Validation and Comparison ... 49

5.1. Model Validation with SCITECH Venus Aerocapture Performance Analysis 49

5.2. Comparison with NASA TRAJ Software ... 51

6. Preliminary Results ... 59

6.1. Preliminary Multi-Pass Venus Aerocapture Trajectory .. 59

6.1.1. Aerothermal Results: Preliminary... 61

6.2. Aerocapture Sensitivity Analysis .. 63

6.2.1. Uncertainty Modeling ... 68

6.3. Mission Concept: SmallSat Venus Aerocapture with Deployable TPS 68

6.3.1. Aerothermal Results: Deployable TPS ... 73

7. Next Steps ... 75

8. References ... 76

 Page 6 of 107

9. Appendix ... 79

9.1. Modified Newtonian Aerodynamics: Additional Validation and Convergence 79

9.1.1. Additional validation with [29], cone and spherical segment 79

9.1.2. Panel Method Convergence .. 81

9.2. Free Molecular and Rarefied Flow Aerodynamics ... 84

9.2.1. Validation of Rarefied Flow Mechanics ... 87

9.3. Ultra Low Ballistic Coefficient Venus Multi-Pass Trajectory 97

9.4. Uranus Aerocapture Analysis ... 100

9.5. Basic Equations for Orbital Mechanics and Rocket Propulsion 105

9.5.1. Conversion of Keplerian Orbital Elements to Position and Velocity Vector 105

9.5.2. Conversion of Position and Velocity Vector to Keplerian Elements 106

9.5.3. Spherical Harmonics and Oblateness Effects ... 107

9.5.4. Basic Elements of Rocket Propulsion ... 107

9.6. Source Code .. 107

Table of Figures

Figure 1.1 Traditional Single-Pass Aerocapture from ref. [9] .. 11
Figure 1.2 Multi-Pass Aerocapture Approach .. 12
Figure 2.1 Entry System Design Flow .. 13
Figure 2.2 Aerothermal Environment ref. [1] ... 14
Figure 2.3 CFD Heating Predictions for Uranus Aerocapture [14] .. 15
Figure 4.1 Coordinate System for Flight Simulation .. 17
Figure 4.2 Newtonian Method Concept [17] .. 18
Figure 4.3 Vehicle Force Coefficients .. 18
Figure 4.4 Force Coefficients for Model Validation [29] ... 20
Figure 4.5 Side View Discretization with 4 Nose Segments .. 21
Figure 4.6 Nose View Discretization Example ... 22
Figure 4.7 Aero Coefficient Validation with [13] (Uranus Aerocapture) 24
Figure 4.8 Aero Coefficient Validation with Figure 4.4, ref. [29].. 24
Figure 4.9 Modified Newtonian Geometry Output (𝛿𝑓𝑙𝑎𝑛𝑘 = 60°, 𝑅𝑁𝑅 = 0.5) 24
Figure 4.10 Venus Atmosphere Profile (ref. [7]) .. 25
Figure 4.11 Venus Winds vs. Altitude .. 26
Figure 4.12 Venusian Wind Direction at 100 km Altitude (JD 2459138) 27
Figure 4.13 Venusian Wind Magnitude at 100 km Altitude (JD 2459138).................................. 27
Figure 4.14 Blunt Body Crosswind Illustration .. 28
Figure 4.15 Polar and Equatorial Trajectory Wind Dispersions (JD = 2459138) 29
Figure 4.16 ENZ and ECI Reference Frames [22] ... 30

 Page 7 of 107

Figure 4.17 Reference System for Time Dependent Planet Orientation [30] 31
Figure 4.18 Inertial Velocity Frame and Forces on Entry Vehicle ... 33
Figure 4.19 Chemistry Model Validation ([17], Fig 11.12, P.541) .. 36
Figure 4.20 Chemistry Model Validation with CEA .. 38
Figure 4.21 Calorically Perfect Gas Comparison ... 39
Figure 4.22 CEA Validation with Ionization Effects.. 40
Figure 4.23 Validation Entry Vehicle Geometry (ref. [11]) ... 41
Figure 4.24 Aerobraking Model with Key Additions (red) .. 42
Figure 4.25 Model Framework (Version 1.0) ... 43
Figure 4.26 MATLAB Object Oriented Class Structure (Version 1.0) .. 44
Figure 4.27 Expanded Model with Subsystems (Version 1.0) ... 44
Figure 4.28 Version 2.0 Class Inheritance Hierarchy ... 47
Figure 4.29 Class Containment Structure ... 47
Figure 4.30 Configuration Editor .. 48
Figure 5.1 Model Validation Trajectory Inputs [23] .. 49
Figure 5.2 Unguided Aerocapture Validation Trajectory ... 49
Figure 5.3 Trajectory Heat Flux Validation (Internal Model: left Ref. [23]: right) 50
Figure 5.4 Trajectory Velocity Validation (Internal Model: left Ref. [23]: right) 50
Figure 5.5 Trajectory Altitude Validation (Internal Model: left Ref. [23]: right) 51
Figure 5.6 TRAJ-MATLAB Altitude Comparison ... 53
Figure 5.7 TRAJ-MATLAB Velocity Comparison .. 53
Figure 5.8 TRAJ-MATLAB Heat Flux Comparison .. 53
Figure 5.9 Lift Up /Lift Down MATLAB Results .. 55
Figure 5.10 MATLAB-TRAJ Comparison Lift Down ... 56
Figure 5.11 MATLAB-TRAJ Comparison Lift Up .. 57
Figure 6.1 Full Venus Multi-Pass Trajectory ... 59
Figure 6.2 Venus Multi Pass Trajectory Planet Centered ... 60
Figure 6.3 Multi Pass Heat Flux Results .. 61
Figure 6.4 Multi Pass Total Heat Load Results .. 62
Figure 6.5 Peak Stag. Heat Flux to Orbital Period Tradeoff .. 63
Figure 6.6 𝑞𝑁-𝜏𝑁 Weight Function ... 64
Figure 6.7 Ballistic Coefficient Effect on Peak Heating... 65
Figure 6.8 Ballistic Coefficient (kg/m^2) Effect on Weight Function ... 66
Figure 6.9 Entry Velocity (km/s) Effect on Weight Function .. 66
Figure 6.10 Venus Aerocapture Design Space ... 67
Figure 6.11 Venus Aerocapture Design Space for Low 𝐵𝐶 Vehicles (Lift Down) 69
Figure 6.12 Venus Aerocapture Design Space for Low 𝐵𝐶 Vehicles (Lift Up) 70
Figure 6.13 Venus Aerocapture Design Space for Low 𝐵𝐶 Vehicles (Overlay) 70
Figure 6.14 Venus Deployable TPS Multi-Pass Trajectory.. 72
Figure 6.15 Venus Deployable TPS Additional Trajectory Views... 72
Figure 6.16 Venus Multi-Pass Deployable TPS Aerothermal Results ... 73
Figure 6.17 Venus Multi-Pass Deployable TPS Additional Results .. 74
Figure 9.1 Panel Method for Cone (20 radial panels) ... 79
Figure 9.2 Ref [29] Data for Cone .. 79
Figure 9.3 Ref [29] Data for Cone .. 80

 Page 8 of 107

Figure 9.4 Panel Method for Sphere (20 radial panels) .. 80
Figure 9.5 Normal Force vs. Number of Divisions (60° sphere cone) ... 81
Figure 9.6 Axial Force vs. Number of Divisions (60° sphere cone) .. 82
Figure 9.7 Side Force Convergence (60° sphere cone) .. 82
Figure 9.8 Axial Force vs. Number of Divisions (25° sphere cone) .. 83
Figure 9.9 Continuum Limit of Uranus Aerocapture Trajectory from [14] 85
Figure 9.10 Sphere Drag Coefficient Results from [32] ... 87
Figure 9.11 Sphere Drag Coefficient Validation Results ... 87
Figure 9.12 Increasing Bi-conic Geometry from [33] .. 88
Figure 9.13 Increasing Bi-Conic Validation Results .. 89
Figure 9.14 Increasing Bi-conic Results from [33] .. 89
Figure 9.15 Mars Microprobe Results from [33] .. 90
Figure 9.16 Mars Microprobe Validation Results .. 90
Figure 9.17 Mars Microprobe Geometry from [33].. 90
Figure 9.18 Flight Conditions from [36]... 92
Figure 9.19 Validation with [36] at α=10° .. 93
Figure 9.20 Validation with [36] at α=0° .. 93
Figure 9.21 Aero-database from [13] .. 94
Figure 9.22 Aero-database Validation with [13] .. 94
Figure 9.23 Rarefied Flow Effects Comparison ... 95
Figure 9.24 Knudsen Number Trajectory Space... 96
Figure 9.25 Multi-Pass Trajectory, Venus Deployable TPS, Ultra Low 𝐵𝐶 98
Figure 9.26 Aerothermal Results: Deployable TPS, Ultra Low 𝐵𝐶 (Lift Down Only) 99
Figure 9.27 Uranus Aerocapture Design Space .. 100
Figure 9.28 Uranus Test Trajectory Results ... 102
Figure 9.29 UranusGRAM [6] Species Mole Fractions vs. Altitude .. 103
Figure 9.30 Uranus Test Trajectory Normal Shock Effects ... 103
Figure 9.31 Convective Heating Correlation Comparison ... 104
Figure 9.32 Uranus Aerocapture Test Trajectory ... 104

 Page 9 of 107

Nomenclature
𝐶ே = Normal Force Coefficient
𝐶஺ = Axial Force Coefficient
𝐶ௌ = Side Force Coefficient
𝐶஽ = Drag Coefficient
𝐶௅ = Lift Coefficient
𝐶௓ = Velocity Oriented Side Force Coefficient
𝐶௣ = Pressure Coefficient
𝐶ఛ = Shear Coefficient
𝐵஼ = Ballistic Coefficient
α = Angle of Attack (deg)
β = Angle of Sideslip (deg)
θ = Local Surface Inclination Angle (deg)
𝐷 = Entry Vehicle Diameter (m)
𝑅ே = Sphere Cone Nose Radius (m)
𝛿௙௟௔௡௞ = Sphere Cone Half Angle (deg)
𝑀ஶ = Free Stream Mach Number
𝑝ஶ = Free Stream Pressure (Pa)
𝜌ஶ = Free Stream Density (kg/m^3)
𝑉ஶ = Free Stream Velocity (m/s)
𝑉 = Inertial Velocity (km/s)
𝑇 = Temperature (K)
𝑇ஶ = Free Stream Temperature (K)
𝑇ௐ = Wall Temperature (K)
𝐺௜ = Species Gibbs Free Energy (kJ/mole)
𝐻௜ = Species Total Enthalpy (kJ/mole)
𝑝௜ = Species Partial Pressure (Pa)
𝑆௜ = Species Entropy (kJ/mole K)
𝜂௜ = Species Mole-Mass Ratio
𝑣௜ = Species Stoichiometric Coefficient
𝑝௧ = Total Pressure (Pa)
𝜎 = Particle collision cross section (pm^2)
𝑑௜ = Species particle kinetic diameter (pm)
ℛ = Universal Gas Constant (kJ/kmol K)
𝛾 = Specific Heat Ratio
𝐾௣ = Equilibrium Constant
𝑀𝑅 = Initial Ratio of Gas Particles
𝑞௦ = Stagnation point convective heating (W/cm^2)
𝐽௦ = Stagnation point total heat load (J/cm^2)
𝑘 = Aerothermal constant
𝐾௡ = Knudsen Number
𝑘௕ = Boltzmann Constant (J/K)
𝑛 = Particle Number Density (1/m^3)
λ = Mean Free Path (m)

 Page 10 of 107

𝒓 = Orbital Position Vector
𝒗 = Orbital Velocity Vector
𝜏 = Orbital Period
𝜇 = Gravitational Constant (km^3/s^2)
𝐽ଶ = 2nd Zonal Harmonic
𝑟௔ = Radius at Apoapsis (km)
𝑟௣ = Radius at Periapsis (km)
𝑒 = Eccentricity
𝑎 = Semi Major Axis (km)
𝑖 = Inclination (deg)
𝜔 = Argument of Periapsis (deg)
Ω = Longitude of the Ascending Node (deg)
Θ = True Anomaly (deg)
Az = Azimuth (deg)
fpa = Flight Path Angle (deg)
∆𝑉 = Change in Velocity (km/s)
𝐼௦௣ = Specific Impulse (s)
𝑔௢ = Specific Gravity (m/s^2)
𝑡௕ = Burn Time (s)

 Page 11 of 107

1. Introduction

 The 2023-2032 National Academies Planetary Science and Astrobiology Decadal Survey
listed the ice giants (Uranus, Neptune) as a top priority for science exploration missions [2].
These destinations have longer mission durations and higher arrival velocities compared to the
gas giants or inner planets and therefore demand a higher spacecraft mass fraction allocated to
the propulsion system and propellant. The mass penalty of a traditional propulsion systems
makes aerocapture of particular interest for these ice giant destinations. Venus, Mars, and Earth
return missions are also viable for aerocapture orbital insertion though with less mass savings
due to their proximity to Earth. A great deal of literature and concept studies exist on aerocapture
and the vast majority focus on a single pass approach (ref. [9]-[15], [19], [23], and [24]). The
main takeaways are that Aerocapture may require several new technologies related to low-
medium L/D entry vehicles, high performance thermal protection systems (TPS) such as
3DMCP, HEEET, etc. and novel guidance and control techniques to account for atmospheric
uncertainties. New technologies present a degree of risk when it comes to mission planning.

Figure 1.1 Traditional Single-Pass Aerocapture from ref. [9]

 Page 12 of 107

Figure 1.2 Multi-Pass Aerocapture Approach

 Page 13 of 107

2. Literature Review

2.1. Aerocapture and Entry Descent and Landing (EDL)

 The aerocapture concept shares much of the same technology requirements as traditional
entry descent and landing (EDL) through planetary atmospheres. Existing literature on
aerocapture based missions contains analysis, propositions, and design methodologies derived
from EDL. Atmospheric flight at orbital velocities creates extreme heating environments in both
aerocapture and EDL mandating the need for TPS. Guidance, navigation, and control (GN&C) is
similar for both mission cases. Aerocapture velocities remain in the orbital regime with a large
portion of the trajectory at high altitudes in non-continuum flow. In traditional EDL, navigation
and maneuvers can be performed at lower altitudes where the atmosphere is denser, offering
more control authority and flexibility in targeting a precise landing location. With Aerocapture,
all maneuvering action must be performed at orbital velocities in the outer fringes of the
atmosphere.

The main benefit of aerocapture as discussed in section 1 is the propellant mass savings
allowing for larger payloads and/or shorter mission durations. The TPS in traditional EDL is still
a significant vehicle mass fraction which is determined by the entry environment and materials
used. Systematic TPS and entry vehicle design methodologies have been used on all space
missions requiring entry descent and landing through a planetary atmosphere. Determination of
the TPS size and mass requirements allow for a quantitative comparison between traditional
chemical propulsion, single-pass aerocapture, and multi pass aerocapture, which is the objective
of this project.

2.2. Entry System Design

Science and/or space exploration objectives typically drive a mission concept and

destination. The mission concept creates high level requirements and initiates the project

Mission
Concept

Con-Ops,
Trajectory

Characterize
Aerothermal
Environment

Material
Selection,
TPS Sizing

Characterize TPS
material. (properties,
thermal response, etc)

Apply
Margins

Final,
margined
Design

Figure 2.1 Entry System Design Flow

 Page 14 of 107

preliminary design phase. At this point mission planners can design a preliminary trajectory and
navigation solution for the spacecraft to reach its destination. This spans from launch, injection
maneuvers, cruise, orbital insertion, and entry descent and landing. Orbits and trajectories can be
modeled in the simplest form by Kepler’s law of motion (eq. 2.1).

𝐹௚ =
𝐺𝑚ଵ𝑚ଶ

𝑟ଶ
(2. 1)

Orbit shapes are characterized by conic sections, ellipses and hyperbola being the most

common. Patched conic methods can be used to form a complete mission trajectory by stitching
together orbital segments [27]. In the conceptual design phase this offers a reasonable
approximation. Additional physics such as atmospheric drag, oblateness, gravitation forces from
other planets, and solar radiation can be added to the fundamental Kepler equations for increased
fidelity. Reference [22] describes modeling 2-body Keplerian orbits extensively and presents
algorithms for implementing models in a simulation environment such as MATLAB.

An atmospheric entry trajectory is also governed by Kepler’s laws with the key addition
of aerodynamic forces. Once a trajectory is outlined, the velocity magnitude and atmospheric
conditions drive the aerothermal heating environment. At orbital velocities, the extreme
compression as gases impinge on the entry vehicle and can produce temperatures up to 20000 K
behind the shock front [1]. Aerothermal heating of an entry vehicle is an energy balance
problem at the surface with convective and radiative heating being the dominant methods of heat
transfer from the flow field to the vehicle TPS.

Figure 2.2 Aerothermal Environment ref. [1]

 Page 15 of 107

At the extreme environments of atmospheric entry, chemical reactions and diffusion greatly
affect energy transfer in the shock layer region. Hypersonic and High Temperature Gas
Dynamics” [17], by John D. Anderson describes the physics at play in these flow regimes in
detail and has been a key resource for this project. Predictive design tools are invaluable for EDL
mission designers to estimate how an entry vehicle will perform during atmospheric flight and
how much TPS is required. The state of the art of entry environment predictions is highly
parallelized CFD (Computational Fluid Dynamics) with extensive chemistry and radiation
models as well as Direct Simulation Monte Carlo (DSMC) for non-continuum flows. Lower
fidelity tools also exist such as the Sutton Graves approximation and generalized chapman
method, these are often used in conjunction with CFD anchor points [1]. Various methods exist
to predict the chemical reactions and resulting gas compositions in hypersonic flow fields.
References [3]-[5] outline computational methods of predicting chemical compositions based on
empirical thermodynamic data. Additional details on these first order aerothermal modeling tools
will be discussed in sections 4.2 and 4.3.

Accurate vehicle aerodynamic force data is necessary for accurate trajectory results,
especially for guided trajectories. CFD results can output lift, drag, and other aero coefficients
but first order tools like Modified Newtonian Theory are a reasonable first order approximation
[13]. Reference [17] describes a variety of aero force predictive methods in detail, [28] outlines a
Newtonian panel method and was used to validate methods discussed in section 4.

 A recent NASA early career initiative (ECI) studied and proved the viability for
aerocapture at Uranus with present technologies, [9]-[15]. References [10], [13], and [14] discuss
the mission concept and aerothermal environment predictions while [12] discusses the TPS
design and sizing. A similar performance analysis for a Venus aerocapture is outlined in [23].
and is used one of the main validations for the methodologies described in section 4.

Figure 2.3 CFD Heating Predictions for Uranus Aerocapture [14]

 Page 16 of 107

3. Project Objective

This study aims to determine whether a multi-pass approach for a flagship outer planet or
Venus/Earth return mission presents less risk and is more viable with current technologies than a
traditional single-pass approach. The first phase of the study will incorporate rudimentary, first
order analysis tools with several key assumptions to perform a fair assessment between the two
approaches. The second phase will incorporate more advanced analysis tools, begin accounting
for uncertainties, and increase the overall level of fidelity. The primary comparison metrics will
be TPS mass and mission duration. The maximum heat flux and total heat load for each multi-
pass will be compared to the single pass and contribute to the TPS sizing methodology. Higher
fidelity models might assess whether each of the multiple passes introduces less trajectory
dispersion than a single higher intensity pass. In a single-pass aerocapture, the aeroshell can be
jettisoned immediately after atmospheric exit, but for a multi-pass approach it must be retained
which may introduce issues with thermal soak back and communications. These drawbacks will
also be assessed. In the end, the various analysis tools should demonstrate a clear assessment
between the two mission architectures. Any difference between the low and high fidelity analysis
tools will also be discussed.

3.1. Uranus and Venus for Multi-Pass Aerocapture

At the inception of this project, Uranus was chosen as the first mission destination to be
tested. The NASA early career initiative (ECI) studied and proved the viability for aerocapture at
Uranus with present technologies, [9]-[15]. The simulations run in the ECI targeted a post-
aerocapture orbit of 4000 x 550000 (5.5e5) km. One of the objectives of this high apogee is to
encounter Titania, the largest moon of Uranus. Brief 2-body orbital mechanics calculations
illustrate that the 5.5e5 km target apogee is already close to a minimum captured orbit. There
isn’t significant allowance for meaningful ΔV savings by taking multiple lighter passes to get to
the same apoapsis. Lower Uranus orbits can be achieved through gravity down-pumping
maneuvers via Titania and other moons albeit more slowly than aerobraking passes. The above
factors make a multi-pass aerocapture approach less viable for Uranus. Neptune, Jupiter, and
Saturn also have large natural satellites that can provide gravity assists and pump-down
maneuvers essentially for free, provided the initial orbit is high enough for a periodic encounter.
Venus, lacking a natural satellite could potentially be more attractive for a multi-pass approach
for low orbiting missions, and will therefore be the first destination to be analyzed. A concept
study outlining a single-pass Venus aerocapture is outlined in [23] targets a low 500x500km
orbit. Once a low fidelity simulation tool has been built and tested for the Venus case,
performance to lower Uranus orbits or other destinations may be assessed.

 Page 17 of 107

4. Analysis Methodology

4.1. Orbital Mechanics

A simple 2-body orbital mechanics model will be used for the low fidelity flight
simulation in this study. The simulation will start with an interplanetary state vector that is pulled
from the data used in [23]. This will allow an initial comparison to current literature to validate
the simulation. An altitude of 150 km will be used as a cutoff for atmospheric flight effects, the
same as [23], though a higher cutoff may be considered in further refinements. The coordinate
system for the orbit propagation will be a cartesian, equatorial centric inertial (ECI) reference
frame (Figure 4.1). The following assumptions will be made in this 2-body model.

1) J2 spherical harmonic perturbations will be modeled, no perturbations from any other
bodies.

2) No solar radiation pressure or any other perturbing body forces on vehicle.

3) Maneuvers assume perfect thrust alignment with vehicle velocity vector, constant ISP.

4) Vehicle modeled as a point mass, no rigid body or attitude dynamics.

𝒓 = ቎

𝑋 𝒆𝒄𝒙

𝑌 𝒆𝒄𝒚

𝑍 𝒆𝒄𝒛

቏ (4. 1)

Figure 4.1 Coordinate System for Flight Simulation

 Page 18 of 107

𝜇 = 𝐺𝑀 (4. 2)

𝒓̈ =
𝜇

𝑟ଷ
𝒓 (4. 3)

𝒓̈ =
𝜇

𝑟ଷ
𝒓 +

𝐹𝒓̇

𝑚𝑟
 (4. 4)

4.2. Hypersonic Atmospheric Flight

 Once the altitude threshold is reached, the simulation will switch to a separate integration
scheme to account for atmospheric effects. The atmospheric drag model used in the initial low
fidelity study is spelled out in eq. 4.5. This assumes a constant drag coefficient and constant
vehicle orientation with the drag vector, 𝑷, acting opposite to the velocity vector. The velocity
vector 𝒗𝒓𝒆𝒍 shown in 4.6 factors in winds and planetary rotation.

𝒓̈ =
𝜇

𝑟ଷ
𝒓 + 𝑷 (4. 5)

𝑷 =
1

2
𝜌ஶ|𝒗𝒓𝒆𝒍|

ଶ𝐶஽𝐴
 |𝒗𝒓𝒆𝒍|

𝒗𝒓𝒆𝒍
 (4. 6)

4.2.1. Modified Newtonian Method

Figure 4.3 Vehicle Force Coefficients Figure 4.2 Newtonian Method Concept [17]

 Page 19 of 107

Validated aerodynamic data for the entry vehicle is critical to accurately predict a post
aerocapture trajectory. Typically, blunt body entry vehicles are flown at a small angle of attack
to allow for some form of control authority such as bank angle modulation. For simplicity, the
initial analysis will assume the vehicle is at a constant zero angle of attack with the center of
mass along the geometric centerline. With this assumption, 𝐶஺ = 𝐶஽ (𝛼 = 0), making 𝐶஽ the
only aerodynamic coefficient that requires an accurate prediction. The Modified Newtonian
Method is often utilized as a first order approximation for hypersonic aerodynamics. It assumes
that the pressure coefficient at any point on a body surface is proportional to the sine squared of
the local inclination angle to the flow, 𝜃 in Figure 4.2, (eq. 4.7). Modified refers to the addition
of 𝐶௣೘ೌೣ

 which comes from the isentropic relation shown in eq. 4.8, in the traditional Newtonian
method the relationship is simply 𝐶௣ = 2 sinଶ 𝜃. As the Mach number increases the more
accurate this prediction tends to be [17]. The Venus aerocapture study [23] that will be used for
model validation utilizes a 60° sphere cone with a nose radius 25% of the vehicle diameter. A
panel based Modified Newtonian method was used to achieve a first order approximation of the
drag coefficient for this geometry. Derivation of this model is shown below.

Pressure coefficient of one segment i

𝐶௣೔

= 𝐶௣೘ೌೣ
sinଶ 𝜃௜ (4. 7)

𝐶௣೘ೌೣ
=

2

𝛾𝑀ஶ
ଶ

൤
𝑝୓మ

𝑝ஶ
− 1൨ (4. 8)

𝐶௣೔
=

𝑝௜ − 𝑝ஶ

𝑞ஶ
 (4. 9)

𝐶஽ =
𝐷

𝑞ஶ𝑆
 (4. 10)

Drag of single segment i

𝐷௜ = (𝑝௜ − 𝑝ஶ)𝑆௜ (4. 11)

Shadow area for an axisymmetric vehicle profile at 𝛼 = 0

𝑆௜ = 𝜋(𝑦௜
ଶ − 𝑦௜ିଵ

ଶ) (4. 12)

Combine 8, 8b, 8d, and 8e and sum all panel segments

𝐷 = 𝑞ஶ𝐶௣,௠௔௫𝜋 ෍(𝑦௜
ଶ − 𝑦௜ିଵ

ଶ)

௡

௜ୀଶ

sinଶ 𝜃௜ (4. 13)

 Page 20 of 107

𝐶஽ =
𝐶௣,௠௔௫𝜋 ∑ (𝑦௜

ଶ − 𝑦௜ିଵ
ଶ)௡

௜ୀଶ sinଶ 𝜃௜

𝑆
 (4. 14)

Equation 4.14 was solved numerically in MATLAB for the 60° sphere cone geometry

which led to a drag coefficient of 1.3933. After ~Mach 10 𝐶௣೘ೌೣ
 becomes essentially Mach

independent. [29] presents a similar Newtonian prediction method and in one section studied a
vehicle with a 70° sphere cone. This case was mimicked with the internally developed tool and a
𝐶஽ of 1.624 at 0° 𝛼 was generated. The results from [29] are shown in Figure 4.4 and indicate
good agreement with the internal model, adding confidence to the 1.3933 figure to be used for
the aerocapture simulation. The modified Newtonian method is most accurate in continuum flow
regimes which only partly represent aerocapture trajectories, though it is where the aerodynamic
forces are greatest and have the most influence. Methods for modeling rarefied and free
molecular flow are discussed in 9.2.

Figure 4.4 Force Coefficients for Model Validation [29]

 Page 21 of 107

4.2.2. Modified Newtonian Method 𝜶 ≠ 𝟎

The panel method described in 0 must be significantly expanded for a vehicle in 3
dimensions to model aerodynamic effects of angle of attack or sideslip. This additional modeling
allows for realistic lift-up and lift-down cases to be considered. L/D ratios can also be compared
for different vehicle geometries. This opens the door to modeling moments, stability, and
rudimentary guidance algorithms, though those topics are out of scope for this project. For entry
vehicles, the AOA convention is opposite of traditional aircraft with positive 𝛼 pointing below
the velocity vector (Figure 4.3). For the 3D case a more general relationship must be built for
axisymmetric bodies. Equation 4.15 describes the Newtonian method for any body shape in 3
dimensions to determine aerodynamic force coefficients [29]. Parameterization of the vehicle
surface is needed to calculate the local inclination angle 𝜃 and normal vector 𝒏.

൥

−𝐶஺

𝐶ே

−𝐶ௌ

൩ =
1

𝐴ref
ඵ 

ௌ

𝐶௣ ൥
𝒏்𝒙ෝ
𝒏்𝒚ෝ

𝒏்𝒛ො

൩ 𝑑𝐴 (4. 15)

𝑠𝑖𝑛𝜃 =
𝑽ஶ

|𝑉ஶ|
∙ 𝒏 (4. 16)

The methodology is similar to the 𝛼 = 0 case, where the geometry is broken into panels,

though an additional summation revolved around the body is necessary as 𝑠𝑖𝑛𝜃 will vary radially
for the 𝛼 ≠ 0, 𝛽 ≠ 0 case. Both summations essentially solve the surface integral in 4.15
numerically, which adds flexibility for more complex shapes over an analytical solution. In [29],
the surface integral is solved analytically using Mathematica tools. The origin for the
discretization can be arbitrary as long as the XYZ convention is the same as the force coefficient
reference frame. If moment coefficients are desired a reference point must be chosen. The
process involves a series of vector rotations to sum the normal vectors and their reference areas.

Figure 4.5 Side View Discretization with 4 Nose Segments

 Page 22 of 107

𝜙௦௘௚ =
ഏ

మ
ିఋ೑೗ೌ೙ೖ

ேೞ೐೒
 𝜙௜ =

థೞ೐೒(ଶ௜ିଵ)

ଶ
 𝑥௜ାଵ = 𝑅ே − 𝑅ேcos (𝜙௦௘௚𝑖)

 𝑦௜ାଵ = 𝑅ேsin(𝜙௦௘௚𝑖) 𝒏𝒊 = ൥
cos𝜙௜

sin𝜙௜

0

൩

The above relations are all that are necessary for the 𝛼 = 0 case where n is the same at

any axisymmetric position around the vehicle body. If 𝛼 ≠ 0 𝑜𝑟 𝛽 ≠ 0, n varies and each radial
segment contributes a different force component on the vehicle, necessitating an additional
summation.

𝜑௦௘௚ =
ଶగ

ெೞ೐೒
 𝜑௝ =

ఝೞ೐೒(ଶ௝ିଵ)

ଶ
 𝒏𝒊,𝒋 = ቎

1 0 0
0 𝑐𝑜𝑠𝜑௝ 𝑠𝑖𝑛𝜑௝

0 −𝑠𝑖𝑛𝜑௝ 𝑐𝑜𝑠𝜑௝

቏ 𝒏𝒊

𝐴௧௢௧ = 𝜋𝑑(𝑦௜ାଵ + 𝑦௜) 𝑑௦௘௚ = ඥ(𝑦௜ାଵ − 𝑦௜)
ଶ + (𝑥௜ାଵ − 𝑥௜)

ଶ 𝐴௜,௝ =
஺೟೚೟

ேೞ೐೒

Figure 4.6 Nose View Discretization Example

 Page 23 of 107

After the normal vector for each panel is computed, an additional rotation about 𝛼 and 𝛽
must be performed to obtain the final normal vector with respect to the vehicle velocity vector
(4.17). The area of each segment (𝐴௜,௝) is the area of the entire frustrum (𝐴௧௢௧) that represents
each lengthwise segment (i) divided by the desired number of radial divisions. After this rotation,
the primary coordinate system remains in the velocity frame (X parallel with velocity vector), so
the first force coefficients calculated are drag, lift, and sideslip. The reference area (𝐴ref) is just
the vehicle surface area projected onto the Y-Z plane at 𝛼 = 0 which for an axisymmetric body
is simply 𝜋𝑅ଶ. The body force coefficients can be obtained by reversing the transformation in
(12), represented by (14). As 𝛼 and 𝛽 increase, vehicle surfaces may become obscured from the
flow, since the coordinate system remains in the velocity frame, a simple conditional statement
can be implemented to check each panel for 𝑵𝒊,𝒋𝒙ෝ < 0 and assign 𝐶௣ = 0 for those cases per
Newtonian theory.

𝑵𝒊,𝒋 = ൥
𝑐𝑜𝑠𝛽 0 −𝑠𝑖𝑛𝛽

0 1 0
𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

൩ ൥
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1
൩ 𝒏𝒊,𝒋 (4. 17)

൥

𝐶஽

−𝐶௅

𝐶௓

൩ =
𝐶௣೘ೌೣ

𝐴ref
෍ ෍ (𝑵𝒊,𝒋𝒙ෝ)𝟐 ቎

𝑵𝒊,𝒋𝒙ෝ

𝑵𝒊,𝒋𝒚ෝ

𝑵𝒊,𝒋𝒛ො

቏ 𝐴௜,௝

ெೞ೐೒

௝ୀଶ

ேೞ೐೒

௜ୀଶ

(4. 18)

𝑽ಮ

|௏ಮ|
= ൥

1
0
0

൩ 𝑠𝑖𝑛𝜃 =
𝑽ಮ

|௏ಮ|
∙ 𝒏 = 𝑵𝒊,𝒋𝒙ෝ

൥

𝐶஺

𝐶ே

𝐶ௌ

൩ = ൥
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1
൩

்

൥
𝑐𝑜𝑠𝛽 0 −𝑠𝑖𝑛𝛽

0 1 0
𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

൩

்

൥

𝐶஽

−𝐶௅

𝐶௓

൩ (4. 19)

 While this method adds complexity over the 𝛼 = 0 case, the matrix math is easily
handled in MATLAB and can quickly run through various angle of attack and sideslip for a
variety vehicle geometries. This is a powerful first order design tool that allows for quick
generation of an aerodynamic database for axisymmetric entry vehicles. Setting the model up to
compare with the sphere-cone case on page 14 of [29] with an initial 20° sideslip angle shows
near exact agreement using 10 nose divisions and 20 radial divisions (Figure 4.8). Additional
validations with [29] are discussed in appendix 9.1.1. The model was also compared with the
pre-CFD aerodynamic modeling in [13] and the results are in family, though as previously
mentioned the Newtonian method is only valid for continuum flow regimes (Figure 4.7). Ref.
[13] discusses a Uranus aerocapture and utilizes a MSL like entry vehicle with a 70° cone angle.
Integration of this model into the trajectory simulation is discussed in 4.2.4.

 Page 24 of 107

Figure 4.9 Modified Newtonian Geometry

Output (𝜹𝒇𝒍𝒂𝒏𝒌 = 𝟔𝟎°,
𝑹𝑵

𝑹
= 𝟎. 𝟓)

Alpha (deg)
0 20 40 60

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
A

C
N

C
S

Figure 4.8 Aero Coefficient Validation with
Figure 4.4, ref. [29]

Figure 4.7 Aero Coefficient Validation with [13] (Uranus Aerocapture)

Alpha (deg)
0 10 20 30

C
o

e
ffi

ci
e

n
t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
C

A
C

N

 Page 25 of 107

4.2.3. NASA Global Atmospheric Reference Model (GRAM)

 The NASA developed Global Atmospheric Reference Model (GRAM) is an engineering
design tool that can compute atmospheric data for every planet in the solar system that contains
an atmosphere [7]. The program takes position and time inputs and utilizes ephemeris
calculations and a host of empirical data to output conditions such as density, pressure,
temperature, chemical mass fractions, winds, and more. GRAM can support monte carlo runs
and 3-sigma dispersions on all properties, though only the nominal mean values are used for this
initial study. This project is utilizing the latest 2.1 release from October 2024 that includes a
MATLAB interface. Specifically, VenusGRAM [7] will be used in the initial analysis and
validation with [23]. The following assumptions will be made for atmospheric flight.

1) Aerodynamic force coefficients 𝑪𝑳, 𝑪𝑫, and 𝑪𝑺 allowed to vary with α and β

2) 3 DOF, Constant Vehicle Orientation, no GNC uncertainties or modeling

3) Temporal and special variations and winds will be modeled within GRAM

4) Atmospheric uncertainties and perturbations are not modeled

Figure 4.10 Venus Atmosphere Profile (ref. [7])

 Page 26 of 107

 The winds on Venus are significant at higher altitudes and are faster than the planet’s
rotation. GRAM outputs winds in three components, north to south, east to west, and vertical.
The wind velocities can reach well above 100 m/s which must be considered for accurate
trajectory modeling. The winds show a clear difference between the day and night sides of the
planet and are the strongest at the equator. The winds at lower altitudes move consistently
against the planet’s rotation though at higher altitudes (80+ km) there are significant variations
and direction changes which can have a non-negligible effect on entry and aerocapture flight
mechanics. Trajectories with and without winds are shown in Figure 4.15.

Figure 4.11 Venus Winds vs. Altitude

 Page 27 of 107

Figure 4.12 Venusian Wind Direction at 100 km Altitude (JD 2459138)

Figure 4.13 Venusian Wind Magnitude at 100 km Altitude (JD 2459138)

 Page 28 of 107

 With the addition of aero coefficients in 3 dimensions, the effect of how the winds
interact with the vehicle required evaluation. If the vehicle is flying at a nominal ballistic
trajectory 𝛼 = 𝛽 = 0, winds and to a small extend the Coriolis effect will produce a relative
velocity vector different from the inertial velocity which will induce an effective angle of attack
or sideslip on the vehicle, this is assuming 3DOF mechanics where the vehicle’s orientation is
fixed to the velocity frame. At a high-altitude condition on Venus with significant east to west
winds around 200 m/s (~150 km), the worst case crosswind scenario would be an azimuth of 0°
where the entry vehicle is flying south to north in a polar orbit. An entry velocity of 11 km/s
would produce an effective sideslip angle of ~1.04°, which is non-negligible. To model this
effect, an additional transform between the inertial and relative velocity frame had to be
developed. With a sufficiently blunt body (~70° half angle), the 𝛼 vs. 𝐶௅ lift slope is the opposite
of a slender body due to the blunt frontal forebody producing lift instead of the lengthwise chord
surface area. This effect results in the entry vehicle being pulled in the direction of the wind with
a net component to the resulting force in the +Y direction, almost like a sailboat sailing upwind
(Figure 4.14). While counter intuitive at first, the effect checks out when the appropriate rotation
matrices and conventions are applied.

Figure 4.14 Blunt Body Crosswind Illustration

 Page 29 of 107

4.2.4. Reference Frames

 The position inputs and outputs to GRAM are in the topocentric frame utilizing longitude
and latitude coordinates. A conversion to the base ECI frame that the simulation runs on was
necessary. A reference frame transposition was derived that also required the local sidereal time
of the planet to account for rotation in comparison to the fixed inertial ECI frame. The rotation
matrix QXx and its transpose shown in Figure 4.16 were used to convert to the East North Zenith
(ENZ) topocentric frame necessary for the GRAM inputs. This transform was also used to
support trajectory inputs in the form of azimuth, entry flight path angle, and velocity magnitude.

 A time component was also necessary to extract the correct prime meridian location of
Venus (0° Longitude). The latest report from the International Astronomical Union (IAU) [30]
outlines measurements for planetary rotation positions at time since standard epoch (1/1/2000).
The standard reference direction for this frame is Earth’s vernal equinox at the time of epoch,
this is known as the J2000 reference frame. The rotation angle (sidereal time) of Venus is given
by eq. 4.20 from [30].

𝑊 = 160.20 − 1.4813688𝑑 (4. 20)

Figure 4.15 Polar and Equatorial Trajectory Wind Dispersions (JD = 2459138)

Polar Orbit
V = 11/km/s, Alt = 150 km, Fpa = -5.61°
Final Azimuth (Winds): 173.257°
Final Azimuth (No Winds): 174.242°

Equatorial Orbit
V = 11/km/s, Alt = 150 km, Fpa = -5.61°
Final Altitude (Winds): 828.1516 km
Final Altitude (No Winds): 375.0636 km

 Page 30 of 107

 This is good approximation for the initial analysis over short timespans, investigation into
seasonal atmospheric variations is possible in the GRAM model. GRAM is also capable of
outputting an ephemeris state with various properties that can be used to calculate the exact
sidereal time, though this has not yet been implemented. Figure 4.17 shows the sidereal time in
relation to the J2000 frame. Point Q in the illustration corresponds to the +X axis in Figure 4.1
and Figure 4.16 since the simulation is using a fixed inertial frame rather than a rotating frame as
shown in Figure 4.17.

Figure 4.16 ENZ and ECI Reference Frames [22]

 Page 31 of 107

Figure 4.17 Reference System for Time Dependent Planet Orientation [30]

 Page 32 of 107

 Matrix rotations between frames need to be carried out carefully as matrix multiplication
is not commutative. To obtain the rotation matrix between the enz frame and inertial velocity
frame (Figure 4.18), a rotation about the flight path angle and azimuth is performed to derive
𝑄௘௡௭. The convention is switched due to 0° Az corresponding with due north Y+ in the enz frame
which results in a row swap in the matrix.

𝒗𝒆𝒏𝒛 = 𝑄௘௡௭𝒗𝒗𝒇𝒊 (4. 21)

𝑄௘௡௭ = ቎

𝑐𝑜𝑠(𝑓𝑝𝑎)sin (𝐴𝑧) − cos(𝐴𝑧) −𝑠𝑖𝑛(𝑓𝑝𝑎)sin (𝐴𝑧)

𝑐𝑜𝑠(𝑓𝑝𝑎)cos (𝐴𝑧) sin(𝐴𝑧) −𝑠𝑖𝑛(𝑓𝑝𝑎)cos (𝐴𝑧)

sin(𝑓𝑝𝑎) 0 cos(𝑓𝑝𝑎)
቏ (4. 22)

To get from the inertial velocity frame to the relative velocity frame, another series of

rotations is necessary about 𝛼 and 𝛽, similar to the transform used in the panel aerodynamics (eq.
4.17). To perform a complete transformation to the ECI frame from the relative velocity frame,
4.24 is required. This transform is necessary as the aerodynamic coefficients 𝐶஽, 𝐶௓, and 𝐶௅ are
expressed relative to the velocity vector. The vehicle body frame coefficients (𝐶஺, 𝐶ௌ, and 𝐶ே)
are important for a 6DOF simulation but in this case would simply add another transform.

𝑄௩௙௜ = ቎

𝑐𝑜𝑠(𝛽)cos (𝛼) sin(𝛼) 𝑐𝑜𝑠(𝛽)sin (𝛼)

𝑠𝑖𝑛(𝛽) cos(𝛼) 𝑐𝑜𝑠(𝛽) − 𝑠𝑖𝑛(𝛽) sin(𝛼)

− sin(𝛼) 0 cos(𝛼)
቏ (4. 23)

𝒗𝒆𝒄𝒊 = 𝑄௑௫𝑄௘௡௭𝑄௩௙௜𝒗𝒗𝒇𝒓 (4. 24)

𝛽௘௙௙ = 𝑠𝑖𝑛ିଵ(𝑣௩௙௥𝒚ෝ) (4. 25)

𝛼௘௙௙ = cosିଵ ቆ
𝑣௩௙௥𝒙ෝ

cos (𝛽௘௙௙)
ቇ (4. 26)

 Figure 4.18 shows the simulation output with all forces on the vehicle shown as vectors.
ECI is the equatorial centered inertial frame that the simulation runs on, VFi is the inertial
velocity frame where +x is the direction of travel. The conditions were artificially set to
exaggerate the effects of the winds for illustration purposes. To calculate the net perturbation
vector on the vehicle which considers lift, drag, side force, and relative velocity eq. 4.5 and 4.6
can be expanded to produce the net perturbation vector in eq. 4.28. Due the relative velocity,
𝐶஽(𝛼, 𝛽), 𝐶ௌ(𝛼, 𝛽), 𝐶௅(𝛼, 𝛽) are recalculated at each time step which adds computation time, a
fixed L/D mode option was added that neglects these effects for speed. Eq. 4.27 represents the
relative velocity vector in the ECI frame. The three wind components, east to west (eww), north

 Page 33 of 107

to south (nsw), and vertical (vw) are expressed in the ENZ frame from GRAM and are converted
to the ECI frame with the rotation matrix in Figure 4.16.

𝒗𝒓𝒆𝒍 = 𝑽𝒆𝒄𝒊 − ൥
0
0
𝜔

൩ × 𝑹𝒆𝒄𝒊 − 𝑄௑௫ ቈ
−𝑒𝑤𝑤
−𝑛𝑠𝑤

𝑣𝑤
቉ (4. 27)

𝑷𝒗𝒇𝒓 =
1

2
𝜌ஶ|𝒗𝒓𝒆𝒍|

ଶ ൥

−𝐶஽

𝐶௓

𝐶௅

൩ (4. 28)

𝑷𝒆𝒄𝒊 = 𝑄௑௫𝑄௘௡௭𝑄௩௙௜𝑷𝒗𝒇𝒓 (4. 29)

𝒓̈ =
𝜇

𝑟ଷ
𝒓 + 𝑷𝒆𝒄𝒊 (4. 30)

Coriolis Effect Winds

Figure 4.18 Inertial Velocity Frame and Forces on Entry Vehicle

 Page 34 of 107

4.3. Aerodynamic Heating and TPS Sizing

 Aerodynamic heating at atmospheric entry velocities is a complex modeling problem.
The state of the art is highly parallelized CFD with extensive chemistry and radiation models as
well as Direct Simulation Monte Carlo (DSMC) for non-continuum flows. At the opposite end of
the fidelity scale there are many first order approximate calculations for stagnation heat flux,
radiative heating, and shock temperature based on a few key inputs like the vehicle radius of
curvature, velocity, and atmospheric chemistry. These tools will be the primary means of
determining the heating environment during the aerocapture atmospheric flight phase which will
in turn drive the TPS material type and sizing.

4.3.1. Sutton Graves Approximation

𝑞௦ = 𝑘 ൬
𝜌

𝑅௡
൰

ଵ
ଶ

𝑉ଷ (4. 31)

 One method of approximating convective heating, k is a constant that is derived for the

planetary body and 𝑅௡ is the effective nose radius. This approximation will be the first tool used
based on the vehicle state vector to approximate heating. The Sutton graves formula can be
expanded into the generalized chapman method which incorporates additional exponents and a
hot wall correction [1]. Modern, higher fidelity correlations have been derived from CFD runs
and can be tailored for an individual planetary atmosphere, see [37], [38], and [39].

4.3.2. Normal Shock Wave Calculation for Thermochemical Equilibrium.

 For hypersonic flow, the typical isentropic relations must be expanded to account for
chemical reactions. If the concentrations of each chemical species in the atmosphere are known,
equations 4.32-4.33 can be used to calculate the temperature and pressure just behind the shock
at the stagnation point [17]. These properties are useful for TPS sizing at the vehicle stagnation
point and can be scaled for other surface locations. Expanded relations exist for conical flow. To
solve for the species enthalpy, thermodynamic table lookups or curve fit approximations must be
performed [3]-[5]. Thermodynamic properties such as species entropy and enthalpy and are used
to determine the Gibbs free energy and subsequent equilibrium constants, this allows for the
calculation of partial pressures, mole fractions, and enthalpy of each species (eqns. 4.34-4.39).
The species assumed to be in the flight environment on Venus are CO2, CO, N2, O2, N, O, and
their respective ions [7]. These mass fractions can change drastically within the aerocapture
flight corridor (Figure 4.10) so an accurate atmospheric model is necessary. The Uranus
atmosphere is much simpler containing the species H2, He, H, H+, He+, and e- [6]. The mole
fraction variations in the altitude flight corridor aren’t as significant as Venus so it’s possible that
the calorically perfect case of H2/He, γ=1.45 is a good enough approximation.

𝑝ଶ = 𝑝ଵ + 𝜌ଵ𝑢ଵ
ଶ ൬1 −

𝜌ଵ

𝜌ଶ
൰ (4. 32)

 Page 35 of 107

ℎଶ = ℎଵ +
𝑢ଵ

ଶ

2
ቈ1 − ൬

𝜌ଵ

𝜌ଶ
൰

ଶ

቉ (4. 33)

𝐺௜ = 𝐻௜ − 𝑇𝑆௜ (4. 34)

Δ𝐺௣ୀଵ ≡ ෍  

௜

𝑣௜𝐺௜
௣೔ୀଵ (4. 35)

ෑ  

௜

𝑝௜
௩೔ = eି

୼ீ೛సభ

ℛ் (4. 36)

𝐾௣(𝑇) = ෑ  

௜

𝑝௜
௩೔ (4. 37)

𝑝௧ = ෍ 𝑝௜  

௜

(4. 38)

ℎ = ෍  

௜

𝑐௜ℎ௜ = ෍  

௜

𝜂௜𝐻௜ (4. 39)

 As a proof of concept, a basic chemistry model for air was developed using only the
species 𝑁ଶ, 𝑂ଶ, 𝑂, 𝑁, and 𝑁𝑂. The three reactions that are modeled are shown below.

𝑁ଶ ⇌ 2𝑁 𝑂ଶ ⇌ 2𝑁 𝑂 + 𝑁 ⇌ 𝑁𝑂

𝐾௣ଵ =
𝑃ே

ଶ

𝑃ேమ

 (4. 40)

𝐾௣ଶ =
𝑃ை

ଶ

𝑃ைమ

(4. 41)

𝐾௣ଷ =
𝑃ே𝑃ை

𝑃ேை

(4. 42)

𝑝௧ = 𝑃ேమ
+ 𝑃ைమ

+ 𝑃ே + 𝑃ை + 𝑃ேை (4. 43)

𝑀𝑅 =
2𝑃ேమ

+ 𝑃ே + 𝑃ேை

2𝑃ைమ
+ 𝑃ை + 𝑃ேை

 (4. 44)

 Page 36 of 107

 Utilizing equation 4.37, equilibrium constant balance equations can be constructed based
on the stoichiometric ratios of the reactants and products. Equation. 4.38 can be used to construct
a pressure balance constraint and the known initial ratio of nitrogen and oxygen atoms can be
used to construct a mole balance constraint. Equations 4.40-4.44 represent a system of 5
nonlinear equations with 5 unknowns. These can be solved independently through a numerical
method such as newton Raphson or successive substitution, however the system is sensitive to
how the equations are represented. When one or more chemical species are sufficiently low in
concentration, it’s not uncommon for the equilibrium constant to be in the realm of 1e-16 or less
which can cause instability in the numerical method. The most robust solution is to reduce the
system so that only the species that are expected to be present in the highest concentrations are
solved for. It is possible to compile 4.40-4.44 into one singular equation as a function of N, N2,
O2, or O through a symbolic math engine such as Mathematica or the MATLAB symbolic
toolbox. N2 was solved for lower temperature conditions and N was used for high temperature, a
cutoff of 5000-6000 K works well. Once the composition equations are derived the
thermodynamic properties of each species must be obtained through an empirical data source.
The database contained in [4] was used for this initial proof of concept chemistry model and
specifies 7th order polynomial approximations listed in 4.45 and 4.46. A simple validation of the
proof-of-concept chemistry model was performed by computing the mole fractions of each of the
constituents from 1000K to 9000 K. Comparison with a plot in [17] indicates strong agreement.

M
o

le
 F

ra
ct

io
n

Figure 4.19 Chemistry Model Validation ([17], Fig 11.12, P.541)

 Page 37 of 107

𝐻்

௢

ℛ𝑇
= 𝑎ଵ +

𝑎ଶ

2
𝑇 +

𝑎ଷ

3
𝑇ଶ +

𝑎ସ

4
𝑇ଷ +

𝑎ହ

5
𝑇ସ +

𝑎଺

𝑇
(4. 45)

𝑆்
௢

ℛ
= 𝑎ଵ ln 𝑇 + 𝑎ଶ𝑇 +

𝑎ଷ

2
𝑇ଶ +

𝑎ସ

3
𝑇ଷ +

𝑎ହ

4
𝑇ସ + 𝑎଻ (4. 46)

The properties contained in [3] are much more extensive than [4] and are used in the
industry standard CEA (Chemical Equilibrium Applications) software. An expanded chemistry
model utilizing [3] was developed for fast calculations at each timestep in the trajectory code to
improve the aerothermal environment predictions. The expanded polynomial curve fits specified
by [3] are shown in eqns. 4.47-4.49 and utilize 9 coefficients. A database was generated from [3]
so that the 9 coefficients could be queried for any chemical species used in an analysis. The
coefficients are provided over three temperature ranges with cutoffs at 1000K and 6000K. A
normal shock wave solver was programmed with the same chemical species equations listed in
eqns. 4.40-4.44 using the symbolic math method. CEA utilizes a scheme described in [5] that
iteratively minimizes the Gibbs free energy term for each reaction, this method is extremely
versatile and robust for any number of chemical species and reactions though is computationally
expensive for the inner loop of a trajectory program. The NASA Ames developed TRAJ
trajectory program utilizes a pre-generated Mollier diagram to determine the equilibrium
thermodynamic state behind the shock at the stagnation point. The approach taken here falls in
between the above two approaches where the exact expressions for the fixed quantity of species
in the atmosphere are manipulated through symbolic math to allow the fastest possible numerical
convergence for only a single species.

𝐶௉
௢(𝑇)

ℛ
= 𝑎ଵ𝑇ିଶ + 𝑎ଶ𝑇ିଵ + 𝑎ଷ + aସ𝑇 + 𝑎ହ𝑇ଶ + 𝑎଺𝑇ଷ + 𝑎଻𝑇ସ (4. 47)

𝐻்

௢(𝑇)

ℛ𝑇
= −𝑎ଵ𝑇ିଶ +

aଶ𝑙𝑛𝑇

𝑇
+ 𝑎ଷ +

𝑎ସ

2
𝑇 +

𝑎ହ

3
𝑇ଶ +

𝑎଺

4
𝑇ଷ +

𝑎଻

5
𝑇ସ +

𝑏ଵ

𝑇
(4. 48)

𝑆்
௢(𝑇)

ℛ
= −

𝑎ଵ𝑇ିଶ

2
− 𝑎ଶ𝑇ିଵ + 𝑎ଷ𝑙𝑛𝑇 + 𝑎ସ𝑇 +

𝑎ହ

2
𝑇ଶ +

𝑎଺

3
𝑇ଷ +

𝑎଻

4
𝑇ସ + 𝑏ଶ (4. 49)

𝑃ேమ

= 𝑓(𝐾௣ଵ, 𝑃ே) (4. 50)

𝑃ைమ
= 𝑓(𝐾௣ଶ, 𝑃ை) (4. 51)

𝑃ேை = 𝑓(𝐾௣ଷ, 𝑃ே , 𝑃ை) (4. 52)

 Page 38 of 107

 Equations 4.50-4.52 are formed algebraically from 4.40-4.42 and are plugged into 4.43 to
generate an expression that is only a function of 𝑃ே and 𝑃ை, this expression can then be solved
symbolically for 𝑃ை, the intent is to isolate 𝑃ே which is expected to be the species of the highest
concentration at high temperatures, the same reduction scheme can be performed for 𝑃ேଶ

 for
lower temperatures. 4.50-4.54 are all substituted into 4.44 to form an expression where 𝑃ே is the
only unknown. This expression (4.55) can be solved efficiently with a minimization function like
MATLAB’s fzero function and the remaining species concentrations can be determined through
simple expression evaluations. An additional increase in computation efficiency could be
achieved if 4.55 could be solved for 𝑃ே, however due to the various root and exponential terms
such a solution is not practical to reach with a symbolic math engine.

𝑃௧ = 𝑓൫𝐾௣ଵ, 𝐾௣ଶ, 𝐾௣ଷ, 𝑃ே , 𝑃ை൯ (4. 53)

𝑃ை = 𝑓൫𝐾௣ଵ, 𝐾௣ଶ, 𝐾௣ଷ, 𝑃ே , 𝑃௧൯ (4. 54)

𝑓௉ಿ
= 𝑓൫𝐾௣ଵ, 𝐾௣ଶ, 𝐾௣ଷ, 𝑃ே , 𝑃௧, 𝑀𝑅൯ (4. 55)

R
a

tio

R
a

tio

R
a

tio

R
a

tio

Figure 4.20 Chemistry Model Validation with CEA

 P1 = 1 Pa
 T1 = 216.4 K
 0.79 mole N2
 0.21 mole O2

 Page 39 of 107

 A validation case was prepared with CEA using conditions chosen to match an Earth
altitude of 80 km. As shown in Figure 4.20, the agreement of the symbolic math model with
CEA is excellent. All output parameters were tested and errors between the two models are 1e-4
or less for all property ratios and species concentrations. Figure 4.21 shows a comparison with
the calorically perfect gas case which illustrates the importance of chemical reaction effects with
high speed, hypersonic applications. Note that the pressure ratio is not strongly dependent on
chemical effects as it is a “mechanical” property rather than a thermodynamically driven
property. The current model still makes the significant assumption that the gas mixture is in
thermochemical equilibrium just behind the shock, in reality equilibrium takes a set amount of
time to reach. State of the art CFD solvers such as DPLR model non-equilibrium chemical
effects which are important in determining the radiative heating environment.

R
a

tio

R
a

tio

R
a

tio

R
a

tio

Figure 4.21 Calorically Perfect Gas Comparison

 P1 = 1 Pa
 T1 = 216.4 K
 0.79 mole N2
 0.21 mole O2

 Page 40 of 107

 Another assumption at this stage is that ionization reactions are neglected. At high
temperatures, gasses can ionize or lose electrons, in air the first dominant ionization reaction that
begins to occur at higher temperatures is 𝑂 ⇌ 𝑂ା + 𝑒ି. To include ionization effects, an
additional charge balance constraint equation must be added to the set of equilibrium relations.
𝑎௘௜ is the excess or deficiency of electrons, so 𝑎௘௜ = −1 for 𝑂ା, +1 for 𝑒ି, and +2 for a species
like 𝑁ାା, in other words it is the level of ionizations that have occurred.

෍ 𝑋௜𝑎௘௜ = 0

ேீ

௜ୀଵ

(4. 56)

 The case in Figure 4.20 was re-run with the inclusion of ions and the CEA default
composition for air, which models Argon, CO2 and other trace species. This is to evaluate the
level of fidelity of a simple 𝑁ଶ, 𝑂ଶ model. After around 9 km/s, the density and temperature
ratios diverge significantly. It is evident that for Earth entry trajectories at super-orbital velocities
such as lunar returns, ionization reactions can have a significant effect on the equilibrium
environment.

R
at

io

R
at

io

R
at

io

R
at

io

Figure 4.22 CEA Validation with Ionization Effects

 P1 = 1 Pa
 T1 = 216.4 K
 0.79 mole N2
 0.21 mole O2

 Page 41 of 107

The inclusion of ionization reactions and effects into the air model represented by
equations 4.40-4.44 would significantly increase the complexity of the symbolic math engine
calculations. Venus and Mars also have atmospheres of similar complexity with the inclusion of
CO2 and its related compounds. The Uranus/Neptune upper atmosphere is almost entirely
𝐻ଶ/𝐻𝑒 which simplifies the modeling and inclusion of ionization effects. A Uranus aerocapture
trajectory was tested as an initial study into the equilibrium chemistry effects on the heating
environment, the results are presented in Appendix 9.4.

4.4. Geometry

 The entry vehicle for the initial trajectory validations will consist of a standard sphere

cone aeroshell with the same forebody geometry specified in [23]. Different geometries will be
investigated such as a 70° sphere cone similar to the Mars Science Lab (MSL) vehicle. The
forebody geometry is fed into the modified Newtonian aerodynamics calculations discussed in
section 4.2 and the effective nose radius is used in the Sutton graves correlation. A scaled up
MSL vehicle type was used in ECI study on a single-pass aerocapture approach for outer planets
missions [12], [15]. TPS material candidates for the forebody are PICA-D (domestic materials),
C-PICA (conformal), and HEEET (Heatshield for Extreme Entry Environment Technology),
which is a high performance woven TPS [12]. Material selection and sizing will be determined
by the entry environment. The aerothermal analysis and TPS sizing will need to take into
consideration the effects of multiple entry pulses and any progressive degradation.

Figure 4.23 Validation Entry Vehicle Geometry (ref. [11])

 Page 42 of 107

4.5. Simulation Framework

4.5.1. Simulation Version 1.0

 A past AE242 Orbital Mechanics project partially modeled an aerobraking trajectory for
Earth and Mars cases and is a primary inspiration for this multi-pass aerocapture study. The
program was written in MATLAB and has been reworked into an object-oriented format to allow
for easier implementation of different calculations like aero heating and trajectory optimization.

Figure 4.24 Aerobraking Model with Key Additions (red)

Trajectory opt.
routine to
determine entry
corridor for
minimum capture

Calc Entry Heating
Environment for
each pass from
𝜌ஶ, 𝑉 and 𝑇

Once in captured
orbit, calculate
and execute
periapsis
correction

 Page 43 of 107

The framework was validated with a flight proven trajectory analysis and TPS design tool such
as BATSPEED in section 5.2.

 The simulation framework was developed in an object-oriented approach in MATLAB.

The initial intent was to use system object blocks to build out the algorithm in Simulink. This has
not been implemented yet as handing large blocks of vectorized data along with numerous other
parameters was tedious in Simulink, a traditional scripted approach was used for the initial build
of the simulation framework.

 The aerocapture and circularization routines contain the core trajectory propagation
methods, using a Runge Kutta (RK) 4/5 variable step integrator such as MATLAB’s ODE45.
Version 2.0 of the simulation allows the user to choose from a set of integrators within
MATLAB, ODE89 is especially accurate for long duration smooth orbits. Event functions are
implemented to command the integrator stop at critical points like atmospheric interface or
apoapsis. Trajectory correction, perigee raise, and other propulsive maneuvers are modeled using
eqn. 4.7. Additional methods within the orbit propagator class of objects generate new initial
conditions and stitch time history results to previous orbit segments for post processing and
visualization. The time history results are passed on to an Aerothermal calculations object.

 The trajectory optimization routine is called after the atmospheric exit of each aero-pass.
This routine will assess the current vehicle state and simulate a small perigee adjustment burn at
apoapsis and the following aero-pass. This “look forward” trajectory will be iterated while

Figure 4.25 Model Framework (Version 1.0)

 Page 44 of 107

adjusting the maneuver burn time until the desired apoapsis is achieved. The output of this
optimization is the ΔV and burn time for an optimal periapsis adjustment, typically on the order
of 1-2 m/s. At the beginning of the simulation, an optimization routine determines the optimal
number of passes based on the ΔV required for the initial orbital insertion pass. The outputs of
this optimization are the number of aero-passes and the target apoapsis after each pass, this data
is fed into the periapsis adjust routine.

 Extensive literature exists on guidance and control methods for aerocapture ([10], [23],
[26], [27]). Popular methods are bank angle modulation (BAM) and direct force control (DFC).
One common control algorithm is fully numeric predictor corrector aerocapture guidance
(FNPAG). Nominal unguided trajectories will be used for the initial analysis as developing and
simulating a complete closed loop guidance system is at the edge of scope for this project.
NASA developed tools such as GENESIS [17] already exist and can run 6-DOF simulations
utilizing these guidance methods.

Figure 4.27 Expanded Model with Subsystems (Version 1.0)

Superclasses

Subclasses

Figure 4.26 MATLAB Object Oriented Class Structure (Version 1.0)

 Page 45 of 107

4.5.2. Simulation Version 2.0

The first version of the multi-pass trajectory program utilized object oriented
programming techniques but did not take full advantage of the various built-in aspects of the
class and object formats within MATLAB. The two primary class types are value classes and
handle classes. Value classes behave like normal variables where property values are tied to the
variable name, if an object of a value class is assigned to a new variable, a new independent
object is created. Modifying the properties of the new object do not affect those of the original
object. Use of value classes in a simulation architecture requires objects to be passed in and out
of functions to be modified and can be limiting for an environment that requires large numbers of
parameters and state variables to be in sync at all times. Version 1.0 of the simulation
environment utilized value classes for the majority of data management.

MATLAB handle classes can create multiple objects that are references to a single object.
A handle object can be copied to new variables and passed into functions or assigned as
properties and all instances reference the same underlying object. Any change to properties of a
handle object will be reflected in all instances of that object. This behavior enables a massive
amount of flexibility in the simulation environment. Handle classes are created by deriving them
from the handle superclass.

1. classdef MyHandleClass < handle
2. ...
3. end

An even more specialized type of handle objects are MATLAB system objects. They are
of a handle class by definition but contain various built in features that allow them to be re-used
in loops with step and reset functions as well as expanded load and save capabilities. This allows
them to be used as system blocks within Simulink however the current simulation has not been
implemented in Simulink and is run through a script. All the class definition files in version 2.0
were converted to the matlab system object format. A top level, encapsulating object was created
to initialize the simulation and pass various objects as properties to other objects to enable the
interconnected nature of handle classes. Once the handle objects were mutually shared, the
simulation could be run continuously with all relevant properties like the spacecraft state,
geometry, and trajectory results seamlessly shared between objects without having to pass inputs
and outputs through the various functions and methods. Handle objects also enable other
advanced behavior such as listeners and events that can automatically trigger callback functions
when properties are changed. One example of this behavior is when the planet property is
updated in an object of the BodyInputs class, the GRAM and time objects are automatically
updated with the new planet and the GRAM interface is re-initialized with a new atmosphere.

 Page 46 of 107

Table 4.1 Program Class Summary

Shared Handle Classes
SCInputs Spacecraft geometry, aerodynamics, and rocket propulsion
BodyInputs Planetary constants, shape model, atmospheric threshold
SCState All state parameters, coordinates, frame transformations, etc.
TrajResults Time history trajectory results, contains labels and names for plotting
timeMgr Handles elapsed time and all time dependent planet orientations
gramMgr Contains the GRAM interface library and all shared objects
chemMgr Handles all atmospheric chemistry and thermodynamic calculations

Trajectory Propagation Classes
OrbitProp Superclass for any trajectory propagation, contains the numerical

integration scheme and all associated properties
AeroPass Subclass of OrbitProp for atmospheric flight
Burn Subclass of OrbitProp for propulsive maneuvers

Post Processing and Visualization Classes
plotProps Generates 2D plots and handles all plotting options
Aerothermal Primary trajectory postprocesser, handles all time history and

aerothermal calculations
AerothermalStep Subclass of aerothermal, performs calculations at one trajectory point
TrajPlot Generates the 3D trajectory plots and stores all run history results for

all previous trajectory segments
Optimization Classes

MissionPlan Contains all shooting method trajectory optimization routines,
contains specific logic and maneuver calculations for a multi-pass
aerocapture type mission

Low Level Helper Classes
InitState Initializes default values when a new configuration is created
AeroDB Constructed by the SCInputs class, handles all aerodynamics

calculations
inputSpecies Contains properties of the chemical species within GRAM
optoIn Creates and formats inputs to the trajectory optimizer

 Page 47 of 107

In version 2.0, only a few classes utilize inheritance such as the trajectory propagators

and aerothermal classes, compared to almost all the value classes in 1.0 (Figure 4.26). This
streamlines the overall architecture and prevents subclasses from inheriting excessive properties
and methods when most are not needed. Only objects with closely related functionality benefit
from a sub-superclass hierarchy. Most of the classes contain other classes as properties so that
the same set of simulation data can be readily available for any class method at any point.
Without the reference behavior of handle objects, the amount of variables and structs that need to
be passed between different classes and functions would be extremely cumbersome.

To create a new simulation, the master hand constructor is called which initializes all 15

of the primary system objects and creates the connections shown in Figure 4.29. The master hand
contains methods such as listener callbacks which handle unique interactions between the system

Superclasses

Subclasses

Figure 4.28 Version 2.0 Class Inheritance Hierarchy

Figure 4.29 Class Containment Structure

 Page 48 of 107

objects. Once a configuration is created, any instance of a particular handle object such as
SCState will always contain the most up to date values as they are all references to the same
object. This allows an atmospheric flight trajectory to be run and any following segments such as
a coast or burn trajectory will already contain the updated state and initial conditions necessary
to run. The same is true with the results as any of the three trajectory objects populate the same
results object (TrajResults) which is also accessible from the post processing, aerothermal, and
plotting objects. The save and load functions of system objects allow a masterhand object to be
seamlessly saved to and loaded from a .MAT file which is useful for organizing different
configurations. Lower level objects such as a spacecraft configuration (SCInputs) can also be
saved and loaded into a simulation on their own. The mission plan object contains all the
trajectory propagation objects to compute shooting trajectory optimizations. The multi pass
routine contained within the mission plan still reflects the general functionality shown in Figure
4.27. The State object supports saving previous states as structs to allow resets at the start of
another iteration or after an optimization.

A special method was implemented within masterhand using the “assignin” matlab
function to flatten the architecture and assign the 15 primary system objects into the matlab base
workspace, this makes for easier access to the various properties. There are hundreds of
individual properties contained within the various objects, to ease in creating and managing
individual missions and simulation setups a property editor was created within the MATLAB
app designer. The property editor allows important input properties to be edited and is organized
into 5 tabs, State, Spacecraft, Aerodynamics, Planet, and Options. The editor can create, load,
and save MAT files which can then be easily loaded into a script running a simulation. A sample
script as well as the source code for most of the system objects is contained in Appendix 9.6

Figure 4.30 Configuration Editor

 Page 49 of 107

5. Model Validation and Comparison

5.1. Model Validation with SCITECH Venus Aerocapture Performance Analysis

 The simulation methodology outlined in chapter 4 requires a robust validation scheme to
verify the physics and modeling methods are sound. Recall reference [23] assesses the
performance of various GN&C methods for a smallsat Venus aerocapture and presents
preliminary aerothermal environment predictions. To capture the guided bank angle trajectory
space in [23], lift-up, lift-down, and bank 90° trajectories were run using the 10° trim angle of
attack specified in the paper. The initial conditions are shown in Figure 5.1 and were pulled
directly from [23].

Figure 5.1 Model Validation Trajectory Inputs [23]

Figure 5.2 Unguided Aerocapture Validation Trajectory

Atmospheric
Flight Segment

Stop at Apoapsis
Bank 90° not
shown for clarity

 Page 50 of 107

Figure 5.3 Trajectory Heat Flux Validation (Internal Model: left Ref. [23]: right)

Figure 5.4 Trajectory Velocity Validation (Internal Model: left Ref. [23]: right)

H
e

at
 F

lu
x

(W
/c

m
2
)

V
e

lo
ci

ty
 (

km
/s

)

 Page 51 of 107

 Using the flight path angle as an optimization parameter, the simulation was able to
achieve the 500 km target apogee altitude within 100 meters. The trajectory and aerothermal
results are bounding of the results from [23] which utilized flight proven software tools. The heat
flux and total heat load were calculated using Sutton graves outlined in section 4.3 using the
same aerothermal constant provided in [23]. While the current simulation does not model
guidance, navigation or 6 degrees of freedom, it is a reasonable 1st order estimate and allows for
expansion to new entry conditions.

Table 5.1 Venus Aerocapture Validation Summary

 Peak Conv. Heat
Flux (W/cm^2)

Conv. Heat Load
(J/cm^2)

ΔV Lost Due to
Drag (km/s)

FPA at Entry
Interface (deg)

Lift Down 392.29 49653 3.6558 -5.4233
Bank 90° 474.32 39900 3.6304 -5.6182
Lift Up 590.60 32103 3.5535 -5.9737

5.2. Comparison with NASA TRAJ Software

 The Entry Systems and Technology Division at the NASA Ames Research Center is the
agency’s hub for entry systems modeling and TPS materials research. The division has
developed numerous software tools over the years to simulate atmospheric entry and model TPS
material response. One of the internal tools to the materials branch (TSM) is a code called
BATSPEED (Broad A priori TPS Sizing for Proposals and Efficient Engineering Design). This
tool combines earlier developed codes TRAJ (Trajectory Analysis Program) with FIAT (Fully
Implicit Ablation and Thermal Analysis Program). TRAJ is intended to simulate the entry

Figure 5.5 Trajectory Altitude Validation (Internal Model: left Ref. [23]: right)

A
lti

tu
d

e
(k

m
)

 Page 52 of 107

trajectory and generate aerothermal environments, almost an analogy to the MATLAB trajectory
code developed as part of this project. TRAJ does support skip-out but does not simulate
propulsive maneuvers or multiple atmospheric entries. FIAT is the TPS material response tool
that reads the entry environment and spits out a required TPS thickness and can recommend TPS
material options. BATSPEED combines these two codes in a convenient mission design tool that
allows the user to specify an atmospheric entry state and simulate a range of trajectories to
generate a bounded TPS design space. TRAJ was used as an initial validation for the MATLAB
trajectory tool for multi-pass aerocapture. Future work will involve running FIAT for the entry
environments of a single pass and multi pass aerocapture and comparing the resulting TPS
thickness of each. BATSPEED is run in a linux ubuntu shell environment and all the various
outputs and data are still being explored. Currently, TRAJ is able to simulate an aerocapture
trajectory and target a post-capture apoapsis but requires a non-zero angle of attack to generate
lift-up and lift-down results. TRAJ has a variety of options for atmosphere models and entry
vehicle geometries with many based on empirical flight data. For an initial comparison, TRAJ
was run at 0.5° α and the resulting entry flight path angles for the lift up and lift down
trajectories should evenly split the 0° α case. The same entry vehicle geometry was used as the
comparison with [23] in section 5.1 but the Julian date and longitude and latitude had to be
updated as the values in Figure 5.1 were throwing errors in TRAJ.
 The results of the MATLAB and TRAJ trajectories are in-family and there are many
physics assumptions that differ between the two that likely make up the differences. The
MATLAB EFPA result is slightly skewed towards the lift-up TRAJ result rather than splitting
the difference. The MATLAB model also overpredicts the heating environment by around 20%,
though this could be due to a slightly different aerothermal constant being used in TRAJ.
Typically, uncertainties are high with heating predictions and appropriate margins are applied
accordingly. Familiarity with the TRAJ and BATSPEED codes is low and there is much to learn
for future simulations. Once issue is that when viewing the time history results of the TRAJ lift
up trajectory, the vehicle does not actually skip out and falls all the way to the surface. TRAJ
uses an iterative method similar to the in-house developed MATLAB script to home in on the
EFPA for the post-capture apoapsis. More trial and error is necessary to diagnose this issue.

Table 5.2 MATLAB-TRAJ Comparison Inputs

Inputs
Velocity 11 km/s
Azimuth -90°
Longitude 305.61606°
Latitude 5.170641°
Julian Date 2456755
Mass 150 kg
Cone Half Angle 60°
Diameter 1 m
Nose Radius 0.25 m
Target Apoapsis 500 km

 Page 53 of 107

Table 5.3 MATLAB-TRAJ Comparison Results

 MATLAB NASA TRAJ (Lift
Up)

NASA TRAJ (Lift
down)

Angle of Attack 0° 0.5° -0.5°
Resulting EFPA -5.6149 -5.6122 -5.586
Peak Convective Heat Flux 451.641 W/cm^2 386.53 W/cm^2 375.58 W/cm^2
Peak Radiative Heat Flux - 15.75 W/cm^2 14.94 W/cm^2
Total Heat Load (Conv.) 38394.7 J/cm^2 41498.96 J/cm^2 34019.71 J/cm^2

V
el

oc
ity

 (k
m

/s
)

A
lti

tu
d

e
 (

km
)

H
e

at
 F

lu
x

W
/c

m2

Figure 5.7 TRAJ-MATLAB Velocity Comparison Figure 5.6 TRAJ-MATLAB Altitude
Comparison

Figure 5.8 TRAJ-MATLAB Heat Flux Comparison

 Page 54 of 107

 An additional comparison study was conducted with TRAJ with lift up and lift down
conditions, the same vehicle configuration and input state were used as Table 5.2 with 𝛼 = 10°,
15°, and 20° targeting a 500 km post aerocapture apoapsis. The error between any of the two
resulting entry flight path angles is under 0.02° (Table 5.4) which is less than observed
differences from varying the entry long, lat or Julian date. This agreement adds additional
confidence to the MATLAB model and is a strong indication that the physics and modeling
methods are sound. There are numerous assumptions and modeling methods that are different
between the two solvers and the degree of variation seen between the two is expected. Both
models match the expected behavior of trading higher total heat load for decreased maximum
heat flux for decreasing 𝛼. Figure 5.10 and Figure 5.11 illustrates close agreement in the
trajectory space in terms of velocity and altitude while the aerothermal environments are around
10-20% higher for the MATLAB model. While TRAJ does offer an option for Venus GRAM in
its atmosphere selection, discussion with colleagues suggested that this is an altitude profile that
was extracted from a separate run of GRAM and not an individual query of the GRAM model at
each time step; this and possibly the aerodynamics model may account for some of the small
differences.

 Page 55 of 107

0 100 200 300 400 500 600 700 800 900

Time Since Entry Interface (s)

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5
Velocity vs. Time

0 100 200 300 400 500 600 700 800 900

Time Since Entry Interface (s)

90

100

110

120

130

140

150
Geodetic Altitude vs. Time

0 100 200 300 400 500 600 700 800 900

Time Since Entry Interface (s)

0

1

2

3

4

5

6

7
104 Stagnation Heat Load

Figure 5.9 Lift Up /Lift Down MATLAB Results

 Page 56 of 107

Figure 5.10 MATLAB-TRAJ Comparison Lift Down

A
lti

tu
de

 (
km

)

H
e

at
 L

oa
d

(J
/c

m
2
)

V
el

oc
ity

 (
km

/s
)

H
e

at
 F

lu
x

(W
/c

m
2
)

°

°

°

°

°

°

 Page 57 of 107

Figure 5.11 MATLAB-TRAJ Comparison Lift Up

 Page 58 of 107

Table 5.4 MATLAB-TRAJ Lift Up, Lift Down Comparison

Lift Down Resulting EFPA
(deg)

Peak
Convective Heat
Flux (W/cm^2)

Peak Radiative
Heat Flux
(W/cm^2)

Total Heat Load
(Conv. J/cm^2)

Lift Up

MATLAB (-10°) -5.424 382.25 - 48521.66
TRAJ (-10°) -5.410 326.70 11.16 43108.42
MATLAB (-15°) -5.368 361.27 - 54560.16
TRAJ (-15°) -5.354 302.84 9.320 48836.38
MATLAB (-20°) -5.329 347.80 - 61161.99
TRAJ (-20°) -5.315 301.17 9.590 55053.46
MATLAB (10°) -5.976 572.89 - 31264.45
TRAJ (10°) -5.962 464.67 24.49 26578.55
MATLAB (15°) -6.248 648.38 - 28883.92
TRAJ (15°) -6.234 518.04 32.14 24242.16
MATLAB (20°) -6.592 735.47 - 27123.57
TRAJ (20°) -6.576 578.46 66.14 22462.20

 Page 59 of 107

6. Preliminary Results

6.1. Preliminary Multi-Pass Venus Aerocapture Trajectory

 A test multi pass trajectory was implemented to achieve the same initial state as the
validation run at atmospheric interface (Figure 5.1). The orbit was backed out to an altitude of
~300,000 km to allow for a small trajectory correction maneuver to adjust the perigee to target a
500,000 km apoapsis after the initial aero-pass. The spacecraft state class can readily convert
between classical orbital elements, a position and velocity state vector, and the topocentric
coordinates (Table 4.1). The mission plan object produced 4 intermediate braking orbits before
the final 500 km science orbit was reached. These were automatically scaled to match the delta V
lost on the first orbital insertion pass. The spacecraft was given the same initial mass and
configuration as the validation run. Propulsion system parameters were estimated, the system
needed a high thrust propulsion system for the perigee raise maneuver and low thrust
maneuvering system for the high accuracy TCM’s.

Interplanetary TCM

Figure 6.1 Full Venus Multi-Pass Trajectory

 Page 60 of 107

 Table 6.1 Spacecraft Inputs Table 6.2 Con-Ops Summary

Table 6.3 Initial State

Maneuvers Summary
Maneuver Duration

(s)
ΔV

(m/s)
Interplanetary TCM 2.27 0.15
1st Periapsis Adjust 0.14 0.01
2nd Periapsis Adjust 0.85 0.06
3rd Periapsis Adjust 2.85 0.19
4th Periapsis Adjust 9.11 0.61
Final Perigee Raise 55.21 112.20

Totals
Mission Duration (days) 17.78

ΔV Expenditure (m/s) 113.20
Propellant Expenditure (kg) 5.67

Spacecraft Input Parameters
Parameter Value
Initial Mass 150 kg

High Thrust System 300 N
Low Thrust System 10 N
ISP (both systems) 300 s

Drag Coefficient (α=0°) 1.393
Diameter 1 m

Nose Radius 0.25 m
Sphere Cone Angle 60°

 Interplanetary Orbital Elements
Parameter Value

Eccentricity (𝑒) 1.307
Semi Major Axis (𝑎) -2.00e4 km

Inclination (𝑖) 0°
Argument of Periapsis (𝜔) 0°

Long. of Ascending Node (𝛺) 0°
True Anomaly (Θ) 137°

Hyperbolic Excess Velocity 4.030 km/s
Julian Date 2455504

Figure 6.2 Venus Multi Pass Trajectory Planet Centered

Periapsis Adjust

Final Orbit

Final Periapsis
Raise

 Page 61 of 107

 The final science orbit was slightly off from the target of 500 km at ~494 x 506 km, the
implementation of the final trajectory raise burn could be improved. Overall the mission performance is
satisfactory with only a small percentage of the initial spacecraft mass being expended chemical
propellant. The mission duration is also manageable and is a small fraction of the interplanetary cruise
phase. The duration figure is measured from the initial interplanetary state all the way to one completion
of the final science orbit. Disadvantages to this architecture include the need for orbital maneuvers and
navigation measurements while the spacecraft is still contained within the TPS aeroshell.

6.1.1. Aerothermal Results: Preliminary

Figure 6.3 Multi Pass Heat Flux Results

 Page 62 of 107

Figure 6.4 Multi Pass Total Heat Load Results

 Preliminary results comparing the aerothermal environments of multi and single-pass
aerocapture missions indicate a significant reduction in total heat load for each atmospheric
entry. The target apogee of 500,000 km appeared to be a point of diminishing returns of reduced
heating vs. mission duration, this value is further optimized in section 6.2. While the
environments of each pass are more benign, the sum of the total energy absorbed by the TPS
throughout the multiple passes is higher than the single pass. Given the orbital periods are on the
order of several days, the heatshield would have sufficient time to cool down, though with an
ablative TPS there would be a finite and compounding amount of material lost on each pass. This
approach could be enabling for re-usable TPS such as flexible carbon weaves that have a lower
maximum heat flux tolerance but can survive multiple insertions. A thorough TPS sizing effort is
required to fully assess any mass savings (if any) with the multi-pass method.

 Page 63 of 107

6.2. Aerocapture Sensitivity Analysis

From previous results it is apparent that the first atmospheric entry from an interplanetary
state is the driving case in terms of the heating environment and reduction in velocity. The
spacecraft must become captured on this pass which puts a lower bound on the overall intensity
of the heating environment. A study was conducted to examine the design and trajectory space of
amulti-pass aerocapture by looking at the initial pass bounding case in terms of the target
apoapsis, vehicle ballistic coefficient, and entry velocity. These are the primary driving factors
for the maximum heat load which determines the type of TPS material required. The target
apoapsis of 500,000 km used in previous cases was a qualitative estimate based on engineering
judgement. An optimal value requires a balance between the orbital period of the post-exit orbit,
which drives the mission duration and the peak heat flux which dictates the TPS material.

500
100000

200000
300000

400000
500000

600000
700000

800000
900000

P
e

a
k

H
e

a
t F

lu
x

(W
/c

m
2
)

P
o

st
 C

a
p

tu
re

 O
rb

ita
l P

er
io

d
(h

rs
)

Figure 6.5 Peak Stag. Heat Flux to Orbital Period Tradeoff

 1 m diameter, 0.25 m nose radius
 BC = 138 kg/m^2
 60° Sphere Cone

 Page 64 of 107

 Figure 6.5 shows a series of trajectories run for different post-exit apoapsis targets from
an interplanetary trajectory, the vehicle configuration and initial state are the same as Table 6.1
and Table 6.3. Figure 6.5 shows significant diminishing returns in terms of heating reduction
after around 200,000 km while the orbital period continues to rise nonlinearly. The first post
capture orbit is also dominant in terms of the total multi-pass con-ops duration. An obvious
visual choice for the ideal post-capture apoapsis would be the intersection of the two curves but a
more quantitative approach would be to construct a weight function between normalized values
of peak heat flux (𝑞ே) and orbital period (𝜏ே).

𝑞ே(𝑟௔) =
𝑞(𝑟௔) − 𝑞௠௜௡

𝑞௠௔௫ − 𝑞௠௜௡

(6. 1)

𝜏ே(𝑟௔) =
𝜏(𝑟௔) − 𝜏௠௜௡

𝜏௠௔௫ − 𝜏௠௜௡

(6. 2)

𝑊(𝑟௔) = ට𝜏ே
ଶ + 𝑞ே

ଶ (6. 3)

500
100000

200000
300000

400000
500000

600000
700000

800000
900000

Apoapsis Altitude (km)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.6 𝒒𝑵-𝝉𝑵 Weight Function

 1 m diameter, 0.25 m nose radius
 BC = 138 kg/m^2
 60° Sphere Cone

 Page 65 of 107

The weight function shown in eqn. 6.3 is based on the peak heat flux and orbital period at
chosen apoapsis limits 𝜏௠௜௡,௠௔௫ and 𝑞௠௜௡,௠௔௫. The values are normalized over the entire range.
The lower apoapsis limit was set to 500 km, as that is a standard low science orbit described in
[23], the upper limit was set to 800000 km, which is near the limit of a bounded Venusian orbit.
The minimum of this weighting function is the point where peak heat flux is minimized without
the expense of a significant increase in mission duration. Figure 6.6 shows the weight function
plotted with the same x axis values as Figure 6.5. The minimum occurs at ~175000 km with a
peak stagnation heat flux of ~313 W/cm^2 and orbital period of ~88 hrs. The weight function
limits can be adjusted depending on mission requirements.

P
e

ak
 H

e
a

t F
lu

x
(W

/c
m

2)

Figure 6.7 Ballistic Coefficient Effect on Peak Heating

 1 m diameter, 0.25 m nose radius
 Vi = 11 km/s
 60° Sphere Cone

 Page 66 of 107

P
ea

k
H

ea
t F

lu
x

(W
/c

m
)

Figure 6.9 Entry Velocity (km/s) Effect on Weight Function

P
ea

k
H

ea
t F

lu
x

(W
/c

m
)

Figure 6.8 Ballistic Coefficient (kg/m^2) Effect on Weight Function

 1 m diameter, 0.25 m nose radius
 Vi = 11 km/s
 60° Sphere Cone

 1 m diameter, 0.25 m nose radius
 BC = 138 kg/m^2
 60° Sphere Cone

 Page 67 of 107

 The ballistic coefficient, shown in eqn. 6.4 is a way to normalize several aerodynamic
characteristics of the entry vehicle into one parameter. Figure 6.8 and Figure 6.9 illustrate low
sensitivity of the weight function minimum to ballistic coefficient and entry velocity. This
“sweet spot” of apoapsis altitudes is almost entirely dependent on the planetary destination, with
the obvious condition that it is above the target science orbit for the mission. It should be noted
that the sensitivity analysis trajectories run in this section were ballistic entries at 𝛼 = 𝛽 = 0.

𝐵஼ =
𝑚

𝐶஽𝐴
(6. 4)

An optimal target apoapsis altitude is tied to a particular trajectory and resulting heating

environment. This allows for an aerocapture mission design space to be calculated where the
peak heat flux can be visualized as a function of ballistic coefficient and entry velocity. The
weight function analysis shows that additional constraints are not necessary as the apoapsis range
is only strongly dependent on the destination. One exception is the entry vehicle effective nose
radius which factors into the Sutton Graves heating correlation but does not have a significant
impact on the vehicle ballistic coefficient. A vehicle with a smaller nose radius will produce
higher stagnation heat fluxes for the same ballistic coefficient and all else being equal. With this

100

200

200 300

300

400

400

400

500

500

600

600

700

800

900

B
a

lli
st

ic
 C

oe
ff

ic
ie

nt
 (

kg
/m

2
)

Figure 6.10 Venus Aerocapture Design Space

 Initial orbit apoapsis is ~175000 km
 Vehicle diameter varied from 1.0-3.5 m
 Nose radius is ¼ the vehicle diameter
 70° Sphere Cone
 α=0°

 Page 68 of 107

in mind new design spaces should be generated for different classes of entry vehicles or new
planetary destinations.

 The design space in Figure 6.10 indicates vehicle configuration (𝐵஼) and arrival velocity
can have a significant influence on the heating environment. The values are valid for any target
apoapsis above the weight function predictions, Entry vehicles like MSL and Mars 2020 have
ballistic coefficients ~150 kg/m^2, if such a vehicle was used for a Venus aerocapture, ablative
TPS would be necessary for peak heating rates >300 W/cm^2.

6.2.1. Uncertainty Modeling

So far only nominal values have been used in the analysis, though uncertainty
propagation is necessary to gauge the various sensitivities of the design space. GRAM supports
monte carlo runs and perturbations on all atmospheric properties. Assessing how the
aerodynamic coefficients respond to a normal distribution of angles of attack, and free stream
conditions could allow a 3σ envelope of trajectories to be plotted. One of the potential
advantages to multi-pass aerocapture is the higher initial target apoapsis leaves more room for
trajectory or guidance dispersions. Directly targeting a low 500 km orbit after an aerocapture
requires a much tighter flight corridor than a 200,000 km orbit. The flexible object oriented
nature of the simulation and perturbation ready parameters of GRAM would make the addition
of uncertainties straight forward. However, quantifying the uncertainties and utilizing them for
mission design is more involved and is out of the scope of this current project.

6.3. Mission Concept: SmallSat Venus Aerocapture with Deployable TPS

 NASA’s Adaptable, Deployable Entry Placement Technology (ADEPT) [25] is an
attractive candidate for a low ballistic coefficient entry vehicle that can withstand multiple
atmospheric entries. The technology utilizes a flexible carbon weave as a TPS that can be folded
to allow for efficient packing in launch vehicle fairings. This TPS was tested in the NASA ARC
Arc Jet facility at conditions of over 150 W/cm^2 of stagnation point convective heating though
50 W/cm^2 is a more realistic re-usable limit [25].

To home in on a basic entry vehicle configuration, a second batch run was conducted to
narrow down the design window to the lower left corner of Figure 6.10. This focused design
space is shown in Figure 6.11. In the spirit of choosing round numbers, a 3 m diameter aeroshell
with a mass of 200 kg would have a ballistic coefficient of 17.55 kg/m^2. This is almost 8 times
lower than the ballistic coefficient of the MSL entry vehicle and is likely close to the limit of
materials and mass constraints for a flexible, deployable entry system. Additional system design
work would be necessary to determine the feasibility of vehicles in this range. Assuming a TPS
mass fraction of 30-40% would allow for 120-140 kg science payload orbiter. A trim angle of
attack of 10° was chosen arbitrarily as optimizing for angle of attack requires stability, mass
properties, and other vehicle characteristics that aren’t modeled by the simulation. If this vehicle
targeted an optimized post capture apoapsis of 200,000 km it would encounter a peak stagnation
heat flux of ~59.5 W/cm^2 for the lift down case and ~70 W/cm^2 for the lift up case which is in
the ballpark for a re-usable, deployable entry system.

 Page 69 of 107

A multi-pass architecture analyzing this configuration was setup with values shown in
Table 6.4 through 6.7. The entry state (Table 6.6) is identical to the mission studied in section
6.3. The mission planner solution with a 200,000 km initial apoapsis yields only 3 passes instead
of 4, bringing the mission duration down to ~5.5 days. Note that the drag and lift coefficients
shown in Table 6.4 are nominal values and can vary slightly due to the effects discussed in
section 4.2.4. A small 100 kg satellite would likely consist of a pressure fed monopropellant
system with space for only a few kgs of propellant. A large cruise stage would be necessary for a
purely propulsive orbital insertion. The advantage of a deployable system is the back shell can be
opened to the space environment to allow for easier communication and maneuvers. The
aerothermal plots shown in Figure 6.16 illustrate the flight corridor between the extreme lift up
and lift down cases. The aerothermal heating metrics trend as expected, with heat flux
dominating the lift-up trajectory and total heat load the lift-down trajectory. The delta between
the lift-up and lift down stagnation heat flux and total heat load is significantly higher for the
single pass trajectory. The multi-pass configuration offers a smaller range of heating
environments that the TPS needs to be sized for, which can be attractive to mission designers.
The nominal entry trajectory will fall somewhere between the two cases depending on the bank
angle profile. Provided that the carbon weave TPS can cool down between passes this may be
enabling for such a system that only comprises of a few layers of fabric to maintain flexibility
and cannot absorb excessive amounts of energy. An additional multi pass trajectory with an even
lower ballistic coefficient vehicle is presented in Appendix 9.3.

Figure 6.11 Venus Aerocapture Design Space for Low 𝑩𝑪 Vehicles (Lift Down)

40
60

80

100

120

120

140

160

B
a

lli
st

ic
 C

oe
ff

ic
ie

nt
 (

kg
/m

2
)

 Initial orbit apoapsis is ~175000 km
 Vehicle diameter varied from 2-4 m
 Nose radius is ¼ the vehicle diameter
 70° Sphere Cone
 α=-10°
 0°Lat, 170°Long, 150 km
 Heating can vary by ~5-7% depending

on longitude of entry longitude

 Page 70 of 107

40
60

80

80

100

100

120

140

160

180

200

B
al

lis
tic

 C
oe

ffi
ci

en
t (

kg
/m

2
)

Figure 6.12 Venus Aerocapture Design Space for Low 𝑩𝑪 Vehicles (Lift Up)

Figure 6.13 Venus Aerocapture Design Space for Low 𝑩𝑪 Vehicles (Overlay)

 Initial orbit apoapsis is ~175000 km
 Vehicle diameter varied from 2-4 m
 Nose radius is ¼ the vehicle diameter
 70° Sphere Cone
 α=10°
 0°Lat, 170°Long, 150 km
 Heating can vary by ~5-7% depending

on longitude of entry longitude

60 80

100

100 120

140

40

60

80

100

140

160

10.5 11 11.5 12

Apoapsis Altitude (km)

15

20

25

30

35

40 Lift Up (W/cm2)
α=10°

Lift Down (W/cm2)
α=-10°

 Page 71 of 107

 Table 6.4 Spacecraft Inputs Table 6.5 Con-Ops Summary

Table 6.6 Initial State Table 6.7 Atmospheric Entries

Maneuvers Summary
Maneuver Duration

(s)
ΔV

(m/s)
Lift Up

Interplanetary TCM 10.49 0.525
1st Periapsis Adjust 0.128 0.006
2nd Periapsis Adjust 2.000 0.100
3rd Periapsis Adjust 10.15 0.507
Final Perigee Raise 190.0 116.3

Lift Down
Interplanetary TCM 12.17 0.610
1st Periapsis Adjust 0.194 0.010
2nd Periapsis Adjust 2.141 0.110
3rd Periapsis Adjust 8.137 0.407
Final Perigee Raise 177.1 108.2

Totals Lift
Up

Lift
Down

Mission Duration
(days)

5.461 5.468

Maneuvers ΔV (m/s) 117.4 109.4
Propellant Usage (kg) 7.832 7.304

Spacecraft Input Parameters
Parameter Value
Initial Mass 200 kg

High Thrust System 120 N
Low Thrust System 10 N
ISP (both systems) 300 s

Trim Angle of Attack (α) 10°/-10°
𝐶஽ at α=10°/-10° 1.550
𝐶௅ at α=10°/-10° ±0.237

Diameter 3 m
Nose Radius 0.75 m

Sphere Cone Angle 70°
𝐵஼ at α=0° 17.55 kg/m^2

𝐵஼ at α=10°/-10° 18.26 kg/m^2

Aero-Pass Summary
Pass 𝒒𝒎𝒂𝒙

(W/cm^2)
𝑱𝒔

(J/cm^2)
ΔV

(km/s)
Lift Up

Insertion 70.05 4022 0.916
1st Pass 53.74 3645 0.914
2nd Pass 39.55 3350 0.912
3rd Pass 26.58 3340 0.892

Lift Down
Insertion 61.66 4416 0.916
1st Pass 46.05 4085 0.915
2nd Pass 32.30 3903 0.914
3rd Pass 19.22 4445 0.912

 Interplanetary Orbital Elements
Parameter Value

Eccentricity (𝑒) 1.3074
Semi Major Axis (𝑎) -2.0005e4 km

Inclination (𝑖) 0°
Argument of Periapsis (𝜔) 0°
Long. of Ascending Node

(𝛺)
0°

True Anomaly (Θ) 137°
Hyperbolic Excess Velocity 4.0298 km/s

Julian Date 2455504
Initial Target Apoapsis (km) 200000

 Page 72 of 107

Figure 6.14 Venus Deployable TPS Multi-Pass Trajectory

Figure 6.15 Venus Deployable TPS Additional Trajectory Views

 Page 73 of 107

6.3.1. Aerothermal Results: Deployable TPS

Figure 6.16 Venus Multi-Pass Deployable TPS Aerothermal Results

V
el

oc
ity

 (
km

/s
)

A
lti

tu
de

 (
km

)
H

ea
t F

lu
x

(W
/c

m
2)

H
ea

t L
oa

d
(J

/c
m

2)

Single Pass, Large
Design Range

Multi Pass, Smaller
Design Range

 Page 74 of 107

Figure 6.17 Venus Multi-Pass Deployable TPS Additional Results

 Page 75 of 107

7. Next Steps

In the first phase of this project an extensive MATLAB object oriented simulation
framework was developed to study multiple atmospheric insertions to achieve a target orbit. The
simulation utilizes the NASA Global Atmospheric Reference Model and is based on validated
physics and prediction methods. In the second half of the project some improvements were made
to the overall architecture and robustness to different inputs. The code was compared to the
NASA TRAJ flight validated trajectory program and other results from literature with results that
are in-family.

The aerodynamic database was significantly expanded to model aerodynamic forces in 3
dimensions and at angles of attack and sideslip. Additional validations on the modified
Newtonian model have been performed and lift and drag cases have been compared with TRAJ
and indicate strong agreement. The rarefied flow modeling has been implemented and tested.
GRAM has been tested for all 7 atmospheric destinations. Uncertainty modeling is a major next
step that would need to be addressed for this modeling tool be used in real conceptual design.

On the Aerothermal side the chemistry model methodology described in 4.3 needs to be
expanded to include all constituents from each planetary atmosphere while utilizing the
thermodynamic data from [3]. This would add additional properties to compare like temperature
and pressure behind the shock at the stagnation point and flank. The ultimate longer term goal is
to size TPS for a conceptual mission based on the predicted aerothermal environments. The
NASA developed tool FIAT is an industry standard for TPS sizing. Additional longer term goals
involve expanding the simulation reference frames to include SPICE kernals for modeling time
dependent planetary effects such nutation.

A simulation architecture utilizing multi-body mechanics of the entire solar system would
allow for a macro level of mission planning and generation of initial states for atmospheric
entries. This would allow direct coupling between elements such as launch, transfer windows,
and gravity assists to aerothermal environments to assess the feasibility of various orbital
insertion methods. While numerous mission planning software tools exist, EDL focused tools
with an emphasis on preliminary design and optimization are less common. So far, the modeling
and simulation skills learned during this project have been invaluable.

 Page 76 of 107

8. References

[1] Wright, M., and Dec, J., “Thermal and Fluids Analysis Workshop, 2012,” Aerothermodynamic and Thermal Protection

System Aspects of Entry System Design Course, Aug. 13-17, 2012, Pasadena, CA:.

[2] Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032, National Academies
Press, 500 5th St. NW, Washington, DC 20418, 2023.

[3] McBride, B. J., Zehe, M. J., and Gordon, S., “NASA Glenn coefficients for calculating thermodynamic properties of
individual species,” NASA/TP—2002-211556, John H. Glenn Research Center at Lewis Field, 2002.

[4] McBride, B. J., “Thermodynamic properties to 6000° K for 210 substances involving the first 18 elements, by Bonnie
J. McBride and others,” NASA SP-3001, 1963.

[5] Gordon, S., and McBride, B. J., “Computer program for calculation of complex chemical equilibrium compositions and
applications,” NASA Reference Publication 1311, 1994.

[6] Justh, H., Cianciolo, A. D., Hoffman, J., and Allen Jr, G., “Uranus Global Reference Atmospheric Model (Uranus-
GRAM): User Guide,” NASA/TM - 20240011228, Marshall Space Flight Center Huntsville, AL. 35812, 2021.

[7] Justh, H., Cianciolo, A. D., Hoffman, J., and Allen Jr, G., “Venus Global Reference Atmospheric Model (Venus-
GRAM): User Guide,” NASA/TM-20210022168, Marshall Space Flight Center Huntsville, AL. 35812, 2024.

[8] Moses J. I., Cavalié T., Fletcher L. N. and Roman M. T., 2020 Atmospheric chemistry on Uranus and Neptune. Phil.
Trans. R. Soc. A. 378: 20190477. http://doi.org/10.1098/rsta.2019.0477

[9] Dutta, S., Shellabarger, E., Scoggins, J. B., Gomez-Delrio, A., Lugo, R., Deshmukh, R., Tackett, B., Williams, J.,
Johnson, B., Matz, D., Geiser, J., Morgan, J., Restrepo, R., and Mages, D., “Uranus Flagship-Class Orbiter and Probe
Using Aerocapture,” AIAA SCITECH 2024 Forum, Jan. 8-12, 2024, Orlando, FL. https://doi.org/10.2514/6.2024-0714

[10] Deshmukh, R., Dutta, S., Lugo, R., Restrepo, R., Mages, D., Johnson, B., Matz, D., Geiser, J., Scoggins, J. B.,
Shellabarger, E., Gomez-Delrio, A., and Williams, J., “Performance Analysis of Aerocapture Systems for Uranus
Orbiter,” AIAA SCITECH 2024 Forum, Jan. 8-12, 2024, Orlando, FL. https://doi.org/10.2514/6.2024-0716

[11] Restrepo, R., Mages, D., Smith, M., Deshmukh, R., Dutta, S., and Benhacine, L., “Mission Design and Navigation
Solutions for Uranus Aerocapture,” AIAA SCITECH 2024 Forum, Jan. 8-12, 2024, Orlando, FL.
https://doi.org/10.2514/6.2024-0715

[12] Morgan, J., Williams, J.D., Venkatapathy, E., Gasch, M., Deshmukh, R.G., Shellabarger, E., Scoggins, J.B., Gomez-
Delrio, A., Tackett, B., Dutta, S., “Thermal Protection System Design of Aerocapture Systems for Uranus Orbiters,”
AIAA SCITECH 2024 Forum, Jan. 8-12, 2024, Orlando, FL. https://doi.org/10.2514/6.2024-0952

[13] Shellabarger, E., Scoggins, J. B., Hinkle, A. D., Dutta, S., Deshmukh, R., Patel, M., and Agam, S., “Aerodynamic
Implications of Aerocapture Systems for Uranus Orbiters,” AIAA SCITECH 2024 Forum, Jan. 8-12, 2024, Orlando,
FL. https://doi.org/10.2514/6.2024-0950

[14] Scoggins, J. B., Hinkle, A. D., and Shellabarger, E., “Aeroheating Environment of Aerocapture Systems for Uranus
Orbiters,” AIAA SCITECH 2024 Forum, Jan. 8-12, 2024, Orlando, FL. https://doi.org/10.2514/6.2024-0951

[15] Gomez-Delrio, A. J., and Dutta, S., “Design Implications for Aerocapture Systems Placing Flagship-Class Uranus
Orbiters,” AIAA SCITECH 2024 Forum, Jan. 8-12, 2024, Orlando, FL. https://doi.org/10.2514/6.2024-0953

[16] L. L. Perini, “Compilation And Correlation Of Experimental, Hypersonic, Stagnation Point Convective Heating Rates,”
ANSP-M-4, United States. Dept. of Energy. Technical Information Center, Oak Ridge, Tenn. 1972.

 Page 77 of 107

[17] Anderson, John D. Hypersonic and High Temperature Gas Dynamics. 2nd ed., American Institute of Aeronautics and
Astronautics, 1801 Alexander Bell Drive, Reston, VA. 2006.

[18] Murri, D. et al., “Improvements to the Flight Analysis and Simulation Tool (FAST) and Initial Development of the
Genesis Flight Mechanics Simulation for Ascent, Aerocapture, Entry, Descent, and Landing (A2EDL) Trajectory
Design,” NASA TM-20210014622, 2021.

[19] Noca, M., and Bailey, R., “Mission trades for aerocapture at Neptune,” 40th AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Exhibit, Jul. 11-14, 2004, Fort Lauderdale, FL. https://doi.org/10.2514/6.2004-3843

[20] Rymer, A., Clyde B., Runyon, K. “Neptune Odyssey: Neptune Odyssey: A Flagship Concept for the Exploration of the
Neptune–Triton System, The Planetary Science Journal, 2:184 (15pp), 2021 October. Published online by the American
Astronomical Society. https://doi.org/10.3847/PSJ/abf654

[21] Simon, A., Nimmo, F., Anderson, C. R. Journey to an Ice Giant System, Uranus Orbiter & Probe, PLANETARY
MISSION CONCEPT STUDY FOR THE 2023–2032 DECADAL SURVEY, Johns Hopkins Applied Physics Lab,
11100 Johns Hopkins Rd., Laurel, MD. 20723, 7 June 2021. https://smd-cms.nasa.gov/wp-
content/uploads/2023/10/uranus-orbiter-and-probe.pdf

[22] Curtis, H. D., Orbital Mechanics for Engineering Students, 3rd ed., Butterworth-Heinemann, An imprint of Elsevier,
The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK, 2014.

[23] Lugo, R. A., Dutta, S., Matz, D., Johnson, B. J., Pensado, A. R., Roelke, E., Aguirre, J. T., and Powell, R.,
“Performance Analysis of SMALLSAT Aerocapture at Venus,” AIAA SCITECH 2023 Forum, Jan. 23–27, 2023,
National Harbor, MD. https://doi.org/10.2514/6.2023-0878

[24] Kumar, M., and Tewari, A., “Trajectory and attitude simulation for aerocapture and aerobraking,” Journal of Spacecraft
and Rockets, vol. 42, Jul. 2005, pp. 684–693. https://doi.org/10.2514/1.7117

[25] Morgan, J., Gokcen, T., and Wercinski, P., “Arc-jet testing of continuously woven aeroshells –Spiderweave– for
adaptable deployable entry placement technology,” AIAA AVIATION 2022 Forum, Jun. 27- Jul. 1, 2022, Chicago, IL.
https://doi.org/10.2514/6.2022-3503

[26] Matz, D. A., and Cerimele, C. J., “Development of a Numeric Predictor-Corrector Aerocapture Guidance for Direct
Force Control,” AIAA Scitech 2020 Forum, Jan. 6-10, 2020, Orlando, FL. https://doi.org/10.2514/6.2020-0847

[27] Lu, P., Cerimele, C. J., Tigges, M. A., and Matz, D. A., “Optimal Aerocapture Guidance,” Journal of Guidance,
Control, and Dynamics, Vol. 38, No. 4, 2015, pp 553–565. http://dx.doi.org/10.2514/1.g000713.

[28] McBrayer, K. T., and Edwards, S. J., “Keplerian analysis for versatile evaluation of arbitrary trajectories,” AIAA 2020-
4031. ASCEND 2020. Nov. 16-18, Virtual. https://doi.org/10.2514/6.2020-4031

[29] Grant, M., and Braun, R., “Analytic hypersonic aerodynamics for conceptual design of entry vehicles,” 48th AIAA
Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Jan. 4-7, 2010, Orlando,
FL. https://doi.org/10.2514/6.2010-1212

[30] Archinal, B.A., Acton, C.H., A’Hearn, M.F. et al. Report of the IAU Working Group on Cartographic Coordinates and
Rotational Elements: 2015. Celest Mech Dyn Astr 130, 22 (2018). https://doi.org/10.1007/s10569-017-9805-5

[31] Kenneth A. Hart, Soumyo Dutta, Kyle Simonis, Bradley A. Steinfeldt and Robert D. Braun. "Analytically-derived
Aerodynamic Force and Moment Coefficients of Resident Space Objects in Free-Molecular Flow," AIAA 2014-0728.
AIAA Atmospheric Flight Mechanics Conference, January 13-17, National Harbor, Maryland, USA 2014.
https://doi.org/10.2514/6.2014-0728

[32] Kenneth A. Hart, Kyle R. Simonis, Bradley A. Steinfeldt, and Robert D. Braun. “Analytic Free-Molecular
Aerodynamics for Rapid Propagation of Resident Space Objects,” Journal of Spacecraft and Rockets 2018 55:1, 27-36
https://doi.org/10.2514/1.A33606

 Page 78 of 107

[33] Storch, Joel. (2002). Aerodynamic Disturbances on Spacecraft in Free-Molecular Flow. 70. 10.1061/40722(153)60.

[34] Jannuel V. Cabrera, Rohan Deshmukh and David Spencer. "Aerodynamic Database Development using a Bridging
Function for a Conceptual Morphable Entry System," AIAA 2021-0935. AIAA Scitech 2021 Forum. January 11-21,
2021, virtual. https://doi.org/10.2514/6.2021-0935

[35] R. G. Wilmoth, R. C. Blanchard, J. N. Moss, “Rarefied Transitional Bridging of Blunt Body Aerodynamics” 21st
International Symposium on Rarefied Gas Dynamics,” 21st International Symposium on Rarefied Gas Dynamics, July
26-31, Marseille, France, 1998.

[36] Richard G. Wilmoth, Robert A. Mitcheltree, and James N. Moss, “Low-Density Aerodynamics of the Stardust Sample
Return Capsule, ” Journal of Spacecraft and Rockets 1999 36:3, 436-44. https://doi.org/10.2514/2.3464

[37] Alex T. Carroll and Aaron M. Brandis. "Stagnation Point Convective Heating Correlations for Entry into H2/He
Atmospheres," AIAA 2023-0208. AIAA SCITECH 2023 Forum. January 2023. Jan. 23–27, 2023, National Harbor,
MD. https://doi.org/10.2514/6.2023-0208

[38] Thomas K. West and Aaron M. Brandis. "Updated Stagnation Point Aeroheating Correlations for Mars Entry," AIAA
2018-3767. 2018 Joint Thermophysics and Heat Transfer Conference. June 2018, Atlanta, Georgia, USA.
https://doi.org/10.2514/6.2018-3767

[39] Aaron M. Brandis and Christopher O. Johnston. "Characterization of Stagnation-Point Heat Flux for Earth Entry,"
AIAA 2014-2374. 45th AIAA Plasmadynamics and Lasers Conference. June 2014, Atlanta, Georgia, USA.
https://doi.org/10.2514/6.2014-2374

 Page 79 of 107

9. Appendix

9.1. Modified Newtonian Aerodynamics: Additional Validation and Convergence

9.1.1. Additional validation with [29], cone and spherical segment

0 20 40 60

Angle of Attack (deg)

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

5 deg
15 deg
30 deg

0 20 40 60

Angle of Attack (deg)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
5 deg
15 deg
30 deg

0 20 40 60

Angle of Attack (deg)

0

0.5

1

1.5

2

2.5

3

3.5

4
5 deg
15 deg
30 deg

Figure 9.1 Panel Method for Cone (20 radial panels)

Figure 9.2 Ref [29] Data for Cone

 Page 80 of 107

0 20 40 60

Angle of Attack (deg)

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1
5 deg
15 deg
30 deg

0 20 40 60

Angle of Attack (deg)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
5 deg
15 deg
30 deg

0 20 40 60

Angle of Attack (deg)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
5 deg
15 deg
30 deg

Figure 9.4 Panel Method for Sphere (20 radial panels)

Figure 9.3 Ref [29] Data for Cone

 Page 81 of 107

9.1.2. Panel Method Convergence

 A convergence study was conducted on the modified Newtonian panel method discussed
in 4.2.2 to assess performance and optimize the number of divisions. Recall lengthwise divisions
are applied to curved sections along the x-axis (Figure 4.5) and radial divisions are revolved
around the x axis (Figure 4.6). Straight frustrum sections are represented by only one lengthwise
division. The solver was setup with a 60° sphere cone and a nose to body radius ratio of 0.5 at
𝛼 = 𝛽 = 15°. The model shows strong convergence performance with the aero coefficients
settling within 3 decimal places after just 5 divisions. In this configuration the normal and axial
forces depend on both divisions while the side force is dominated by the number of radial
divisions. The analysis was repeated for a 25° sphere cone, the results Figure 9.8 illustrate that
the performance is slightly worse for more slender bodies but still robust. 8-10 divisions are
likely more than sufficient for blunt bodies at low angles of attack. Overall this convergence
study adds additional confidence to the aerodynamic model.

Figure 9.5 Normal Force vs. Number of Divisions (60° sphere cone)

𝐶ே

 Page 82 of 107

Figure 9.6 Axial Force vs. Number of Divisions (60° sphere cone)

Figure 9.7 Side Force Convergence (60° sphere cone)

𝐶஺

𝐶ௌ

 Page 83 of 107

Figure 9.8 Axial Force vs. Number of Divisions (25° sphere cone)

𝐶஺

 Page 84 of 107

9.2. Free Molecular and Rarefied Flow Aerodynamics

An entry vehicle flying through a planetary atmosphere encounters various flow regimes
that vary with altitude. The two primary bounding flow regimes are continuum and free
molecular. In the continuum regime, the distance between individual molecules is much smaller
than defining features of the flow field allowing it treated as a continuous medium. Continuum
flow is described by the Navier Stokes equations and disturbances and direction changes
propagate smoothly through the flow field. Free molecular flow is defined by large distances
between individual particles where collisions do not propagate or affect adjacent particles. The
Knudsen number is a defining nondimensional parameter for free molecular, transitional, or
continuum flow where 𝜆 is the mean free path and L is a physical length scale, often the entry
vehicle diameter.

𝐾௡ =
𝜆

𝐿
(9. 1)

𝜆 =
𝑘௕𝑇

√2𝜋𝑑ଶ𝑝
(9. 2)

The mean free path can be defined from the Boltzmann constant 𝑘௕, temperature,

pressure, and the particle kinetic diameter, 𝑑, which is available in literature for common
substances [17]. There are no strict Knudsen number limits to free molecular and continuum
flow but a general guideline is a 𝐾௡ < 0.01 defines continuum flow and 𝐾௡ > 10 defines free
molecular flow [17]. These limits often require refinement based on flow geometry and
atmospheric characteristics, comparison with empirical data is usually required. The large region
between free molecular and continuum flow is known as the transitional or rarefied flow regime
and can be difficult to model. Direct simulation monte carlo (DSMC) is a widely used but
computationally expensive way of modeling free molecular and rarefied flow by simulating the
kinetic collisions and interactions between individual particles.

 Page 85 of 107

Aerocapture and skip-out trajectories remain at high altitudes and often a large
portion of the trajectory is in the rarefied and free molecular flow regimes. As discussed in
4.2, the modified Newtonian method is most accurate for continuum flow. In the search of
higher fidelity trajectory modeling an analytical scheme for predicting free molecular and
rarefied flow needed to be implemented. [31][32], and [33] describe an approach to modeling
aerodynamic coefficients in free molecular flow based on a Maxwellian distribution of
spectral and diffuse particle collisions with the vehicle surface. The pressure and shear
coefficients are calculated and integrated over the surface. This allows the same paneling
algorithm to be reused with the free molecular pressure and shear coefficients as shown in
9.6. The normal vector is the same as is shown in Figure 4.5 and the tangential vector is
calculated through 9.7.

𝐶௣ =
1

𝑠ଶ ቎ቌ
2 − 𝜎ே

√𝜋
 𝑠 sin(𝜃) +

𝜎ே

2
ඨ

𝑇ௐ

𝑇ஶ
ቍ 𝑒ି(௦ ୱ୧୬(ఏ))మ

+ ቐ(2 − 𝜎ே)(𝑠 sin(𝜃))ଶ +
1

2
+

𝜎ே

2
ඨ

𝜋𝑇ௐ

𝑇ஶ
𝑠 sin(𝜃)ቑ (1 + erf (𝑠 sin(𝜃))቏

𝐶ఛ =
𝜎ே cos(𝜃)

𝑠√𝜋
ൣ𝑒ି(௦ ୱ୧୬(ఏ))మ

+ √𝜋𝑠 sin(𝜃)(1 + erf(𝑠 sin(𝜃)))൧ (9. 4)

𝑠 =
𝑉ஶ

ඥ2𝑅𝑇ஶ

(9. 5)

(9. 3)

Figure 9.9 Continuum Limit of Uranus Aerocapture Trajectory from [14]

 Page 86 of 107

቎

𝐶𝐴

𝐶𝑆

𝐶𝑁

቏ =
1

𝐴𝑟𝑒𝑓
ඵ  

𝑆
(𝐶

𝑝
𝒏ෝ + 𝐶ఛ𝒕෠) 𝑑𝐴 (9. 6)

𝒕෠ =
𝒏ෝ൫𝑽෡∞ ∙ 𝒏ෝ൯ − 𝑽෡∞

ට1 − ൫𝑽෡∞ ∙ 𝒏ෝ൯
2

(9. 7)

The Maxwellian distribution model described above applies to free molecular flow and
was validated with DSMC in [32] and [33], however this isn’t necessarily accurate in the
transitional region which is a large part of any entry trajectory. [34] and [35] describe various
methods of “blending” the two flow regimes to predict aerodynamic coefficients at any trajectory
point as a function of 𝐾௡. The theory states that a local or global aerodynamic coefficient can be
described as a weighted average of that coefficient at the free molecular and continuum limits. A
commonly used bridging function based on the sine squared law is shown in 9.8-9.10, 𝑃௕ = 1 at
the free molecular limit and 0 at the continuum limt. The two constants 𝑎ଵ and 𝑎ଶ are related to
the free molecular and continuum 𝐾௡ values and are calculated with 9.11. More accurate
bridging functions exist though they require a DSMC anchor point at the middle of the
transitional regime. This sine squared function was used for the MATLAB trajectory code
aerodynamics database.

𝐶௧௥ = 𝑃௕𝐶௙௠ + (1 − 𝑃௕) ∗ 𝐶௖௢௡௧ (9. 8)

𝑃௕ = sinଶ 𝜓 (9. 9)

𝜓 = 𝜋൫𝑎ଵ + 𝑎ଶ𝑙𝑜𝑔10𝐾௡ಮ

൯ (9. 10)

ቂ
0.5
0

ቃ = ቈ
1 𝑙𝑜𝑔10𝐾௡೎೚೙೟

1 𝑙𝑜𝑔10𝐾௡೑೘

቉ ቂ
𝑎ଵ

𝑎ଶ
ቃ (9. 11)

 Page 87 of 107

9.2.1. Validation of Rarefied Flow Mechanics

With the relationships established for free molecular and transitional flow mechanics, test
cases can be run and the results can be compared/validated with literature. The existing paneling
method for Newtonian flow is easily utilized for the free molecular conditions and allows for a
variety of vehicle shapes to be quickly tested. [32] and [33] present the exact equations 9.3-9.7
and an initial simple test of the drag coefficient of a sphere while varying the velocity, wall
temperature, and specular and diffuse ratio to assess sensitivity. With each comparison,
parameters were set to the same values as the reference literature where possible. Comparison of
Figure 9.10Figure 9.11indicates the results are in family, however [32] does not present values
used for the specific gas constant which is required for 9.5, so a value of 287.058 J/(kg-K) for air
was assumed.

C
D

C
D

C
D

Figure 9.11 Sphere Drag Coefficient Validation Results

Figure 9.10 Sphere Drag Coefficient Results from [32]

 Page 88 of 107

Ref. [33] was written by some of the same SME’s and they go into greater detail on
plotting more complex geometries. The results for the decreasing bi-conic were replicated in the
internally developed simulation and the results indicate excellent agreement with [33]. While 𝑇ஶ,
𝑇ௐ, and 𝑉ஶ were provided, R was not and was again set to the standard value for air. [33] also
presents results from the sphere-cone geometry of the mars microprobe and the results agree up
to around 45° where the spherical backshell becomes exposed to the flow. This backshell is not
modeled in this comparison case as the panel solver currently only supports a single spherical
segment on the nose of the body followed by straight frustrum segments. Angles of attack were
only run out to 90° due to this limitation. Development is underway to allow for any number of
frustrum or radiused segments to be superimposed to allow a much wider range of axisymmetric
bodies to be modeled. Pre-generated X and Y lengthwise coordinates can also be provided to the
solver to create a revolved grid.

Figure 9.12 Increasing Bi-conic Geometry from [33]

 Page 89 of 107

Figure 9.13 Increasing Bi-Conic Validation Results

0 20 40 60 80 100
 (deg)

-0.5

0

0.5

1

1.5

2

2.5
Specular and Diffuse

Specular C
A

Diffuse C
A

Specular C
N

Diffuse C
N

Figure 9.14 Increasing Bi-conic Results from [33]

 Page 90 of 107

Figure 9.17 Mars Microprobe Geometry from [33]

0 10 20 30 40 50 60 70 80 90
 (deg)

-0.5

0

0.5

1

1.5

2

2.5

C
o

ef
fic

ie
nt

Specular and Diffuse

Specular C
A

Diffuse C
A

Specular C
N

Diffuse C
N

Figure 9.16 Mars Microprobe Validation Results

Figure 9.15 Mars Microprobe Results from [33]

 Page 91 of 107

Prediction of the Knudsen number vs. altitude was necessary for implementation of the
bridging function which integrates the continuum and free molecular flow mechanisms. [36]
studies the low density aerodynamics of the stardust sample return vehicle and was used to
validate the rarefied flow aerodynamics. For gas mixtures with multiple species, higher fidelity
tools like DSMC will often use complex collision mechanics like the variable soft sphere model
(VSS) to determine the mean free path which is required for the Knudsen number. In the
aerodynamics modeling for this project the assumption is made that the mean free path is based
on a weighted average of the species particle kinetic diameters (𝑑௜) and mole fractions (𝑋௜). An
expansion of 9.2 is for gas mixtures can be simplified as GRAM can output the particle number
density directly. More accurate methods of calculating the mean free path exist but are more
computationally expensive. 9.12 – 9.14 were tested against the results in [36]. EarthGRAM was
setup with the same time and position of the stardust landing of January 15th, 2006 and an
approximate longitude and latitude of the Utah desert landing site. Comparison of Figure 9.18
and Table 9.1 show some non-negligible differences in the atmospheric properties from [36] and
the GRAM output. The Knudsen number was re-calculated based on the conditions from [36] to
get a true comparison of the mean free path calculation methods. There is variation in the
absolute values of the Knudsen numbers between the two methods with the weighted average
calculation trending high by up to 50%. Considering the multiple orders of magnitude of the
Knudsen number scale within the transitional regime, the differences seen here are acceptable.
Validation of the sine squared bridging function is shown in Figure 9.19 and Figure 9.20 with
free molecular and continuum Kn bounds of 10 and 0.001. Comparison with the results from
[36] indicates strong agreement of the aero-coefficients vs. Kn. This adds confidence to the
rarefied flow techniques developed thus far, especially given the high-fidelity tools used in [36].

𝑛 =
𝑝

𝑘௕𝑇
(9. 12)

𝜎 = ෍ 𝑑௜
ଶ𝑋௜

௠

௜ୀଵ

(9. 13)

𝜆 =
1

√2𝜋𝜎
(9. 14)

 Page 92 of 107

Figure 9.18 Flight Conditions from [36]

Table 9.1 Knudsen Number Validation with [36]

Altitude
(𝒌𝒎)

Number Density
(𝟏/𝒎𝟑)

𝑶𝟐 𝑵𝟐 𝑶 𝑻ஶ (𝑲) 𝑲𝑵 𝑲𝑵
[36] conditions

134.75 1.133222e+17 0.0434 0.6175 0.3376 648.63 19.2 14.58
120.45 3.840013e+17 0.0715 0.6866 0.2393 409.33 5.6 3.63
100.90 1.027121e+19 0.1537 0.7847 0.0543 188.14 0.208 0.194
92.00 4.976260e+19 0.1890 0.7967 0.0057 197.25 0.0428 0.0428
83.68 1.807716e+20 0.2038 0.7861 2.5e-4 213.11 0.0118 0.0120
75.98 5.926458e+20 0.2094 0.7808 2.5e-5 216.49 0.0036 0.0037

 Page 93 of 107

C
A

Figure 9.20 Validation with [36] at α=0°

C
N

C
A

Figure 9.19 Validation with [36] at α=10°

 Page 94 of 107

C
A

C
N

C
A

C
N

Figure 9.22 Aero-database Validation with [13]

Figure 9.21 Aero-database from [13]

 Page 95 of 107

The final validation of the rarefied flow aerodynamics database is with the NASA ECI
work studying Uranus aerocapture outlined in [9]-[15]. The study utilizes a MSL like vehicle
with a 70° sphere cone and a combination of modified Newtonian and empirical flight data for
aerodynamics. Reference [13] lays out the aerodynamics implications for Uranus aerocapture
and presents results on the aero-coefficients vs. angle of attack and Knudsen number. These
figures were replicated to generate a reasonable comparison. In [13], the transitional flow regime
is extended to free molecular and continuum bounds of 100 and 0.001. While the exact numbers
from [13] were not obtained, visual comparison of the plots in Figure 9.21 and Figure 9.22
indicate strong agreement. The free molecular flow characteristics modeled in equations 9.3-9.7
match up well with a variety of other data sources including DSMC and flight data. Moment
coefficients have not been modeled as part of this study as the focus is strictly on 3DOF however
adding them in the future is straightforward.

Figure 9.23 shows a comparison trajectory aerocapture trajectory targeting 500 km with
rarefied flow effects enabled and disabled, the vehicle and entry state are the same as in Table
9.2 and Table 9.4 but with α=0°. The trajectory dispersion effects are amplified with decreasing
vehicle ballistic coefficients though they are still small. The slightly higher drag from the free
molecular flow effects results in a slightly shallower entry angle to achieve the same target
apoapsis altitude of 500 km.

α=0° 𝒒𝒎𝒂𝒙 (W/cm^2) 𝑱𝒔 (J/cm^2) EFPA (deg)
Rarefied flow on 96.567 7860 -5.168
Rarefied flow off 97.631 7941 -5.172

0 50 100 150 200 250 300 350 400 450

Time Since Entry Interface (s)

0

10

20

30

40

50

60

70

80

90

100
Stagnation Heat Flux vs. Time

Rarefied Flow On
Rarefied Flow Off

0 50 100 150 200 250 300 350 400 450

Time Since Entry Interface (s)

105

110

115

120

125

130

135

140

145

150

155
Geocentric Altitude vs. Time

Figure 9.23 Rarefied Flow Effects Comparison

 Page 96 of 107

Figure 9.24 Knudsen Number Trajectory Space

 Page 97 of 107

9.3. Ultra Low Ballistic Coefficient Venus Multi-Pass Trajectory

 Table 9.2 Spacecraft Inputs (Ultra Low 𝑩𝑪) Table 9.3 Con-Ops Summary (Ultra Low 𝑩𝑪)

 Table 9.4 Initial State Table 9.5 Atmospheric Entries

Maneuvers Summary
Maneuver Duration (s) ΔV

(m/s)
Interplanetary TCM 6.576 0.526
1st Perigee Adjust 0.124 0.01
2nd Perigee Adjust 0.675 0.054
3rd Perigee Adjust 2.038 0.163
4th Perigee Adjust 5.817 0.466
Final Perigee Raise 52.34 106.64

Totals
Mission Duration (days) 17.79

ΔV Expenditure (m/s) 107.86
Propellant Expenditure (kg) 1.8

Spacecraft Input Parameters
Parameter Value
Initial Mass 50 kg

High Thrust System 100 N
Low Thrust System 4 N
ISP (both systems) 300 s

Drag Coefficient α=-10 1.5332
Lift Coefficient α=-10 -0.2337

Diameter 3 m
Nose Radius 0.75 m

Sphere Cone Angle 70°

Aero-Pass Summary
Pass 𝒒𝒎𝒂𝒙

(W/cm^2)
𝑱𝒔

(J/cm^2)
ΔV

(km/s)
Insertion 61.66 4416 0.916
1st Pass 46.05 4085 0.915
2nd Pass 32.30 3903 0.914
3rd Pass 19.22 4445 0.912

Interplanetary Orbital Elements
Parameter Value

Eccentricity (𝑒) 1.3074
Semi Major Axis (𝑎) -2.0005e4 km

Inclination (𝑖) 0°
Argument of Periapsis (𝜔) 0°
Long. of Ascending Node

(𝛺)
0°

True Anomaly (𝜃) 137°
Hyperbolic Excess Velocity 4.0298 km/s

Julian Date 2455504
Post Capture Apoapsis (km) 500000

 Page 98 of 107

Figure 9.25 Multi-Pass Trajectory, Venus Deployable TPS, Ultra Low 𝑩𝑪

 Page 99 of 107

Figure 9.26 Aerothermal Results: Deployable TPS, Ultra Low 𝑩𝑪 (Lift Down Only)

 Page 100 of 107

9.4. Uranus Aerocapture Analysis

Figure 9.27 Uranus Aerocapture Design Space

200

250

300

300

350

350

400

400

450

450

500

550

B
a

lli
st

ic
 C

oe
ff

ic
ie

nt
 (

kg
/m

2
)

 Vehicle diameter varied from 4-6 m
 Nose radius is ¼ the vehicle diameter
 70° Sphere Cone
 α=0°
 37° Lat, 47.5° Long
 JD = 2466659

 Page 101 of 107

The species to be modeled for the Uranus entry are 𝐻ଶ, 𝐻𝑒, 𝐻, 𝐻+, and 𝑒-, 𝐻𝑒+ was
initially considered though initial CEA testing showed mole concentrations well below 1e-5 up
to 12000 K so it was dropped for simplicity. The effects of chemical reactions on the vehicle
aerodynamics was evaluated at one trajectory point close to the time of peak heating, the results
are shown in Table 9.7. While the effect on the aero-coefficients is non-negligible, there is still a
computation time penalty despite the optimized symbolic math expressions. The iterative method
utilizing equations 4.32 and 4.33 requires a high number of thermodynamic property evaluations
through equations 4.48 and 4.49. The object oriented simulation architecture allows for
numerous physics effects to be turned on and off and tolerance properties for the various iterative
methods to be adjusted. The most efficient trajectory design method involves turning most of the
higher fidelity effects off for batch runs and trajectory optimization and then re-enabling them
for the final trajectory design and aerothermal analysis. The rarefied flow and chemical
equilibrium effects have the highest impact on the computation time of one trajectory point.

Table 9.6 Uranus Test Trajectory Inputs

Table 9.7 Chemically Reacting Flow Effects on Aerodynamics for Uranus Aerocapture Trajectory

α=17°, alt = 310 km,
Mach=26.93

Calorically Perfect
(γ=1.45)

Chemical Equilibrium
(𝐻ଶ/𝐻𝑒)

𝐶஺ 1.4836 1.5840
𝐶ே 0.0587 0.0627
𝐶஽ 1.4360 1.5331
𝐶௅ 0.3776 0.4032

Spacecraft Input Parameters Entry State
Initial Mass 4064 kg Inertial Velocity 24.5 km/s

Trim Angle of Attack (α) 17°/-17° Lift up EFPA -23.806°
𝐶஽ at α=17°/-17° 1.436 Lift down EFPA -23.509°
𝐶௅ at α=17°/-17° ±0.378 Geocentric Altitude 4000 km

Diameter 5 m Longitude (deg) 47.5°
Nose Radius 1.25 m Azimuth (deg) -90°

Sphere Cone Angle 70° Geocentric Latitude 37°
𝐵஼ at α=0° 128.4 kg/m^2 Target Apoapsis Altitude 500000 km

𝐵஼ at α=17°/-17° 144.1 kg/m^2 Atmosphere Cutoff 4000 km

 Page 102 of 107

Figure 9.28 illustrates several abrupt changes in the species mole fraction and

temperature behind the stagnation shock front. This appears unusual at first but after inspection
of the nominal mole fractions of 𝐻ଶ and 𝐻𝑒 vs. altitude from UranusGRAM, much of the abrupt
changes correspond with the onset of higher Helium concentrations around 500km. There is a
small amount of atomic hydrogen ionization that occurs around 550 s for the lift down trajectory
and 525 s for the lift up with peak mole fractions of 𝑒- and 𝐻+ of ~0.005. At the onset of entry
interface, virtually all the 𝐻ଶ dissociates though at the lower velocities close to atmospheric exit
only around 75% of the hydrogen is dissociated. For the aerothermal heating results, modern
stagnation heating correlations for 𝐻ଶ/𝐻𝑒 atmospheres [37] were employed utilizing the
equilibrium chemistry results and compared to the standard Sutton Graves correlation (eq. 4.31).
The results match up surprisingly well though additional evaluation is necessary over a wider
trajectory space (Figure 9.31). For the analysis in sections 5 and 6, only the Sutton Graves
correlation was used.

V
el

oc
ity

 (
km

/s
)

M
ol

e
F

ra
ct

io
n

P
re

ss
ur

e
(P

a)

Te
m

p
er

a
tu

re
 (

K
)

Figure 9.28 Uranus Test Trajectory Results

 Page 103 of 107

Figure 9.29 UranusGRAM [6] Species Mole Fractions vs. Altitude

0 500 1000 1500 2000

Time Since Entry Interface (s)

8

10

12

14

16

18

20

22

24

26

28
Mach Number vs. Time

Lift Down (α=-17°)
Lift Up (α=17°)

0 500 1000 1500 2000

Time Since Entry Interface (s)

0

200

400

600

800

1000

1200
Pressure Ratio vs. Time

Figure 9.30 Uranus Test Trajectory Normal Shock Effects

 Page 104 of 107

S
ta

g
n

at
io

n
H

ea
t F

lu
x

(W
/c

m
2
)

Figure 9.31 Convective Heating Correlation Comparison

Figure 9.32 Uranus Aerocapture Test Trajectory

Lift Down

Lift Up

 Page 105 of 107

9.5. Basic Equations for Orbital Mechanics and Rocket Propulsion

𝑉 = ඨ
2𝜇

𝑟௔
−

𝜇

𝑎
(9. 15)

9.12 is fundamental and can be used to calculate the required delta V for basic

propulsive maneuvers like a Hohmann transfer.

𝑉ஶ = ට−
𝜇

𝑎
(9. 16)

𝑇 =
2𝜋

ට
𝜇

𝑎ଷ

(9. 17)

𝑒 =
𝑟௔ − 𝑟௣

𝑟௔ + 𝑟௣

(9. 18)

9.5.1. Conversion of Keplerian Orbital Elements to Position and Velocity Vector

ℎ = ඥ𝜇𝑎(1 − 𝑒ଶ) (9. 19)

𝑹𝒑𝒇 =
ℎଶ

𝜇(1 + 𝑒 cos(𝜃))
൥
cos(𝜃)

sin(𝜃)
0

൩ (9. 20)

𝑽𝒑𝒇 =
𝜇

ℎ
൥

−sin(𝜃)

e + cos(𝜃)
0

൩ (9. 21)

𝑄ଵ = ൥−
cos 𝜔 sin 𝜔 0
sin 𝜔 cos 𝜔 0

0 0 1
൩ (9. 22)

𝑄ଶ = ൥
1 0 0
0 cos 𝑖 sin 𝑖

0 −sin 𝑖 cos 𝑖

൩ (9. 23)

𝑄ଷ = ൥−
cos 𝛺 sin 𝛺 0
sin 𝛺 cos 𝛺 0

0 0 1
൩ (9. 24)

Hyperbolic Excess Velocity

Orbital Period

Angular Momentum

Perifocal Frame
Transformation

Formulate matrix for ECI
frame transformation

eccentricity

 Page 106 of 107

𝑄ா஼ூ = 𝑄ଵ𝑄ଶ𝑄ଷ (9. 25)
𝑹𝑬𝑪𝑰 = 𝑄ா஼ூ

்𝑹𝒑𝒇 (9. 26)

𝑽𝑬𝑪𝑰 = 𝑄ா஼ூ
்𝑽𝒑𝒇 (9. 27)

9.5.2. Conversion of Position and Velocity Vector to Keplerian Elements

𝑉௥௔ௗ =
𝑹𝑬𝑪𝑰 ∙ 𝑽𝑬𝑪𝑰

|𝑹𝑬𝑪𝑰|
(9. 28)

𝑯 = 𝑹𝑬𝑪𝑰 × 𝑽𝑬𝑪𝑰 (9. 29)

ℎ = ඥcosିଵ(𝑯 ∙ 𝑯) (9. 30)

𝑖 = cosିଵ ቆ
𝐻𝒌෡

ℎ
ቇ (9. 31)

𝑲 = ൥
0
0
1

൩ 𝑵 = 𝑲 × 𝑯 𝑛 = |𝑵| (9. 32)

𝛺 = ൞
cosିଵ ൬

𝑁ଙ̂

𝑛
൰ , 𝑁ଚ̂ ≥ 𝟎

360 − cosିଵ ൬
𝑁ଙ̂

𝑛
൰ , 𝑁ଚ̂ < 𝟎

(9. 33)

𝑬 =
𝑽𝑬𝑪𝑰 × 𝑯

𝜇 −
𝑹𝑬𝑪𝑰

𝑟

 𝑒 = |𝑬| (9. 34)

𝜔 = ൞
cosିଵ ൬

𝑵 ∙ 𝑬

𝑛𝑒
൰ , 𝐸𝒌෡ ≥ 𝟎

360 − cosିଵ ൬
𝑵 ∙ 𝑬

𝑛𝑒
൰ , 𝐸𝒌෡ < 𝟎

(9. 35)

𝜃 = ൞
cosିଵ ൬

𝑬

𝑒
∙

𝑹𝑬𝑪𝑰

𝑟
൰ , 𝑉௥௔ௗ ≥ 𝟎

360 − cosିଵ ൬
𝑬

𝑒
∙

𝑹𝑬𝑪𝑰

𝑟
൰ , 𝑉௥௔ௗ < 𝟎

(9. 36)

Radial Velocity

Momentum Vector

Nodal Vector

Ascending node with
quadrant ambiguity

Eccentricity Vector

Argument of Periapsis
with quadrant ambiguity

True Anomaly with
quadrant ambiguity

 Page 107 of 107

9.5.3. Spherical Harmonics and Oblateness Effects

Oblateness effects are incorporated into the gravity model of the trajectory program.
The model only considers the 2nd zonal harmonic, J2 as it has the greatest effect by several
orders of magnitude. Expanded calculations and derivations to obtain 9.39 are shown in pp.
660-664 of [22]. Note that ϕ here refers to the angle between the position vector and polar
axis, not to be confused with the geometric angle used in section 4.2.2.

Φ(𝑟, 𝜙) =
𝐽ଶ

2

𝜇

𝑟
൬

𝑅

𝑟
൰

ଶ

(3 cosଶ 𝜙 − 1) (9. 37)

𝐩 = −𝛁Φ = −
𝜕Φ

𝜕𝑥
଍̂ −

𝜕Φ

𝜕𝑦
଎̂ −

𝜕Φ

𝜕𝑧
𝐤መ (9. 38)

𝐩 =
3

2

𝐽ଶ𝜇𝑅ଶ

𝑟ସ
ቈ
𝑥

𝑟
ቆ5

𝑧ଶ

𝑟ଶ
− 1ቇ ଍̂ +

𝑦

𝑟
ቆ5

𝑧ଶ

𝑟ଶ
− 1ቇ ଎̂ +

𝑧

𝑟
ቆ5

𝑧ଶ

𝑟ଶ
− 3ቇ 𝐤መ ቉ (9. 39)

9.5.4. Basic Elements of Rocket Propulsion

∆𝑉 = 𝐼௦௣ 𝑔௢ ln ൬
𝑚௙

𝑚௘
൰ (9. 40)

𝑀௣ = 𝑚௙ − 𝑚௙𝑒
ି

∆௏
ூೞ೛௚೚ (9. 41)

𝑡௕ = 𝑚௙ − 𝑚௙𝑒
ି

∆௏
ூೞ೛௚೚ (9. 42)

9.6. Source Code

The trajectory analysis program that was developed to support this project has been
rigorously validated and tested and works for all GRAM supported planets with an
atmosphere. Rudimentary property validation and error checking has been implemented but it
is still at a development level and is not intended for redistribution or re-use. Below are the
core trajectory propagation and shared handle object class definition files. There are
numerous development scripts and supporting functions that are not included to limit
excessive page length.

Tsiolkovsky rocket equation:
mf is the initial mass and me is
the final or dry mass

Calculate propellant mass
usage Mp

Calculate burn time for a
specified ∆𝑉, 9.36 is used
in conjunction with 9.12 to
calculate the perigee raise
maneuver.

Gravitational perturbation
based on J2 term only.

Perturbing Acceleration
Vector

Final perturbation
vector in the ECI frame

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 1 of 9

classdef AeroDB < matlab.System
 % Aerodynamics Database Object. Contains a modified newtonian and free
 % molecular panel codes as well as a sine squared bridging function for
 % the transitional regime.
 %
 % Paneling algorithm supports basic
 % axisymmetric bodies with radiused or straight frustrum lengthwise
 % segments
 %
 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 g = 1.45; % Specific heat ratio
 Mi = 30; % freestream mach
 Pinf = 10; % (Pa) freestream pressure
 R = 2.5; % Aeroshell Radius
 R2 = 3; % Biconic Radius
 RN = 1.25; % (m) span
 tc1 = 70; % deg
 tc2 = 5.2; % deg
 seg = 8; % nose segments
 rseg = 8; % radial axisymmetric divisions
 pan = 1; % straight panel segments
 trimBeta = 0; % trim sideslip angle
 trimAlpha = 0; % trim angle of attack

 % Rarefied gas parameters
 Vi = 9000; % freestream velocity (m/s)
 Tw = 1000; % (K) Wall temperature
 Ti = 300; % (K) Freestream temperature
 Rspec = 287.058; % J/kg K
 sigN = 1; % normal momentum accommodation coefficient (0 for specular 1 for
diffuse)
 sigT = 1; % tangential momentum accommodation coefficient (0 for specular 1 for
diffuse)
 kn = 1; % free stream knudsen number
 rarefiedGasEffects = 'off';
 a1 % Bridging Function Constant
 a2 % Bridging Function Constant
 Xc % Lengthwise X coodinates
 Yc % Lengthwise Y coodinates
 plotX = ["Xc", "alph", "alph", "kn"]; % X axis properties to plot
 plotY = ["Yc", "CA", "CN", "kn"]; % Y axis properties to plot
 end

 properties (SetObservable, AbortSet)
 knFm = 10; % knudsen number free molecular bound
 knCont = 0.001; % knudsen number continuum bound

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 2 of 9

 end

 properties
 CD % Drag Coefficient
 CL % Lift Coefficient
 CZ % Side Force Coefficient
 CA % Axial Force Coefficient
 CN % Normal Force Coefficient
 CS % Side Slip Coefficient
 alph % Angle of attack
 beta % Angle of sideslip
 end

 methods (Access = protected)

 function setupImpl(obj)
 % Convert Angles to radians
 radConvert(obj)

 % Set up transitional flow regime bridging function
 bridgeSetup(obj)
 end

 function stepImpl(obj)

 % create vectors
 Tc = [obj.tc1 obj.tc2];
 H = [obj.R obj.R2];

 % find angle of one segment
 tseg = (pi/2-obj.tc1)/obj.seg;

 % Freestream molecular Speed Ratio
 s = obj.Vi/sqrt(2*obj.Rspec*obj.Ti);

 % Isentropic Pressure Ratio
 Pratio = ((obj.g+1)^2*obj.Mi^2/(4*obj.g*obj.Mi^2-2*(obj.g-1)))^(obj.g/(obj.
g-1))*((1-obj.g+2*obj.g*obj.Mi^2)/(obj.g+1));

 % Subsonic Error Check
 if ~isreal(Pratio)
 error(['Imaginary Number detected for isentropic Pressure ratio, ' ...
 'Potentially means vehicle is subsonic, increase velocity
termination cutoff']);
 end

 % Modified Newtonian Multipliers (CpMax)
 Pratio_chem = 515.9397;
 CpMax(1) = 2/(obj.g*obj.Mi^2)*(Pratio-1);
 CpMax(2) = 2/(obj.g*obj.Mi^2)*(Pratio_chem-1);

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 3 of 9

 % Disable any transitional effects if flow is fully free
 % molecular or continuum
 if strcmp(obj.rarefiedGasEffects,'on')
 if obj.kn > obj.knFm
 aeroTyp = 'FM';
 elseif obj.kn < obj.knCont
 aeroTyp = 'Cont';
 else
 aeroTyp = 'both';
 end
 else
 aeroTyp = 'Cont';
 end

 % **Initialize body length parameterization**
 % x coordinate, y coordinate, and total distance along body surface
 xb = zeros(1,obj.seg+2*obj.pan); yb = xb; db = xb;

 % angle of each panel and Cp for each panel, CpN is for regular newtonian,
 thetai = zeros(1,obj.seg+2*obj.pan);

 % **Initialize Coefficients **
 CVFi_fm = zeros(3,obj.seg+2*obj.pan); CVFi_cont = CVFi_fm;

 for i2 = 1:obj.seg
 % because nose is circular, an angle index can define panels of equal
 % length
 thetai(i2) = pi/2-tseg*(2*i2-1)/2;

 % X and Y parameterization
 xb(i2+1) = obj.RN-obj.RN*cos(tseg*i2); yb(i2+1) = obj.RN*sin(tseg*i2);
db(i2+1) = obj.RN*tseg*i2;

 % Call paneling function to calculate coefficients
 [CVFi_fm(:,i2), CVFi_cont(:,i2)] = panelCalc(obj.alph,obj.beta,obj.
rseg,thetai(i2) ...
 ,yb(i2),yb(i2+1),obj.RN*tseg,s,obj.Tw,obj.Ti,obj.sigT,obj.sigN,
aeroTyp);
 end

 % set conditions for straight segments
 j1 = 1;
 for i2 = obj.seg+1:2:2*obj.pan+obj.seg

 % set conditions the same at the beginning and end of each panel
 thetai(i2) = Tc(j1);

 % X and Y parameterization
 [xb(i2+1), yb(i2+1), dnew] = PointSlope(xb(i2), yb(i2), H(j1), thetai

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 4 of 9

(i2));

 % Call paneling function to calculate coefficients
 [CVFi_fm(:,i2), CVFi_cont(:,i2)] = panelCalc(obj.alph,obj.beta,obj.
rseg,thetai(i2),yb(i2),yb(i2+1),dnew,s,obj.Tw,obj.Ti,obj.sigT,obj.sigN,aeroTyp);

 % Distance between nodes
 db(i2+1) = dnew + db(i2);

 % avoids creating duplicate point at end of panel
 if i2 < 2*obj.pan+obj.seg-1
 xb(i2+2) = xb(i2+1); yb(i2+2) = yb(i2+1);
 db(i2+2) = db(i2+1);
 end
 j1 = j1 + 1;
 end

 % Aero coefficients in velocity vector frame (first term is newtonian
 % multiplier, 2 for standard and CpMax for modified)
 switch aeroTyp
 case 'FM' % Free molecular
 CVF = sum(CVFi_fm,2)/(pi*max(yb)^2);
 case 'Cont' % Continuum
 CVF = CpMax(1)*sum(CVFi_cont,2)/(pi*max(yb)^2);
 case 'both' % Transitional Region
 CVFfm = sum(CVFi_fm,2)/(pi*max(yb)^2);
 CVFcont = CpMax(1)*sum(CVFi_cont,2)/(pi*max(yb)^2);

 % Bridging function
 Pb = sin(pi*(obj.a1+obj.a2*log10(obj.kn))).^2;
 CVF = Pb*CVFfm+(1-Pb)*CVFcont;
 end

 % Lengthwise coordinates
 obj.Xc = xb; obj.Yc = yb;

 % Aero coefficients in body frame
 CBF = RZZ(obj.alph)'*RYY(obj.beta)'*CVF;

 % Extract body frame coefficients
 obj.CA = CBF(1); obj.CN = CBF(2); obj.CS = CBF(3);

 % Extravt Velocity frame coefficients
 obj.CD = CVF(1); obj.CL = -CVF(2); obj.CZ = CVF(3);

 function [CVFi_fm, CVFi_cont] = panelCalc(alpha,beta,rseg,theta,y1,y2,d,s,
Tw,Ti,sigT,sigN,aeroTyp)

 % Calculate area of one panel

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 5 of 9

 Atot = pi*d*(y2+y1);
 Arseg = Atot/rseg;

 % create series of normal angles for rseg number of panels
 inc = 2*pi/rseg;
 Rang = linspace(0.5*inc,2*pi-0.5*inc,rseg);

 % Local Cone angle
 Norm = pi/2-theta;

 % Initial normal vector to vehicle surfrace
 V = [cos(Norm)
 sin(Norm)
 0];

 % Create 3D matrix to revolve normal vector around axisymmetric body
 Rx = [ones(1,rseg); zeros(1,rseg); zeros(1,rseg);
 zeros(1,rseg); cos(Rang); sin(Rang);
 zeros(1,rseg); -sin(Rang); cos(Rang);];
 Rx = reshape(Rx,3,3,[]);

 % Initialize series of normal vectors
 Z = zeros(3,rseg); T = Z;
 Vinf = [-1 0 0]';

 for i = 1:rseg

 % Revolve around body
 Z(:,i) = Rx(:,:,i)*V;

 % Rotate normal vector with respect to velocity vector frame
 Z(:,i) = RYY(beta)*RZZ(alpha)*Z(:,i);

 % if vehicle surface is in the shadow area, no aero forces are
 % applied per newtonian mechanics
 if Z(1,i) < 0
 Z(:,i) = [0;0;0];
 end

 % calc tangential vector
 if strcmp(aeroTyp,'FM') || strcmp(aeroTyp,'both')
 T(:,i) = (Z(:,i)*dot(Vinf,Z(:,i))-Vinf)/sqrt(1-dot(Vinf,Z(:,i))
^2);
 end
 end

 % Calculate velocity frame coefficients
 switch aeroTyp
 case 'FM'
 CVFi_fm = getCoeFm;

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 6 of 9

 CVFi_cont = [0;0;0];
 case 'Cont'
 CVFi_fm = [0;0;0];
 CVFi_cont = getCoeCont;
 case 'both'
 CVFi_fm = getCoeFm;
 CVFi_cont = getCoeCont;
 end

 % Free Molecular
 function cOut = getCoeFm

 % Pressure Coefficient
 Cp = (2-sigN)*1/s^2*(s*Z(1,:)/sqrt(pi).*exp(-(s*Z(1,:)).^2)+(0.5+
(s*Z(1,:)).^2).*(1+erf(s*Z(1,:))))...
 +sigN/(2*s^2)*sqrt(Tw/Ti)*(s*Z(1,:).*sqrt(pi).*(1+erf(s*Z
(1,:)))+exp(-(s*Z(1,:)).^2))-1/s^2;

 % Shear Coefficient
 Ct = sigT*cos(asin(Z(1,:)))/s.*(1/sqrt(pi)*exp(-(s*Z(1,:)).^2)+s*Z
(1,:).*(1+erf(s*Z(1,:))));

 cOut = sum((Cp.*Z+Ct.*T)*Arseg,2);
 end

 % Continuum (Newtonian)
 function cOut = getCoeCont
 cOut = sum(Z(1,:).^2.*Z*Arseg,2);
 end

 % Free molecular aero coefficients are calculated using a Maxwellian
 % distribution of specular or diffuse particle collisions

 % Kenneth A. Hart, Kyle R. Simonis, Bradley A. Steinfeldt, and Robert
D. Braun.
 % “Analytic Free-Molecular Aerodynamics for Rapid Propagation of
Resident Space Objects,
 % ” Journal of Spacecraft and Rockets 2018 55:1, 27-36
 %%
 % <https://doi.org/10.2514/1.A33606>
 end

 % Z axis rotation matrix
 function Rz = RZZ(ang)
 % for a sphere cone EV, lift up is CCW rotation of alpha (neg sign
 % swap)
 Rz = [cos(ang) sin(ang) 0
 -sin(ang) cos(ang) 0
 0 0 1];
 end

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 7 of 9

 % Y axis rotation matrix
 function Ry = RYY(ang)
 Ry = [cos(ang) 0 -sin(ang)
 0 1 0
 sin(ang) 0 cos(ang)];
 end

 % Create connecting points for straight segments
 function [x2, y2, d] = PointSlope(x1, y1, H, theta)
 y2 = H;
 x2 = (y2-y1)/tan(theta)+x1;
 d = sqrt((x2-x1)^2+(y2-y1)^2);
 end
 end

 end

 methods
 % convert to radians
 function radConvert(obj)
 obj.beta = obj.trimBeta*pi/180;
 obj.alph = obj.trimAlpha*pi/180;
 obj.trimBeta = obj.trimBeta*pi/180;
 obj.trimAlpha = obj.trimAlpha*pi/180;
 obj.tc1 = obj.tc1*pi/180;
 obj.tc2 = obj.tc2*pi/180;
 end

 % setup bridging function
 function bridgeSetup(obj)
 A = [1 log10(obj.knFm);1 log10(obj.knCont)];
 B = [0.5;0];
 A12 = A\B;
 obj.a1 = A12(1); obj.a2 = A12(2);
 end

 % Generate Sample plots of Aerodatabase
 function plotAero(obj)

 % initialize, save current properties in temp variables
 alphTemp = obj.alph; KNtemp = obj.kn;
 setTemp = obj.rarefiedGasEffects;
 viTemp = obj.Vi; sigTtemp = obj.sigT; sigNtemp = obj.sigN;
 tWtemp = obj.Tw;

 % Preallocate
 m = 50; alphaSet = 10*pi/180;
 xRange = linspace(0,30,m);
 kNrange = logspace(log10(obj.knCont/10),log10(obj.knFm*10),m);

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 8 of 9

 CAfm = zeros(1,m); CAcont = CAfm;
 CNfm = CAfm; CNcont = CAfm; CAkn = CAfm; CNkn = CAfm;

 for i1 = 1:m
 obj.(obj.plotX(2)) = xRange(i1)*pi/180;

 % Continuum Bound
 obj.rarefiedGasEffects = 'off';
 step(obj);
 CAcont(i1) = obj.CA;
 CNcont(i1) = obj.CN;

 % Free Molecular Bound
 obj.rarefiedGasEffects = 'on';
 step(obj);
 CAfm(i1) = obj.CA;
 CNfm(i1) = obj.CN;
 end

 obj.rarefiedGasEffects = 'on';
 obj.(obj.plotX(2)) = alphaSet;

 % Vary Knudsen Number
 for i1 = 1:m
 obj.kn = kNrange(i1);
 step(obj);
 CAkn(i1) = obj.CA;
 CNkn(i1) = obj.CN;
 end

 hold on
 % plot geometry
 subplot(2,2,1)
 plot(obj.Xc,obj.Yc,'LineWidth',2);
 daspect([1 1 1])
 grid on
 xlabel('X (m)');
 ylabel('Y (m)');
 title('Geometry');
 grid on

 % Plot CA
 subplot(2,2,2)
 plot(xRange,CAcont,xRange,CAfm,'LineWidth',2)
 title('Axial Force Coefficient')
 xlabel('\alpha (deg)')
 ylabel('C_A')
 legend('Continuum Bound','Free Molecular Bound')
 grid on

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 9 of 9

 % Plot CN
 subplot(2,2,3)
 plot(xRange,CNcont,xRange,CNfm,'LineWidth',2)
 title('Normal Force Coefficient')
 xlabel('\alpha (deg)')
 ylabel('C_N')
 legend('Continuum Bound','Free Molecular Bound')
 grid on

 % Plot Coefficients vs. Kn
 subplot(2,2,4)
 semilogx(kNrange,CAkn,kNrange,CNkn,'LineWidth',2)
 title(['Aero Coefficients vs. K_n at 10',char(176),'\alpha'])
 xlabel('K_n');
 ylabel('Coefficient');
 legend('C_A ','C_N');
 grid on

 % Restore coefficients
 obj.alph = alphTemp; obj.kn = KNtemp;
 obj.rarefiedGasEffects = setTemp;
 obj.Vi = viTemp; obj.sigT = sigTtemp; obj.sigN = sigNtemp;
 obj.Tw = tWtemp;
 step(obj);
 end
 end
end

5/11/25 8:02 PM C:\Users\bohda\OneDrive\Des...\AeroPass.m 1 of 3

classdef AeroPass < OrbitProp
 % Atmospheric Flight Trajectory Propagation Object (subclass of
 % OrbitProp)

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 properties
 Tmax = 2000 % (s) Maximum time for atmospheric flight
 AeroSpd = 'slow' % fast: fixed L/D, slow: CL,CD,CA, etc. are reclaculated at
each time step
 AeroStep = 0.5; % Default time step for atmospheric flight
 end

 methods (Access = protected)
 function P = Perturb(obj,t,P,R)

 % Convert and extract topo coordinates from state object
 obj.Time.elTime = t;
 obj.State.Reci = R(1:3);
 obj.State.Veci = R(4:6);
 obj.State.ECItoLLA;

 % Extract Vars from shared objects
 A = obj.SC_DB.A; m = obj.State.ScM; W = obj.Body_DB.W;
 alt = obj.State.Alt; lat = obj.State.Lat; long = obj.State.Long;
 fpa = obj.State.FPA; Az = obj.State.Az; Qmat = obj.State.Qmat;

 % Set position/time in GRAM
 obj.GRAM.position.height = alt;
 obj.GRAM.position.latitude = lat;
 obj.GRAM.position.longitude = long;
 obj.GRAM.position.elapsedTime = t;
 obj.GRAM.body.setPosition(obj.GRAM.position);

 % update GRAM model
 obj.GRAM.body.update();

 % Extract Winds from GRAM
 nsw = obj.GRAM.atmos.nsWind; % north south wind
 eww = obj.GRAM.atmos.ewWind; % east west wind
 vw = obj.GRAM.atmos.verticalWind; % vertical wind

 % Velocity vector in the ENZ frame (north south winds are
 % negative as north to south and east to west expressed as a positive
 % values in GRAM, also convert to km/s
 Venz = [-eww/1000
 -nsw/1000
 vw/1000];
 Wvec = Qmat*Venz;

5/11/25 8:02 PM C:\Users\bohda\OneDrive\Des...\AeroPass.m 2 of 3

 % Formulate relative velocity vector
 Vrel = R(4:6) - cross(W',R(1:3)); % account for planet rotation
 Vrel = Vrel - Wvec; % account for winds
 vrel = norm(Vrel); % magnitude
 Uv = Vrel/vrel; % unit vector
 % Uvinr = R(4:6)/norm(R(4:6));

 % Relative and Inertial Velocity vectors in Velocity frame
 UVF = ROTY(fpa)*ROTZ(90-Az)'*Qmat'*Uv;
 % UVFinr = ROTY(fpa)*ROTZ(90-Az)'*Qmat'*Uvinr;

 % Calculate effective angle of attack and sideslip angle based
 % on winds and relative velocity
 dBeta = real(asin(UVF(2))); dAlpha = real(acos(UVF(1)/cos(dBeta)));

 % Update Aero coefficients at each timestep
 if strcmp(obj.AeroSpd,'slow')
 % Update aerodatabase with effective angles of attack and
 % sideslip
 obj.SC_DB.Aero_DB.beta = obj.SC_DB.Aero_DB.trimBeta + dBeta;
 obj.SC_DB.Aero_DB.alph = obj.SC_DB.Aero_DB.trimAlpha + dAlpha;

 % Update Aero data needed for coefficients
 obj.SC_DB.Aero_DB.g = obj.GRAM.atmos.specificHeatRatio;
 aCurr = obj.GRAM.atmos.speedOfSound;
 obj.SC_DB.Aero_DB.Mi = vrel*1000/aCurr;

 % Rarefied Gas Effects
 if strcmp(obj.SC_DB.Aero_DB.rarefiedGasEffects,'on')
 % Query additional properties from GRAM
 obj.SC_DB.Aero_DB.Vi = vrel*1000;
 obj.SC_DB.Aero_DB.Rspec = obj.GRAM.atmos.specificGasConstant;
 obj.SC_DB.Aero_DB.Ti = obj.GRAM.atmos.temperature;

 % Calculate Knudsen number
 obj.chemObj.GRAMatmos = obj.GRAM.atmos;
 lamda = obj.chemObj.getMeanFreePath;
 Kn = lamda/obj.SC_DB.D;
 obj.SC_DB.Aero_DB.kn = Kn;
 end

 % Calculate aero coefficients
 obj.SC_DB.Aero_DB.step;
 end

 % Aero Coefficients
 CL = obj.SC_DB.Aero_DB.CL;
 CZ = obj.SC_DB.Aero_DB.CZ;
 CD = obj.SC_DB.Aero_DB.CD;

5/11/25 8:02 PM C:\Users\bohda\OneDrive\Des...\AeroPass.m 3 of 3

 % Extract density from GRAM
 rho = obj.GRAM.atmos.density;

 % Perturbation vector in the relative velocity frame with aero
 % coefficients
 PVF = [-CD
 CZ
 CL]*A/m*0.5*rho*(1000*vrel)^2/1000;

 % Convert from relative velocity to inertial velocity frame
 PVFinr = ROTZ(dBeta*180/pi)'*ROTY(dAlpha*180/pi)*PVF;

 % Convert to ECI frame
 PECI = Qmat*ROTZ(90-Az)*ROTY(fpa)'*PVFinr;

 % Net Perturbation vector
 P = P + PECI;
 end

 end

 methods
 % Setup function, initialize chemistry object
 function setupfun(obj)
 obj.PhysTyp = 'Aero';
 obj.tstep = obj.AeroStep;
 obj.chemObj.GRAMatmos = obj.GRAM.atmos;
 obj.chemObj.setupInds;
 end
 end
end

5/11/25 7:58 PM C:\Users\bohda\OneDrive...\Aerothermal.m 1 of 4

classdef Aerothermal < matlab.System
 % Primary trajectory post-processer and plotter, re-runs trajectory
 % position and time data through GRAM to calculate aerothermal and any
 % other time history results

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 TrajPoint % subclass to perform aerotherm calculations at one trajectory point
 plotYN = true % switch to turn on or off plotting
 end

 % Shared handle objects
 properties
 State % handle object for current spacecraft state
 Results % handle object for trajectory results/outputs
 Body_DB % handle object for planetary body parameters database
 SC_DB % handle object for spacecraft parameters database
 GRAM % handle object for the GRAM interface
 Time % handle object for tracking elapsed time and time dependent planet
orientation
 chemObj % handle object for atmospheric chemistry calculations
 plotData % handle object for managing plotting options
 end

 methods
 % Constructor: Pass State and Result Handle objects
 function obj = Aerothermal(varargin)
 % No inputs case, creates default reference objects internally
 if nargin == 0
 % Provide values for superclass constructor
 % and initialize other inputs
 obj.State = SCState;
 obj.Results = TrajResults;
 obj.Body_DB = BodyInputs;
 obj.SC_DB = SCInputs;
 obj.GRAM = gramMgr;
 obj.Time = timeMgr;
 obj.chemObj = chemMgr;
 obj.plotData = plotProps;

 % Individaul reference objects passed to constructor as inputs args
 elseif nargin == 8
 % When nargin ~= 0, assign to cell array,
 % which is passed to supclass constructor
 for i1 = 1:8
 if isa(varargin{i1},'SCState'); obj.State = varargin{i1};
 elseif isa(varargin{i1},'TrajResults'); obj.Results = varargin{i1};

5/11/25 7:58 PM C:\Users\bohda\OneDrive...\Aerothermal.m 2 of 4

 elseif isa(varargin{i1},'BodyInputs'); obj.Body_DB = varargin{i1};
 elseif isa(varargin{i1},'SCInputs'); obj.SC_DB = varargin{i1};
 elseif isa(varargin{i1},'gramMgr'); obj.GRAM = varargin{i1};
 elseif isa(varargin{i1},'timeMgr'); obj.Time = varargin{i1};
 elseif isa(varargin{i1},'chemMgr'); obj.chemObj = varargin{i1};
 elseif isa(varargin{i1},'plotProps'); obj.plotData = varargin{i1};
 else; error('Invalid shared object inputs');
 end
 end

 % Reference objects passed as a masterHand encapsulating object
 elseif nargin == 1 && isa(varargin{1},'masterHand')
 obj.State = varargin{1}.State;
 obj.Results = varargin{1}.Results;
 obj.Body_DB = varargin{1}.Body;
 obj.SC_DB = varargin{1}.S_C;
 obj.GRAM = varargin{1}.GRAM;
 obj.Time = varargin{1}.Time;
 obj.chemObj = varargin{1}.chemData;
 obj.plotData = varargin{1}.plotData;
 else
 error('Invalid Constructor Inputs')
 end
 end
 end

 methods (Access = protected)
 function setupImpl(obj)
 % Perform one-time calculations, such as computing constants
 setupfun(obj);
 end

 function stepImpl(obj)

 % Will only plot results for atmospheric flight
 if strcmp(obj.Results.Type,'Aero')

 % Save current vehicle state to reset to after aerothermal
 % calculations
 obj.State.saveState;

 % Loop through generated trajectory to post process
 % aerothermal and other results
 t = obj.Results.t; n = length(t);
 Js = zeros(n,1);
 out(n) = obj.TrajPoint.step(1);
 for i1 = 1:length(t)
 out(i1) = obj.TrajPoint.step(i1);
 qsI = out(i1).qs;
 if i1 > 1

5/11/25 7:58 PM C:\Users\bohda\OneDrive...\Aerothermal.m 3 of 4

 Js(i1) = Js(i1-1) + qsI*(t(i1)-t(i1-1)); % total heat load
 end
 end

 % Reset State
 obj.State.reset;

 % Reset fallback state to beginning of simulation
 obj.State.revertState;

 % Populate results
 obj.Results.alt = [out.alt];
 obj.Results.qs = [out.qs];
 obj.Results.qsMax = max([out.qs]);
 obj.Results.Js = Js;
 obj.Results.jsMax = Js(end);
 obj.Results.fpa = [out.fpa];
 obj.Results.fpaI = obj.Results.fpa(1);
 obj.Results.rho = [out.rho];
 obj.Results.Kn = [out.kn];
 obj.Results.BC = obj.SC_DB.BC;

 % Calculate delta V lost with each pass (change in velocity
 % at periapsis)
 mu = obj.Body_DB.mu;
 [aPre,ePre] = ECItoKep(obj.Results.Rt(1,1:3)',obj.Results.Rt(1,4:6)',
mu);
 [aPost,ePost] = ECItoKep(obj.Results.Rt(end,1:3)',obj.Results.Rt(end,4:
6)',mu);
 rpPre = aPre*(1-ePre);
 rpPost = aPost*(1-ePost);
 Vpre = sqrt(2*mu/rpPre-mu/aPre);
 Vpost = sqrt(2*mu/rpPost-mu/aPost);
 obj.Results.dVaero = Vpre-Vpost;
 obj.Results.tPost = 2*pi/sqrt(mu/aPost^3);

 % Plot results
 if obj.plotYN
 obj.plotData.step
 end
 end
 end
 end

 methods

 function setupfun(obj)
 obj.TrajPoint = AerothermStep(obj);
 end
 end

5/11/25 7:58 PM C:\Users\bohda\OneDrive...\Aerothermal.m 4 of 4

end

5/11/25 7:58 PM C:\Users\bohda\OneDri...\AerothermStep.m 1 of 2

classdef AerothermStep < Aerothermal
 % Sub class of aerothermal which calls GRAM for one trajectory point
 % and generates aerothermal and other time history results

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 methods
 % Constructor
 function obj = AerothermStep(varargin)
 if nargin == 1 && isa(varargin{1},'Aerothermal')
 obj.State = varargin{1}.State;
 obj.Results = varargin{1}.Results;
 obj.Body_DB = varargin{1}.Body_DB;
 obj.SC_DB = varargin{1}.SC_DB;
 obj.GRAM = varargin{1}.GRAM;
 obj.Time = varargin{1}.Time;
 obj.chemObj = varargin{1}.chemObj;
 else
 error('Invalid Constructor Inputs')
 end
 end
 end

 methods (Access = protected)

 function outStrct = stepImpl(obj,inc)
 % Convert and extract topo coordinates from state object
 obj.Time.elTime = obj.Results.t(inc);
 obj.State.Reci = obj.Results.Rt(inc,1:3)';
 obj.State.Veci = obj.Results.Rt(inc,4:6)';
 obj.State.ECItoLLA;

 % Extract Vars from shared objects
 W = obj.Body_DB.W; k = obj.Body_DB.k; Qmat = obj.State.Qmat;
 alt = obj.State.Alt; lat = obj.State.Lat; long = obj.State.Long;
 t = obj.Results.t(inc); Reci = obj.State.Reci;
 Veci = obj.State.Veci; Rn = obj.SC_DB.RN;

 % Set position/time in GRAM
 obj.GRAM.position.height = alt;
 obj.GRAM.position.latitude = lat;
 obj.GRAM.position.longitude = long;
 obj.GRAM.position.elapsedTime = t;
 obj.GRAM.body.setPosition(obj.GRAM.position);

 % update GRAM model
 obj.GRAM.body.update();

 % Calculate Winds

5/11/25 7:58 PM C:\Users\bohda\OneDri...\AerothermStep.m 2 of 2

 nsw = obj.GRAM.atmos.nsWind; % north south wind
 eww = obj.GRAM.atmos.ewWind; % east west wind
 vw = obj.GRAM.atmos.verticalWind; % vertical wind

 % Velocity vector in the ENZ frame (north south winds are
 % negative as north to south and east to west expressed as a positive
 % values in GRAM, also convert to km/s
 Venz = [-eww/1000
 -nsw/1000
 vw/1000];
 Wvec = Qmat*Venz;

 % Formulate relative velocity vector
 Vrel = Veci - cross(W',Reci); % account for planet rotation
 Vrel = Vrel - Wvec; % account for winds
 vrel = norm(Vrel); % magnitude

 % Extract Knudsen Number
 obj.chemObj.GRAMatmos = obj.GRAM.atmos;
 lamda = obj.chemObj.getMeanFreePath;
 Kn = lamda/obj.SC_DB.D;

 % Extract density from GRAM
 rho = obj.GRAM.atmos.density;

 % calculate stagnation heat flux (sutton graves correlation)
 qs = k*sqrt(rho/Rn)*(vrel*1000)^3/1e4;

 % Struct can be populated with more time resolved properties (long, lat,
 % stag pressure, temperature, etc.
 outStrct.qs = qs;
 outStrct.alt = obj.State.Alt;
 outStrct.fpa = obj.State.FPA;
 outStrct.rho = rho;
 outStrct.kn = Kn;
 end
 end

 methods
 % Setup Chemistry solver
 function setupfun(obj)
 obj.chemObj.GRAMatmos = obj.GRAM.atmos;
 obj.chemObj.setupInds;
 end
 end
end

5/11/25 8:01 PM C:\Users\bohda\OneDrive\...\BodyInputs.m 1 of 3

classdef BodyInputs < matlab.System
 % Class that handles planetary constants and associated properties

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 mu %km^3/s^2 G*M so specific grav constant
 Re % (km) primary body equatorial radius
 Rp % (km) primary body polar radius
 W % Planet angular velocity vector (rad/s)
 J2 % 2nd Zonal Harmonic
 k % Aerothermal Constant

 AltThr = 150; % (km) altitude threshold where drag comes into effect
 termSpd = 1; % km/s if velocity falls below this value (in aeropass) simulation
is terminated
 planModel = 'ellipse' % planet shape model (sphere or ellipse) a
 % spherical model assumes the equatorial
 % radius Rp is the spherical radius

 RGB % Planet Display Color
 end

 % Observable property so other objects can update when planet is
 % changed
 properties (SetObservable, AbortSet, Dependent)
 planet
 end

 properties (Access = private)
 storePlanet
 end

 methods (Access = protected)

 % Output properties as struct if necessary
 function BodyDB = stepImpl(obj)
 BodyDB = struct;
 publicProperties = properties(obj);
 for fi = 1:numel(publicProperties)
 BodyDB.(publicProperties{fi}) = obj.(publicProperties{fi});
 end
 end

 % Save Object
 function s = saveObjectImpl(obj)
 s = saveObjectImpl@matlab.System(obj);
 s.storePlanet = obj.storePlanet;

5/11/25 8:01 PM C:\Users\bohda\OneDrive\...\BodyInputs.m 2 of 3

 end

 % Load Object
 function loadObjectImpl(obj,s,isInUse)
 loadObjectImpl@matlab.System(obj,s,isInUse);
 obj.storePlanet = s.storePlanet;
 end
 end

 methods

 % Planet Shape Model
 function set.planModel(obj,val)
 if strcmp(val,'ellipse') || strcmp(val,'sphere')
 obj.planModel = val;
 else
 error('Planet shape model must either be "ellipse" or "sphere"
lowercase')
 end
 end

 % Pull planet string from privated non-dependent property
 function planetOut = get.planet(obj)
 planetOut = obj.storePlanet;
 end

 % Planet set method containing all planetary constants
 % Source: NASA Planetary Fact Sheet
 % https://nssdc.gsfc.nasa.gov/planetary/factsheet/
 function set.planet(obj,body)
 obj.storePlanet = body;
 switch body
 case 'Venus'
 obj.mu = 324858.592; %km^3/s^2 G*M so specific grav constant
 obj.Re = 6051.8; % (km) primary body radius
 obj.Rp = 6051.8; % (km) primary body polar radius
 obj.W = [0 0 -2.9924e-07]; % Planet angular velocity (rad/s)
 obj.J2 = 4.458E-06; % 2nd Zonal Harmonic
 obj.k = 0.00019; % Aerothermal Constant
 obj.RGB = [0.9290 0.6940 0.1250];
 case 'Uranus'
 obj.mu = 5.7940e6; %km^3/s^2 G*M so specific grav constant
 obj.Re = 25559; % (km) primary body equatorial radius
 obj.Rp = 24973; % (km) primary body polar radius
 obj.W = [0 0 -1.0124e-04]; % Planet angular velocity (rad/s)
 obj.J2 = 3343.43E-06; % 2nd Zonal Harmonic
 obj.k = 8.645E-5; % Aerothermal Constant
 obj.RGB = [192 236 240]/255;
 case 'Neptune'
 obj.mu = 6.8351e6; %km^3/s^2 G*M so specific grav constant

5/11/25 8:01 PM C:\Users\bohda\OneDrive\...\BodyInputs.m 3 of 3

 obj.Re = 24764; % (km) primary body equatorial radius
 obj.Rp = 24341; % (km) primary body polar radius
 obj.W = [0 0 1.0834e-04]; % Planet angular velocity (rad/s)
 obj.J2 = 3411E-06; % 2nd Zonal Harmonic
 obj.k = 8.645E-5; % Aerothermal Constant *unverified for neptune,
set the same as Uranus
 obj.RGB = [90 145 226]/255;
 case 'Jupiter'
 obj.mu = 126.687e6; %km^3/s^2 G*M so specific grav constant
 obj.Re = 71492; % (km) primary body equatorial radius
 obj.Rp = 66854; % (km) primary body polar radius
 obj.W = [0 0 1.7584e-04]; % Planet angular velocity (rad/s)
 obj.J2 = 14736E-06; % 2nd Zonal Harmonic
 obj.k = 8.645E-5; % Aerothermal Constant *unverified for neptune,
set the same as Uranus
 obj.RGB = [220 174 66]/255;
 case 'Earth'
 obj.mu = 0.39860e6; %km^3/s^2 G*M so specific grav constant
 obj.Re = 6378.137; % (km) primary body equatorial radius
 obj.Rp = 6356.752; % (km) primary body polar radius
 obj.W = [0 0 7.2921e-05]; % Planet angular velocity (rad/s)
 obj.J2 = 1082.63E-06; % 2nd Zonal Harmonic
 obj.k = 1.7415e-4; % Aerothermal Constant
 obj.RGB = [58 218 250]/255;
 case 'Mars'
 obj.mu = 0.042828e6; %km^3/s^2 G*M so specific grav constant
 obj.Re = 3396.2; % (km) primary body equatorial radius
 obj.Rp = 3376.2; % (km) primary body polar radius
 obj.W = [0 0 7.0882e-05]; % Planet angular velocity (rad/s)
 obj.J2 = 1960.45E-06; % 2nd Zonal Harmonic
 obj.k = 1.9027e-4; % Aerothermal Constant
 obj.RGB = [240 118 47]/255;
 case 'Titan'
 obj.mu = 0.0089781384e6; %km^3/s^2 G*M so specific grav constant
 obj.Re = 2.5747e+03; % (km) primary body equatorial radius
 obj.Rp = 2.5747e+03; % (km) primary body polar radius
 obj.W = [0 0 4.5607e-06]; % Planet angular velocity (rad/s)
 obj.J2 = 0.315E-06; % 2nd Zonal Harmonic
 obj.k = 1.9e-4; % Aerothermal Constant
 obj.RGB = [250 199 58]/255;
 end
 end
 end
end

5/11/25 8:02 PM C:\Users\bohda\OneDrive\Desktop...\Burn.m 1 of 2

classdef Burn < OrbitProp
 % Propulsive Maneuvers Trajectory Propagation Object (subclass of
 % OrbitProp)

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 methods
 function setupfun(obj)
 obj.PhysTyp = 'Burn';
 end
 end

 methods (Access = protected)

 % Main Integration replaces superclass to allow for finite time burn
 function mainInt(obj)

 % Extract Vars from shared objects
 Reci = obj.State.Reci; Veci = obj.State.Veci;
 t_curr = obj.State.elTime; Tb = obj.State.Tb;
 m_o = obj.State.ScM;

 % Warn user if burn time is set to 0 and skip segment
 if Tb == 0
 warning('Burn time (Tb) must be greater than zero, skipping burn
segment');
 return;
 end

 % establish timeframe accounting for possibility of burn time being
 % less than 1 time step
 tsteb_b = Tb*obj.tstep_f; % rounding creates potential inaccuracy

 % Setup main trajectory segment timespan
 if strcmp(obj.calcSpd, 'continuous')
 tspan = t_curr:tsteb_b:t_curr+Tb;
 elseif strcmp(obj.calcSpd, 'jump')
 tspan = [t_curr t_curr + Tb];
 else
 error('property "calcSpd" set incorrectly')
 end

 % Main trajectory integrator call
 [t,Rt] = obj.ODEfun(@(t,R) TwoBody(obj,t,R),tspan,[Reci; Veci; m_o],obj.
opts1);

 % Populate Results if necessary
 if strcmp(obj.resultPop,'on')
 obj.Results.t = t; obj.Results.Rt = Rt; obj.Results.te = 0; obj.

5/11/25 8:02 PM C:\Users\bohda\OneDrive\Desktop...\Burn.m 2 of 2

Results.ye = 0; obj.Results.ie = 0;
 obj.Results.Tb = Tb; obj.Results.dVec = obj.State.dVec;
 % calculate delta V of burn
 ISP = obj.SC_DB.ISP; go = obj.SC_DB.go; me = Rt(end,7); mf = Rt(1,7);
 obj.Results.dV = ISP*go*log(mf/me);
 end

 % Populate shared handle objects with new trajectory data
 obj.State.Reci = Rt(end,1:3)';
 obj.State.Veci = Rt(end,4:6)';
 obj.State.ScM = Rt(end,7);
 obj.State.Tb = 0;
 obj.Time.elTime = t(end);

 % Update State
 obj.State.step;

 end

 function P = Perturb(obj,~,P,R)

 % Extract Vars from state object
 dVec = obj.State.dVec;
 v = norm(R(4:6));

 % Set thrust value
 if strcmp(obj.Thruster, 'Low')
 T = obj.SC_DB.LowThr;
 elseif strcmp(obj.Thruster, 'High')
 T = obj.SC_DB.Thr;
 else
 error('property "Thruster" set incorrectly')
 end

 % Purturbation Vector
 Tvec = T/(1000*R(7)*v);
 P = P + [Tvec*R(4)*dVec(1)
 Tvec*R(5)*dVec(2)
 Tvec*R(6)*dVec(3)];
 end
 end
end

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Desk...\chemMgr.m 1 of 2

classdef chemMgr < matlab.System
 % Manages all atmospheric chemistry calcuations,

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 eqChem = 'off'
 GRAMatmos % GRAM atmospheric state object
 inputSpecies % Property database for species supported by GRAM
 speciesInd logical % Filters GRAM atmos state for consituient gases
 speciesProps % Names of species present in the current atmosphere
 len % Number of species present
 end

 methods
 % Function to calculate the mean free path
 function lamda = getMeanFreePath(obj)
 spNames = obj.speciesProps;
 sigTot = 0;

 for i1 = 1:obj.len

 % Get Species data from GRAM
 species = obj.GRAMatmos.(spNames{i1});

 % Compute a weighted average kinetic cross section based on
 % the species mole fractions
 dK = obj.inputSpecies.(spNames{i1}).kinDia; % kinetic diameter
 sigTot = (dK*1e-12)^2*species.moleFraction + sigTot;

 end

 % Number density from GRAM
 n = obj.GRAMatmos.totalNumberDensity;

 % Final mean free path
 lamda = 1/(sqrt(2)*pi*sigTot*n);
 end
 end

 methods

 % Import species properties
 function obj = chemMgr
 obj.inputSpecies = inputSpecies;
 end

 % Initialize the chemistry calculations by predetermining which

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Desk...\chemMgr.m 2 of 2

 % species are present in the current planetary atmosphere, ignores
 % species that are not present
 function setupInds(obj)
 props = properties(obj.GRAMatmos);

 % Filter by GRAM consituent gas objects
 for i1 = 1:length(props)
 if isa(obj.GRAMatmos.(props{i1}),'clib.GRAMmi.GRAM.ConstituentGas') &&
obj.GRAMatmos.(props{i1}).isPresent
 obj.speciesInd(i1) = true;
 else
 obj.speciesInd(i1) = false;
 end
 end

 % Names and number of species
 obj.speciesProps = props(obj.speciesInd);
 obj.len = length(obj.speciesProps);
 end
 end
end

5/11/25 8:04 PM C:\Users\bohda\OneDri...\ExampleScript.m 1 of 2

% Simple example script of a lift up and lift down simulation of a Venus
% aerocapture to 500000 km

clear
close all

% Load file and set all handle objects to base workspace
load('VenusAerocapt.mat')
saveFile.getHands

% Set apoapsis target for optimizer
apoapsis_targ = 500000;
ra_targ = apoapsis_targ + State.Rad;

% LIFT DOWN CASE

% Optimizer input format
altOpt = optoIn('order','AO','targ',ra_targ,'objective','ra','adjust','FPA');

% Optimize trajectory
missionPlan.lookForward(altOpt);

% Atmospheric Entry Pass
aeroProp.step;

% Post process trajectory, aerothermal calcs, plots
aeroTherm.step;

% 3D trajectory plot and store results
visPlot.step

% Set coast orbit to stop at apoapsis
orbProp.EventTyp = 'Ae';

% Propagate coast orbit and plot result
orbProp.step;
visPlot.step

% Reset state
State.reset

% LIFT UP CASE

% Set angle of attack
S_C.alpha = 10;

% Optimize Trajectory
missionPlan.lookForward(altOpt);

% Propagate Atmospheric entry

5/11/25 8:04 PM C:\Users\bohda\OneDri...\ExampleScript.m 2 of 2

aeroProp.step;
aeroTherm.step;
visPlot.step

orbProp.EventTyp = 'Ae';

% Propagate coast orbit
orbProp.step;
visPlot.step
State.reset

% Generate output summary table
visPlot.AeroTab;

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Desk...\gramMgr.m 1 of 3

classdef gramMgr < matlab.System
 % Handles the GRAM interface and all initializations

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 % Below parameters are GRAM interface parameters
 inputParameters % GRAM inputs
 reader % Namelist reader
 body % Planet specific object
 ttime % Start time object
 position % position object
 atmos % atmosphere object, contains all relevant atomospheric data normally in
output file
 Time % Time manager object
 end

 % Pre-computed constants or internal states
 properties (Dependent)
 planet
 end

 properties (Access = private)
 storePlanet
 end

 methods (Access = protected)
 function s = saveObjectImpl(obj)
 s.Time = obj.Time;
 end
 end

 methods
 function planetOut = get.planet(obj)
 planetOut = obj.storePlanet;
 end

 % Sets up GRAM based on planet entry
 function set.planet(obj,body)
 if isempty(obj.Time); error('Time handle not set in GRAM manager class');
end

 obj.storePlanet = body;
 switch body
 case 'Venus'
 obj.inputParameters = clib.GRAMmi.GRAM.VenusInputParameters();
 obj.reader = clib.GRAMmi.GRAM.VenusNamelistReader();
 obj.body = clib.GRAMmi.GRAM.VenusAtmosphere();

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Desk...\gramMgr.m 2 of 3

 case 'Uranus'
 obj.inputParameters = clib.GRAMmi.GRAM.UranusInputParameters();
 obj.reader = clib.GRAMmi.GRAM.UranusNamelistReader();
 obj.body = clib.GRAMmi.GRAM.UranusAtmosphere();
 case 'Neptune'
 obj.inputParameters = clib.GRAMmi.GRAM.NeptuneInputParameters();
 obj.reader = clib.GRAMmi.GRAM.NeptuneNamelistReader();
 obj.body = clib.GRAMmi.GRAM.NeptuneAtmosphere();
 case 'Jupiter'
 obj.inputParameters = clib.GRAMmi.GRAM.JupiterInputParameters();
 obj.reader = clib.GRAMmi.GRAM.JupiterNamelistReader();
 obj.body = clib.GRAMmi.GRAM.JupiterAtmosphere();
 case 'Earth'
 obj.inputParameters = clib.GRAMmi.GRAM.EarthInputParameters();
 obj.reader = clib.GRAMmi.GRAM.EarthNamelistReader();
 obj.body = clib.GRAMmi.GRAM.EarthAtmosphere();
 obj.inputParameters.useNCEP = true;
 % inputParameters.NCEPPath = '../NCEPdata/FixedBin';
 obj.inputParameters.dataPath = 'C:
\Users\bohda\OneDrive\Desktop\SJSU\AE295\Simulation Draft V05\GRAM Matlab\GRAMmi';
 case 'Mars'
 obj.inputParameters = clib.GRAMmi.GRAM.MarsInputParameters();
 obj.reader = clib.GRAMmi.GRAM.MarsNamelistReader();
 obj.body = clib.GRAMmi.GRAM.MarsAtmosphere();
 obj.inputParameters.dataPath = "C:
\Users\bohda\OneDrive\Desktop\SJSU\AE295\Simulation Draft V05\GRAM Matlab\GRAMmi\data";
 case 'Titan'
 obj.inputParameters = clib.GRAMmi.GRAM.TitanInputParameters();
 obj.reader = clib.GRAMmi.GRAM.TitanNamelistReader();
 obj.body = clib.GRAMmi.GRAM.TitanAtmosphere();
 end

 obj.reader.tryGetSpicePath(obj.inputParameters);
 % Create a venus atmosphere object
 obj.body.setInputParameters(obj.inputParameters);

 % Set the start time of the trajectory
 obj.ttime = clib.GRAMmi.GRAM.GramTime();
 obj.ttime.setStartTime(obj.Time.JD0, clib.GRAMmi.GRAM.GRAM_TIME_SCALE.UTC,
clib.GRAMmi.GRAM.GRAM_TIME_FRAME.ERT);
 obj.body.setStartTime(obj.ttime);

 % create position and atmosphere output objects
 obj.position = clib.GRAMmi.GRAM.Position();
 obj.atmos = obj.body.getAtmosphereState();

 % Display version and confirmation message
 fprintf('GRAM Initialized Sucessfully\n')
 disp(obj.body.getVersionString());
 end

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Desk...\gramMgr.m 3 of 3

 end
end

5/11/25 8:03 PM C:\Users\bohda\OneDrive\De...\InitState.m 1 of 2

classdef InitState < matlab.System
 % Initial state class for handling default values when a new simulation
 % configuration is created

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 planet = 'Venus';

 % TOPOCENTRIC COORDINATES
 FPA = -5; % Flight Path Angle
 V = 11; % Velocity Magnitude
 Alt = 150; % Altitude
 Lat = 5; % Latitude
 Long = 47; % Longitude
 Az = -90; % Azimuth

 % ORBITAL ELEMENTS
 e = 1.3074; % eccentricity
 minalt = 97.6157; % altitude at periapsis Change between 120 and 150 km
 inc = 0; % inclination
 Arg = 0; % arguement of periapsis
 Asc = 0; % ascension of ascending node
 theta = 137; % true anamoly

 % POSITION AND VELOCITY VECTORS
 Reci % Vehicle Position Vector
 Veci % Vehicle Velocity Vector

 % START TIME
 startTime = datetime(2041,05,20,9,3,8);
 JD = 0; % Julian Date

 % COORDINATE SELECTION
 % Topo for topocentric, Kepl for keplerial/orbital elements, ECIv for positon
and velocity vector
 Opt = 'Topo'

 end

 methods (Access = protected)

 function stepImpl(obj,Body,State,Time,GRAM)

 % Set planet
 Body.planet = obj.planet;
 Time.planet = obj.planet;

5/11/25 8:03 PM C:\Users\bohda\OneDrive\De...\InitState.m 2 of 2

 % Set initial Julian date
 if isempty(obj.JD) || obj.JD == 0
 Time.JD0 = juliandate(obj.startTime);
 Time.startTime = obj.startTime;
 else
 Time.JD0 = obj.JD;
 end

 % Update GRAM after planet and Julian date have been set
 GRAM.planet = obj.planet;

 % Intialize state
 State.step;

 % Populate the rest of state based on coordinate selection
 switch obj.Opt
 case 'Topo'
 State.FPA = obj.FPA;
 State.V = obj.V;
 State.Alt = obj.Alt;
 State.Lat = obj.Lat;
 State.Long = obj.Long;
 State.Az = obj.Az;
 case 'Kepl'
 rp = obj.minalt+Body.Re; % periapsis
 State.a = rp/(1-obj.e);
 State.e = obj.e;
 State.inc = obj.inc;
 State.Arg = obj.Arg;
 State.Asc = obj.Asc;
 State.theta = obj.theta;
 case 'ECIv'
 State.Reci = obj.Reci;
 State.Veci = obj.Veci;
 otherwise
 error('Invalid Input Coordinate Option')
 end
 end
 end
end

5/11/25 7:59 PM C:\Users\bohda\OneDriv...\inputSpecies.m 1 of 3

classdef inputSpecies < matlab.System
 % Database for molecular weights and kinetic diameters of all species
 % listed within GRAM.
 %
 % Reference: https://cccbdb.nist.gov/introx.asp
 %
 % Future Work: Merge properties with those provided in GRAM or
 % in McBride CEA coefficients Database

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 species
 end

 properties (Access=private)
 % Reduction in kinetic diameter for free atomic species vs. their
 % diatomic molecules, initially used the spacing between atoms as
 % an offset however using the same diameter showed better agreement
 % with literature on knudsen number calculations

 % hOffset = 74.14
 % oOffset = 120.75
 % nOffset = 109.77
 hOffset = 0
 oOffset = 0
 nOffset = 0
 end

 methods
 function f1 = argon(~)
 f1.molWeight = 39.948;
 f1.kinDia = 340; % picometer (pm)
 end

 function f1 = carbonDioxide(~)
 f1.molWeight = 44.0095;
 f1.kinDia = 330; % picometer (pm)
 end

 function f1 = carbonMonoxide(~)
 f1.molWeight = 28.0101;
 f1.kinDia = 376; % picometer (pm)
 end

 function f1 = dihydrogen(~)
 f1.molWeight = 2.01588;
 f1.kinDia = 289; % picometer (pm)

5/11/25 7:59 PM C:\Users\bohda\OneDriv...\inputSpecies.m 2 of 3

 end

 function f1 = dinitrogen(~)
 f1.molWeight = 28.0134;
 f1.kinDia = 364; % picometer (pm)
 end

 function f1 = dioxygen(~)
 f1.molWeight = 31.9988;
 f1.kinDia = 346; % picometer (pm)
 end

 function f1 = helium(~)
 f1.molWeight = 4.002602;
 f1.kinDia = 260; % picometer (pm)
 end

 function f1 = hydrogen(obj)
 f1.molWeight = 1.00794;
 f1.kinDia = 289-obj.hOffset; % picometer (pm)
 % ref: https://cccbdb.nist.gov/exp2x.asp
 % dN2 - distance between atoms
 end

 function f1 = methane(~)
 f1.molWeight = 16.0425;
 f1.kinDia = 380; % picometer (pm)
 end

 function f1 = nitrogen(obj)
 f1.molWeight = 14.0067;
 f1.kinDia = 364-obj.nOffset; % picometer (pm)
 end

 function f1 = oxygen(obj)
 f1.molWeight = 15.9994;
 f1.kinDia = 346-obj.oOffset; % picometer (pm)
 end

 function f1 = ozone(~)
 f1.molWeight = 47.9982;
 f1.kinDia = 344; % picometer (pm)
 end

 function f1 = nitrousOxide(~)
 f1.molWeight = 44.0128;
 f1.kinDia = 330; % picometer (pm)
 end

 function f1 = water(~)

5/11/25 7:59 PM C:\Users\bohda\OneDriv...\inputSpecies.m 3 of 3

 f1.molWeight = 18.0153;
 f1.kinDia = 265; % picometer (pm)
 end
 end
end

5/11/25 8:04 PM C:\Users\bohda\OneDrive\...\masterHand.m 1 of 5

classdef masterHand < matlab.System
 % All encompassing system object that sets up and contains all handle
 % objects necessary to run the simulation.

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 S_C % spacecraft inputs class
 Body % body inputs
 State % current spacecraft state
 Results % Results object
 GRAM % GRAM interface object
 Time % handle object for tracking elapsed time and time dependent planet
orientation
 Inputs % Sets up default values when setting up a new configuration
 orbProp % Coast trajectory
 aeroProp % Atmospheric flight trajectory
 burnProp % Burn/Maneuver Trajectory
 aeroTherm % Aerothermal postprocessor
 visPlot % 3D Trajectory plotter and results storage
 missionPlan % Trajectory optomization and multi-pass mission planner
 plotData % Handle object containing all 2D trajectory plot options
 chemData % handle object for atmospheric chemistry calculations
 end

 % Pre-computed constants or internal states
 properties (Access = private)
 lis event.proplistener % listeners for S_C property changes
 configWindow % object for configuration editor window
 end

 methods
 function obj = masterHand
 % Create low level shared handles
 obj.S_C = SCInputs;
 obj.Body = BodyInputs;
 obj.State = SCState;
 obj.Results = TrajResults;
 obj.Time = timeMgr;
 obj.Inputs = InitState;
 obj.GRAM = gramMgr;
 obj.chemData = chemMgr;
 obj.plotData = plotProps;

 % Initialize low level shared handles
 stateSetup(obj)
 obj.GRAM.Time = obj.Time;
 obj.S_C.step;

5/11/25 8:04 PM C:\Users\bohda\OneDrive\...\masterHand.m 2 of 5

 % Create orbit propagation shared handles
 obj.orbProp = OrbitProp(obj);
 obj.aeroProp = AeroPass(obj);
 obj.burnProp = Burn(obj);
 obj.aeroTherm = Aerothermal(obj);
 obj.visPlot = TrajPlot(obj);

 % Create mission planner
 obj.missionPlan = MissionPlan(obj);

 % populate shared objects with input parameters
 processInputs(obj);

 % create listeners to automatically update
 listenScInputs(obj);
 end

 % Setup state object
 function stateSetup(obj)
 obj.State.ScM = obj.S_C.m_o; % Initialize S/C mass
 obj.State.setBody(obj.Body);
 obj.State.setTime(obj.Time);
 end

 % Automatically flattens class structure and populates workspace
 % with shared objects
 function getHands(obj)
 publicProperties = properties(obj);
 for fi = 1:numel(publicProperties)
 assignin('base',publicProperties{fi},obj.(publicProperties{fi}))
 end
 end

 % Setup Default Values
 function processInputs(obj)
 % Initialize body, state and time shared handle objects
 obj.Inputs.step(obj.Body,obj.State,obj.Time,obj.GRAM);

 % Uodate and save initial state
 obj.State.step;
 obj.State.saveState;
 obj.Time.step;
 obj.plotData.Results = obj.Results;
 end

 % Opens a configuration editor window and populates with current
 % setup
 function configEditor(obj)
 obj.configWindow = configurationEditor;

5/11/25 8:04 PM C:\Users\bohda\OneDrive\...\masterHand.m 3 of 5

 obj.configWindow.getData(obj);
 end

 % Save a default values class
 function saveInputs(obj)
 saveInputs = obj.Inputs;
 save('SimInputs','saveInputs');
 end

 % Load a default values class
 function loadInputs(obj)
 inputsIn = load('SimInputs','saveInputs');
 obj.Inputs = inputsIn.saveInputs;
 processInputs(obj);
 end

 % Set the integration tolerance for all three trajectory
 % propagation objects
 function setIntTol(obj,relTol,absTol)
 obj.orbProp.RelTol = relTol; obj.orbProp.AbsTol = absTol;
 obj.aeroProp.RelTol = relTol; obj.aeroProp.AbsTol = absTol;
 obj.burnProp.RelTol = relTol; obj.burnProp.AbsTol = absTol;
 end

 % Change the ODE solver function for all three trajectory
 % propagation objects
 function setODEfun(obj,func)
 obj.orbProp.ODEfun = func;
 obj.aeroProp.ODEfun = func;
 obj.burnProp.ODEfun = func;
 end

 function listenScInputs(obj)

 % Create listeners for all Spacecraft object observable
 % properties
 propsSC = properties(obj.S_C);
 for i1 = 1:length(propsSC)
 obj.lis(i1) = addlistener(obj.S_C,propsSC{i1},'PostSet',@(src,evnt)obj.
scEvents(src,evnt,obj));
 end

 % Upate the aerodynamics bridging function if the knudsen
 % number bounds are changed
 obj.lis(i1+1) = addlistener(obj.S_C.Aero_DB,'knFm','PostSet',@(src,evnt)
obj.scEvents(src,evnt,obj));
 obj.lis(i1+2) = addlistener(obj.S_C.Aero_DB,'knCont','PostSet',@(src,evnt)
obj.scEvents(src,evnt,obj));

 % Update time and GRAM objects if planet is changed

5/11/25 8:04 PM C:\Users\bohda\OneDrive\...\masterHand.m 4 of 5

 obj.lis(i1+3) = addlistener(obj.Body,'planet','PostSet',@(src,evnt)obj.
scEvents(src,evnt,obj));
 end
 end

 methods (Static)
 function scEvents(src,evnt,master)
 % terminology
 rocket = ["ISP","Thr","LowThr"];
 geometry = ["D","halfAng","RN","alpha","beta"];
 KN = ["knFm","knCont"];
 mass = "m_o"; planSet = "planet";

 % Object triggering event
 inOBJ = evnt.AffectedObject;

 % update s/c rocket engine parameters if a property is changed
 if contains(src.Name,rocket)
 inOBJ.updateEnginePerf;

 % update s/c geometry and aero parameters if a property is changed
 elseif contains(src.Name,geometry)
 inOBJ.updateGeometry;
 inOBJ.Aero_DB.radConvert;
 inOBJ.Aero_DB.step;
 inOBJ.updateBC;

 % update ballistic coefficient and mass in state object
 elseif contains(src.Name,mass)
 inOBJ.updateBC;
 master.State.ScM = inOBJ.m_o;

 % update bridging function if kn limits are changed
 elseif contains(src.Name,KN)
 inOBJ.bridgeSetup;

 % update planet in GRAM and time objects if body is updated
 elseif strcmp(src.Name,planSet)
 master.Time.planet = inOBJ.planet;
 master.GRAM.planet = inOBJ.planet;
 end
 end
 end

 methods (Access = protected)

 % Save a master handle object which effectively saves the entire
 % configuration and current state of the simulation
 function s = saveObjectImpl(obj)
 s = saveObjectImpl@matlab.System(obj);

5/11/25 8:04 PM C:\Users\bohda\OneDrive\...\masterHand.m 5 of 5

 end

 % Load a master handle object
 function loadObjectImpl(obj,s,isInUse)
 loadObjectImpl@matlab.System(obj,s,isInUse);

 % Re-initialize GRAM since GRAM C++ objects are not saved
 obj.GRAM = gramMgr;
 obj.GRAM.Time = obj.Time;
 obj.GRAM.planet = obj.Body.planet;

 obj.orbProp.GRAM = obj.GRAM;
 obj.aeroProp.GRAM = obj.GRAM;
 obj.burnProp.GRAM = obj.GRAM;
 obj.aeroTherm.GRAM = obj.GRAM;

 % Re-populate listeners
 listenScInputs(obj);
 end
 end
end

5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 1 of 9

classdef MissionPlan < matlab.System
 % Contains all trajectory optomization functions and some specific
 % manuever calculations to support a multi-pass aerocapture orbital
 % insertion simulation.

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Mission parameters geared towards a multi-pass
 % orbital insertion
 properties
 raPost = 500000; % Apoapsis of initial post capture orbit (km)
 TCMdelay = 2500; % (s) initial cruise prior to TCM
 % Set calc speed to jump for faster calculation of final states for
 % trajectory optomization (accuracy may suffer)
 opts1 = struct
('calcSpd','continuous','EventTyp','Aero','output','off','resultPop','off');
 opts2 = struct
('calcSpd','continuous','EventTyp','Ae','output','off','resultPop','off');
 psiInt = [-180 180]; % initial attidude guess for burn attitude optomizer
 raTarg % vector of apogee targets for each aeropass
 tolX = 1e-8; % Convergence tolerance for traj optomization
 fzOpts % fzero options struct
 end

 % Optomization Inputs
 properties
 check % inputs to look forward and assess current state
 intTCM % inputs for interplanetary perigee trim TCM
 peOpt % inputs for perigee trim between aero passes
 end

 % Shared handle objects
 properties
 State % handle object for current spacecraft state
 SC_DB % handle object for spacecraft parameters database
 Body_DB % handle object for planetary body parameters database
 orbProp % handle object for coast trajectory
 aeroProp % handle object for atmospheric flight trajectory
 burnProp % handle object for simulating maneuvers
 end

 % Pre-computed constants or internal states
 properties (Access = private)
 currPass = 1 % Current pass number
 end

 methods
 % Constructor: Pass State and Result Handle objects
 function obj = MissionPlan(varargin)

5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 2 of 9

 if nargin == 0
 % Provide values for superclass constructor
 % and initialize other inputs
 obj.State = SCState;
 obj.Body_DB = BodyInputs;
 obj.SC_DB = SCInputs;
 obj.orbProp = OrbitProp;
 obj.aeroProp = AeroPass;
 obj.burnProp = Burn;

 % Individaul reference objects passed to constructor as inputs args
 elseif nargin == 6
 % When nargin ~= 0, assign to cell array,
 % which is passed to supclass constructor
 for i1 = 1:6
 if isa(varargin{i1},'SCState'); obj.State = varargin{i1};
 elseif isa(varargin{i1},'BodyInputs'); obj.Body_DB = varargin{i1};
 elseif isa(varargin{i1},'SCInputs'); obj.SC_DB = varargin{i1};
 elseif isa(varargin{i1},'OrbitProp'); obj.orbProp = varargin{i1};
 elseif isa(varargin{i1},'AeroPass'); obj.aeroProp = varargin{i1};
 elseif isa(varargin{i1},'Burn'); obj.burnProp = varargin{i1};
 else; error('Invalid shared object inputs');
 end
 end

 % Reference objects passed as a masterHand encapsulating object
 elseif nargin == 1 && isa(varargin{1},'masterHand')
 obj.State = varargin{1}.State;
 obj.Body_DB = varargin{1}.Body;
 obj.SC_DB = varargin{1}.S_C;
 obj.orbProp = varargin{1}.orbProp;
 obj.aeroProp = varargin{1}.aeroProp;
 obj.burnProp = varargin{1}.burnProp;

 else
 error('Invalid Constructor Inputs')
 end
 obj.fzOpts = optimset('Tolx',obj.tolX);
 optionSet(obj);
 end
 end

 methods
 %% MISSION PLANNING FUNCTIONS

 function [Ntp, dVtp] = numPassCalc(obj, stateI,stateF)
 % calculate current orbit properties
 raF = stateF.ra; rpI = stateI.rp; aI = stateI.a; mu = obj.Body_DB.mu;

 aPost = (rpI+obj.raPost)/2; % Calculate semi major axis of post capture

5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 3 of 9

orbit
 aFinal = (raF+rpI)/2; % Calculate semi major axis of final target orbit

 VpI = sqrt(mu*(2/rpI-1/aI)); % Velocity at perigee for hyperbolic
trajectory
 VpPost = sqrt(mu*(2/rpI-1/aPost)); % Velocity at perigee of post capture
orbit
 VpFinal = sqrt(mu*(2/rpI-1/aFinal)); % Velocity at perigee of final aero
pass orbit

 dVCapt = VpI-VpPost; % delta V required to get into initial captured orbit
 dVRest = VpPost-VpFinal; % delta V required to get from initial captured
orbit to final target science apogee

 Ntp = ceil(dVRest/dVCapt); % Number of Aeropasses
 dVtp = dVRest/Ntp; % dV per aeropass
 ratp = zeros(1,Ntp); % apoapsis of each aeropass

 fprintf('Mission Planner found a solution with %d aeropasses, ~%0.3f km/s
per pass\n',Ntp,dVtp);
 fprintf
('***\n');
 fprintf('Post capture apoapsis altitude: %0.3f km\n',obj.raPost-obj.
Body_DB.Re);

 for i1 = 1:Ntp

 Vptp = VpPost-dVtp*i1;
 atp = (2/rpI-Vptp^2/mu)^(-1);
 ratp(i1) = 2*atp-rpI;
 fprintf('Pass %d apoapsis altitude: %0.3f km\n',i1,ratp(i1)-obj.
Body_DB.Re);

 end

 obj.raTarg = ratp;
 obj.currPass = 1;

 % set thruster to low for TCM and correction maneuvers
 obj.burnProp.Thruster = 'Low';
 optionSet(obj);

 end

 %% ORBITAL MANEUVER CALCULATION FUNCTIONS

 function Pe_Raise(obj, stateF)

 % Break out some variables from shared objects
 ra = obj.State.ra; a = obj.State.a;

5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 4 of 9

 rp2 = stateF.rp; a2 = stateF.a;
 mu = obj.Body_DB.mu; m_o = obj.State.ScM;
 ISP = obj.SC_DB.ISP; go = obj.SC_DB.go; m_dot = obj.SC_DB.m_dot;

 % transfer orbit properties
 at = (ra+rp2)/2;

 % Calculate delta V requirements
 Va = sqrt(2*mu/ra-mu/a); % initial orbit velocity at apoapsis (where we
want initial burn)
 Vpt = sqrt(2*mu/ra-mu/at); % transfer orbit velocity at periapsis

 Vat = sqrt(2*mu/rp2-mu/at); % transfer orbit velocity at apoapsis
 Vp2 = sqrt(2*mu/rp2-mu/a2); % Final orbit velocity at periapsis

 dV1 = Vpt-Va; % Sum delta V for first burn
 dV2 = Vp2-Vat; % Sum delta V for second burn

 % calculate propellant masses and burn times
 Mp1 = m_o-m_o*exp(-dV1*1000/(ISP*go));
 Tb1 = -Mp1/m_dot; % m_dot expressed as negative value
 m1 = m_o-Mp1;
 Mp2 = m1-m1*exp(-dV2*1000/(ISP*go));
 Tb2 = -Mp2/m_dot;

 % array for two circularization burn times
 % obj.State.Tb = [Tb1 Tb2 0];
 obj.State.Tb = Tb1;
 obj.State.dVec = [1 1 1]';

 % Print periapsis raise data
 fprintf('\nFinal perigee raise solution found: %0.1f s burn for %0.2f
km/s\n',Tb1,dV1)

 end

 function Intpl_TCM(obj)
 % Save current state
 obj.State.saveState;

 % Determine optimal attitude to execute TCM maneuver
 [psiOpt, delta] = fminbnd(@(psi) -dVecOpt(obj,psi), obj.psiInt(1), obj.
psiInt(2));

 Reci = obj.State.Reci;
 Veci = obj.State.Veci;
 v = norm(Veci);
 Uv = [Veci(1)/v; Veci(2)/v; Veci(3)/v];

5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 5 of 9

 ROT = [cosd(psiOpt) -sind(psiOpt) 0
 sind(psiOpt) cosd(psiOpt) 0
 0 0 1];
 dVec = ROT*Uv;
 obj.State.dVec = dVec;

 % Reset Burn Object
 obj.burnProp.calcSpd = 'continuous'; obj.burnProp.output = 'on';

 % Determine current unadjusted trajectory
 obj.lookForward(obj.check);

 % Is current trajectory leading us above or below the target
 % apoapsis
 if obj.State.ra < obj.raPost && obj.State.e < 1 % verify spacecraft isn't
interplanetary
 obj.State.reset;

 % Optomize prograde burn time
 out = lookForward(obj,obj.intTCM);
 fprintf('\nInterplanetary periapsis raise TCM necessary, %0.1f s burn
converged after %d iterations\n',obj.State.Tb,out);
 else
 obj.State.reset;

 % Retrograde burn necessary to lower periapsis
 obj.State.dVec = -obj.State.dVec;

 % Optomize retrograde burn time
 out = lookForward(obj,obj.intTCM);
 fprintf('\nInterplanetary periapsis lower TCM necessary, %0.1f s burn
converged after %d iterations\n',obj.State.Tb,out);
 end

 % burn attitude optimization (optomization of all three euler
 % angles needs to be added)
 function delta = dVecOpt(obj,psi)

 % Rotate abount velocity vector
 Vopt = obj.State.Veci;
 vopt = norm(Vopt);
 Uvopt = [Vopt(1)/vopt; Vopt(2)/vopt; Vopt(3)/vopt];

 ROTopt = [cosd(psi) -sind(psi) 0
 sind(psi) cosd(psi) 0
 0 0 1];

 UvN = ROTopt*Uvopt;
 % quiver3(Reci(1),Reci(2),Reci(3),UvN(1),UvN(2),UvN(3),
750,'g','LineWidth',1);

5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 6 of 9

 % create test burn to determine optimal burn vector
 obj.State.dVec = UvN;
 obj.State.Tb = 5;
 rp_old = obj.State.rp;

 % Set a few options, propage maneuver trajectory
 obj.burnProp.calcSpd = 'jump'; obj.burnProp.output = 'off';
 obj.burnProp.step;

 % Reset for next iteration
 rp_new = obj.State.rp;
 delta = rp_new-rp_old;
 obj.State.reset;
 end
 end

 function Aeropass_TCM(obj)

 % burn will be inline with velocity vector
 obj.State.dVec = [1 1 1]';

 % determine if periapsis altitude must be raised or decreased
 obj.lookForward(obj.check);

 % set the optomizer to target a predetermined altitude after
 % each pass
 obj.peOpt.targ = obj.raTarg(obj.currPass);

 % Is current trajectory leading us above or below the target
 % apoapsis
 if obj.State.ra < obj.raTarg(obj.currPass)
 obj.State.reset;

 % Optomize prograde burn time
 out = lookForward(obj,obj.peOpt);
 fprintf('\nPass %d periapsis raise TCM necessary, %0.1f s burn
converged after %d iterations\n',obj.currPass,obj.State.Tb,out);
 else
 obj.State.reset;

 % Retrograde burn necessary to lower periapsis
 obj.State.dVec = -obj.State.dVec;

 % Optomize retrograde burn time
 out = lookForward(obj,obj.peOpt);
 fprintf('\nPass %d periapsis lower TCM necessary, %0.1f s burn
converged after %d iterations\n',obj.currPass,obj.State.Tb,out);
 end
 obj.currPass = obj.currPass + 1;

5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 7 of 9

 end

 %% TRAJECTORY OPTOMIZATION FUNCTION

 function out = lookForward(obj,optIn)

 % Save current state before any optomizations
 obj.State.saveState;

 % break out variables from options object
 order = optIn.order;
 objective = optIn.objective;
 targ = optIn.targ;
 adjust = optIn.adjust;

 % No optomization, just a forward propagation of current
 % trajectory
 if ~optIn.opt
 propForward;
 out = [];

 % Perform optomization
 elseif optIn.opt

 % Shooting method trajectory optomization optomize the
 % "adjust" property until the "objective" property equals
 % the "target" property
 [Opt,~,~,output] = fzero(@(adj) propForward(adj), optIn.range,obj.
fzOpts);

 % Number of iterations required
 out = output.iterations;

 % Update state with the optomized parameter
 obj.State.(adjust) = Opt;
 obj.State.step;

 % Delete the pre-optomization saved state and revert back to the
 % saved state at the start of the simulation
 obj.State.revertState;
 end

 function min = propForward(adj)
 n = length(order);

 % Will optomization be performed
 if optIn.opt
 obj.State.(adjust) = adj;
 obj.State.step;

5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 8 of 9

 end

 for i1 = 1:n
 % Bake in a few special cases, i.e. if a burn segment is set
 % to follow a coast segment, stop at apoapsis
 if i1 < n && order(i1) == 'O' && order(i1+1) == 'B'
 opts = obj.opts2;
 elseif i1 == n && order(i1) == 'O'
 opts = obj.opts2;
 else
 opts = obj.opts1;
 end

 % opts.output = 'on';
 % obj.opts1.output = 'on';
 switch(order(i1))
 case 'O' % Coast segment
 obj.orbProp.step(opts);
 case 'A' % Atmospheric flight segment
 obj.aeroProp.step(opts);
 case 'B' % Propulsive maneuver segment
 obj.burnProp.step(obj.opts1);
 end
 end

 % Generate outputs
 if optIn.opt
 switch adjust
 case 'FPA' % Flight path angle option
 fprintf('Apoapsis Altitude: %.3f km at %.3f deg\n',obj.
State.(objective)-obj.Body_DB.Re,adj)
 case 'Tb' % Burn time option
 fprintf('Apoapsis Altitude: %.3f km at %.3f s burn\n',obj.
State.(objective)-obj.Body_DB.Re,adj)
 end

 % Primary objective function
 min = obj.State.(objective)-targ;

 % covers special interplanetary case
 if strcmp(objective,'ra') && obj.State.e >= 1
 min = 5e6;
 end

 % Reset State for next iteration
 obj.State.reset;

 % No optomization case
 else
 min = [];

5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 9 of 9

 end
 end
 end

 function optionSet(obj)
 % Forward propagation of current trajectory
 obj.check = optoIn('order','OA');
 % interplanetary periapsis trim TCM
 obj.intTCM = optoIn('order','BOA','targ',obj.
raPost,'objective','ra','adjust','Tb');
 % periapsis trim between aero passes
 obj.peOpt = optoIn('order','OBOA','targ',obj.
raPost,'objective','ra','adjust','Tb');
 end
 end
end

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\optoIn.m 1 of 3

classdef optoIn < matlab.System
 % Format for inputs to trajectory optomization function

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 properties
 order % Order of trajectory segments to perform A: Atmospheric flight, B:
Burn/Maneuver, O: Coast Orbit
 targ % Target or "Objective" of optomization
 end

 properties (Dependent)
 range % Initial values for optomizer
 objective % Objective Function
 adjust % Input parameter to optomize to the objective
 opt % false (0) only one propagation will be performed true (1) optomization
will be performed
 end

 % Private properties to store values for dependent properties
 properties (Access = private)
 stateProps
 objectiveStore
 adjustStore
 fpaRgdef = [-4 -25] % Starting range of flight path angles
 TbRgdef = [0.01 200]
 end

 methods (Access = protected)
 % Save Object
 function s = saveObjectImpl(obj)
 s = saveObjectImpl@matlab.System(obj);
 s.stateProps = obj.stateProps;
 s.objectiveStore = obj.objectiveStore;
 s.adjustStore = obj.adjustStore;
 s.fpaRgdef = obj.fpaRgdef;
 s.TbRgdef = obj.TbRgdef;
 end

 % Load Object
 function loadObjectImpl(obj,s,isInUse)
 obj.stateProps = s.stateProps;
 obj.objectiveStore = s.objectiveStore;
 obj.adjustStore = s.adjustStore;
 obj.fpaRgdef = s.fpaRgdef;
 obj.TbRgdef = s.TbRgdef;
 loadObjectImpl@matlab.System(obj,s,isInUse);
 end
 end

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\optoIn.m 2 of 3

 methods
 % Create names of state properties that can be used as objectives
 % for optomization
 function obj = optoIn(varargin)
 state = SCState;
 obj.stateProps = properties(state);
 setProperties(obj,nargin,varargin{:});
 end

 % Verify that order inputs are only either 'B','O', or 'A'
 function set.order(obj,val)
 if ischar(val)
 BB = ismember(val,'B');
 OO = ismember(val,'O');
 AA = ismember(val,'A');
 idx = AA | BB | OO;
 if ~any(~idx)
 obj.order = val;
 else
 error('First arguement must only contain O, A, or B: O:
cruise/orbit, A: Aerodynamic pass, B: Maneuver')
 end
 else
 error('First arguement must be a character vector: O: cruise/orbit, A:
Aerodynamic pass, B: Maneuver')
 end
 end

 % Verify that objective is a char and is a state property
 function set.objective(obj,val)
 if ischar(val) && ismember(val,obj.stateProps)
 obj.objectiveStore = val;
 else
 error('Objective must be a state object property character vector')
 end
 end

 % Validate target as a numeric double
 function set.targ(obj,val)
 if isa(val,"double")
 obj.targ = val;
 else
 error('Target must be a double')
 end
 end

 % Validate adjust as a char and a state property
 function set.adjust(obj,val)
 if ischar(val) && ismember(val,obj.stateProps)

5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\optoIn.m 3 of 3

 obj.adjustStore = val;
 else
 error('adjust must be a state object property character vector')
 end
 end

 % Get private stored property for objective
 function val = get.objective(obj)
 val = obj.objectiveStore;
 end

 % Get private stored property for adjust
 function val = get.adjust(obj)
 val = obj.adjustStore;
 end

 % Currently default initial values are only supported for flight
 % path angle and burn time
 function val = get.range(obj)
 if ~isempty(obj.adjust)
 switch obj.adjust
 case 'FPA'
 val = obj.fpaRgdef;
 case 'Tb'
 val = obj.TbRgdef;
 end
 else
 val = [];
 end
 end

 % Option to either optomize or simply propagate a trajectory
 function val = get.opt(obj)
 optProps = [{obj.targ} {obj.adjust} {obj.objective}];
 valid = cellfun(@isempty,optProps);

 if ~any(~valid)
 val = false;
 elseif ~any(valid)
 val = true;
 else
 % error('Three optomization properties must be provided, if no
optomization is desired, only supply the order input')
 end
 end
 end
end

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 1 of 9

classdef OrbitProp < matlab.System
 % This object propogates a trajectory segment, the superclass contains
 % physics for a coast under gravity only. Thrust or atmospheric flight
 % propagations are subclasses of the upper OrbitProp superclass Class

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 Thruster = 'Low'
 PhysTyp = 'Cruise'
 EventTyp = 'Aero'; % Location to stop integration
 laps = 5; % time to move past event to prevent false trigger
 tstep = 60; % (s) timestep
 tstep_f = 0.05; % factor to divide burn time by to create custom timestep for
burn integrations to ensure start and end points are accurate
 calcSpd = 'continuous'; % 'continuous' specifies a tspan to the ODE integrator
as a vector, 'jump' specifies only a start and end point
 output = 'on'; % print output option (typically off for optomization runs)
 resultPop = 'on'; % populate results option (typically off for optomization
runs)
 opts1 % options struct for ODE integrator
 opts2 % 2nd options struct that contains the ODE event function
 ODEfun = @ode45 % ODE integrator function
 warnFlg = true; % Altitude warning flag (prevents repeat warning messages)
 RelTol = 1e-7; % Relative Tolerance
 AbsTol = 1e-8; % Absoluate Tolerance

 % it was found with a relative and absolute tolerance of 1e-5
 % and 1e-7 respectively that the error between the first and
 % 4th orbit is on the order of a few hundred meters.
 % 1e-7 and 1e-8 tols did fix some integration issues

 end

 properties
 State % handle object for current spacecraft state
 Results % handle object for trajectory results/outputs
 Body_DB % handle object for planetary body parameters database
 SC_DB % handle object for spacecraft parameters database
 GRAM % handle object for the GRAM interface
 Time % handle object for tracking elapsed time and time dependent planet
orientation
 chemObj % handle object for atmospheric chemistry calculations
 end

 % Pre-computed constants or internal states
 properties (Access = private)
 stop % stopping criteria vector

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 2 of 9

 saveStrct % struct to save overwrite options
 end

 methods
 % Constructor: Pass State and Result Handle objects
 function obj = OrbitProp(varargin)
 % No inputs case, creates default reference objects internally
 if nargin == 0
 % Provide values for superclass constructor
 % and initialize other inputs
 obj.State = SCState;
 obj.Results = TrajResults;
 obj.Body_DB = BodyInputs;
 obj.SC_DB = SCInputs;
 obj.GRAM = gramMgr;
 obj.Time = timeMgr;
 obj.chemObj = chemMgr;

 % Individaul reference objects passed to constructor as inputs args
 elseif nargin == 7
 % When nargin ~= 0, assign to cell array,
 % which is passed to supclass constructor
 for i1 = 1:7
 if isa(varargin{i1},'SCState'); obj.State = varargin{i1};
 elseif isa(varargin{i1},'TrajResults'); obj.Results = varargin{i1};
 elseif isa(varargin{i1},'BodyInputs'); obj.Body_DB = varargin{i1};
 elseif isa(varargin{i1},'SCInputs'); obj.SC_DB = varargin{i1};
 elseif isa(varargin{i1},'gramMgr'); obj.GRAM = varargin{i1};
 elseif isa(varargin{i1},'timeMgr'); obj.Time = varargin{i1};
 elseif isa(varargin{i1},'chemMgr'); obj.chemObj = varargin{i1};
 else; error('Invalid shared object inputs');
 end
 end

 % Reference objects passed as a masterHand encapsulating object
 elseif nargin == 1 && isa(varargin{1},'masterHand')
 obj.State = varargin{1}.State;
 obj.Results = varargin{1}.Results;
 obj.Body_DB = varargin{1}.Body;
 obj.SC_DB = varargin{1}.S_C;
 obj.GRAM = varargin{1}.GRAM;
 obj.Time = varargin{1}.Time;
 obj.chemObj = varargin{1}.chemData;
 else
 error('Invalid Constructor Inputs')
 end
 end
 end

 methods (Access = protected)

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 3 of 9

 function setupImpl(obj)
 % Setup solver options and events
 obj.opts1 = odeset('RelTol',obj.RelTol,'AbsTol',obj.AbsTol);
 obj.opts2 = obj.opts1;
 obj.opts2.Events = @(t,R) Event_fcn(t,R,obj.stop,obj.Body_DB,obj.State,obj.
Time);

 % placeholder function for subclasses
 setupfun(obj);
 end

 function stepImpl(obj,varargin)

 % Skips atmospheric flight integration if altitude is over
 % threshold
 if strcmp(obj.PhysTyp, 'Aero') && obj.State.Alt > obj.Body_DB.AltThr+1
 if strcmp(obj.output,'on')
 warning('Attempting to enter atmospheric flight phase while above
threshold, skipping propagation segment')
 end
 return;
 end

 % populate properties based on options struct
 if nargin > 0 && ~isempty(varargin) && isa(varargin{1},'struct')
 optsGen(obj,varargin{1});
 end

 % Generate stopping criteria for event functions
 switch obj.EventTyp
 case 'Pe' % periapsis
 obj.stop = [1 0 0 0 0 0 1 1 0 0];
 case 'Ae' % apoapsis
 obj.stop = [0 1 0 0 0 0 1 1 0 0];
 case 'Asc' % ascending node
 obj.stop = [0 0 1 0 0 0 1 1 0 0];
 case 'Dsc' % descending node
 obj.stop = [0 0 0 1 0 0 1 1 0 0];
 case 'Aero' % aerobrake (stops at certain altitude)
 % Enable velocity stop if vehicle is in atmosphere
 if strcmp(obj.PhysTyp,'Aero')
 obj.stop = [0 0 0 0 1 1 1 1 1 1];
 else
 obj.stop = [0 0 0 0 1 1 1 1 0 0];
 end
 case 'Crz' % cruise option, do not stop at any orbital nodes
 obj.stop = [0 0 0 0 0 0 1 1 0 0];
 case 'Trans' % Transfer Orbit, waits 1/2 period and accounts for burn
times

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 4 of 9

 obj.stop = [0 0 0 0 0 0 1 1 0 0];
 otherwise
 error('Invalid BrnTyp Value')
 end

 % Main orbit propagation integration
 mainInt(obj);

 % Populate shared results object if needed
 if strcmp(obj.resultPop,'on')
 obj.Results.Type = obj.PhysTyp;
 obj.Results.Vi = norm(obj.Results.Rt(1,4:6));
 obj.Results.raAlt = obj.State.ra-obj.Body_DB.Re; % Warning: result is
approximation if in ellipsoid planet mode
 end

 % Print outputs
 if strcmp(obj.output,'on')
 Outputs(obj) % print
 end

 % Reset options properties to defaults
 if nargin > 0 && ~isempty(varargin) && isa(varargin{1},'struct')
 optsReset(obj,varargin{1});
 end

 % Reset Altitude warning flag
 obj.warnFlg = true;
 end

 % Save object to MAT file
 function s = saveObjectImpl(obj)
 s = saveObjectImpl@matlab.System(obj);
 s.stop = matlab.System.saveObject(obj.stop);
 s.saveStrct = matlab.System.saveObject(obj.saveStrct);
 end

 % Load object from MAT file
 function loadObjectImpl(obj,s,isInUse)
 obj.stop = s.stop;
 obj.saveStrct = s.saveStrct;
 loadObjectImpl@matlab.System(obj,s,isInUse);
 end

 end

 methods (Access = protected)

 function mainInt(obj)

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 5 of 9

 % Break out a few state object properties
 T = obj.State.T; Reci = obj.State.Reci; Veci = obj.State.Veci;
 t_curr = obj.Time.elTime;

 % Perform a short integration to bring vehicle slightly past critical
 % point to prevent double triggering of event fcn
 m_o = obj.State.ScM;
 tspanJ = [t_curr t_curr+obj.laps/2 t_curr+obj.laps];
 [t_jump,Rt_jump] = obj.ODEfun(@(t,R) TwoBody(obj,t,R),tspanJ,[Reci; Veci;
m_o],obj.opts1);

 % Reset initial conditions after short step
 Reci = Rt_jump(end,1:3)';
 Veci = Rt_jump(end,4:6)';
 t_curr = t_jump(end);

 % Setup main trajectory segment timespan
 if strcmp(obj.calcSpd, 'continuous')
 if strcmp(obj.PhysTyp, 'Aero'); T = obj.Tmax; end
 tspan = t_curr:obj.tstep:t_curr + T;
 elseif strcmp(obj.calcSpd, 'jump')
 if strcmp(obj.PhysTyp, 'Aero'); T = obj.Tmax; end
 tspan = [t_curr t_curr + T];
 else
 error('property "calcSpd" set incorrectly')
 end

 % Main trajectory integrator call
 [t,Rt,te,ye,ie] = obj.ODEfun(@(t,R) TwoBody(obj,t,R),tspan,[Reci; Veci;
m_o],obj.opts2);

 % Stitch together short integration and main integration
 t = [t_jump; t]; Rt = [Rt_jump; Rt];

 % If next orbital segment is a burn
 if obj.State.Tb > 0
 % go back and find conditions 1/2 the burn time back in orbit to ensure
burn splits event
 [~,ix] = min(abs(t-(t(end)-obj.State.Tb/2)));

 % populate total array up until burn start
 Rt = Rt(1:ix,:);
 t = t(1:ix,:);
 end

 % Populate Results if necessary
 if strcmp(obj.resultPop,'on')
 obj.Results.t = t; obj.Results.Rt = Rt; obj.Results.te = te; obj.
Results.ye = ye; obj.Results.ie = ie;
 obj.Results.Tb = 0; obj.Results.dVec = 0; obj.Results.dV = 0;

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 6 of 9

 end

 % Populate shared handle objects with new trajectory data
 obj.State.Reci = Rt(end,1:3)';
 obj.State.Veci = Rt(end,4:6)';
 obj.State.ScM = Rt(end,7);
 obj.Time.elTime = t(end);

 % Update State
 obj.State.step;

 end

 function drdt = TwoBody(obj,t,R)

 % Extract Vars from struct inputs
 mu = obj.Body_DB.mu; Re = obj.Body_DB.Re;

 % Set the massflow rate to zero for cruise and aero orbits
 % when rocket engine isn't burning and S/C isn't loosing mass
 if strcmp(obj.PhysTyp, 'Cruise') || strcmp(obj.PhysTyp, 'Aero')
 m_dot = 0;
 elseif strcmp(obj.Thruster, 'Low')
 m_dot = obj.SC_DB.m_dot_low;
 elseif strcmp(obj.Thruster, 'High')
 m_dot = obj.SC_DB.m_dot;
 else
 error('property "Thruster" set incorrectly')
 end

 % Warns user if crossing below altitude threshold while in
 % cruise or burn phase
 if (strcmp(obj.PhysTyp, 'Burn') || strcmp(obj.PhysTyp, 'Cruise')) && obj.
State.Alt < obj.Body_DB.AltThr-1 && strcmp(obj.output,'on') && obj.warnFlg
 warning('Below atmospheric threshold while in cruise or maneuver
physics (vacuum only) check stopping criteria')
 obj.warnFlg = false;
 end

 % Initialization
 r = norm(R(1:3)); % calculate magnitude
 v = norm(R(4:6));

 % OBLATENESS EFFECTS
 J2 = obj.Body_DB.J2; % second zonal harmonic

 x = R(1); y = R(2); z = R(3);
 p1 = x/r*(5*z^2/r^2-1);
 p2 = y/r*(5*z^2/r^2-1);
 p3 = z/r*(5*z^2/r^2-3);

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 7 of 9

 % Perturbation vector
 P = 3/2*J2*mu*Re^2/r^4.*[p1
 p2
 p3];

 % Disable J2 perturbations
 % P = [0;0;0];

 P = Perturb(obj,t,P,R);

 % Kepler ODE in state space form
 drdt = [R(4)
 R(5)
 R(6)
 -mu/r^3*R(1)+P(1)
 -mu/r^3*R(2)+P(2)
 -mu/r^3*R(3)+P(3)
 m_dot];

 end

 function P = Perturb(~,~,P,~)
 % Default superclass is for a cruise orbit so unperturbed
 end
 end

 methods
 function setupfun(~)
 % placeholder for subclasses
 end

 % Print termination criteria
 function termfun(~,ie)
 if ~isempty(ie)
 switch ie(end)
 case 1 % periapsis
 fprintf('Integration Stopped: Periapsis Reached\n')
 case 2 % apoapsis
 fprintf('Integration Stopped: Apoapsis Reached\n')
 case 3 % ascending node
 fprintf('Integration Stopped: Ascending Node Reached\n')
 case 4 % descending node
 fprintf('Integration Stopped: Descending Node Reached\n')
 case 5 % aerobrake (stops at certain altitude)
 fprintf('Integration Stopped: Atmospheric Cutoff Altitude
Reached (Descending) \n')
 case 6 % aerobrake (stops at certain altitude)
 fprintf('Integration Stopped: Atmospheric Cutoff Altitude
Reached (Ascending) \n')

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 8 of 9

 case 7 % spacecraft has impacted surface
 fprintf('Integration Stopped: Spacecraft Impacted Surface
(Descending) \n')
 case 8 % spacecraft has impacted surface from below (If you see
this, something is really screwed up)
 fprintf('Integration Stopped: Spacecraft Impacted Surface
(Ascending) \n')
 case 9 % Termination Velocity Reached
 fprintf('Integration Stopped: Termination Velocity Reached \n')
 case 10 % Termination Velocity Reached
 fprintf('Integration Stopped: Termination Velocity Reached \n')
 otherwise % Termination Velocity Reached
 fprintf('Integration Stopped: Maximum time step or number or
orbits reached \n')
 end
 end
 end

 % Prints the current state after completing a trajectory segment
 function Outputs(obj)
 fmt = "%-20s %-10.3f %-5s\n";
 fprintf('\nIntegrator completed %s trajectory segment\n', obj.PhysTyp)
 fprintf("Current Vehicle State:\n");
 fprintf(fmt,"Altitude:",obj.State.Alt, "km")
 fprintf(fmt,"Velocity:",obj.State.V, "km/s")
 fprintf(fmt,"Flight Path Angle:",obj.State.FPA, "deg")
 fprintf(fmt,"Azimuth:",obj.State.Az, "deg")
 fprintf(fmt,"Elapsed Time:",obj.State.elTime, "s")

 if strcmp(obj.PhysTyp,'Burn')
 fprintf(fmt,"Burn Time:",obj.Results.Tb, "s")
 fprintf(fmt,"Delta V:",obj.Results.dV, "m/s")
 end
 termfun(obj,obj.Results.ie)
 end

 % populates properties based on a struct input
 function optsGen(obj,options)
 optFields = fieldnames(options);
 for fi = 1:numel(optFields)
 obj.saveStrct.(optFields{fi}) = obj.(optFields{fi});
 obj.(optFields{fi}) = options.(optFields{fi});
 end
 end

 % Reset properties to previous values after run.
 function optsReset(obj,options)
 optFields = fieldnames(options);
 for fi = 1:numel(optFields)
 obj.(optFields{fi}) = obj.saveStrct.(optFields{fi});

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 9 of 9

 end
 end
 end
end

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\plotProps.m 1 of 4

classdef plotProps < matlab.System
 % Contains all colors and plotting poperties for 2D aerothermal and
 % trajectory plots

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 Axes % Axis handle
 numPlots = 6; % Number of aerothermal plots
 aeroYax = ["qs","Js","V","alt","alt","alt"]; % x axis data
 aeroXax = ["t", "t", "t", "t","fpa","V"]; % y axis data
 resultYax = ["qsMax"]; % Batch plot run X axis data
 resultXax = ["raAlt"]; % Batch plot run Y axis data
 resultLeg = ["BC","Vi"]; % Legend Properties for batch run plot
 weightFactor = ["tPost"]; % Weight function property
 titles % Title array for plots
 pAxes % Axis handle for batch run plot
 pXaxes % X axis handle for batch run plot
 pYaxes % Y axis handle for batch run plot
 pLegend % Legend for batch run plot
 pLegCt % Legend index
 linewidth = 2; % Line width
 coloFun = @hsv % color array function (jet, hsv, parula, etc)
 pallette = "gem" % color pallete string (see MATLAB documentation)
 colorOpt = "pal" % grad (hsv, parula, jet, etc.) or pal (gem, reef, etc.)
 numColors = 4; % Number of colors before switching line style
 linestyles = ["-","--","-.",":"]; % Line styles
 styleOrder = 'aftercolor'; % aftercolor runs through colors before linestyles,
beforecolor runs through linestyles first
 col % Matrix of RGB triplets for color
 end

 properties
 Results % trajectory results shared object
 end

 % Pre-computed constants or internal states
 properties (Access = private)

 end

 methods (Access = protected)

 % Generate plots for initial setup
 function setupImpl(obj)
 plotQuery(obj);
 end

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\plotProps.m 2 of 4

 function stepImpl(obj)

 % regen plots if deleted
 if ~isvalid(obj.Axes)
 plotQuery(obj)
 end

 % Plot results
 for i2 = 1:obj.numPlots

 % X axis
 Xx = obj.Results.(obj.aeroXax(i2));

 % crop to time since entry interface
 if strcmp(obj.aeroXax(i2),"t")
 Xx = Xx-Xx(1);
 end

 % Y axis
 Yx = obj.Results.(obj.aeroYax(i2));

 % Get title and x/y label strings from results object
 xLab = obj.Results.plotLabels.(obj.aeroXax(i2)).label;
 yLab = obj.Results.plotLabels.(obj.aeroYax(i2)).label;
 Title = strcat(obj.Results.plotLabels.(obj.aeroYax(i2)).title," vs. ",
obj.Results.plotLabels.(obj.aeroXax(i2)).title);

 % query colors and styles
 linestyleorder(obj.Axes(i2),obj.linestyles)
 linestyleorder(obj.Axes(i2),obj.linestyles,obj.styleOrder);
 colororder(obj.Axes(i2),obj.col)

 % generate plots, allow for log plots with knudsen number
 if strcmp(obj.aeroXax(i2),'Kn')
 semilogx(obj.Axes(i2),Xx,Yx,'LineWidth',obj.linewidth)
 elseif strcmp(obj.aeroYax(i2),'Kn')
 semilogy(obj.Axes(i2),Xx,Yx,'LineWidth',obj.linewidth)
 else
 plot(obj.Axes(i2),Xx,Yx,'LineWidth',obj.linewidth)
 end

 % Plot formatting
 title(obj.Axes(i2),Title)
 xlabel(obj.Axes(i2),xLab)
 ylabel(obj.Axes(i2),yLab)
 grid(obj.Axes(i2),"on")
 hold(obj.Axes(i2),"on")
 end
 end
 end

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\plotProps.m 3 of 4

 methods

 % Plot select properties from batch runs
 function plotResults(obj,xX,yY)

 % Re-create figure if it has been deleted
 if isempty(obj.pAxes) || ~isvalid(obj.pAxes)
 figure
 obj.pAxes = axes(); obj.pLegCt = 1;
 end

 % Get title and x/y label strings from results object
 xLab = obj.Results.plotLabels.(obj.resultXax).label;
 yLab = obj.Results.plotLabels.(obj.resultYax).label;
 Title = strcat(obj.Results.plotLabels.(obj.resultYax).title," vs. ",obj.
Results.plotLabels.(obj.resultXax).title);

 % query colors and styles
 linestyleorder(obj.pAxes,obj.linestyles)
 linestyleorder(obj.pAxes,obj.linestyles,obj.styleOrder);
 colororder(obj.pAxes,obj.col)

 % generate plots
 plot(obj.pAxes,xX,yY,'LineWidth',obj.linewidth)
 title(obj.pAxes,Title)
 xlabel(obj.pAxes,xLab)
 ylabel(obj.pAxes,yLab)
 grid(obj.pAxes,"on")
 hold(obj.pAxes,"on")
 end

 % Setup plot color and style options
 function colOut = get.col(obj)
 switch obj.colorOpt
 case 'grad'
 colOut = obj.coloFun(obj.numColors);
 case 'pal'
 colOut = orderedcolors(obj.pallette);
 otherwise
 colOut = orderedcolors("gem");
 colOut = colOut(1:obj.numColors,:);
 end

 % Crop color array if needed
 if obj.numColors < height(colOut)
 colOut = colOut(1:obj.numColors,:);
 end
 end

5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\plotProps.m 4 of 4

 % Iteratively populate legend labels
 function setLegend(obj,str)
 obj.pLegend{obj.pLegCt} = str;
 obj.pLegCt = obj.pLegCt + 1;
 end

 % Generate legend
 function createLegend(obj)
 % legend(obj.pAxes,obj.pLegend);

 legend(obj.pAxes,obj.pLegend(1:3))
 % plot(1,1,'Color','k','LineStyle','-','LineWidth',2)
 % plot(1,1,'Color','k','LineStyle','--','LineWidth',2)
 % plot(1,1,'Color','k','LineStyle','-.','LineWidth',2)
 end

 % Generate and setup figures and axes
 function plotQuery(obj)
 figure
 obj.Axes = axes();
 for i1 = 1:obj.numPlots
 if i1 ~= 1
 figure
 obj.Axes(i1) = axes();
 end
 end
 end
 end
end

5/11/25 8:03 PM C:\Users\bohda\OneDrive\Des...\SCInputs.m 1 of 2

classdef SCInputs < matlab.System
 % Manages the spacecraft and entry vehicle geometry, contains an
 % aerodatabase object to perform all aerodynamic calculations

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties (SetObservable, AbortSet)
 % Rocket Engine and satellite Parameters
 Thr = 100; % N Thrust
 LowThr = 4; % N Low thrust output for small maneuvers
 m_o = 300; % kg Initial spacecraft mass
 ISP = 300; % seconds specific impulse
 go = 9.8; % gravity m/s^2
 D = 1; % Diameter (m)
 halfAng = 70; % Cone angle (deg)
 biCon = 30; % 2nd biconic angle (deg) Parameter must be set in aeroDB to use
 alpha = 0; % Trim Angle of Attack (deg) % potentially add conversion to
bank/roll angle
 beta = 0; % Trim Angle of Sideslip (deg)
 RN = .25; % Nose radius
 m_dot % mass flow rate (kg/s)
 m_dot_low % low thruster mass flow rate (kg/s)
 A % Frontal area (m^2)
 BC % Ballistic Coefficient (kg/m^2)
 Aero_DB % Aero-database object
 end

 % Pre-computed constants or internal states
 properties (Access = private)
 SCDB
 end

 methods (Access = protected)

 function setupImpl(obj)
 % Initialize rocket engine parameters
 updateEnginePerf(obj)

 % Update Aero-database based on geometry inputs
 obj.Aero_DB = AeroDB;
 updateGeometry(obj)
 obj.Aero_DB.step;

 % Update ballistic coefficient
 updateBC(obj)
 end

 function stepImpl(~)

5/11/25 8:03 PM C:\Users\bohda\OneDrive\Des...\SCInputs.m 2 of 2

 end

 % Save object
 function s = saveObjectImpl(obj)
 s = saveObjectImpl@matlab.System(obj);
 end

 % Load object
 function loadObjectImpl(obj,s,isInUse)
 loadObjectImpl@matlab.System(obj,s,isInUse);
 end
 end

 methods
 % Export current object properties as a struct
 function strctOut = get.SCDB(obj)
 strctOut = struct;
 publicProperties = properties(obj);
 for fi = 1:numel(publicProperties)
 strctOut.(publicProperties{fi}) = obj.(publicProperties{fi});
 end
 end

 % Update rocket engine parameters
 function updateEnginePerf(obj)
 obj.m_dot = -obj.Thr/(obj.ISP*obj.go); % kg/s
 obj.m_dot_low = -obj.LowThr/(obj.ISP*obj.go); % kg/s
 end

 % Update geometry and aerodatabase
 function updateGeometry(obj)
 obj.A = pi/4*(obj.D^2); %Frontal area (m^2)
 obj.Aero_DB.R = obj.D/2; % Diameter (m)
 obj.Aero_DB.RN = obj.RN; % Nose Radius (m)
 obj.Aero_DB.tc1 = obj.halfAng; % Sphere cone half angle (deg)
 obj.Aero_DB.tc2 = obj.biCon; % Bi-conic half angle (deg)
 obj.Aero_DB.trimAlpha = obj.alpha; % trim angle of attack (deg)
 obj.Aero_DB.trimBeta = obj.beta; % trim angle of sideslip (deg)
 end

 % Update Ballistic Coefficient
 function updateBC(obj)
 obj.BC = obj.m_o/(obj.Aero_DB.CD*obj.A); %kg/m^2
 end
 end
end

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 1 of 10

classdef SCState < matlab.System
 % This object represents all orbital elements, state vectors and
 % properties needed to pass from one orbit propagation to another. The
 % methods are used to calculate other properties given a few

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 %% TOPOCENTRIC COORDINATES
 FPA = 0; % Flight Path Angle
 V = 0; % Velocity Magnitude
 Alt = 0; % Altitude
 Lat = 0; % Latitude
 Long = 0; % Longitude
 Az = 0; % Azimuth

 %% Keplerian Elements
 e = 0; % eccentricity
 a = 0; % Semi Major Axis
 inc = 0; % inclination
 Arg = 0; % arguement of periapsis
 Asc = 0; % ascension of ascending node
 theta = 0; % true anamoly

 %% ADDITIONAL ORBITAL PARAMETERS
 minalt = 0; % altitude at periapsis Change between 120 and 150 km
 rp = 0; % Radius at perigee
 ra = 0; % Radius at apogee
 h = 0; % Angular Momentum
 T = 0; % Orbital Period
 v_inf = 0; % Escape Velocity

 %% POSITION AND VELOCITY VECTORS
 Reci = zeros(3,1); % Vehicle Position Vector
 Veci = zeros(3,1); % Vehicle Velocity Vector
 QECI = zeros(3,3); % ECI to Perifocal Coordinate Transformation Matrix
 Qmat = zeros(3,3); % ECI to ENZ Coordinate Transformation Matrix
 R = 0; % Position Magnitude

 %% TIME PARAMETERS
 elTime = 0; % Elapsed time

 %% MASS AND MANEUVERING PARAMETERS
 ScM = 0; % Spacecraft Mass
 Tb = 0; % Burn Time
 dVec = zeros(3,1); % Burn Vector
 end

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 2 of 10

 properties (Dependent)
 Rad % local body radius dependent on whether spherical or ellipsoid
 end

 %% Shared Handle Objects and Internal States
 properties (Access = private)
 radSave % Stored value for local body radius
 prevState % Previous saved states
 StStrct % Struct Representing all elements in state
 Body_DB % Planetary parameters shared handle object
 timeObj % Time dependent property shared handle object
 resetFlag = false; % Flag indicating wheter object has just reset
 end

 methods
 % Constructor: Pass State and Result Handle objects
 function obj = SCState(InState)
 % Create a state based on struct input
 if nargin ~= 0
 popState(obj,InState)
 end
 end
 end

 %% Protected System Object Methods
 % System object specific methods like stepImpl, resetImpl,
 % processTunedPropertiesImpl, saveObjectImpl, and loadObjectImpl

 methods (Access = protected)

 function processTunedPropertiesImpl(obj)
 if obj.resetFlag
 obj.resetFlag = false;
 else

 % Check if position and velocity vectors have changed
 rChg = isChangedProperty(obj,'Reci');
 vChg = isChangedProperty(obj,'Veci');
 if rChg && vChg
 ECItoKep(obj)
 ECItoLLA(obj)
 else

 % Check if keplerian elements have changed
 aChg = isChangedProperty(obj,'a');
 eChg = isChangedProperty(obj,'e');
 incChg = isChangedProperty(obj,'inc');
 ArgChg = isChangedProperty(obj,'Arg');
 AscChg = isChangedProperty(obj,'Asc');
 ThetaChg = isChangedProperty(obj,'theta');

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 3 of 10

 minaltChg = isChangedProperty(obj,'minalt');
 if aChg || eChg || incChg || ArgChg || AscChg || ThetaChg ||
minaltChg
 % allows adjustment of minimum altitude
 if minaltChg
 obj.rp = obj.minalt+obj.Rad; % periapsis
 obj.a = obj.rp/(1-obj.e);
 obj.e = obj.e;
 end
 KeptoECI(obj)
 ECItoLLA(obj)
 else

 % Check if topocentric coordinates have changed
 VChg = isChangedProperty(obj,'V');
 AltChg = isChangedProperty(obj,'Alt');
 LongChg = isChangedProperty(obj,'Long');
 LatChg = isChangedProperty(obj,'Lat');
 fpaChg = isChangedProperty(obj,'FPA');
 AzChg = isChangedProperty(obj,'Az');

 if VChg || AltChg || LongChg || LatChg || fpaChg || AzChg
 LLAtoECI(obj)
 ECItoKep(obj)
 end
 end
 end
 ExtraProps(obj)
 end
 end

 function stepImpl(~)

 end

 % reset supports only two saved states, one as an initial starting
 % state, and one prior to any optomization or look-forward
 % functions
 function resetImpl(obj)
 if length(obj.prevState) == 2
 popState(obj,obj.prevState(2))
 obj.timeObj.elTime = obj.prevState(2).elTime;

 % update state to reinitialize properties
 obj.resetFlag = true; obj.step;
 elseif isscalar(obj.prevState)
 popState(obj,obj.prevState)
 obj.timeObj.elTime = obj.prevState.elTime;

 % update state to reinitialize properties

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 4 of 10

 obj.resetFlag = true; obj.step;
 end
 end

 % Save state object
 function s = saveObjectImpl(obj)
 s = saveObjectImpl@matlab.System(obj);
 s.Body_DB = obj.Body_DB;
 s.timeObj = obj.timeObj;
 s.prevState = obj.prevState;
 s.resetFlag = obj.resetFlag;
 end

 % Load state object
 function loadObjectImpl(obj,s,isInUse)
 obj.Body_DB = s.Body_DB;
 obj.timeObj = s.timeObj;
 obj.prevState = s.prevState;
 obj.resetFlag = s.resetFlag;
 loadObjectImpl@matlab.System(obj,s,isInUse);
 end
 end

 methods
 %% SAVED STATE MANAGEMENT
 % State object supports up to two saved states one at the start of
 % the trajectory, and a 2nd prior to any optomizations

 % Clears previous states and sets the current state to the initial
 % state
 function newState(obj)
 obj.prevState = [];
 obj.saveState;
 end

 % Stores previous states in structs
 function saveState(obj)
 % supports storing of two previous states
 if isempty(obj.prevState)
 obj.prevState = obj.StStrct;
 else
 obj.prevState = [obj.prevState(1) obj.StStrct];
 end
 end

 % reduces the number of saved states from 2 to 1
 function revertState(obj)
 if length(obj.prevState) == 2
 obj.prevState = obj.prevState(1);
 end

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 5 of 10

 end

 % Populates properties from struct
 function popState(obj,inStruct)
 publicProperties = properties(obj);
 if length(fieldnames(inStruct)) == numel(publicProperties)
 for fi = 1:numel(publicProperties)
 obj.(publicProperties{fi}) = inStruct.(publicProperties{fi});
 end
 end
 end

 %% COORDINATE TRANSFORMATION FUNCTIONS

 % Keplerian Elements to ECI position and velocity Vector
 function KeptoECI(obj)
 % Extract Gravitational Parameter
 mu = obj.Body_DB.mu;

 % Angular momentum
 obj.h = sqrt(obj.a*mu)*sqrt(1-obj.e^2); % km^2/s

 % Calculate r and v in perifocal frame
 RpF = obj.h^2/(mu*(1+obj.e*cosd(obj.theta))).*[cosd(obj.theta);sind(obj.
theta);0];
 VpF = mu/obj.h.*[-sind(obj.theta); obj.e+cosd(obj.theta); 0];

 % formulate perifocal to ECI transform matrix
 Qeci1 = [cosd(obj.Arg) sind(obj.Arg) 0
 -sind(obj.Arg) cosd(obj.Arg) 0
 0 0 1];

 Qeci2 = [1 0 0
 0 cosd(obj.inc) sind(obj.inc)
 0 -sind(obj.inc) cosd(obj.inc)];

 Qeci3 = [cosd(obj.Asc) sind(obj.Asc) 0
 -sind(obj.Asc) cosd(obj.Asc) 0
 0 0 1];

 % Formulate matrix
 obj.QECI = Qeci1*Qeci2*Qeci3;

 % compute transpose
 obj.QECI = obj.QECI';

 % ECI Position and Velocity vector
 obj.Reci = obj.QECI*RpF;
 obj.Veci = obj.QECI*VpF;
 obj.R = norm(obj.Reci);

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 6 of 10

 end

 % ECI position and velocity Vector to keplerian Elements
 function ECItoKep(obj)
 % Extract Gravitational Parameter
 mu = obj.Body_DB.mu;

 % Total Radius
 obj.R = norm(obj.Reci); % km

 % radial velocity
 vrad = dot(obj.Reci,obj.Veci)/obj.R;

 % calculating angular momentum
 H = cross(obj.Reci,obj.Veci); % km^2/s
 obj.h = sqrt(dot(H,H)); % km^2/s

 % inclination
 obj.inc = acosd(H(3)/obj.h);
 if obj.inc == 180 % establish that 0 and 180 inclinationa are the same
 obj.inc = 0;
 end

 % Nodal Vector
 K = [0 0 1];
 N = cross(K,H);
 n = norm(N);

 % Calculate ascending node with quadrant ambiguity
 if N(2) >= 0
 obj.Asc = acosd(N(1)/n);
 else
 obj.Asc = 360-acosd(N(1)/n);
 end

 % calculating eccentricity vector and magnitude
 E = cross(obj.Veci,H)./mu-obj.Reci./obj.R;
 obj.e = norm(E);

 % calculate argument of periapsis with quadrant ambiguity
 if E(3) >= 0
 obj.Arg = acosd(dot(N,E)/(n*obj.e));
 else
 obj.Arg = 360-acosd(dot(N,E)/(n*obj.e));
 end

 % calculate true anamoly with quadrant ambiguity (use radial velocity)
 if vrad >= 0
 obj.theta = acosd(dot(E/obj.e,obj.Reci/obj.R));

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 7 of 10

 else
 obj.theta = 360-acosd(dot(E/obj.e,obj.Reci/obj.R));
 end

 % Semi major axis
 obj.a = obj.h^2/(mu*(1-obj.e^2));

 % Formulate Matrix
 Qeci1 = [cosd(obj.Arg) sind(obj.Arg) 0
 -sind(obj.Arg) cosd(obj.Arg) 0
 0 0 1];

 Qeci2 = [1 0 0
 0 cosd(obj.inc) sind(obj.inc)
 0 -sind(obj.inc) cosd(obj.inc)];

 Qeci3 = [cosd(obj.Asc) sind(obj.Asc) 0
 -sind(obj.Asc) cosd(obj.Asc) 0
 0 0 1];

 obj.QECI = Qeci1*Qeci2*Qeci3;

 % compute transpose
 obj.QECI = obj.QECI';

 end

 % Topocentric coordinates to ECI position and velocity Vector
 function LLAtoECI(obj)

 % Get current sidereal time from time object
 W = obj.timeObj.Wcurr;

 % longitude (long) must be expressed in 0-360 scale for this calculation
 sid = W + obj.Long;

 % Rotation matrix from the ENZ (East, North, Zenith) frame to the ECI
 % (Equator Centered Inertial) Frame (switch away from cosd/sind
 % to radians for slight performance boost)
 Q = [-sind(sid) -sind(obj.Lat)*cosd(sid) cosd(obj.Lat)*cosd(sid)
 cosd(sid) -sind(obj.Lat)*sind(sid) cosd(obj.Lat)*sind(sid)
 0 cosd(obj.Lat) sind(obj.Lat)];

 % Position vector in the ENZ frame
 Renz = [0; 0; obj.Rad+obj.Alt];

 % Create ECI position Vector
 obj.Reci = Q*Renz;

 % Velocity vector in the ENZ frame

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 8 of 10

 Venz = [cosd(obj.FPA)*sind(obj.Az)
 cosd(obj.FPA)*cosd(obj.Az)
 sind(obj.FPA)];

 % Create ECI velocity Vector
 obj.Veci = obj.V*Q*Venz;
 end

 % ECI position and velocity Vector to topocentric coordinates
 function ECItoLLA(obj)
 % Get current sidereal time from time object
 W = obj.timeObj.Wcurr;

 % Enforce longitude convention is 0 to 360
 sid = atan2d(obj.Reci(2),obj.Reci(1));
 if sid < 0
 sid = 360 + sid;
 end

 % Calculate Longitude
 obj.Long = sid-W;
 if obj.Long < 0 % Longitude convention is 0 to 360
 obj.Long = 360 + obj.Long;
 end

 % Calculate Geocentric Latitude
 obj.Lat = 90-atan2d(sqrt(obj.Reci(1)^2+obj.Reci(2)^2),obj.Reci(3));

 % Geocentric Altitude
 obj.Alt = norm(obj.Reci)-obj.Rad;

 % Rotation matrix from the ENZ (East, North, Zenith) frame to the ECI
 % (Equator Centered Inertial) Frame (switch away from cosd/sind
 % to radians for slight performance boost)
 Q = [-sind(sid) -sind(obj.Lat)*cosd(sid) cosd(obj.Lat)*cosd(sid)
 cosd(sid) -sind(obj.Lat)*sind(sid) cosd(obj.Lat)*sind(sid)
 0 cosd(obj.Lat) sind(obj.Lat)];

 % Inertial Velocity
 obj.V = norm(obj.Veci);
 Venz = Q'*obj.Veci/obj.V;

 % Flight Path Angle
 obj.FPA = asind(Venz(3));

 % Necessary to force a real value here as roundoff errors can produce a
 % value slightly above 1 (on order of 1+1e-16) and acos will spit out
 % an imaginary value (often occurs near north pole)
 % Azimuth
 obj.Az = real(acosd(Venz(2)/cosd(obj.FPA)));

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 9 of 10

 % Quadrant Check (supports -180 to 180 convention)
 if Venz(1) < 0
 obj.Az = -obj.Az;
 end
 obj.Qmat = Q;
 end

 % Additional orbital parameters dependent on keplerian elements
 function ExtraProps(obj)
 % Bounded Orbit
 if obj.e < 1
 obj.T = 2*pi/sqrt(obj.Body_DB.mu/obj.a^3);

 % Interplanetary Hyperbolic Orbit
 else % bad practice hardcoded limit, need additional property to limit
maximum time
 obj.T = 2*pi/sqrt(obj.Body_DB.mu/900000^3);
 obj.v_inf = sqrt(-obj.Body_DB.mu/obj.a);
 end
 obj.rp = obj.a*(1-obj.e);
 obj.ra = obj.a*(1+obj.e);
 obj.minalt = obj.rp - obj.Body_DB.Re;
 end

 %% GET/SET METHODS

 % Create a struct of all current state properties
 function Out = get.StStrct(obj)
 publicProperties = properties(obj);
 for fi = 1:numel(publicProperties)
 Out.(publicProperties{fi}) = obj.(publicProperties{fi});
 end
 end

 % Extract struct private property
 function Out = passStrct(obj)
 Out = obj.StStrct;
 end

 % Extract Elapsed time from time manager object
 function timeOut = get.elTime(obj)
 if isempty(obj.timeObj)
 timeOut = [];
 elseif isa(obj.timeObj,'timeMgr')
 timeOut = obj.timeObj.elTime;
 else
 error('Invalid State inputs, time manager object may be set
incorrectly')
 end

5/11/25 8:02 PM C:\Users\bohda\OneDrive\De...\SCState.m 10 of 10

 end

 % Position dependent body radius, variable if ellipsoid planet
 % model is used
 function radOut = get.Rad(obj)
 if isempty(obj.Body_DB)
 radOut = [];
 elseif strcmp(obj.Body_DB.planModel,'sphere')
 radOut = obj.Body_DB.Re; obj.radSave = radOut;
 elseif strcmp(obj.Body_DB.planModel,'ellipse')
 Re = obj.Body_DB.Re; Rp = obj.Body_DB.Rp;
 radOut = Re*Rp/(sqrt((Rp*cosd(obj.Lat))^2+(Re*sind(obj.Lat))^2));
 obj.radSave = radOut;
 else
 error('Planet shape model must be either "ellipse" or "sphere" ')
 end
 end

 % Set private property to store value
 function set.Rad(obj,val)
 obj.radSave = val;
 end

 % Shared handle object for planetary body inputs
 function setBody(obj,bodIn)
 obj.Body_DB = bodIn;
 end

 % Shared handle object time dependent properties
 function setTime(obj,timeIn)
 obj.timeObj = timeIn;
 end
 end
end

5/11/25 7:59 PM C:\Users\bohda\OneDrive\Desk...\timeMgr.m 1 of 3

classdef timeMgr < matlab.System
 % Handles time dependent planetary properties

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 planet % Planet
 a0 % Polar axis orientation angle
 d0 % Polar axis orientation angle
 Wcurr % Current sidereal time
 W0 % Initial sidereal time
 JDcurr % Current Julian date
 JDelapse % Julian date since standard epoch
 elTime = 0; % elapsed time
 Epoch = 2451545; % Standard Epoch 2000 January 1 12 h TDB
 wNut = 'off' % model nutation of planetary body rotation rate
 ICRF = 'off' % Model trajectory propagations in the high accuracy
 % ICRF inertial frame, Z axis points normal to the ICRF
 % equator and the tilt and precession of the planetary
 % rotation axis is modeled with the a0 and d0
 % parameters
 setFlag = false
 end

 properties (SetObservable, AbortSet)
 JD0
 startTime = datetime(2025,3,25,12,0,0);
 end

 methods (Access = protected)
 function setupImpl(obj)
 setW0(obj);
 end

 function stepImpl(~)

 end
 end

 methods

 function obj = timeMgr
 % allows the julian date or UTC time to automatically update
 % when the other is set
 addlistener(obj,'JD0','PostSet',@obj.setJD0);
 addlistener(obj,'startTime','PostSet',@obj.setStartTime);
 end

5/11/25 7:59 PM C:\Users\bohda\OneDrive\Desk...\timeMgr.m 2 of 3

 function setW0(obj)
 obj.W0 = obj.Wcurr; % initialize sidereal time
 end

 function jOut = get.JDcurr(obj)
 jOut = obj.JD0 + obj.elTime/86400;
 end

 function jOut = get.JDelapse(obj)
 jOut = obj.JDcurr-obj.Epoch;
 end

 function wOut = get.Wcurr(obj)
 if isempty(obj.planet); error('planet not set in time object'); end
 switch obj.planet
 case 'Venus'
 wOut = 160.20 - 1.4813688*obj.JDelapse;
 case 'Uranus'
 wOut = 203.81 - 501.1600928*obj.JDelapse;
 case 'Neptune'
 N = 357.85 + 52.316*obj.JDelapse/36525;
 wOut = 249.978+541.1397757*obj.JDelapse-0.48*sin(N);
 case 'Jupiter'
 wOut = 284.95+870.536*obj.JDelapse;
 case 'Earth'
 wOut = 360.9852*obj.JDelapse; % Warning, Earth rotation model
should refer to IERS data
 case 'Mars'
 wOut = 176.049863 + 350.891982443297*obj.JDelapse + 0.555;
 if strcmp(wOut,'on')
 T = obj.JDelapse/36525;
 wOut = 176.049863 + 350.891982443297*obj.JDelapse...
 + 0.000145*sin(129.071773 + 19140.0328244*T)...
 + 0.000157*sin(36.352167 + 38281.0473591*T)...
 + 0.000040*sin(56.668646 + 57420.9295360*T)...
 + 0.000001*sin(67.364003 + 76560.2552215*T)...
 + 0.000001*sin(104.792680 + 95700.4387578*T)...
 + 0.584542*sin(95.391654 + 0.5042615*T);
 end
 case 'Titan'
 wOut = 186.5855 + 22.5769768*obj.JDelapse;
 otherwise
 error('Invalid Planet Entry')
 end

 % sidereal time in degrees from 0 to 360
 wOut = wOut/360;
 wOut = (wOut-floor(wOut))*360;

 % Archinal, B.A., Acton, C.H., A’Hearn, M.F. et al. Report of the IAU

5/11/25 7:59 PM C:\Users\bohda\OneDrive\Desk...\timeMgr.m 3 of 3

Working Group on Cartographic Coordinates and
 % Rotational Elements: 2015. Celest Mech Dyn Astr 130, 22 (2018). https:
//doi.org/10.1007/s10569-017-9805-5

 end
 end

 methods (Static)
 function setJD0(~,evnt)
 if ~evnt.AffectedObject.setFlag
 jd = evnt.AffectedObject.JD0;
 evnt.AffectedObject.setFlag = true;
 evnt.AffectedObject.startTime = datetime
(jd,'convertfrom','juliandate');
 evnt.AffectedObject.setFlag = false;
 setW0(evnt.AffectedObject);
 end
 end

 function setStartTime(~,evnt)
 if isa(evnt.AffectedObject.startTime,'datetime')
 if ~evnt.AffectedObject.setFlag
 evnt.AffectedObject.setFlag = true;
 evnt.AffectedObject.JD0 = juliandate(evnt.AffectedObject.
startTime);
 evnt.AffectedObject.setFlag = false;
 setW0(evnt.AffectedObject);
 end
 else
 warning('Attempted to set start time in time manager with a non
datetime formatted object')
 end
 end
 end
end

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Des...\TrajPlot.m 1 of 6

classdef TrajPlot < matlab.System
 % Handles 3D plotting of trajectory results. Tabulates and store
 % results across multiple trajectory segments

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Pre-computed constants or internal states
 properties
 resultCell % Run history cell array of all trajectory segments
 stateCell % Run history cell array of state values at nodes between trajectory
segments
 ResultsStr % output struct array of entire trajectory history
 StateStr % output struct array of all vehicle states at trajectory nodes
 seg = 1; % Number of trajectory segments
 Axes % 3D plot axes handle
 profileResults % Cell array for batch run results
 profileAxes % Axis handle for batch run results plot
 end

 properties
 State % Object Handle for Current Vehicle State Between Segments
 Results % Object handle for Trajectory Outputs of one orbital segment
 Body_DB % handle object for planetary body parameters database
 SC_DB % handle object for spacecraft parameters database
 plotData % handle object for managing plotting options
 end

 methods
 % Constructor: Pass State and Result Handle objects
 function obj = TrajPlot(varargin)
 % No inputs case, creates default reference objects internally
 if nargin == 0
 % Provide values for superclass constructor
 % and initialize other inputs
 obj.State = SCState;
 obj.Results = TrajResults;
 obj.Body_DB = BodyInputs;
 obj.SC_DB = SCInputs;
 obj.plotData = plotProps;

 % Individaul reference objects passed to constructor as inputs args
 elseif nargin == 5
 % When nargin ~= 0, assign to cell array,
 % which is passed to supclass constructor
 for i1 = 1:5
 if isa(varargin{i1},'SCState'); obj.State = varargin{i1};
 elseif isa(varargin{i1},'TrajResults'); obj.Results = varargin{i1};
 elseif isa(varargin{i1},'BodyInputs'); obj.Body_DB = varargin{i1};
 elseif isa(varargin{i1},'SCInputs'); obj.SC_DB = varargin{i1};

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Des...\TrajPlot.m 2 of 6

 elseif isa(varargin{i1},'plotProps'); obj.plotData = varargin{i1};
 else; error('Invalid shared object inputs');
 end
 end

 % Reference objects passed as a masterHand encapsulating object
 elseif nargin == 1 && isa(varargin{1},'masterHand')
 obj.State = varargin{1}.State;
 obj.Results = varargin{1}.Results;
 obj.Body_DB = varargin{1}.Body;
 obj.SC_DB = varargin{1}.S_C;
 obj.plotData = varargin{1}.plotData;
 else
 error('Invalid Constructor Inputs')
 end
 end
 end

 methods (Access = protected)

 % Setup, called only once upon first step
 function setupImpl(obj)
 initPlot(obj)
 end

 % Step: plots the trajectory contained within the results shared
 % handle object
 function stepImpl(obj)

 % Skip plot if results are empty
 if ~isempty(obj.Results.Rt)
 Rt = obj.Results.Rt;

 % Red for aero segment, blue for coast, and green for burn
 % (Make adjustable in future)
 switch obj.Results.Type
 case 'Aero'
 C = 'r';
 case 'Cruise'
 C = 'b';
 case 'Burn'
 C = 'g';
 otherwise
 end

 % If plot has been closed or axes deleted, create a new
 % figure window and plot
 if ~isvalid(obj.Axes)
 initPlot(obj)
 end

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Des...\TrajPlot.m 3 of 6

 % Plot trajectory
 plot3(obj.Axes,Rt(:,1),Rt(:,2),Rt(:,3),'LineWidth',1.25,'Color',C);
 hold on

 end

 % Populate results and current state into a run history cell
 % array
 obj.resultCell{obj.seg} = obj.Results.step;
 obj.stateCell{obj.seg} = obj.State.passStrct;
 obj.seg = obj.seg + 1;
 end

 % Clear run history results and state data
 function resetImpl(obj)
 obj.resultCell = [];
 obj.stateCell = [];
 obj.seg = 1;
 end
 end

 methods

 % Setup function for 3D trajectory plot
 function initPlot(obj)
 Re = obj.Body_DB.Re;
 figure
 obj.Axes = axes();

 % plot primary body location
 % scatter(0,0,'r');
 hold on

 % Label formatting
 xlabel('ec_{x} (km)'); ylabel('ec_{y} (km)'); zlabel('ec_{z} (km)');

 % % plot event locations
 % scatter3(Ye(:,1),Ye(:,2),Ye(:,3));
 % hold on

 % Add orgin and ECI reference frame
 quiver3(0,0,0,1,0,0,Re+0.25*Re,'r','LineWidth',3,'MaxHeadSize',1)
 quiver3(0,0,0,0,1,0,Re+0.25*Re,'g','LineWidth',3,'MaxHeadSize',1)
 quiver3(0,0,0,0,0,1,Re+0.25*Re,'b','LineWidth',3,'MaxHeadSize',1)

 % Add a wiremesh around planet
 [X,Y,Z] = sphere;
 r = Re;
 X2 = X * r;

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Des...\TrajPlot.m 4 of 6

 Y2 = Y * r;
 Z2 = Z * r;

 % Create planet visualization and format the 3D plot
 mesh(X2+5,Y2-5,Z2,'FaceAlpha',0.1,'EdgeColor',0.75*obj.Body_DB.RGB);
 surf(X2+5,Y2-5,Z2,'FaceAlpha',0.35,'EdgeColor','none','FaceColor',obj.
Body_DB.RGB,'LineWidth',.1);
 ax = gca;
 ax.ClippingStyle = "rectangle";
 daspect([1 1 1]) % fix aspect ratio
 grid on
 end

 % Function to export all trajectory results and node states as structs
 function [ResultsStr, StateStr] = getResults(obj)
 ResultsStr = [obj.resultCell{:}];
 StateStr = [obj.stateCell{:}];
 end

 % Plots results from batch runs (warning: experimental)
 function optOut = plotResult(obj,n)
 % n is the amount of profiles in each x-y plot step
 m = length(obj.resultCell);
 resultProfile = [obj.resultCell{m-n+1:m}];

 xDat = obj.plotData.resultXax;
 xX = [resultProfile.(xDat)];

 yDat = obj.plotData.resultYax;
 yWeight = obj.plotData.weightFactor;
 yW = [resultProfile.(yWeight)];
 yP = [resultProfile.(yDat)];
 % yY = [resultProfile.(yDat)];
 % % Create a weighted profile between two constraints
 wRange = [yW(end) yW(1)];
 yRange = [yP(1) yP(end)];
 %
 yY = sqrt(((yW-wRange(2))./(wRange(1)-wRange(2))).^2 + ((yP-yRange(2))./
(yRange(1)-yRange(2))).^2);
 [~,I] = min(yY);
 optOut = yP(I);
 % obj.plotData.plotResults(xX,yY);

 obj.plotData.plotResults(xX,yP);
 % yyaxis right
 % obj.plotData.plotResults(xX,yW/3600);

 ticks = [500 100000:100000:900000];
 xticks(ticks);

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Des...\TrajPlot.m 5 of 6

 xticklabels(string(ticks));
 xlabel('Apoapsis Altitude (km)');

 % Create Legend Labels
 var1 = obj.plotData.resultLeg(1);
 var2 = obj.plotData.resultLeg(2);
 label = join([var1,'=',resultProfile(n).(var1),',',var2,'=',resultProfile
(n).(var2)]);
 obj.plotData.setLegend(label)
 end

 % Creates an output summary table of all atmospheric entries
 function AeroTab(obj)

 % Number of trajectory segments
 n = length(obj.resultCell);

 % Column labels
 aeroLabel = {'Pass';'Peak Conv. Heat Flux (W/cm^2)';'Conv. Heat Load
(J/cm^2)';'Delta V Lost (km/s)';'EFPA (deg)'};

 k1 = 1;
 for i1 = 1:n

 % Filter by atmospheric flight segments only
 if ~isempty(obj.resultCell{i1}) && strcmp(obj.resultCell{i1}.
Type,'Aero')

 % Heat Rate and Heat Load
 Qs(k1) = obj.resultCell{i1}.qsMax;
 Js(k1) = obj.resultCell{i1}.jsMax;

 % Delta V lost with each pass
 dV(k1) = obj.resultCell{i1}.dVaero;

 % Flight Path angle at entry interface
 EFPA(k1) = obj.resultCell{i1}.fpaI;

 % Pass number
 pass(k1) = append("Pass ",num2str(k1));
 k1 = k1 + 1;
 end
 end

 % Generate and display table
 fprintf('*****Atmospheric Entries Summary*****\n')
 aeroTab = table(pass',Qs',Js',dV',EFPA','VariableNames',aeroLabel);
 disp(aeroTab);
 end

5/11/25 8:00 PM C:\Users\bohda\OneDrive\Des...\TrajPlot.m 6 of 6

 % Creates an output summary table of all propulsive maneuvers
 function BurnTab(obj)

 % Number of trajectory segments
 n = length(obj.resultCell);

 % Column labels
 burnLabel = {'Maneuver';'Delta V (m/s)';'Burn Time (s)';'Propellant (kg)'};

 j1 = 1;
 for i1 = 1:n

 % Filter by atmospheric flight segments only
 if strcmp(obj.resultCell{i1}.Type,'Burn')

 % Index
 burn(j1) = string(j1);

 % Delta V
 DV(j1) = obj.resultCell{i1}.dV;

 % Burn Time
 TB(j1) = obj.resultCell{i1}.Tb;

 % Propellant mass usage
 Prop(j1) = obj.stateCell{i1-1}.ScM - obj.stateCell{i1}.ScM;
 j1 = j1 + 1;
 end
 end

 % Calculate totals
 burn(j1) = 'Totals'; DV(j1) = sum(DV); TB(j1) = sum(TB); Prop(j1) = sum
(Prop);

 % Generate and display table
 fprintf('\n*****Maneuver Con-Ops Summary*****\n')
 burnTab = table(burn',DV',TB',Prop','VariableNames',burnLabel);
 disp(burnTab);
 end
 end
end

5/11/25 8:01 PM C:\Users\bohda\OneDrive...\TrajResults.m 1 of 3

classdef TrajResults < matlab.System
 % Stores and manages trajectory time history results

 % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
 % and Technology Division, May 2025, MATLAB 2024b.

 % Public, tunable properties
 properties
 Type % Obital Segment Type (Cruise, Aero, or Burn)
 Rt % Trajectory position and velocity array (km, km/s)
 t % Trajectory time array (s)
 ye % Position and velocity at event (km, km/s)
 ie % Event type indication
 te % Time of Event (s)
 qs % Stagnation heat flux (W/cm^2)
 Js % stagnation heat load (J/cm^2)
 qsMax % Maximum Stag heat flux (W/cm^2)
 jsMax % Maximum Stag heat load (J/cm^2)
 dVec % Attitude vector for burns (km/s)
 Tb % Burn time for burns (s)
 dV % Total delta V for burns (m/s)
 dVaero % Delta V lost from drag (km/s)
 alt % Geocentric Altitude (km)
 V % Inertial Velocity (km/s)
 Vi % Initial Velocity (km/s)
 fpa % Flight Path Angle (deg)
 fpaI % Initial Flight Path Angle (deg)
 tPost % Orbital period of post exit trajectory (s)
 rho % Density (kg/m^3)
 Kn % Knudsen Number
 BC % Ballistic Coefficient (kg/m^2)
 raAlt % Apoapsis Altitude (km)
 end

 properties
 plotLabels % Property storing all labels and units for plotting
 StStrct % Property for outputting Results in struct format
 end

 methods
 % Class Constructor
 function obj = TrajResults
 populateLabels(obj);
 end
 end

 methods (Access = protected)
 % Create a Struct of all time history Properties
 function Out = stepImpl(obj)
 publicProperties = properties(obj);

5/11/25 8:01 PM C:\Users\bohda\OneDrive...\TrajResults.m 2 of 3

 for fi = 1:numel(publicProperties)
 if ~strcmp(publicProperties{fi},'plotLabels') && ~strcmp
(publicProperties{fi},'StStrct')
 obj.StStrct.(publicProperties{fi}) = obj.(publicProperties{fi});
 end
 end
 Out = obj.StStrct;
 end
 end

 methods
 % Label database for all results (currently only a fraction of all
 % possible time history results)
 function populateLabels(obj)
 obj.plotLabels = struct();
 obj.plotLabels.t.label = "Time Since Entry Interface (s)";
 obj.plotLabels.t.title = "Time";
 obj.plotLabels.qs.label = "Heat Flux (W/cm^2)";
 obj.plotLabels.qs.title = "Stagnation Heat Flux";
 obj.plotLabels.Js.label = "Heat Load (J/cm^2)";
 obj.plotLabels.Js.title = "Stagnation Heat Load";
 obj.plotLabels.alt.label = "Altitude (km)";
 obj.plotLabels.alt.title = "Geocentric Altitude";
 obj.plotLabels.V.label = "Velocity (km/s)";
 obj.plotLabels.V.title = "Velocity";
 obj.plotLabels.fpa.label = "Flight Path Angle (deg)";
 obj.plotLabels.fpa.title = "Entry Flight Path Angle";
 obj.plotLabels.rho.label = "Density (kg/m^3)";
 obj.plotLabels.rho.title = "Density";
 obj.plotLabels.Kn.label = "K_n";
 obj.plotLabels.Kn.title = "Knudsen Number";
 obj.plotLabels.Vi.label = "V_i";
 obj.plotLabels.Vi.title = "Entry Velocity (km/s)";
 obj.plotLabels.BC.label = "B_C";
 obj.plotLabels.BC.title = "Ballistic Coefficient (kg/m^2)";
 obj.plotLabels.raAlt.label = "R_a (km)";
 obj.plotLabels.raAlt.title = "Apoapsis Altitude (km)";
 obj.plotLabels.qsMax.label = "Heat Flux (W/cm^2)";
 obj.plotLabels.qsMax.title = "Peak Conv. Heat Flux";
 obj.plotLabels.jsMax.label = "Heat Load (J/cm^2)";
 obj.plotLabels.jsMax.title = "Conv. Heat Load";
 obj.plotLabels.dVaero.label = "Delta V (km/s)";
 obj.plotLabels.dVaero.title = "Delta V due to Drag";
 obj.plotLabels.fpaI.label = "Flight Path Angle (deg)";
 obj.plotLabels.fpaI.title = "Initial Flight Path Angle";
 obj.plotLabels.tPost.label = "Orbital Period (hr)";
 obj.plotLabels.tPost.title = "Post-Exit Orbital Period";
 end

 % calculates inertial velocity from trajectory data

5/11/25 8:01 PM C:\Users\bohda\OneDrive...\TrajResults.m 3 of 3

 function vOut = get.V(obj)
 if isempty(obj.Rt)
 vOut = [];
 else
 vOut = vecnorm(obj.Rt(:,4:6),2,2);
 end
 end
 end
end

	AE295 Report 6 Final PDF2.pdf
	AeroDB
	AeroPass
	Aerothermal
	AerothermStep
	BodyInputs
	Burn
	chemMgr
	ExampleScript
	gramMgr
	InitState
	inputSpecies
	masterHand
	MissionPlan
	optoIn
	orbitProp
	plotProps
	SCInputs
	SCState
	TimeMgr
	TrajPlot
	TrajResults

