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ABSTRACT  
 

Multi-Pass Aerocapture Approach for Orbital Insertion 
 

Bohdan O. Wesely 
 

Aerocapture is an orbital insertion method that utilizes atmospheric drag to decrease an 
interplanetary spacecraft’s (S/C) velocity into a captured orbit. The technique has been studied 
for several decades but has yet to be utilized in a flight mission. Aerocapture has the potential to 
significantly reduce S/C propellant mass, increase science payload mass, and/or reduce mission 
duration, especially for large outer planet (Neptune, Uranus) missions. This study explores a 
novel multi-pass aerocapture approach where initial entry would only reduce the velocity enough 
for a minimum captured orbit. This would be followed by additional atmospheric passes to 
sequentially bring the spacecraft apoapsis close to its target science orbit. Traditional aerocapture 
is where the spacecraft apogee is at or near the required science orbit after just one atmospheric 
entry. This project aims to construct conceptual first order trajectory and atmospheric entry 
analysis tools to compare both approaches. A fair assessment would determine whether the 
potential benefits of multi-pass such as reduced TPS mass and required control authority 
outweigh the drawbacks such as increased mission duration. 
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Nomenclature 
𝐶ே = Normal Force Coefficient 
𝐶஺ = Axial Force Coefficient 
𝐶ௌ = Side Force Coefficient 
𝐶஽ = Drag Coefficient 
𝐶௅ = Lift Coefficient 
𝐶௓ = Velocity Oriented Side Force Coefficient 
𝐶௣ = Pressure Coefficient 
𝐶ఛ = Shear Coefficient 
𝐵஼ = Ballistic Coefficient 
α = Angle of Attack (deg) 
β = Angle of Sideslip (deg) 
θ = Local Surface Inclination Angle (deg) 
𝐷 = Entry Vehicle Diameter (m) 
𝑅ே = Sphere Cone Nose Radius (m) 
𝛿௙௟௔௡௞ = Sphere Cone Half Angle (deg) 
𝑀ஶ = Free Stream Mach Number 
𝑝ஶ =  Free Stream Pressure (Pa)  
𝜌ஶ = Free Stream Density (kg/m^3) 
𝑉ஶ =  Free Stream Velocity (m/s) 
𝑉 = Inertial Velocity (km/s) 
𝑇 = Temperature (K) 
𝑇ஶ = Free Stream Temperature (K) 
𝑇ௐ = Wall Temperature (K) 
𝐺௜ = Species Gibbs Free Energy (kJ/mole) 
𝐻௜ =   Species Total Enthalpy (kJ/mole) 
𝑝௜ = Species Partial Pressure (Pa) 
𝑆௜ = Species Entropy (kJ/mole K) 
𝜂௜ = Species Mole-Mass Ratio 
𝑣௜ = Species Stoichiometric Coefficient 
𝑝௧ = Total Pressure (Pa) 
𝜎 = Particle collision cross section (pm^2) 
𝑑௜ = Species particle kinetic diameter (pm) 
ℛ =  Universal Gas Constant (kJ/kmol K) 
𝛾 = Specific Heat Ratio 
𝐾௣ =  Equilibrium Constant 
𝑀𝑅 = Initial Ratio of Gas Particles 
𝑞௦ =  Stagnation point convective heating (W/cm^2) 
𝐽௦ =  Stagnation point total heat load (J/cm^2) 
𝑘 =  Aerothermal constant 
𝐾௡ = Knudsen Number 
𝑘௕ = Boltzmann Constant (J/K) 
𝑛 = Particle Number Density (1/m^3) 
λ = Mean Free Path (m) 
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𝒓 = Orbital Position Vector 
𝒗 = Orbital Velocity Vector 
𝜏 = Orbital Period 
𝜇 =  Gravitational Constant (km^3/s^2) 
𝐽ଶ = 2nd Zonal Harmonic 
𝑟௔ = Radius at Apoapsis (km) 
𝑟௣ = Radius at Periapsis (km) 
𝑒 = Eccentricity 
𝑎 = Semi Major Axis (km) 
𝑖 = Inclination (deg) 
𝜔 = Argument of Periapsis (deg) 
Ω = Longitude of the Ascending Node (deg) 
Θ = True Anomaly (deg) 
Az =  Azimuth (deg) 
fpa =  Flight Path Angle (deg) 
∆𝑉 = Change in Velocity (km/s) 
𝐼௦௣ = Specific Impulse (s) 
𝑔௢ = Specific Gravity (m/s^2) 
𝑡௕ = Burn Time (s)  
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1. Introduction 

  The 2023-2032 National Academies Planetary Science and Astrobiology Decadal Survey 
listed the ice giants (Uranus, Neptune) as a top priority for science exploration missions [2]. 
These destinations have longer mission durations and higher arrival velocities compared to the 
gas giants or inner planets and therefore demand a higher spacecraft mass fraction allocated to 
the propulsion system and propellant. The mass penalty of a traditional propulsion systems 
makes aerocapture of particular interest for these ice giant destinations. Venus, Mars, and Earth 
return missions are also viable for aerocapture orbital insertion though with less mass savings 
due to their proximity to Earth. A great deal of literature and concept studies exist on aerocapture 
and the vast majority focus on a single pass approach (ref. [9]-[15], [19], [23], and [24]). The 
main takeaways are that Aerocapture may require several new technologies related to low-
medium L/D entry vehicles, high performance thermal protection systems (TPS) such as 
3DMCP, HEEET, etc. and novel guidance and control techniques to account for atmospheric 
uncertainties. New technologies present a degree of risk when it comes to mission planning.  
 
 

 

 
Figure 1.1 Traditional Single-Pass Aerocapture from ref. [9] 
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Figure 1.2 Multi-Pass Aerocapture Approach 
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2. Literature Review 

2.1. Aerocapture and Entry Descent and Landing (EDL) 

 The aerocapture concept shares much of the same technology requirements as traditional 
entry descent and landing (EDL) through planetary atmospheres. Existing literature on 
aerocapture based missions contains analysis, propositions, and design methodologies derived 
from EDL. Atmospheric flight at orbital velocities creates extreme heating environments in both 
aerocapture and EDL mandating the need for TPS. Guidance, navigation, and control (GN&C) is 
similar for both mission cases. Aerocapture velocities remain in the orbital regime with a large 
portion of the trajectory at high altitudes in non-continuum flow. In traditional EDL, navigation 
and maneuvers can be performed at lower altitudes where the atmosphere is denser, offering 
more control authority and flexibility in targeting a precise landing location. With Aerocapture, 
all maneuvering action must be performed at orbital velocities in the outer fringes of the 
atmosphere. 

The main benefit of aerocapture as discussed in section 1 is the propellant mass savings 
allowing for larger payloads and/or shorter mission durations. The TPS in traditional EDL is still 
a significant vehicle mass fraction which is determined by the entry environment and materials 
used. Systematic TPS and entry vehicle design methodologies have been used on all space 
missions requiring entry descent and landing through a planetary atmosphere. Determination of 
the TPS size and mass requirements allow for a quantitative comparison between traditional 
chemical propulsion, single-pass aerocapture, and multi pass aerocapture, which is the objective 
of this project.  

2.2. Entry System Design 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Science and/or space exploration objectives typically drive a mission concept and 

destination. The mission concept creates high level requirements and initiates the project 

Mission 
Concept 

Con-Ops, 
Trajectory 

Characterize 
Aerothermal 
Environment 

Material 
Selection, 
TPS Sizing 

Characterize TPS 
material. (properties, 
thermal response, etc) 

Apply 
Margins 

 

Final, 
margined 
Design 

Figure 2.1 Entry System Design Flow 
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preliminary design phase. At this point mission planners can design a preliminary trajectory and 
navigation solution for the spacecraft to reach its destination. This spans from launch, injection 
maneuvers, cruise, orbital insertion, and entry descent and landing. Orbits and trajectories can be 
modeled in the simplest form by Kepler’s law of motion (eq. 2.1). 

 

𝐹௚ =
𝐺𝑚ଵ𝑚ଶ

𝑟ଶ
(2. 1) 

  
Orbit shapes are characterized by conic sections, ellipses and hyperbola being the most 

common. Patched conic methods can be used to form a complete mission trajectory by stitching 
together orbital segments [27]. In the conceptual design phase this offers a reasonable 
approximation. Additional physics such as atmospheric drag, oblateness, gravitation forces from 
other planets, and solar radiation can be added to the fundamental Kepler equations for increased 
fidelity. Reference [22] describes modeling 2-body Keplerian orbits extensively and presents 
algorithms for implementing models in a simulation environment such as MATLAB.  

An atmospheric entry trajectory is also governed by Kepler’s laws with the key addition 
of aerodynamic forces. Once a trajectory is outlined, the velocity magnitude and atmospheric 
conditions drive the aerothermal heating environment. At orbital velocities, the extreme 
compression as gases impinge on the entry vehicle and can produce temperatures up to 20000 K 
behind the shock front [1].  Aerothermal heating of an entry vehicle is an energy balance 
problem at the surface with convective and radiative heating being the dominant methods of heat 
transfer from the flow field to the vehicle TPS. 

Figure 2.2 Aerothermal Environment ref. [1] 
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At the extreme environments of atmospheric entry, chemical reactions and diffusion greatly 
affect energy transfer in the shock layer region. Hypersonic and High Temperature Gas 
Dynamics” [17], by John D. Anderson describes the physics at play in these flow regimes in 
detail and has been a key resource for this project. Predictive design tools are invaluable for EDL 
mission designers to estimate how an entry vehicle will perform during atmospheric flight and 
how much TPS is required. The state of the art of entry environment predictions is highly 
parallelized CFD (Computational Fluid Dynamics) with extensive chemistry and radiation 
models as well as Direct Simulation Monte Carlo (DSMC) for non-continuum flows. Lower 
fidelity tools also exist such as the Sutton Graves approximation and generalized chapman 
method, these are often used in conjunction with CFD anchor points [1]. Various methods exist 
to predict the chemical reactions and resulting gas compositions in hypersonic flow fields. 
References [3]-[5] outline computational methods of predicting chemical compositions based on 
empirical thermodynamic data. Additional details on these first order aerothermal modeling tools 
will be discussed in sections 4.2 and 4.3.  

Accurate vehicle aerodynamic force data is necessary for accurate trajectory results, 
especially for guided trajectories. CFD results can output lift, drag, and other aero coefficients 
but first order tools like Modified Newtonian Theory are a reasonable first order approximation 
[13]. Reference [17] describes a variety of aero force predictive methods in detail, [28] outlines a 
Newtonian panel method and was used to validate methods discussed in section 4. 

  A recent NASA early career initiative (ECI) studied and proved the viability for 
aerocapture at Uranus with present technologies, [9]-[15]. References [10], [13], and [14] discuss 
the mission concept and aerothermal environment predictions while [12] discusses the TPS 
design and sizing. A similar performance analysis for a Venus aerocapture is outlined in [23]. 
and is used one of the main validations for the methodologies described in section 4. 

 

 
Figure 2.3 CFD Heating Predictions for Uranus Aerocapture [14] 
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3. Project Objective 

This study aims to determine whether a multi-pass approach for a flagship outer planet or 
Venus/Earth return mission presents less risk and is more viable with current technologies than a 
traditional single-pass approach. The first phase of the study will incorporate rudimentary, first 
order analysis tools with several key assumptions to perform a fair assessment between the two 
approaches. The second phase will incorporate more advanced analysis tools, begin accounting 
for uncertainties, and increase the overall level of fidelity. The primary comparison metrics will 
be TPS mass and mission duration. The maximum heat flux and total heat load for each multi-
pass will be compared to the single pass and contribute to the TPS sizing methodology. Higher 
fidelity models might assess whether each of the multiple passes introduces less trajectory 
dispersion than a single higher intensity pass. In a single-pass aerocapture, the aeroshell can be 
jettisoned immediately after atmospheric exit, but for a multi-pass approach it must be retained 
which may introduce issues with thermal soak back and communications. These drawbacks will 
also be assessed. In the end, the various analysis tools should demonstrate a clear assessment 
between the two mission architectures. Any difference between the low and high fidelity analysis 
tools will also be discussed.  

3.1. Uranus and Venus for Multi-Pass Aerocapture 

At the inception of this project, Uranus was chosen as the first mission destination to be 
tested. The NASA early career initiative (ECI) studied and proved the viability for aerocapture at 
Uranus with present technologies, [9]-[15]. The simulations run in the ECI targeted a post-
aerocapture orbit of 4000 x 550000 (5.5e5) km. One of the objectives of this high apogee is to 
encounter Titania, the largest moon of Uranus. Brief 2-body orbital mechanics calculations 
illustrate that the 5.5e5 km target apogee is already close to a minimum captured orbit. There 
isn’t significant allowance for meaningful ΔV savings by taking multiple lighter passes to get to 
the same apoapsis. Lower Uranus orbits can be achieved through gravity down-pumping 
maneuvers via Titania and other moons albeit more slowly than aerobraking passes. The above 
factors make a multi-pass aerocapture approach less viable for Uranus.  Neptune, Jupiter, and 
Saturn also have large natural satellites that can provide gravity assists and pump-down 
maneuvers essentially for free, provided the initial orbit is high enough for a periodic encounter. 
Venus, lacking a natural satellite could potentially be more attractive for a multi-pass approach 
for low orbiting missions, and will therefore be the first destination to be analyzed. A concept 
study outlining a single-pass Venus aerocapture is outlined in [23] targets a low 500x500km 
orbit. Once a low fidelity simulation tool has been built and tested for the Venus case, 
performance to lower Uranus orbits or other destinations may be assessed. 
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4. Analysis Methodology 

4.1. Orbital Mechanics 

A simple 2-body orbital mechanics model will be used for the low fidelity flight 
simulation in this study. The simulation will start with an interplanetary state vector that is pulled 
from the data used in [23]. This will allow an initial comparison to current literature to validate 
the simulation. An altitude of 150 km will be used as a cutoff for atmospheric flight effects, the 
same as [23], though a higher cutoff may be considered in further refinements. The coordinate 
system for the orbit propagation will be a cartesian, equatorial centric inertial (ECI) reference 
frame (Figure 4.1). The following assumptions will be made in this 2-body model.  

1) J2 spherical harmonic perturbations will be modeled, no perturbations from any other 
bodies. 

2) No solar radiation pressure or any other perturbing body forces on vehicle.  

3) Maneuvers assume perfect thrust alignment with vehicle velocity vector, constant ISP.  

4) Vehicle modeled as a point mass, no rigid body or attitude dynamics. 

 

 

𝒓 = ቎

𝑋 𝒆𝒄𝒙

𝑌 𝒆𝒄𝒚

𝑍 𝒆𝒄𝒛

቏ (4. 1) 

Figure 4.1 Coordinate System for Flight Simulation 
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𝜇 = 𝐺𝑀 (4. 2) 

𝒓̈ =
𝜇

𝑟ଷ
𝒓 (4. 3) 

 

𝒓̈ =
𝜇

𝑟ଷ
𝒓 +

𝐹𝒓̇

𝑚𝑟
 (4. 4) 

 

4.2. Hypersonic Atmospheric Flight   

  Once the altitude threshold is reached, the simulation will switch to a separate integration 
scheme to account for atmospheric effects. The atmospheric drag model used in the initial low 
fidelity study is spelled out in eq. 4.5. This assumes a constant drag coefficient and constant 
vehicle orientation with the drag vector, 𝑷, acting opposite to the velocity vector. The velocity 
vector 𝒗𝒓𝒆𝒍 shown in 4.6 factors in winds and planetary rotation.  

𝒓̈ =
𝜇

𝑟ଷ
𝒓 + 𝑷 (4. 5) 

𝑷 =  
1

2
𝜌ஶ|𝒗𝒓𝒆𝒍|

ଶ𝐶஽𝐴
 |𝒗𝒓𝒆𝒍|

𝒗𝒓𝒆𝒍
 (4. 6) 

 

4.2.1. Modified Newtonian Method  

 

Figure 4.3 Vehicle Force Coefficients Figure 4.2 Newtonian Method Concept [17] 
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Validated aerodynamic data for the entry vehicle is critical to accurately predict a post 
aerocapture trajectory. Typically, blunt body entry vehicles are flown at a small angle of attack 
to allow for some form of control authority such as bank angle modulation. For simplicity, the 
initial analysis will assume the vehicle is at a constant zero angle of attack with the center of 
mass along the geometric centerline. With this assumption, 𝐶஺ = 𝐶஽ (𝛼 = 0), making 𝐶஽ the 
only aerodynamic coefficient that requires an accurate prediction. The Modified Newtonian 
Method is often utilized as a first order approximation for hypersonic aerodynamics. It assumes 
that the pressure coefficient at any point on a body surface is proportional to the sine squared of 
the local inclination angle to the flow, 𝜃 in Figure 4.2, (eq. 4.7). Modified refers to the addition 
of 𝐶௣೘ೌೣ

 which comes from the isentropic relation shown in eq. 4.8, in the traditional Newtonian 
method the relationship is simply 𝐶௣ = 2 sinଶ 𝜃. As the Mach number increases the more 
accurate this prediction tends to be [17]. The Venus aerocapture study [23] that will be used for 
model validation utilizes a 60° sphere cone with a nose radius 25% of the vehicle diameter. A 
panel based Modified Newtonian method was used to achieve a first order approximation of the 
drag coefficient for this geometry. Derivation of this model is shown below. 

 
Pressure coefficient of one segment i 

 
𝐶௣೔

= 𝐶௣೘ೌೣ
sinଶ 𝜃௜ (4. 7) 

 

𝐶௣೘ೌೣ
=

2

𝛾𝑀ஶ
ଶ

൤
𝑝୓మ

𝑝ஶ
− 1൨ (4. 8) 

 

𝐶௣೔
=

𝑝௜ − 𝑝ஶ

𝑞ஶ
  (4. 9) 

 

𝐶஽ =
𝐷

𝑞ஶ𝑆
 (4. 10) 

Drag of single segment i 
 

𝐷௜ = (𝑝௜ − 𝑝ஶ)𝑆௜ (4. 11) 
 

Shadow area for an axisymmetric vehicle profile at 𝛼 = 0 
 

𝑆௜ = 𝜋(𝑦௜
ଶ − 𝑦௜ିଵ

ଶ ) (4. 12) 
 

Combine 8, 8b, 8d, and 8e and sum all panel segments 
 

𝐷 = 𝑞ஶ𝐶௣,௠௔௫𝜋 ෍(𝑦௜
ଶ − 𝑦௜ିଵ

ଶ )

௡

௜ୀଶ

sinଶ 𝜃௜ (4. 13) 
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𝐶஽ =
𝐶௣,௠௔௫𝜋 ∑ (𝑦௜

ଶ − 𝑦௜ିଵ
ଶ )௡

௜ୀଶ sinଶ 𝜃௜

𝑆
 (4. 14) 

 
Equation 4.14 was solved numerically in MATLAB for the 60° sphere cone geometry 

which led to a drag coefficient of 1.3933. After ~Mach 10 𝐶௣೘ೌೣ
 becomes essentially Mach 

independent. [29] presents a similar Newtonian prediction method and in one section studied a 
vehicle with a 70° sphere cone. This case was mimicked with the internally developed tool and a 
𝐶஽ of 1.624 at 0° 𝛼 was generated. The results from [29] are shown in Figure 4.4 and indicate 
good agreement with the internal model, adding confidence to the 1.3933 figure to be used for 
the aerocapture simulation. The modified Newtonian method is most accurate in continuum flow 
regimes which only partly represent aerocapture trajectories, though it is where the aerodynamic 
forces are greatest and have the most influence. Methods for modeling rarefied and free 
molecular flow are discussed in 9.2. 

 

 
 

Figure 4.4 Force Coefficients for Model Validation [29] 
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4.2.2. Modified Newtonian Method 𝜶 ≠ 𝟎 

The panel method described in 0 must be significantly expanded for a vehicle in 3 
dimensions to model aerodynamic effects of angle of attack or sideslip. This additional modeling 
allows for realistic lift-up and lift-down cases to be considered. L/D ratios can also be compared 
for different vehicle geometries. This opens the door to modeling moments, stability, and 
rudimentary guidance algorithms, though those topics are out of scope for this project. For entry 
vehicles, the AOA convention is opposite of traditional aircraft with positive 𝛼 pointing below 
the velocity vector (Figure 4.3). For the 3D case a more general relationship must be built for 
axisymmetric bodies. Equation 4.15 describes the Newtonian method for any body shape in 3 
dimensions to determine aerodynamic force coefficients [29]. Parameterization of the vehicle 
surface is needed to calculate the local inclination angle 𝜃 and normal vector 𝒏.  

 

൥

−𝐶஺

𝐶ே

−𝐶ௌ

൩ =
1

𝐴ref 
ඵ 

ௌ

𝐶௣ ൥
𝒏்𝒙ෝ
𝒏்𝒚ෝ

𝒏்𝒛ො

൩ 𝑑𝐴 (4. 15) 

 

𝑠𝑖𝑛𝜃 =
𝑽ஶ

|𝑉ஶ|
∙ 𝒏 (4. 16) 

 
The methodology is similar to the 𝛼 = 0 case, where the geometry is broken into panels, 

though an additional summation revolved around the body is necessary as 𝑠𝑖𝑛𝜃 will vary radially 
for the 𝛼 ≠ 0, 𝛽 ≠ 0 case. Both summations essentially solve the surface integral in 4.15 
numerically, which adds flexibility for more complex shapes over an analytical solution. In [29], 
the surface integral is solved analytically using Mathematica tools. The origin for the 
discretization can be arbitrary as long as the XYZ convention is the same as the force coefficient 
reference frame. If moment coefficients are desired a reference point must be chosen. The 
process involves a series of vector rotations to sum the normal vectors and their reference areas. 

Figure 4.5 Side View Discretization with 4 Nose Segments 
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𝜙௦௘௚ =
ഏ

మ
ିఋ೑೗ೌ೙ೖ

ேೞ೐೒
 𝜙௜ =

థೞ೐೒(ଶ௜ିଵ)

ଶ
  𝑥௜ାଵ = 𝑅ே − 𝑅ேcos (𝜙௦௘௚𝑖)  

 𝑦௜ାଵ = 𝑅ேsin(𝜙௦௘௚𝑖)  𝒏𝒊 = ൥
cos𝜙௜

sin𝜙௜

0

൩ 

 
The above relations are all that are necessary for the 𝛼 = 0 case where n is the same at 

any axisymmetric position around the vehicle body. If 𝛼 ≠ 0 𝑜𝑟 𝛽 ≠ 0, n varies and each radial 
segment contributes a different force component on the vehicle, necessitating an additional 
summation. 
 

 
 
 

𝜑௦௘௚ =
ଶగ

ெೞ೐೒
  𝜑௝ =

ఝೞ೐೒(ଶ௝ିଵ)

ଶ
 𝒏𝒊,𝒋 = ቎

1 0 0
0 𝑐𝑜𝑠𝜑௝ 𝑠𝑖𝑛𝜑௝

0 −𝑠𝑖𝑛𝜑௝ 𝑐𝑜𝑠𝜑௝

቏ 𝒏𝒊 

 

𝐴௧௢௧ = 𝜋𝑑(𝑦௜ାଵ + 𝑦௜)  𝑑௦௘௚ =  ඥ(𝑦௜ାଵ − 𝑦௜)
ଶ + (𝑥௜ାଵ − 𝑥௜)

ଶ 𝐴௜,௝ =
஺೟೚೟

ேೞ೐೒
 

 

Figure 4.6 Nose View Discretization Example 
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After the normal vector for each panel is computed, an additional rotation about 𝛼 and 𝛽 
must be performed to obtain the final normal vector with respect to the vehicle velocity vector 
(4.17). The area of each segment (𝐴௜,௝) is the area of the entire frustrum (𝐴௧௢௧) that represents 
each lengthwise segment (i) divided by the desired number of radial divisions. After this rotation, 
the primary coordinate system remains in the velocity frame (X parallel with velocity vector), so 
the first force coefficients calculated are drag, lift, and sideslip. The reference area (𝐴ref ) is just 
the vehicle surface area projected onto the Y-Z plane at 𝛼 = 0 which for an axisymmetric body 
is simply 𝜋𝑅ଶ. The body force coefficients can be obtained by reversing the transformation in 
(12), represented by (14). As 𝛼 and 𝛽 increase, vehicle surfaces may become obscured from the 
flow, since the coordinate system remains in the velocity frame, a simple conditional statement 
can be implemented to check each panel for 𝑵𝒊,𝒋𝒙ෝ < 0 and assign 𝐶௣ = 0 for those cases per 
Newtonian theory. 

 
 

𝑵𝒊,𝒋 = ൥
𝑐𝑜𝑠𝛽 0 −𝑠𝑖𝑛𝛽

0 1 0
𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

൩ ൥
𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼 0

0 0 1
൩ 𝒏𝒊,𝒋 (4. 17) 
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−𝐶௅
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𝑵𝒊,𝒋𝒙ෝ

𝑵𝒊,𝒋𝒚ෝ

𝑵𝒊,𝒋𝒛ො

቏ 𝐴௜,௝

ெೞ೐೒

௝ୀଶ

ேೞ೐೒

௜ୀଶ

(4. 18) 
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∙ 𝒏 = 𝑵𝒊,𝒋𝒙ෝ 

 

൥

𝐶஺

𝐶ே

𝐶ௌ
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𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼 0
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൩

்
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0 1 0
𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽

൩

்

൥

𝐶஽

−𝐶௅

𝐶௓

൩ (4. 19) 

 
 
 While this method adds complexity over the 𝛼 = 0 case, the matrix math is easily 
handled in MATLAB and can quickly run through various angle of attack and sideslip for a 
variety vehicle geometries. This is a powerful first order design tool that allows for quick 
generation of an aerodynamic database for axisymmetric entry vehicles. Setting the model up to 
compare with the sphere-cone case on page 14 of [29] with an initial 20° sideslip angle shows 
near exact agreement using 10 nose divisions and 20 radial divisions (Figure 4.8). Additional 
validations with [29] are discussed in appendix 9.1.1. The model was also compared with the 
pre-CFD aerodynamic modeling in [13] and the results are in family, though as previously 
mentioned the Newtonian method is only valid for continuum flow regimes (Figure 4.7). Ref. 
[13] discusses a Uranus aerocapture and utilizes a MSL like entry vehicle with a 70° cone angle. 
Integration of this model into the trajectory simulation is discussed in 4.2.4.  
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Figure 4.9 Modified Newtonian Geometry 

Output (𝜹𝒇𝒍𝒂𝒏𝒌 = 𝟔𝟎°, 
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Figure 4.8 Aero Coefficient Validation with 
Figure 4.4, ref. [29] 

Figure 4.7 Aero Coefficient Validation with [13] (Uranus Aerocapture) 
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4.2.3. NASA Global Atmospheric Reference Model (GRAM) 

  The NASA developed Global Atmospheric Reference Model (GRAM) is an engineering 
design tool that can compute atmospheric data for every planet in the solar system that contains 
an atmosphere [7]. The program takes position and time inputs and utilizes ephemeris 
calculations and a host of empirical data to output conditions such as density, pressure, 
temperature, chemical mass fractions, winds, and more. GRAM can support monte carlo runs 
and 3-sigma dispersions on all properties, though only the nominal mean values are used for this 
initial study. This project is utilizing the latest 2.1 release from October 2024 that includes a 
MATLAB interface. Specifically, VenusGRAM [7] will be used in the initial analysis and 
validation with [23]. The following assumptions will be made for atmospheric flight.  

1) Aerodynamic force coefficients 𝑪𝑳, 𝑪𝑫, and 𝑪𝑺 allowed to vary with α and β 

2) 3 DOF, Constant Vehicle Orientation, no GNC uncertainties or modeling 

3) Temporal and special variations and winds will be modeled within GRAM 

4) Atmospheric uncertainties and perturbations are not modeled  

 
Figure 4.10 Venus Atmosphere Profile (ref. [7]) 
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 The winds on Venus are significant at higher altitudes and are faster than the planet’s 
rotation. GRAM outputs winds in three components, north to south, east to west, and vertical. 
The wind velocities can reach well above 100 m/s which must be considered for accurate 
trajectory modeling. The winds show a clear difference between the day and night sides of the 
planet and are the strongest at the equator. The winds at lower altitudes move consistently 
against the planet’s rotation though at higher altitudes (80+ km) there are significant variations 
and direction changes which can have a non-negligible effect on entry and aerocapture flight 
mechanics. Trajectories with and without winds are shown in Figure 4.15. 

Figure 4.11 Venus Winds vs. Altitude 
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Figure 4.12 Venusian Wind Direction at 100 km Altitude (JD 2459138) 
 

Figure 4.13 Venusian Wind Magnitude at 100 km Altitude (JD 2459138) 
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 With the addition of aero coefficients in 3 dimensions, the effect of how the winds 
interact with the vehicle required evaluation. If the vehicle is flying at a nominal ballistic 
trajectory 𝛼 = 𝛽 = 0, winds and to a small extend the Coriolis effect will produce a relative 
velocity vector different from the inertial velocity which will induce an effective angle of attack 
or sideslip on the vehicle, this is assuming 3DOF mechanics where the vehicle’s orientation is 
fixed to the velocity frame. At a high-altitude condition on Venus with significant east to west 
winds around 200 m/s (~150 km), the worst case crosswind scenario would be an azimuth of 0° 
where the entry vehicle is flying south to north in a polar orbit. An entry velocity of 11 km/s 
would produce an effective sideslip angle of ~1.04°, which is non-negligible. To model this 
effect, an additional transform between the inertial and relative velocity frame had to be 
developed. With a sufficiently blunt body (~70° half angle), the 𝛼 vs. 𝐶௅ lift slope is the opposite 
of a slender body due to the blunt frontal forebody producing lift instead of the lengthwise chord 
surface area. This effect results in the entry vehicle being pulled in the direction of the wind with 
a net component to the resulting force in the +Y direction, almost like a sailboat sailing upwind 
(Figure 4.14). While counter intuitive at first, the effect checks out when the appropriate rotation 
matrices and conventions are applied. 

 

 
 
 
 
 
 
 

Figure 4.14 Blunt Body Crosswind Illustration 
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4.2.4. Reference Frames 

 The position inputs and outputs to GRAM are in the topocentric frame utilizing longitude 
and latitude coordinates. A conversion to the base ECI frame that the simulation runs on was 
necessary. A reference frame transposition was derived that also required the local sidereal time 
of the planet to account for rotation in comparison to the fixed inertial ECI frame. The rotation 
matrix QXx and its transpose shown in Figure 4.16 were used to convert to the East North Zenith 
(ENZ) topocentric frame necessary for the GRAM inputs. This transform was also used to 
support trajectory inputs in the form of azimuth, entry flight path angle, and velocity magnitude.  

 A time component was also necessary to extract the correct prime meridian location of 
Venus (0° Longitude). The latest report from the International Astronomical Union (IAU) [30] 
outlines measurements for planetary rotation positions at time since standard epoch (1/1/2000). 
The standard reference direction for this frame is Earth’s vernal equinox at the time of epoch, 
this is known as the J2000 reference frame. The rotation angle (sidereal time) of Venus is given 
by eq. 4.20 from [30].  

 
𝑊 =  160.20 −  1.4813688𝑑 (4. 20) 

 

Figure 4.15 Polar and Equatorial Trajectory Wind Dispersions (JD = 2459138) 

Polar Orbit  
V = 11/km/s, Alt = 150 km, Fpa = -5.61° 
Final Azimuth (Winds): 173.257° 
Final Azimuth (No Winds): 174.242° 

Equatorial Orbit 
V = 11/km/s, Alt = 150 km, Fpa = -5.61° 
Final Altitude (Winds): 828.1516 km 
Final Altitude (No Winds): 375.0636 km 
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 This is good approximation for the initial analysis over short timespans, investigation into 
seasonal atmospheric variations is possible in the GRAM model. GRAM is also capable of 
outputting an ephemeris state with various properties that can be used to calculate the exact 
sidereal time, though this has not yet been implemented. Figure 4.17 shows the sidereal time in 
relation to the J2000 frame. Point Q in the illustration corresponds to the +X axis in Figure 4.1 
and Figure 4.16 since the simulation is using a fixed inertial frame rather than a rotating frame as 
shown in Figure 4.17. 
 
 

 

 

 
 
 
 
 
 
 

Figure 4.16 ENZ and ECI Reference Frames [22] 
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Figure 4.17 Reference System for Time Dependent Planet Orientation [30] 
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 Matrix rotations between frames need to be carried out carefully as matrix multiplication 
is not commutative. To obtain the rotation matrix between the enz frame and inertial velocity 
frame (Figure 4.18), a rotation about the flight path angle and azimuth is performed to derive 
𝑄௘௡௭. The convention is switched due to 0° Az corresponding with due north Y+ in the enz frame 
which results in a row swap in the matrix.  
 

𝒗𝒆𝒏𝒛 = 𝑄௘௡௭𝒗𝒗𝒇𝒊 (4. 21) 
 

𝑄௘௡௭ = ቎

𝑐𝑜𝑠(𝑓𝑝𝑎)sin (𝐴𝑧) − cos(𝐴𝑧) −𝑠𝑖𝑛(𝑓𝑝𝑎)sin (𝐴𝑧)

𝑐𝑜𝑠(𝑓𝑝𝑎)cos (𝐴𝑧) sin(𝐴𝑧) −𝑠𝑖𝑛(𝑓𝑝𝑎)cos (𝐴𝑧)

sin(𝑓𝑝𝑎) 0 cos(𝑓𝑝𝑎)
቏ (4. 22) 

 
To get from the inertial velocity frame to the relative velocity frame, another series of 

rotations is necessary about 𝛼 and 𝛽, similar to the transform used in the panel aerodynamics (eq. 
4.17). To perform a complete transformation to the ECI frame from the relative velocity frame, 
4.24 is required. This transform is necessary as the aerodynamic coefficients 𝐶஽, 𝐶௓, and 𝐶௅ are 
expressed relative to the velocity vector. The vehicle body frame coefficients (𝐶஺, 𝐶ௌ, and 𝐶ே) 
are important for a 6DOF simulation but in this case would simply add another transform. 
 

𝑄௩௙௜ = ቎

𝑐𝑜𝑠(𝛽)cos (𝛼) sin(𝛼) 𝑐𝑜𝑠(𝛽)sin (𝛼)

𝑠𝑖𝑛(𝛽) cos(𝛼) 𝑐𝑜𝑠(𝛽) − 𝑠𝑖𝑛(𝛽) sin(𝛼)

− sin(𝛼) 0 cos(𝛼)
቏ (4. 23) 

 
𝒗𝒆𝒄𝒊 = 𝑄௑௫𝑄௘௡௭𝑄௩௙௜𝒗𝒗𝒇𝒓 (4. 24) 

 
 

𝛽௘௙௙ = 𝑠𝑖𝑛ିଵ(𝑣௩௙௥𝒚ෝ) (4. 25) 
 

 

𝛼௘௙௙ = cosିଵ ቆ
𝑣௩௙௥𝒙ෝ

cos (𝛽௘௙௙)
ቇ (4. 26) 

 
 

 Figure 4.18 shows the simulation output with all forces on the vehicle shown as vectors. 
ECI is the equatorial centered inertial frame that the simulation runs on, VFi is the inertial 
velocity frame where +x is the direction of travel. The conditions were artificially set to 
exaggerate the effects of the winds for illustration purposes. To calculate the net perturbation 
vector on the vehicle which considers lift, drag, side force, and relative velocity eq. 4.5 and 4.6 
can be expanded to produce the net perturbation vector in eq. 4.28. Due the relative velocity, 
𝐶஽(𝛼, 𝛽), 𝐶ௌ(𝛼, 𝛽), 𝐶௅(𝛼, 𝛽) are recalculated at each time step which adds computation time, a 
fixed L/D mode option was added that neglects these effects for speed. Eq. 4.27 represents the 
relative velocity vector in the ECI frame. The three wind components, east to west (eww), north 
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to south (nsw), and vertical (vw) are expressed in the ENZ frame from GRAM and are converted 
to the ECI frame with the rotation matrix in Figure 4.16.  

 

𝒗𝒓𝒆𝒍 = 𝑽𝒆𝒄𝒊 − ൥
0
0
𝜔

൩  × 𝑹𝒆𝒄𝒊 − 𝑄௑௫ ቈ
−𝑒𝑤𝑤
−𝑛𝑠𝑤

𝑣𝑤
቉ (4. 27) 

 
 
 

𝑷𝒗𝒇𝒓 =  
1

2
𝜌ஶ|𝒗𝒓𝒆𝒍|

ଶ ൥

−𝐶஽

𝐶௓

𝐶௅

൩ (4. 28) 

 
 

𝑷𝒆𝒄𝒊 = 𝑄௑௫𝑄௘௡௭𝑄௩௙௜𝑷𝒗𝒇𝒓 (4. 29) 
 

 

𝒓̈ =
𝜇

𝑟ଷ
𝒓 + 𝑷𝒆𝒄𝒊 (4. 30) 

 

Coriolis Effect Winds 

Figure 4.18 Inertial Velocity Frame and Forces on Entry Vehicle 
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4.3. Aerodynamic Heating and TPS Sizing 

 Aerodynamic heating at atmospheric entry velocities is a complex modeling problem. 
The state of the art is highly parallelized CFD with extensive chemistry and radiation models as 
well as Direct Simulation Monte Carlo (DSMC) for non-continuum flows. At the opposite end of 
the fidelity scale there are many first order approximate calculations for stagnation heat flux, 
radiative heating, and shock temperature based on a few key inputs like the vehicle radius of 
curvature, velocity, and atmospheric chemistry. These tools will be the primary means of 
determining the heating environment during the aerocapture atmospheric flight phase which will 
in turn drive the TPS material type and sizing.  

4.3.1. Sutton Graves Approximation 

𝑞௦ = 𝑘 ൬
𝜌

𝑅௡
൰

ଵ
ଶ

𝑉ଷ (4. 31) 

   
 One method of approximating convective heating, k is a constant that is derived for the 

planetary body and 𝑅௡ is the effective nose radius. This approximation will be the first tool used 
based on the vehicle state vector to approximate heating. The Sutton graves formula can be 
expanded into the generalized chapman method which incorporates additional exponents and a 
hot wall correction [1]. Modern, higher fidelity correlations have been derived from CFD runs 
and can be tailored for an individual planetary atmosphere, see [37], [38], and [39].  

4.3.2. Normal Shock Wave Calculation for Thermochemical Equilibrium.  

 For hypersonic flow, the typical isentropic relations must be expanded to account for 
chemical reactions. If the concentrations of each chemical species in the atmosphere are known, 
equations 4.32-4.33 can be used to calculate the temperature and pressure just behind the shock 
at the stagnation point [17]. These properties are useful for TPS sizing at the vehicle stagnation 
point and can be scaled for other surface locations. Expanded relations exist for conical flow. To 
solve for the species enthalpy, thermodynamic table lookups or curve fit approximations must be 
performed [3]-[5]. Thermodynamic properties such as species entropy and enthalpy and are used 
to determine the Gibbs free energy and subsequent equilibrium constants, this allows for the 
calculation of partial pressures, mole fractions, and enthalpy of each species (eqns. 4.34-4.39). 
The species assumed to be in the flight environment on Venus are CO2, CO, N2, O2, N, O, and 
their respective ions [7]. These mass fractions can change drastically within the aerocapture 
flight corridor (Figure 4.10) so an accurate atmospheric model is necessary. The Uranus 
atmosphere is much simpler containing the species H2, He, H, H+, He+, and e- [6]. The mole 
fraction variations in the altitude flight corridor aren’t as significant as Venus so it’s possible that 
the calorically perfect case of H2/He, γ=1.45 is a good enough approximation.  

 

𝑝ଶ = 𝑝ଵ + 𝜌ଵ𝑢ଵ
ଶ ൬1 −

𝜌ଵ

𝜌ଶ
൰ (4. 32) 
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𝐺௜ = 𝐻௜ − 𝑇𝑆௜ (4. 34) 
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(4. 38) 

ℎ = ෍  

௜

𝑐௜ℎ௜ = ෍  

௜

𝜂௜𝐻௜ (4. 39) 

  
 As a proof of concept, a basic chemistry model for air was developed using only the 
species 𝑁ଶ, 𝑂ଶ, 𝑂, 𝑁, and 𝑁𝑂. The three reactions that are modeled are shown below. 

 
𝑁ଶ ⇌ 2𝑁 𝑂ଶ ⇌ 2𝑁 𝑂 + 𝑁 ⇌ 𝑁𝑂 

 

𝐾௣ଵ =
𝑃ே

ଶ

𝑃ேమ

 (4. 40) 

𝐾௣ଶ =
𝑃ை

ଶ

𝑃ைమ

(4. 41) 

𝐾௣ଷ =
𝑃ே𝑃ை

𝑃ேை

(4. 42) 

𝑝௧ = 𝑃ேమ
+ 𝑃ைమ

+ 𝑃ே + 𝑃ை + 𝑃ேை (4. 43) 

𝑀𝑅 =
2𝑃ேమ

+ 𝑃ே + 𝑃ேை

2𝑃ைమ
+ 𝑃ை + 𝑃ேை

 (4. 44) 
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 Utilizing equation 4.37, equilibrium constant balance equations can be constructed based 
on the stoichiometric ratios of the reactants and products. Equation. 4.38 can be used to construct 
a pressure balance constraint and the known initial ratio of nitrogen and oxygen atoms can be 
used to construct a mole balance constraint. Equations 4.40-4.44 represent a system of 5 
nonlinear equations with 5 unknowns. These can be solved independently through a numerical 
method such as newton Raphson or successive substitution, however the system is sensitive to 
how the equations are represented. When one or more chemical species are sufficiently low in 
concentration, it’s not uncommon for the equilibrium constant to be in the realm of 1e-16 or less 
which can cause instability in the numerical method. The most robust solution is to reduce the 
system so that only the species that are expected to be present in the highest concentrations are 
solved for. It is possible to compile 4.40-4.44 into one singular equation as a function of N, N2, 
O2, or O through a symbolic math engine such as Mathematica or the MATLAB symbolic 
toolbox. N2 was solved for lower temperature conditions and N was used for high temperature, a 
cutoff of 5000-6000 K works well. Once the composition equations are derived the 
thermodynamic properties of each species must be obtained through an empirical data source. 
The database contained in [4] was used for this initial proof of concept chemistry model and 
specifies 7th order polynomial approximations listed in 4.45 and 4.46. A simple validation of the 
proof-of-concept chemistry model was performed by computing the mole fractions of each of the 
constituents from 1000K to 9000 K. Comparison with a plot in [17] indicates strong agreement.  
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Figure 4.19 Chemistry Model Validation ([17], Fig 11.12, P.541) 
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4
𝑇ସ + 𝑎଻ (4. 46) 

The properties contained in [3] are much more extensive than [4] and are used in the 
industry standard CEA (Chemical Equilibrium Applications) software. An expanded chemistry 
model utilizing [3] was developed for fast calculations at each timestep in the trajectory code to 
improve the aerothermal environment predictions. The expanded polynomial curve fits specified 
by [3] are shown in eqns. 4.47-4.49 and utilize 9 coefficients. A database was generated from [3] 
so that the 9 coefficients could be queried for any chemical species used in an analysis. The 
coefficients are provided over three temperature ranges with cutoffs at 1000K and 6000K. A 
normal shock wave solver was programmed with the same chemical species equations listed in 
eqns. 4.40-4.44 using the symbolic math method. CEA utilizes a scheme described in [5] that 
iteratively minimizes the Gibbs free energy term for each reaction, this method is extremely 
versatile and robust for any number of chemical species and reactions though is computationally 
expensive for the inner loop of a trajectory program. The NASA Ames developed TRAJ 
trajectory program utilizes a pre-generated Mollier diagram to determine the equilibrium 
thermodynamic state behind the shock at the stagnation point. The approach taken here falls in 
between the above two approaches where the exact expressions for the fixed quantity of species 
in the atmosphere are manipulated through symbolic math to allow the fastest possible numerical 
convergence for only a single species.  
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𝑃ேమ

= 𝑓(𝐾௣ଵ, 𝑃ே) (4. 50) 

𝑃ைమ
= 𝑓(𝐾௣ଶ, 𝑃ை) (4. 51) 

𝑃ேை = 𝑓(𝐾௣ଷ, 𝑃ே , 𝑃ை) (4. 52) 
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 Equations 4.50-4.52 are formed algebraically from 4.40-4.42 and are plugged into 4.43 to 
generate an expression that is only a function of 𝑃ே and 𝑃ை, this expression can then be solved 
symbolically for 𝑃ை, the intent is to isolate 𝑃ே which is expected to be the species of the highest 
concentration at high temperatures, the same reduction scheme can be performed for 𝑃ேଶ

 for 
lower temperatures. 4.50-4.54 are all substituted into 4.44 to form an expression where 𝑃ே is the 
only unknown. This expression (4.55) can be solved efficiently with a minimization function like 
MATLAB’s fzero function and the remaining species concentrations can be determined through 
simple expression evaluations. An additional increase in computation efficiency could be 
achieved if 4.55 could be solved for 𝑃ே, however due to the various root and exponential terms 
such a solution is not practical to reach with a symbolic math engine.  
 
 

𝑃௧ = 𝑓൫𝐾௣ଵ, 𝐾௣ଶ, 𝐾௣ଷ, 𝑃ே , 𝑃ை൯ (4. 53) 
 

𝑃ை = 𝑓൫𝐾௣ଵ, 𝐾௣ଶ, 𝐾௣ଷ, 𝑃ே , 𝑃௧൯ (4. 54) 
 

𝑓௉ಿ
= 𝑓൫𝐾௣ଵ, 𝐾௣ଶ, 𝐾௣ଷ, 𝑃ே , 𝑃௧, 𝑀𝑅൯ (4. 55) 
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Figure 4.20 Chemistry Model Validation with CEA 

 P1 = 1 Pa 
 T1 = 216.4 K 
 0.79 mole N2 
 0.21 mole O2 
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 A validation case was prepared with CEA using conditions chosen to match an Earth 
altitude of 80 km. As shown in Figure 4.20, the agreement of the symbolic math model with 
CEA is excellent. All output parameters were tested and errors between the two models are 1e-4 
or less for all property ratios and species concentrations. Figure 4.21 shows a comparison with 
the calorically perfect gas case which illustrates the importance of chemical reaction effects with 
high speed, hypersonic applications. Note that the pressure ratio is not strongly dependent on 
chemical effects as it is a “mechanical” property rather than a thermodynamically driven 
property. The current model still makes the significant assumption that the gas mixture is in 
thermochemical equilibrium just behind the shock, in reality equilibrium takes a set amount of 
time to reach. State of the art CFD solvers such as DPLR model non-equilibrium chemical 
effects which are important in determining the radiative heating environment.  
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Figure 4.21 Calorically Perfect Gas Comparison 

 P1 = 1 Pa 
 T1 = 216.4 K 
 0.79 mole N2 
 0.21 mole O2 
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 Another assumption at this stage is that ionization reactions are neglected. At high 
temperatures, gasses can ionize or lose electrons, in air the first dominant ionization reaction that 
begins to occur at higher temperatures is 𝑂 ⇌ 𝑂ା + 𝑒ି. To include ionization effects, an 
additional charge balance constraint equation must be added to the set of equilibrium relations. 
𝑎௘௜ is the excess or deficiency of electrons, so 𝑎௘௜ = −1 for 𝑂ା, +1 for 𝑒ି, and +2 for a species 
like 𝑁ାା, in other words it is the level of ionizations that have occurred. 
 

෍ 𝑋௜𝑎௘௜ = 0

ேீ

௜ୀଵ

(4. 56) 

 
  
 The case in Figure 4.20 was re-run with the inclusion of ions and the CEA default 
composition for air, which models Argon, CO2 and other trace species. This is to evaluate the 
level of fidelity of a simple 𝑁ଶ, 𝑂ଶ model. After around 9 km/s, the density and temperature 
ratios diverge significantly. It is evident that for Earth entry trajectories at super-orbital velocities 
such as lunar returns, ionization reactions can have a significant effect on the equilibrium 
environment.  
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Figure 4.22 CEA Validation with Ionization Effects 

 P1 = 1 Pa 
 T1 = 216.4 K 
 0.79 mole N2 
 0.21 mole O2 
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The inclusion of ionization reactions and effects into the air model represented by 
equations 4.40-4.44 would significantly increase the complexity of the symbolic math engine 
calculations. Venus and Mars also have atmospheres of similar complexity with the inclusion of 
CO2 and its related compounds. The Uranus/Neptune upper atmosphere is almost entirely 
𝐻ଶ/𝐻𝑒 which simplifies the modeling and inclusion of ionization effects. A Uranus aerocapture 
trajectory was tested as an initial study into the equilibrium chemistry effects on the heating 
environment, the results are presented in Appendix 9.4.  

 
 

 

4.4. Geometry 

  
 The entry vehicle for the initial trajectory validations will consist of a standard sphere 

cone aeroshell with the same forebody geometry specified in [23]. Different geometries will be 
investigated such as a 70° sphere cone similar to the Mars Science Lab (MSL) vehicle. The 
forebody geometry is fed into the modified Newtonian aerodynamics calculations discussed in 
section 4.2 and the effective nose radius is used in the Sutton graves correlation. A scaled up 
MSL vehicle type was used in ECI study on a single-pass aerocapture approach for outer planets 
missions [12], [15]. TPS material candidates for the forebody are PICA-D (domestic materials), 
C-PICA (conformal), and HEEET (Heatshield for Extreme Entry Environment Technology), 
which is a high performance woven TPS [12]. Material selection and sizing will be determined 
by the entry environment. The aerothermal analysis and TPS sizing will need to take into 
consideration the effects of multiple entry pulses and any progressive degradation.  

Figure 4.23 Validation Entry Vehicle Geometry (ref. [11]) 
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4.5. Simulation Framework 

4.5.1. Simulation Version 1.0 

 

 
 

 A past AE242 Orbital Mechanics project partially modeled an aerobraking trajectory for 
Earth and Mars cases and is a primary inspiration for this multi-pass aerocapture study. The 
program was written in MATLAB and has been reworked into an object-oriented format to allow 
for easier implementation of different calculations like aero heating and trajectory optimization. 

Figure 4.24 Aerobraking Model with Key Additions (red) 
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The framework was validated with a flight proven trajectory analysis and TPS design tool such 
as BATSPEED in section 5.2. 
 

  
 The simulation framework was developed in an object-oriented approach in MATLAB. 

The initial intent was to use system object blocks to build out the algorithm in Simulink. This has 
not been implemented yet as handing large blocks of vectorized data along with numerous other 
parameters was tedious in Simulink, a traditional scripted approach was used for the initial build 
of the simulation framework.  

 The aerocapture and circularization routines contain the core trajectory propagation 
methods, using a Runge Kutta (RK) 4/5 variable step integrator such as MATLAB’s ODE45. 
Version 2.0 of the simulation allows the user to choose from a set of integrators within 
MATLAB, ODE89 is especially accurate for long duration smooth orbits. Event functions are 
implemented to command the integrator stop at critical points like atmospheric interface or 
apoapsis. Trajectory correction, perigee raise, and other propulsive maneuvers are modeled using 
eqn. 4.7. Additional methods within the orbit propagator class of objects generate new initial 
conditions and stitch time history results to previous orbit segments for post processing and 
visualization. The time history results are passed on to an Aerothermal calculations object.  

 The trajectory optimization routine is called after the atmospheric exit of each aero-pass. 
This routine will assess the current vehicle state and simulate a small perigee adjustment burn at 
apoapsis and the following aero-pass. This “look forward” trajectory will be iterated while 

Figure 4.25 Model Framework (Version 1.0) 
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adjusting the maneuver burn time until the desired apoapsis is achieved. The output of this 
optimization is the ΔV and burn time for an optimal periapsis adjustment, typically on the order 
of 1-2 m/s. At the beginning of the simulation, an optimization routine determines the optimal 
number of passes based on the ΔV required for the initial orbital insertion pass. The outputs of 
this optimization are the number of aero-passes and the target apoapsis after each pass, this data 
is fed into the periapsis adjust routine.  

 Extensive literature exists on guidance and control methods for aerocapture ([10], [23], 
[26], [27]). Popular methods are bank angle modulation (BAM) and direct force control (DFC). 
One common control algorithm is fully numeric predictor corrector aerocapture guidance 
(FNPAG). Nominal unguided trajectories will be used for the initial analysis as developing and 
simulating a complete closed loop guidance system is at the edge of scope for this project. 
NASA developed tools such as GENESIS [17] already exist and can run 6-DOF simulations 
utilizing these guidance methods.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.27 Expanded Model with Subsystems (Version 1.0) 

Superclasses 

Subclasses 

Figure 4.26 MATLAB Object Oriented Class Structure (Version 1.0) 
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4.5.2. Simulation Version 2.0 

The first version of the multi-pass trajectory program utilized object oriented 
programming techniques but did not take full advantage of the various built-in aspects of the 
class and object formats within MATLAB. The two primary class types are value classes and 
handle classes. Value classes behave like normal variables where property values are tied to the 
variable name, if an object of a value class is assigned to a new variable, a new independent 
object is created. Modifying the properties of the new object do not affect those of the original 
object. Use of value classes in a simulation architecture requires objects to be passed in and out 
of functions to be modified and can be limiting for an environment that requires large numbers of 
parameters and state variables to be in sync at all times. Version 1.0 of the simulation 
environment utilized value classes for the majority of data management.  

MATLAB handle classes can create multiple objects that are references to a single object. 
A handle object can be copied to new variables and passed into functions or assigned as 
properties and all instances reference the same underlying object. Any change to properties of a 
handle object will be reflected in all instances of that object. This behavior enables a massive 
amount of flexibility in the simulation environment. Handle classes are created by deriving them 
from the handle superclass. 

 
1. classdef MyHandleClass < handle 
2.     ... 
3. end 
 

An even more specialized type of handle objects are MATLAB system objects. They are 
of a handle class by definition but contain various built in features that allow them to be re-used 
in loops with step and reset functions as well as expanded load and save capabilities. This allows 
them to be used as system blocks within Simulink however the current simulation has not been 
implemented in Simulink and is run through a script. All the class definition files in version 2.0 
were converted to the matlab system object format. A top level, encapsulating object was created 
to initialize the simulation and pass various objects as properties to other objects to enable the 
interconnected nature of handle classes. Once the handle objects were mutually shared, the 
simulation could be run continuously with all relevant properties like the spacecraft state, 
geometry, and trajectory results seamlessly shared between objects without having to pass inputs 
and outputs through the various functions and methods. Handle objects also enable other 
advanced behavior such as listeners and events that can automatically trigger callback functions 
when properties are changed. One example of this behavior is when the planet property is 
updated in an object of the BodyInputs class, the GRAM and time objects are automatically 
updated with the new planet and the GRAM interface is re-initialized with a new atmosphere.  
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Table 4.1 Program Class Summary 

Shared Handle Classes 
SCInputs Spacecraft geometry, aerodynamics, and rocket propulsion 
BodyInputs Planetary constants, shape model, atmospheric threshold 
SCState All state parameters, coordinates, frame transformations, etc. 
TrajResults Time history trajectory results, contains labels and names for plotting 
timeMgr Handles elapsed time and all time dependent planet orientations 
gramMgr Contains the GRAM interface library and all shared objects 
chemMgr Handles all atmospheric chemistry and thermodynamic calculations 

Trajectory Propagation Classes 
OrbitProp Superclass for any trajectory propagation, contains the numerical 

integration scheme and all associated properties 
AeroPass Subclass of OrbitProp for atmospheric flight 
Burn Subclass of OrbitProp for propulsive maneuvers 

Post Processing and Visualization Classes 
plotProps Generates 2D plots and handles all plotting options 
Aerothermal Primary trajectory postprocesser, handles all time history and 

aerothermal calculations 
AerothermalStep Subclass of aerothermal, performs calculations at one trajectory point 
TrajPlot Generates the 3D trajectory plots and stores all run history results for 

all previous trajectory segments 
Optimization Classes 

MissionPlan Contains all shooting method trajectory optimization routines, 
contains specific logic and maneuver calculations for a multi-pass 
aerocapture type mission 

Low Level Helper Classes 
InitState Initializes default values when a new configuration is created 
AeroDB Constructed by the SCInputs class, handles all aerodynamics 

calculations 
inputSpecies Contains properties of the chemical species within GRAM 
optoIn Creates and formats inputs to the trajectory optimizer 

 



  
 Page 47 of 107  

 

 
In version 2.0, only a few classes utilize inheritance such as the trajectory propagators 

and aerothermal classes, compared to almost all the value classes in 1.0 (Figure 4.26). This 
streamlines the overall architecture and prevents subclasses from inheriting excessive properties 
and methods when most are not needed. Only objects with closely related functionality benefit 
from a sub-superclass hierarchy.  Most of the classes contain other classes as properties so that 
the same set of simulation data can be readily available for any class method at any point. 
Without the reference behavior of handle objects, the amount of variables and structs that need to 
be passed between different classes and functions would be extremely cumbersome.  

 
 

 
To create a new simulation, the master hand constructor is called which initializes all 15 

of the primary system objects and creates the connections shown in Figure 4.29. The master hand 
contains methods such as listener callbacks which handle unique interactions between the system 

Superclasses 

Subclasses 

Figure 4.28 Version 2.0 Class Inheritance Hierarchy 

Figure 4.29 Class Containment Structure 
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objects. Once a configuration is created, any instance of a particular handle object such as 
SCState will always contain the most up to date values as they are all references to the same 
object. This allows an atmospheric flight trajectory to be run and any following segments such as 
a coast or burn trajectory will already contain the updated state and initial conditions necessary 
to run. The same is true with the results as any of the three trajectory objects populate the same 
results object (TrajResults) which is also accessible from the post processing, aerothermal, and 
plotting objects. The save and load functions of system objects allow a masterhand object to be 
seamlessly saved to and loaded from a .MAT file which is useful for organizing different 
configurations. Lower level objects such as a spacecraft configuration (SCInputs) can also be 
saved and loaded into a simulation on their own. The mission plan object contains all the 
trajectory propagation objects to compute shooting trajectory optimizations. The multi pass 
routine contained within the mission plan still reflects the general functionality shown in Figure 
4.27. The State object supports saving previous states as structs to allow resets at the start of 
another iteration or after an optimization. 

A special method was implemented within masterhand using the “assignin” matlab 
function to flatten the architecture and assign the 15 primary system objects into the matlab base 
workspace, this makes for easier access to the various properties. There are hundreds of 
individual properties contained within the various objects, to ease in creating and managing 
individual missions and simulation setups a property editor was created within the MATLAB 
app designer. The property editor allows important input properties to be edited and is organized 
into 5 tabs, State, Spacecraft, Aerodynamics, Planet, and Options. The editor can create, load, 
and save MAT files which can then be easily loaded into a script running a simulation. A sample 
script as well as the source code for most of the system objects is contained in Appendix 9.6 
 

Figure 4.30 Configuration Editor 
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5. Model Validation and Comparison 

5.1. Model Validation with SCITECH Venus Aerocapture Performance Analysis 

 The simulation methodology outlined in chapter 4 requires a robust validation scheme to 
verify the physics and modeling methods are sound. Recall reference [23] assesses the 
performance of various GN&C methods for a smallsat Venus aerocapture and presents 
preliminary aerothermal environment predictions. To capture the guided bank angle trajectory 
space in [23], lift-up, lift-down, and bank 90° trajectories were run using the 10° trim angle of 
attack specified in the paper. The initial conditions are shown in Figure 5.1 and were pulled 
directly from [23]. 

 

Figure 5.1 Model Validation Trajectory Inputs [23] 

Figure 5.2 Unguided Aerocapture Validation Trajectory 
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Figure 5.3 Trajectory Heat Flux Validation (Internal Model: left Ref. [23]: right) 

Figure 5.4 Trajectory Velocity Validation (Internal Model: left Ref. [23]: right) 
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  Using the flight path angle as an optimization parameter, the simulation was able to 
achieve the 500 km target apogee altitude within 100 meters. The trajectory and aerothermal 
results are bounding of the results from [23] which utilized flight proven software tools. The heat 
flux and total heat load were calculated using Sutton graves outlined in section 4.3 using the 
same aerothermal constant provided in [23]. While the current simulation does not model 
guidance, navigation or 6 degrees of freedom, it is a reasonable 1st order estimate and allows for 
expansion to new entry conditions. 

 
Table 5.1 Venus Aerocapture Validation Summary 

 Peak Conv. Heat 
Flux (W/cm^2) 

Conv. Heat Load 
(J/cm^2) 

ΔV Lost Due to 
Drag (km/s) 

FPA at Entry 
Interface (deg) 

Lift Down 392.29 49653 3.6558 -5.4233 
Bank 90° 474.32 39900 3.6304 -5.6182 
Lift Up 590.60 32103 3.5535 -5.9737 

 

5.2. Comparison with NASA TRAJ Software  

 The Entry Systems and Technology Division at the NASA Ames Research Center is the 
agency’s hub for entry systems modeling and TPS materials research. The division has 
developed numerous software tools over the years to simulate atmospheric entry and model TPS 
material response. One of the internal tools to the materials branch (TSM) is a code called 
BATSPEED (Broad A priori TPS Sizing for Proposals and Efficient Engineering Design). This 
tool combines earlier developed codes TRAJ (Trajectory Analysis Program) with FIAT (Fully 
Implicit Ablation and Thermal Analysis Program). TRAJ is intended to simulate the entry 

Figure 5.5 Trajectory Altitude Validation (Internal Model: left Ref. [23]: right) 
 

A
lti

tu
d

e 
(k

m
)



  
 Page 52 of 107  

 

trajectory and generate aerothermal environments, almost an analogy to the MATLAB trajectory 
code developed as part of this project. TRAJ does support skip-out but does not simulate 
propulsive maneuvers or multiple atmospheric entries. FIAT is the TPS material response tool 
that reads the entry environment and spits out a required TPS thickness and can recommend TPS 
material options. BATSPEED combines these two codes in a convenient mission design tool that 
allows the user to specify an atmospheric entry state and simulate a range of trajectories to 
generate a bounded TPS design space. TRAJ was used as an initial validation for the MATLAB 
trajectory tool for multi-pass aerocapture. Future work will involve running FIAT for the entry 
environments of a single pass and multi pass aerocapture and comparing the resulting TPS 
thickness of each. BATSPEED is run in a linux ubuntu shell environment and all the various 
outputs and data are still being explored. Currently, TRAJ is able to simulate an aerocapture 
trajectory and target a post-capture apoapsis but requires a non-zero angle of attack to generate 
lift-up and lift-down results. TRAJ has a variety of options for atmosphere models and entry 
vehicle geometries with many based on empirical flight data. For an initial comparison, TRAJ 
was run at 0.5° α and the resulting entry flight path angles for the lift up and lift down 
trajectories should evenly split the 0° α case. The same entry vehicle geometry was used as the 
comparison with [23] in section 5.1 but the Julian date and longitude and latitude had to be 
updated as the values in Figure 5.1 were throwing errors in TRAJ.  
 The results of the MATLAB and TRAJ trajectories are in-family and there are many 
physics assumptions that differ between the two that likely make up the differences. The 
MATLAB EFPA result is slightly skewed towards the lift-up TRAJ result rather than splitting 
the difference. The MATLAB model also overpredicts the heating environment by around 20%, 
though this could be due to a slightly different aerothermal constant being used in TRAJ. 
Typically, uncertainties are high with heating predictions and appropriate margins are applied 
accordingly. Familiarity with the TRAJ and BATSPEED codes is low and there is much to learn 
for future simulations. Once issue is that when viewing the time history results of the TRAJ lift 
up trajectory, the vehicle does not actually skip out and falls all the way to the surface. TRAJ 
uses an iterative method similar to the in-house developed MATLAB script to home in on the 
EFPA for the post-capture apoapsis. More trial and error is necessary to diagnose this issue.  
 
Table 5.2 MATLAB-TRAJ Comparison Inputs 

Inputs 
Velocity 11 km/s 
Azimuth -90° 
Longitude 305.61606° 
Latitude 5.170641° 
Julian Date 2456755 
Mass 150 kg 
Cone Half Angle 60° 
Diameter 1 m 
Nose Radius 0.25 m 
Target Apoapsis 500 km 
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Table 5.3 MATLAB-TRAJ Comparison Results 

 MATLAB NASA TRAJ (Lift 
Up) 

NASA TRAJ (Lift 
down) 

Angle of Attack  0° 0.5° -0.5° 
Resulting EFPA -5.6149 -5.6122 -5.586 
Peak Convective Heat Flux 451.641 W/cm^2  386.53 W/cm^2 375.58 W/cm^2 
Peak Radiative Heat Flux - 15.75 W/cm^2 14.94 W/cm^2 
Total Heat Load (Conv.) 38394.7 J/cm^2 41498.96 J/cm^2 34019.71 J/cm^2 
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Figure 5.7 TRAJ-MATLAB Velocity Comparison Figure 5.6 TRAJ-MATLAB Altitude 
Comparison 

Figure 5.8 TRAJ-MATLAB Heat Flux Comparison 
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 An additional comparison study was conducted with TRAJ with lift up and lift down 
conditions, the same vehicle configuration and input state were used as Table 5.2 with 𝛼 = 10°, 
15°, and 20° targeting a 500 km post aerocapture apoapsis. The error between any of the two 
resulting entry flight path angles is under 0.02° (Table 5.4) which is less than observed 
differences from varying the entry long, lat or Julian date. This agreement adds additional 
confidence to the MATLAB model and is a strong indication that the physics and modeling 
methods are sound. There are numerous assumptions and modeling methods that are different 
between the two solvers and the degree of variation seen between the two is expected. Both 
models match the expected behavior of trading higher total heat load for decreased maximum 
heat flux for decreasing 𝛼. Figure 5.10 and Figure 5.11 illustrates close agreement in the 
trajectory space in terms of velocity and altitude while the aerothermal environments are around 
10-20% higher for the MATLAB model. While TRAJ does offer an option for Venus GRAM in 
its atmosphere selection, discussion with colleagues suggested that this is an altitude profile that 
was extracted from a separate run of GRAM and not an individual query of the GRAM model at 
each time step; this and possibly the aerodynamics model may account for some of the small 
differences.  
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Figure 5.11 MATLAB-TRAJ Comparison Lift Up 



  
 Page 58 of 107  

 

Table 5.4 MATLAB-TRAJ Lift Up, Lift Down Comparison 

Lift Down Resulting EFPA 
(deg) 

Peak 
Convective Heat 
Flux (W/cm^2) 

Peak Radiative 
Heat Flux 
(W/cm^2) 

Total Heat Load 
(Conv. J/cm^2) 

Lift Up 

MATLAB (-10°) -5.424 382.25 - 48521.66 
TRAJ (-10°) -5.410 326.70 11.16 43108.42 
MATLAB (-15°) -5.368 361.27 - 54560.16 
TRAJ (-15°) -5.354 302.84 9.320 48836.38 
MATLAB (-20°) -5.329 347.80 - 61161.99 
TRAJ (-20°) -5.315 301.17 9.590 55053.46 
MATLAB (10°) -5.976 572.89 - 31264.45 
TRAJ (10°) -5.962 464.67 24.49 26578.55 
MATLAB (15°) -6.248 648.38 - 28883.92 
TRAJ (15°) -6.234 518.04 32.14 24242.16 
MATLAB (20°) -6.592 735.47 - 27123.57 
TRAJ (20°) -6.576 578.46 66.14 22462.20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  
 Page 59 of 107  

 

6. Preliminary Results  

6.1. Preliminary Multi-Pass Venus Aerocapture Trajectory 

 A test multi pass trajectory was implemented to achieve the same initial state as the 
validation run at atmospheric interface (Figure 5.1). The orbit was backed out to an altitude of 
~300,000 km to allow for a small trajectory correction maneuver to adjust the perigee to target a 
500,000 km apoapsis after the initial aero-pass. The spacecraft state class can readily convert 
between classical orbital elements, a position and velocity state vector, and the topocentric 
coordinates (Table 4.1). The mission plan object produced 4 intermediate braking orbits before 
the final 500 km science orbit was reached. These were automatically scaled to match the delta V 
lost on the first orbital insertion pass. The spacecraft was given the same initial mass and 
configuration as the validation run. Propulsion system parameters were estimated, the system 
needed a high thrust propulsion system for the perigee raise maneuver and low thrust 
maneuvering system for the high accuracy TCM’s. 
 

 

Interplanetary TCM 

Figure 6.1 Full Venus Multi-Pass Trajectory 
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 Table 6.1 Spacecraft Inputs                    Table 6.2 Con-Ops Summary 

 
Table 6.3 Initial State 

 

  

 

 

 

Maneuvers Summary 
Maneuver Duration 

(s) 
ΔV 

(m/s) 
Interplanetary TCM 2.27 0.15 
1st Periapsis Adjust 0.14 0.01 
2nd  Periapsis Adjust 0.85 0.06 
3rd  Periapsis Adjust 2.85 0.19 
4th  Periapsis Adjust 9.11 0.61 
Final Perigee Raise 55.21 112.20 

Totals 
Mission Duration (days) 17.78 

ΔV Expenditure (m/s) 113.20 
Propellant Expenditure (kg) 5.67 

Spacecraft Input Parameters 
Parameter Value 
Initial Mass 150 kg 

High Thrust System 300 N 
Low Thrust System 10 N 
ISP (both systems) 300 s 

Drag Coefficient (α=0°) 1.393 
Diameter 1 m 

Nose Radius 0.25 m 
Sphere Cone Angle 60° 

 Interplanetary Orbital Elements 
Parameter Value 

Eccentricity (𝑒) 1.307 
Semi Major Axis (𝑎) -2.00e4 km 

Inclination (𝑖) 0° 
Argument of Periapsis (𝜔) 0° 

Long. of Ascending Node (𝛺) 0° 
True Anomaly (Θ) 137° 

Hyperbolic Excess Velocity 4.030 km/s 
Julian Date 2455504 

Figure 6.2 Venus Multi Pass Trajectory Planet Centered 

Periapsis Adjust 

Final Orbit 
 

Final Periapsis 
Raise 
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  The final science orbit was slightly off from the target of 500 km at ~494 x 506 km, the 
implementation of the final trajectory raise burn could be improved. Overall the mission performance is 
satisfactory with only a small percentage of the initial spacecraft mass being expended chemical 
propellant. The mission duration is also manageable and is a small fraction of the interplanetary cruise 
phase. The duration figure is measured from the initial interplanetary state all the way to one completion 
of the final science orbit. Disadvantages to this architecture include the need for orbital maneuvers and 
navigation measurements while the spacecraft is still contained within the TPS aeroshell.  

 

6.1.1. Aerothermal Results: Preliminary 

 
 

Figure 6.3 Multi Pass Heat Flux Results 
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Figure 6.4 Multi Pass Total Heat Load Results 
 
 Preliminary results comparing the aerothermal environments of multi and single-pass 
aerocapture missions indicate a significant reduction in total heat load for each atmospheric 
entry. The target apogee of 500,000 km appeared to be a point of diminishing returns of reduced 
heating vs. mission duration, this value is further optimized in section 6.2. While the 
environments of each pass are more benign, the sum of the total energy absorbed by the TPS 
throughout the multiple passes is higher than the single pass. Given the orbital periods are on the 
order of several days, the heatshield would have sufficient time to cool down, though with an 
ablative TPS there would be a finite and compounding amount of material lost on each pass. This 
approach could be enabling for re-usable TPS such as flexible carbon weaves that have a lower 
maximum heat flux tolerance but can survive multiple insertions. A thorough TPS sizing effort is 
required to fully assess any mass savings (if any) with the multi-pass method.  
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6.2. Aerocapture Sensitivity Analysis 

From previous results it is apparent that the first atmospheric entry from an interplanetary 
state is the driving case in terms of the heating environment and reduction in velocity. The 
spacecraft must become captured on this pass which puts a lower bound on the overall intensity 
of the heating environment. A study was conducted to examine the design and trajectory space of 
amulti-pass aerocapture by looking at the initial pass bounding case in terms of the target 
apoapsis, vehicle ballistic coefficient, and entry velocity. These are the primary driving factors 
for the maximum heat load which determines the type of TPS material required. The target 
apoapsis of 500,000 km used in previous cases was a qualitative estimate based on engineering 
judgement. An optimal value requires a balance between the orbital period of the post-exit orbit, 
which drives the mission duration and the peak heat flux which dictates the TPS material.  
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Figure 6.5 Peak Stag. Heat Flux to Orbital Period Tradeoff 

 1 m diameter, 0.25 m nose radius 
 BC = 138 kg/m^2 
 60° Sphere Cone 



  
 Page 64 of 107  

 

 Figure 6.5 shows a series of trajectories run for different post-exit apoapsis targets from 
an interplanetary trajectory, the vehicle configuration and initial state are the same as Table 6.1 
and Table 6.3. Figure 6.5 shows significant diminishing returns in terms of heating reduction 
after around 200,000 km while the orbital period continues to rise nonlinearly. The first post 
capture orbit is also dominant in terms of the total multi-pass con-ops duration. An obvious 
visual choice for the ideal post-capture apoapsis would be the intersection of the two curves but a 
more quantitative approach would be to construct a weight function between normalized values 
of peak heat flux (𝑞ே) and orbital period (𝜏ே).  
 
 

𝑞ே(𝑟௔) =
𝑞(𝑟௔) − 𝑞௠௜௡

𝑞௠௔௫ − 𝑞௠௜௡

(6. 1) 

 

𝜏ே(𝑟௔) =
𝜏(𝑟௔) − 𝜏௠௜௡

𝜏௠௔௫ − 𝜏௠௜௡

(6. 2) 

 

𝑊(𝑟௔) = ට𝜏ே
ଶ + 𝑞ே

ଶ (6. 3) 
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Figure 6.6  𝒒𝑵-𝝉𝑵 Weight Function  

 1 m diameter, 0.25 m nose radius 
 BC = 138 kg/m^2 
 60° Sphere Cone 
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The weight function shown in eqn. 6.3 is based on the peak heat flux and orbital period at 
chosen apoapsis limits 𝜏௠௜௡,௠௔௫ and 𝑞௠௜௡,௠௔௫. The values are normalized over the entire range. 
The lower apoapsis limit was set to 500 km, as that is a standard low science orbit described in 
[23], the upper limit was set to 800000 km, which is near the limit of a bounded Venusian orbit. 
The minimum of this weighting function is the point where peak heat flux is minimized without 
the expense of a significant increase in mission duration. Figure 6.6 shows the weight function 
plotted with the same x axis values as Figure 6.5. The minimum occurs at ~175000 km with a 
peak stagnation heat flux of ~313 W/cm^2 and orbital period of ~88 hrs. The weight function 
limits can be adjusted depending on mission requirements.  
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Figure 6.7 Ballistic Coefficient Effect on Peak Heating 

 1 m diameter, 0.25 m nose radius 
 Vi = 11 km/s 
 60° Sphere Cone 
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Figure 6.9 Entry Velocity (km/s) Effect on Weight Function 
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Figure 6.8 Ballistic Coefficient (kg/m^2) Effect on Weight Function 

 1 m diameter, 0.25 m nose radius 
 Vi = 11 km/s 
 60° Sphere Cone 

 1 m diameter, 0.25 m nose radius 
 BC = 138 kg/m^2 
 60° Sphere Cone 
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 The ballistic coefficient, shown in eqn. 6.4 is a way to normalize several aerodynamic 
characteristics of the entry vehicle into one parameter. Figure 6.8 and Figure 6.9 illustrate low 
sensitivity of the weight function minimum to ballistic coefficient and entry velocity. This 
“sweet spot” of apoapsis altitudes is almost entirely dependent on the planetary destination, with 
the obvious condition that it is above the target science orbit for the mission. It should be noted 
that the sensitivity analysis trajectories run in this section were ballistic entries at 𝛼 = 𝛽 = 0. 
 

𝐵஼ =
𝑚

𝐶஽𝐴
(6. 4) 

 
An optimal target apoapsis altitude is tied to a particular trajectory and resulting heating 

environment. This allows for an aerocapture mission design space to be calculated where the 
peak heat flux can be visualized as a function of ballistic coefficient and entry velocity. The 
weight function analysis shows that additional constraints are not necessary as the apoapsis range 
is only strongly dependent on the destination. One exception is the entry vehicle effective nose 
radius which factors into the Sutton Graves heating correlation but does not have a significant 
impact on the vehicle ballistic coefficient. A vehicle with a smaller nose radius will produce 
higher stagnation heat fluxes for the same ballistic coefficient and all else being equal. With this 
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Figure 6.10 Venus Aerocapture Design Space 

 Initial orbit apoapsis is ~175000 km 
 Vehicle diameter varied from 1.0-3.5 m 
 Nose radius is ¼ the vehicle diameter 
 70° Sphere Cone 
 α=0° 
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in mind new design spaces should be generated for different classes of entry vehicles or new 
planetary destinations.  

 The design space in Figure 6.10 indicates vehicle configuration (𝐵஼) and arrival velocity 
can have a significant influence on the heating environment. The values are valid for any target 
apoapsis above the weight function predictions, Entry vehicles like MSL and Mars 2020 have 
ballistic coefficients ~150 kg/m^2, if such a vehicle was used for a Venus aerocapture, ablative 
TPS would be necessary for peak heating rates >300 W/cm^2.  
 

6.2.1. Uncertainty Modeling 

So far only nominal values have been used in the analysis, though uncertainty 
propagation is necessary to gauge the various sensitivities of the design space. GRAM supports 
monte carlo runs and perturbations on all atmospheric properties. Assessing how the 
aerodynamic coefficients respond to a normal distribution of angles of attack, and free stream 
conditions could allow a 3σ envelope of trajectories to be plotted. One of the potential 
advantages to multi-pass aerocapture is the higher initial target apoapsis leaves more room for 
trajectory or guidance dispersions. Directly targeting a low 500 km orbit after an aerocapture 
requires a much tighter flight corridor than a 200,000 km orbit. The flexible object oriented 
nature of the simulation and perturbation ready parameters of GRAM would make the addition 
of uncertainties straight forward. However, quantifying the uncertainties and utilizing them for 
mission design is more involved and is out of the scope of this current project. 
 

6.3. Mission Concept: SmallSat Venus Aerocapture with Deployable TPS 

 NASA’s Adaptable, Deployable Entry Placement Technology (ADEPT) [25] is an 
attractive candidate for a low ballistic coefficient entry vehicle that can withstand multiple 
atmospheric entries. The technology utilizes a flexible carbon weave as a TPS that can be folded 
to allow for efficient packing in launch vehicle fairings. This TPS was tested in the NASA ARC 
Arc Jet facility at conditions of over 150 W/cm^2 of stagnation point convective heating though 
50 W/cm^2 is a more realistic re-usable limit [25]. 

To home in on a basic entry vehicle configuration, a second batch run was conducted to 
narrow down the design window to the lower left corner of Figure 6.10. This focused design 
space is shown in Figure 6.11. In the spirit of choosing round numbers, a 3 m diameter aeroshell 
with a mass of 200 kg would have a ballistic coefficient of 17.55 kg/m^2. This is almost 8 times 
lower than the ballistic coefficient of the MSL entry vehicle and is likely close to the limit of 
materials and mass constraints for a flexible, deployable entry system. Additional system design 
work would be necessary to determine the feasibility of vehicles in this range. Assuming a TPS 
mass fraction of 30-40% would allow for 120-140 kg science payload orbiter. A trim angle of 
attack of 10° was chosen arbitrarily as optimizing for angle of attack requires stability, mass 
properties, and other vehicle characteristics that aren’t modeled by the simulation. If this vehicle 
targeted an optimized post capture apoapsis of 200,000 km it would encounter a peak stagnation 
heat flux of ~59.5 W/cm^2 for the lift down case and ~70 W/cm^2 for the lift up case which is in 
the ballpark for a re-usable, deployable entry system.  
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A multi-pass architecture analyzing this configuration was setup with values shown in 
Table 6.4 through 6.7. The entry state (Table 6.6) is identical to the mission studied in section 
6.3. The mission planner solution with a 200,000 km initial apoapsis yields only 3 passes instead 
of 4, bringing the mission duration down to ~5.5 days. Note that the drag and lift coefficients 
shown in Table 6.4 are nominal values and can vary slightly due to the effects discussed in 
section 4.2.4. A small 100 kg satellite would likely consist of a pressure fed monopropellant 
system with space for only a few kgs of propellant. A large cruise stage would be necessary for a 
purely propulsive orbital insertion. The advantage of a deployable system is the back shell can be 
opened to the space environment to allow for easier communication and maneuvers. The 
aerothermal plots shown in Figure 6.16 illustrate the flight corridor between the extreme lift up 
and lift down cases. The aerothermal heating metrics trend as expected, with heat flux 
dominating the lift-up trajectory and total heat load the lift-down trajectory. The delta between 
the lift-up and lift down stagnation heat flux and total heat load is significantly higher for the 
single pass trajectory. The multi-pass configuration offers a smaller range of heating 
environments that the TPS needs to be sized for, which can be attractive to mission designers. 
The nominal entry trajectory will fall somewhere between the two cases depending on the bank 
angle profile. Provided that the carbon weave TPS can cool down between passes this may be 
enabling for such a system that only comprises of a few layers of fabric to maintain flexibility 
and cannot absorb excessive amounts of energy. An additional multi pass trajectory with an even 
lower ballistic coefficient vehicle is presented in Appendix 9.3.  
 

Figure 6.11 Venus Aerocapture Design Space for Low 𝑩𝑪 Vehicles (Lift Down) 
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 Initial orbit apoapsis is ~175000 km 
 Vehicle diameter varied from 2-4 m 
 Nose radius is ¼ the vehicle diameter 
 70° Sphere Cone 
 α=-10° 
 0°Lat, 170°Long, 150 km 
 Heating can vary by ~5-7% depending 

on longitude of entry longitude 
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Figure 6.12 Venus Aerocapture Design Space for Low 𝑩𝑪 Vehicles (Lift Up) 

Figure 6.13 Venus Aerocapture Design Space for Low 𝑩𝑪 Vehicles (Overlay) 

 Initial orbit apoapsis is ~175000 km 
 Vehicle diameter varied from 2-4 m 
 Nose radius is ¼ the vehicle diameter 
 70° Sphere Cone 
 α=10° 
 0°Lat, 170°Long, 150 km 
 Heating can vary by ~5-7% depending 

on longitude of entry longitude 
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 Table 6.4 Spacecraft Inputs          Table 6.5 Con-Ops Summary  

 
 

 

   
 
 
 
Table 6.6 Initial State                        Table 6.7 Atmospheric Entries  

 
 
 
 
 
 

Maneuvers Summary 
Maneuver Duration 

(s) 
ΔV 

(m/s) 
Lift Up 

Interplanetary TCM 10.49 0.525 
1st Periapsis Adjust 0.128 0.006 
2nd  Periapsis Adjust 2.000 0.100 
3rd  Periapsis Adjust 10.15 0.507 
Final Perigee Raise 190.0 116.3 

Lift Down 
Interplanetary TCM 12.17 0.610 
1st Periapsis Adjust 0.194 0.010 
2nd  Periapsis Adjust 2.141 0.110 
3rd  Periapsis Adjust 8.137 0.407 
Final Perigee Raise 177.1 108.2 

Totals Lift       
Up 

Lift 
Down 

Mission Duration 
(days) 

5.461 5.468 

Maneuvers ΔV (m/s) 117.4 109.4 
Propellant Usage (kg) 7.832 7.304 

Spacecraft Input Parameters 
Parameter Value 
Initial Mass 200 kg 

High Thrust System 120 N 
Low Thrust System 10 N 
ISP (both systems) 300 s 

Trim Angle of Attack (α) 10°/-10° 
𝐶஽ at α=10°/-10° 1.550 
𝐶௅ at α=10°/-10° ±0.237 

Diameter 3 m 
Nose Radius 0.75 m 

Sphere Cone Angle 70° 
𝐵஼ at α=0° 17.55 kg/m^2 

𝐵஼ at α=10°/-10° 18.26 kg/m^2 

Aero-Pass Summary 
Pass 𝒒𝒎𝒂𝒙 

(W/cm^2) 
𝑱𝒔 

(J/cm^2) 
ΔV 

(km/s) 
Lift Up 

Insertion 70.05 4022 0.916 
1st Pass 53.74 3645 0.914 
2nd Pass 39.55 3350 0.912 
3rd Pass 26.58 3340 0.892 

Lift Down 
Insertion 61.66 4416 0.916 
1st Pass 46.05 4085 0.915 
2nd Pass 32.30 3903 0.914 
3rd Pass 19.22 4445 0.912 

 Interplanetary Orbital Elements 
Parameter Value 

Eccentricity (𝑒) 1.3074 
Semi Major Axis (𝑎) -2.0005e4 km 

Inclination (𝑖) 0° 
Argument of Periapsis (𝜔) 0° 
Long. of Ascending Node 

(𝛺) 
0° 

True Anomaly (Θ) 137° 
Hyperbolic Excess Velocity 4.0298 km/s 

Julian Date 2455504 
Initial Target Apoapsis (km) 200000 



  
 Page 72 of 107  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.14 Venus Deployable TPS Multi-Pass Trajectory 

Figure 6.15 Venus Deployable TPS Additional Trajectory Views 
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6.3.1. Aerothermal Results: Deployable TPS 

 
 
 
 
 
 
 
 
 
 

Figure 6.16 Venus Multi-Pass Deployable TPS Aerothermal Results 
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Figure 6.17 Venus Multi-Pass Deployable TPS Additional Results 
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7. Next Steps 

In the first phase of this project an extensive MATLAB object oriented simulation 
framework was developed to study multiple atmospheric insertions to achieve a target orbit. The 
simulation utilizes the NASA Global Atmospheric Reference Model and is based on validated 
physics and prediction methods. In the second half of the project some improvements were made 
to the overall architecture and robustness to different inputs. The code was compared to the 
NASA TRAJ flight validated trajectory program and other results from literature with results that 
are in-family.  

The aerodynamic database was significantly expanded to model aerodynamic forces in 3 
dimensions and at angles of attack and sideslip. Additional validations on the modified 
Newtonian model have been performed and lift and drag cases have been compared with TRAJ 
and indicate strong agreement. The rarefied flow modeling has been implemented and tested. 
GRAM has been tested for all 7 atmospheric destinations. Uncertainty modeling is a major next 
step that would need to be addressed for this modeling tool be used in real conceptual design. 

On the Aerothermal side the chemistry model methodology described in 4.3 needs to be 
expanded to include all constituents from each planetary atmosphere while utilizing the 
thermodynamic data from [3]. This would add additional properties to compare like temperature 
and pressure behind the shock at the stagnation point and flank. The ultimate longer term goal is 
to size TPS for a conceptual mission based on the predicted aerothermal environments. The 
NASA developed tool FIAT is an industry standard for TPS sizing. Additional longer term goals 
involve expanding the simulation reference frames to include SPICE kernals for modeling time 
dependent planetary effects such nutation.  

A simulation architecture utilizing multi-body mechanics of the entire solar system would 
allow for a macro level of mission planning and generation of initial states for atmospheric 
entries. This would allow direct coupling between elements such as launch, transfer windows, 
and gravity assists to aerothermal environments to assess the feasibility of various orbital 
insertion methods. While numerous mission planning software tools exist, EDL focused tools 
with an emphasis on preliminary design and optimization are less common. So far, the modeling 
and simulation skills learned during this project have been invaluable. 
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9. Appendix 

9.1. Modified Newtonian Aerodynamics: Additional Validation and Convergence 

9.1.1. Additional validation with [29], cone and spherical segment 
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Figure 9.2 Ref [29] Data for Cone 
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9.1.2. Panel Method Convergence 

 A convergence study was conducted on the modified Newtonian panel method discussed 
in 4.2.2 to assess performance and optimize the number of divisions. Recall lengthwise divisions 
are applied to curved sections along the x-axis (Figure 4.5) and radial divisions are revolved 
around the x axis (Figure 4.6). Straight frustrum sections are represented by only one lengthwise 
division. The solver was setup with a 60° sphere cone and a nose to body radius ratio of 0.5 at 
𝛼 = 𝛽 = 15°. The model shows strong convergence performance with the aero coefficients 
settling within 3 decimal places after just 5 divisions. In this configuration the normal and axial 
forces depend on both divisions while the side force is dominated by the number of radial 
divisions. The analysis was repeated for a 25° sphere cone, the results Figure 9.8 illustrate that 
the performance is slightly worse for more slender bodies but still robust. 8-10 divisions are 
likely more than sufficient for blunt bodies at low angles of attack. Overall this convergence 
study adds additional confidence to the aerodynamic model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.5 Normal Force vs. Number of Divisions (60° sphere cone) 
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Figure 9.6 Axial Force vs. Number of Divisions (60° sphere cone) 

Figure 9.7 Side Force Convergence (60° sphere cone) 
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Figure 9.8 Axial Force vs. Number of Divisions (25° sphere cone) 
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9.2. Free Molecular and Rarefied Flow Aerodynamics 

An entry vehicle flying through a planetary atmosphere encounters various flow regimes 
that vary with altitude. The two primary bounding flow regimes are continuum and free 
molecular. In the continuum regime, the distance between individual molecules is much smaller 
than defining features of the flow field allowing it treated as a continuous medium. Continuum 
flow is described by the Navier Stokes equations and disturbances and direction changes 
propagate smoothly through the flow field. Free molecular flow is defined by large distances 
between individual particles where collisions do not propagate or affect adjacent particles. The 
Knudsen number is a defining nondimensional parameter for free molecular, transitional, or 
continuum flow where 𝜆 is the mean free path and L is a physical length scale, often the entry 
vehicle diameter.  

 

𝐾௡ =
𝜆

𝐿
(9. 1) 

 

𝜆 =
𝑘௕𝑇

√2𝜋𝑑ଶ𝑝
(9. 2) 

 
The mean free path can be defined from the Boltzmann constant 𝑘௕, temperature, 

pressure, and the particle kinetic diameter, 𝑑, which is available in literature for common 
substances [17]. There are no strict Knudsen number limits to free molecular and continuum 
flow but a general guideline is a 𝐾௡ < 0.01 defines continuum flow and 𝐾௡ > 10 defines free 
molecular flow [17]. These limits often require refinement based on flow geometry and 
atmospheric characteristics, comparison with empirical data is usually required. The large region 
between free molecular and continuum flow is known as the transitional or rarefied flow regime 
and can be difficult to model. Direct simulation monte carlo (DSMC) is a widely used but 
computationally expensive way of modeling free molecular and rarefied flow by simulating the 
kinetic collisions and interactions between individual particles.  
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Aerocapture and skip-out trajectories remain at high altitudes and often a large 
portion of the trajectory is in the rarefied and free molecular flow regimes. As discussed in 
4.2, the modified Newtonian method is most accurate for continuum flow. In the search of 
higher fidelity trajectory modeling an analytical scheme for predicting free molecular and 
rarefied flow needed to be implemented. [31][32], and [33] describe an approach to modeling 
aerodynamic coefficients in free molecular flow based on a Maxwellian distribution of 
spectral and diffuse particle collisions with the vehicle surface. The pressure and shear 
coefficients are calculated and integrated over the surface. This allows the same paneling 
algorithm to be reused with the free molecular pressure and shear coefficients as shown in 
9.6. The normal vector is the same as is shown in Figure 4.5 and the tangential vector is 
calculated through 9.7.  
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Figure 9.9 Continuum Limit of Uranus Aerocapture Trajectory from [14] 
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The Maxwellian distribution model described above applies to free molecular flow and 
was validated with DSMC in [32] and [33], however this isn’t necessarily accurate in the 
transitional region which is a large part of any entry trajectory. [34] and [35] describe various 
methods of “blending” the two flow regimes to predict aerodynamic coefficients at any trajectory 
point as a function of 𝐾௡. The theory states that a local or global aerodynamic coefficient can be 
described as a weighted average of that coefficient at the free molecular and continuum limits. A 
commonly used bridging function based on the sine squared law is shown in 9.8-9.10, 𝑃௕ = 1 at 
the free molecular limit and 0 at the continuum limt. The two constants 𝑎ଵ and 𝑎ଶ are related to 
the free molecular and continuum 𝐾௡ values and are calculated with 9.11. More accurate 
bridging functions exist though they require a DSMC anchor point at the middle of the 
transitional regime. This sine squared function was used for the MATLAB trajectory code 
aerodynamics database.  
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9.2.1. Validation of Rarefied Flow Mechanics 

With the relationships established for free molecular and transitional flow mechanics, test 
cases can be run and the results can be compared/validated with literature. The existing paneling 
method for Newtonian flow is easily utilized for the free molecular conditions and allows for a 
variety of vehicle shapes to be quickly tested. [32] and [33] present the exact equations 9.3-9.7 
and an initial simple test of the drag coefficient of a sphere while varying the velocity, wall 
temperature, and specular and diffuse ratio to assess sensitivity. With each comparison, 
parameters were set to the same values as the reference literature where possible. Comparison of 
Figure 9.10Figure 9.11indicates the results are in family, however [32] does not present values 
used for the specific gas constant which is required for 9.5, so a value of 287.058 J/(kg-K) for air 
was assumed.  

 
 
 
 
 
 
 
 
 
 

C
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D
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D

Figure 9.11 Sphere Drag Coefficient Validation Results 

Figure 9.10 Sphere Drag Coefficient Results from [32]  
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Ref. [33] was written by some of the same SME’s and they go into greater detail on 
plotting more complex geometries. The results for the decreasing bi-conic were replicated in the 
internally developed simulation and the results indicate excellent agreement with [33]. While 𝑇ஶ, 
𝑇ௐ, and 𝑉ஶ were provided, R was not and was again set to the standard value for air. [33] also 
presents results from the sphere-cone geometry of the mars microprobe and the results agree up 
to around 45° where the spherical backshell becomes exposed to the flow. This backshell is not 
modeled in this comparison case as the panel solver currently only supports a single spherical 
segment on the nose of the body followed by straight frustrum segments. Angles of attack were 
only run out to 90° due to this limitation. Development is underway to allow for any number of 
frustrum or radiused segments to be superimposed to allow a much wider range of axisymmetric 
bodies to be modeled. Pre-generated X and Y lengthwise coordinates can also be provided to the 
solver to create a revolved grid.  
 
 

 
 
 
 
 
 

Figure 9.12 Increasing Bi-conic Geometry from [33] 
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Figure 9.13 Increasing Bi-Conic Validation Results 
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Figure 9.14 Increasing Bi-conic Results from [33] 
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Figure 9.17 Mars Microprobe Geometry from [33] 
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Figure 9.16 Mars Microprobe Validation Results 

Figure 9.15 Mars Microprobe Results from [33] 
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Prediction of the Knudsen number vs. altitude was necessary for implementation of the 
bridging function which integrates the continuum and free molecular flow mechanisms. [36] 
studies the low density aerodynamics of the stardust sample return vehicle and was used to 
validate the rarefied flow aerodynamics. For gas mixtures with multiple species, higher fidelity 
tools like DSMC will often use complex collision mechanics like the variable soft sphere model 
(VSS) to determine the mean free path which is required for the Knudsen number. In the 
aerodynamics modeling for this project the assumption is made that the mean free path is based 
on a weighted average of the species particle kinetic diameters (𝑑௜) and mole fractions (𝑋௜). An 
expansion of 9.2 is for gas mixtures can be simplified as GRAM can output the particle number 
density directly. More accurate methods of calculating the mean free path exist but are more 
computationally expensive. 9.12 – 9.14 were tested against the results in [36]. EarthGRAM was 
setup with the same time and position of the stardust landing of January 15th, 2006 and an 
approximate longitude and latitude of the Utah desert landing site. Comparison of Figure 9.18 
and Table 9.1 show some non-negligible differences in the atmospheric properties from [36] and 
the GRAM output. The Knudsen number was re-calculated based on the conditions from [36] to 
get a true comparison of the mean free path calculation methods. There is variation in the 
absolute values of the Knudsen numbers between the two methods with the weighted average 
calculation trending high by up to 50%. Considering the multiple orders of magnitude of the 
Knudsen number scale within the transitional regime, the differences seen here are acceptable. 
Validation of the sine squared bridging function is shown in Figure 9.19 and Figure 9.20 with 
free molecular and continuum Kn bounds of 10 and 0.001. Comparison with the results from 
[36] indicates strong agreement of the aero-coefficients vs. Kn. This adds confidence to the 
rarefied flow techniques developed thus far, especially given the high-fidelity tools used in [36]. 
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Figure 9.18 Flight Conditions from [36] 

 
 
Table 9.1 Knudsen Number Validation with [36] 

 
 

Altitude 
(𝒌𝒎) 

Number Density  
(𝟏/𝒎𝟑)  

𝑶𝟐 𝑵𝟐 𝑶 𝑻ஶ (𝑲) 𝑲𝑵 𝑲𝑵  
[36] conditions 

134.75 1.133222e+17 0.0434 0.6175 0.3376 648.63 19.2 14.58 
120.45 3.840013e+17 0.0715 0.6866 0.2393 409.33 5.6 3.63 
100.90 1.027121e+19 0.1537 0.7847 0.0543 188.14 0.208 0.194 
92.00 4.976260e+19 0.1890 0.7967 0.0057 197.25 0.0428 0.0428 
83.68 1.807716e+20 0.2038 0.7861 2.5e-4 213.11 0.0118 0.0120 
75.98 5.926458e+20 0.2094 0.7808 2.5e-5 216.49 0.0036 0.0037 
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Figure 9.20 Validation with [36] at α=0°  
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Figure 9.19 Validation with [36] at α=10°  
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Figure 9.22 Aero-database Validation with [13] 

Figure 9.21 Aero-database from [13] 
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The final validation of the rarefied flow aerodynamics database is with the NASA ECI 
work studying Uranus aerocapture outlined in [9]-[15]. The study utilizes a MSL like vehicle 
with a 70° sphere cone and a combination of modified Newtonian and empirical flight data for 
aerodynamics. Reference [13] lays out the aerodynamics implications for Uranus aerocapture 
and presents results on the aero-coefficients vs. angle of attack and Knudsen number. These 
figures were replicated to generate a reasonable comparison. In [13], the transitional flow regime 
is extended to free molecular and continuum bounds of 100 and 0.001. While the exact numbers 
from [13] were not obtained, visual comparison of the plots in  Figure 9.21 and Figure 9.22 
indicate strong agreement. The free molecular flow characteristics modeled in equations 9.3-9.7 
match up well with a variety of other data sources including DSMC and flight data. Moment 
coefficients have not been modeled as part of this study as the focus is strictly on 3DOF however 
adding them in the future is straightforward.  

Figure 9.23 shows a comparison trajectory aerocapture trajectory targeting 500 km with 
rarefied flow effects enabled and disabled, the vehicle and entry state are the same as in Table 
9.2 and Table 9.4 but with α=0°. The trajectory dispersion effects are amplified with decreasing 
vehicle ballistic coefficients though they are still small. The slightly higher drag from the free 
molecular flow effects results in a slightly shallower entry angle to achieve the same target 
apoapsis altitude of 500 km.  

 
α=0° 𝒒𝒎𝒂𝒙 (W/cm^2) 𝑱𝒔 (J/cm^2) EFPA (deg) 
Rarefied flow on 96.567 7860 -5.168 
Rarefied flow off 97.631 7941 -5.172 
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Figure 9.23 Rarefied Flow Effects Comparison 
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Figure 9.24 Knudsen Number Trajectory Space 
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9.3. Ultra Low Ballistic Coefficient Venus Multi-Pass Trajectory  

 
 Table 9.2 Spacecraft Inputs (Ultra Low 𝑩𝑪)       Table 9.3 Con-Ops Summary (Ultra Low 𝑩𝑪) 

 
 

 

 
  

 

 

 

 
 
 
 
 Table 9.4 Initial State                        Table 9.5 Atmospheric Entries                      

 
 
 
 
 

 
 
 
 
 
 
 
 

Maneuvers Summary 
Maneuver Duration (s) ΔV 

(m/s) 
Interplanetary TCM 6.576 0.526 
1st Perigee Adjust 0.124 0.01 
2nd Perigee Adjust 0.675 0.054 
3rd Perigee Adjust 2.038 0.163 
4th Perigee Adjust 5.817 0.466 
Final Perigee Raise 52.34 106.64 

Totals 
Mission Duration (days) 17.79 

ΔV Expenditure (m/s) 107.86 
Propellant Expenditure (kg) 1.8 

Spacecraft Input Parameters 
Parameter Value 
Initial Mass 50 kg 

High Thrust System 100 N 
Low Thrust System 4 N 
ISP (both systems) 300 s 

Drag Coefficient α=-10 1.5332 
Lift Coefficient α=-10 -0.2337 

Diameter 3 m 
Nose Radius 0.75 m 

Sphere Cone Angle 70° 

Aero-Pass Summary 
Pass 𝒒𝒎𝒂𝒙 

(W/cm^2) 
𝑱𝒔 

(J/cm^2) 
ΔV 

(km/s) 
Insertion 61.66 4416 0.916 
1st Pass 46.05 4085 0.915 
2nd Pass 32.30 3903 0.914 
3rd Pass 19.22 4445 0.912 

Interplanetary Orbital Elements 
Parameter Value 

Eccentricity (𝑒) 1.3074 
Semi Major Axis (𝑎) -2.0005e4 km 

Inclination (𝑖) 0° 
Argument of Periapsis (𝜔) 0° 
Long. of Ascending Node 

(𝛺) 
0° 

True Anomaly (𝜃) 137° 
Hyperbolic Excess Velocity 4.0298 km/s 

Julian Date 2455504 
Post Capture Apoapsis (km) 500000 
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Figure 9.25 Multi-Pass Trajectory, Venus Deployable TPS, Ultra Low 𝑩𝑪 
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Figure 9.26 Aerothermal Results: Deployable TPS, Ultra Low 𝑩𝑪 (Lift Down Only) 
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9.4. Uranus Aerocapture Analysis 

 
 

Figure 9.27 Uranus Aerocapture Design Space 
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 Vehicle diameter varied from 4-6 m 
 Nose radius is ¼ the vehicle diameter 
 70° Sphere Cone 
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 JD = 2466659 
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The species to be modeled for the Uranus entry are 𝐻ଶ, 𝐻𝑒, 𝐻, 𝐻+, and 𝑒-, 𝐻𝑒+ was 
initially considered though initial CEA testing showed mole concentrations well below 1e-5 up 
to 12000 K so it was dropped for simplicity. The effects of chemical reactions on the vehicle 
aerodynamics was evaluated at one trajectory point close to the time of peak heating, the results 
are shown in Table 9.7. While the effect on the aero-coefficients is non-negligible, there is still a 
computation time penalty despite the optimized symbolic math expressions. The iterative method 
utilizing equations 4.32 and 4.33 requires a high number of thermodynamic property evaluations 
through equations 4.48 and 4.49. The object oriented simulation architecture allows for 
numerous physics effects to be turned on and off and tolerance properties for the various iterative 
methods to be adjusted. The most efficient trajectory design method involves turning most of the 
higher fidelity effects off for batch runs and trajectory optimization and then re-enabling them 
for the final trajectory design and aerothermal analysis. The rarefied flow and chemical 
equilibrium effects have the highest impact on the computation time of one trajectory point.  

 
 

Table 9.6 Uranus Test Trajectory Inputs 

 
 

Table 9.7 Chemically Reacting Flow Effects on Aerodynamics for Uranus Aerocapture Trajectory 

α=17°, alt = 310 km, 
Mach=26.93 

Calorically Perfect 
(γ=1.45) 

Chemical Equilibrium 
(𝐻ଶ/𝐻𝑒) 

𝐶஺ 1.4836 1.5840 
𝐶ே 0.0587 0.0627 
𝐶஽ 1.4360 1.5331 
𝐶௅ 0.3776 0.4032 

 

Spacecraft Input Parameters Entry State 
Initial Mass  4064 kg Inertial Velocity  24.5 km/s 

Trim Angle of Attack (α) 17°/-17° Lift up EFPA  -23.806° 
𝐶஽ at α=17°/-17° 1.436 Lift down EFPA  -23.509° 
𝐶௅ at α=17°/-17° ±0.378 Geocentric Altitude  4000 km 

Diameter 5 m Longitude (deg) 47.5° 
Nose Radius 1.25 m Azimuth (deg) -90° 

Sphere Cone Angle 70° Geocentric Latitude  37° 
𝐵஼ at α=0° 128.4 kg/m^2 Target Apoapsis Altitude 500000 km 

𝐵஼ at α=17°/-17° 144.1 kg/m^2 Atmosphere Cutoff 4000 km 
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Figure 9.28 illustrates several abrupt changes in the species mole fraction and 

temperature behind the stagnation shock front. This appears unusual at first but after inspection 
of the nominal mole fractions of 𝐻ଶ and 𝐻𝑒 vs. altitude from UranusGRAM, much of the abrupt 
changes correspond with the onset of higher Helium concentrations around 500km. There is a 
small amount of atomic hydrogen ionization that occurs around 550 s for the lift down trajectory 
and 525 s for the lift up with peak mole fractions of 𝑒- and 𝐻+ of ~0.005. At the onset of entry 
interface, virtually all the 𝐻ଶ dissociates though at the lower velocities close to atmospheric exit 
only around 75% of the hydrogen is dissociated. For the aerothermal heating results, modern 
stagnation heating correlations for 𝐻ଶ/𝐻𝑒 atmospheres [37] were employed utilizing the 
equilibrium chemistry results and compared to the standard Sutton Graves correlation (eq. 4.31). 
The results match up surprisingly well though additional evaluation is necessary over a wider 
trajectory space (Figure 9.31). For the analysis in sections 5 and 6, only the Sutton Graves 
correlation was used.  
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Figure 9.28 Uranus Test Trajectory Results 
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Figure 9.29 UranusGRAM [6] Species Mole Fractions vs. Altitude 
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Figure 9.30 Uranus Test Trajectory Normal Shock Effects 
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Figure 9.31 Convective Heating Correlation Comparison 

Figure 9.32 Uranus Aerocapture Test Trajectory 

Lift Down 

Lift Up 



  
 Page 105 of 107  

 

9.5. Basic Equations for Orbital Mechanics and Rocket Propulsion 

 

𝑉 = ඨ
2𝜇

𝑟௔
−

𝜇

𝑎
(9. 15) 

 
9.12 is fundamental and can be used to calculate the required delta V for basic 

propulsive maneuvers like a Hohmann transfer. 
 

𝑉ஶ = ට−
𝜇

𝑎
(9. 16) 

 

𝑇 =
2𝜋

ට
𝜇

𝑎ଷ

(9. 17)
 

 

𝑒 =  
𝑟௔ − 𝑟௣

𝑟௔ + 𝑟௣

(9. 18) 

9.5.1. Conversion of Keplerian Orbital Elements to Position and Velocity Vector 

 

ℎ = ඥ𝜇𝑎(1 − 𝑒ଶ) (9. 19) 
 
 

𝑹𝒑𝒇 =
ℎଶ

𝜇(1 + 𝑒 cos(𝜃))
൥
cos(𝜃)

sin(𝜃)
0

൩ (9. 20) 

 

𝑽𝒑𝒇 =
𝜇

ℎ
൥

−sin(𝜃)

e + cos(𝜃)
0

൩ (9. 21) 

 

𝑄ଵ = ൥−
cos 𝜔 sin 𝜔 0
sin 𝜔 cos 𝜔 0

0 0 1
൩ (9. 22) 

 

𝑄ଶ = ൥
1 0 0
0 cos 𝑖 sin 𝑖

0 −sin 𝑖 cos 𝑖

൩ (9. 23) 

 

𝑄ଷ = ൥−
cos 𝛺 sin 𝛺 0
sin 𝛺 cos 𝛺 0

0 0 1
൩ (9. 24) 

  

Hyperbolic Excess Velocity 

Orbital Period 

Angular Momentum 

Perifocal Frame 
Transformation 

Formulate matrix for ECI 
frame transformation 

eccentricity 
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𝑄ா஼ூ = 𝑄ଵ𝑄ଶ𝑄ଷ (9. 25) 
𝑹𝑬𝑪𝑰 = 𝑄ா஼ூ

்𝑹𝒑𝒇 (9. 26) 
 

𝑽𝑬𝑪𝑰 = 𝑄ா஼ூ
்𝑽𝒑𝒇 (9. 27) 

9.5.2. Conversion of Position and Velocity Vector to Keplerian Elements 

𝑉௥௔ௗ =
𝑹𝑬𝑪𝑰 ∙ 𝑽𝑬𝑪𝑰

|𝑹𝑬𝑪𝑰|
(9. 28) 

 
𝑯 = 𝑹𝑬𝑪𝑰 × 𝑽𝑬𝑪𝑰 (9. 29) 

 

ℎ = ඥcosିଵ(𝑯 ∙ 𝑯) (9. 30) 
 

𝑖 = cosିଵ ቆ
𝐻𝒌෡

ℎ
ቇ (9. 31) 

 

𝑲 = ൥
0
0
1

൩         𝑵 = 𝑲 × 𝑯       𝑛 = |𝑵| (9. 32) 

 

𝛺 = ൞
cosିଵ ൬

𝑁ଙ̂

𝑛
൰ , 𝑁ଚ̂ ≥ 𝟎

360 − cosିଵ ൬
𝑁ଙ̂

𝑛
൰ , 𝑁ଚ̂ < 𝟎

(9. 33) 

 
 

𝑬 =
𝑽𝑬𝑪𝑰 × 𝑯

𝜇 −
𝑹𝑬𝑪𝑰

𝑟

         𝑒 = |𝑬| (9. 34) 

  

𝜔 = ൞
cosିଵ ൬

𝑵 ∙ 𝑬

𝑛𝑒
൰ , 𝐸𝒌෡ ≥ 𝟎

360 − cosିଵ ൬
𝑵 ∙ 𝑬

𝑛𝑒
൰ , 𝐸𝒌෡ < 𝟎

(9. 35) 

 

𝜃 = ൞
cosିଵ ൬

𝑬

𝑒
∙

𝑹𝑬𝑪𝑰

𝑟
൰ , 𝑉௥௔ௗ ≥ 𝟎

360 − cosିଵ ൬
𝑬

𝑒
∙

𝑹𝑬𝑪𝑰

𝑟
൰ , 𝑉௥௔ௗ < 𝟎

(9. 36) 

 
 
 
 

Radial Velocity 

Momentum Vector 

Nodal Vector 

Ascending node with 
quadrant ambiguity  

Eccentricity Vector  

Argument of Periapsis 
with quadrant ambiguity  
 

True Anomaly with 
quadrant ambiguity  
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9.5.3. Spherical Harmonics and Oblateness Effects 

Oblateness effects are incorporated into the gravity model of the trajectory program. 
The model only considers the 2nd zonal harmonic, J2 as it has the greatest effect by several 
orders of magnitude. Expanded calculations and derivations to obtain 9.39 are shown in pp. 
660-664 of  [22]. Note that ϕ here refers to the angle between the position vector and polar 
axis, not to be confused with the geometric angle used in section 4.2.2. 

 
 

Φ(𝑟, 𝜙) =
𝐽ଶ

2

𝜇

𝑟
൬

𝑅

𝑟
൰

ଶ

(3 cosଶ 𝜙 − 1) (9. 37) 

 
 

𝐩 = −𝛁Φ = −
𝜕Φ

𝜕𝑥
଍̂ −

𝜕Φ

𝜕𝑦
଎̂ −

𝜕Φ

𝜕𝑧
𝐤መ (9. 38) 

 

𝐩 =
3

2

𝐽ଶ𝜇𝑅ଶ

𝑟ସ
ቈ
𝑥

𝑟
ቆ5

𝑧ଶ

𝑟ଶ
− 1ቇ ଍̂ +

𝑦

𝑟
ቆ5

𝑧ଶ

𝑟ଶ
− 1ቇ ଎̂ +

𝑧

𝑟
ቆ5

𝑧ଶ

𝑟ଶ
− 3ቇ 𝐤መ ቉ (9. 39) 

 

9.5.4. Basic Elements of Rocket Propulsion 

 

∆𝑉 = 𝐼௦௣ 𝑔௢ ln ൬
𝑚௙

𝑚௘
൰ (9. 40) 

 

𝑀௣ = 𝑚௙ − 𝑚௙𝑒
ି

∆௏
ூೞ೛௚೚ (9. 41) 

 

𝑡௕ = 𝑚௙ − 𝑚௙𝑒
ି

∆௏
ூೞ೛௚೚ (9. 42) 

 
 
 
 

9.6. Source Code  

The trajectory analysis program that was developed to support this project has been 
rigorously validated and tested and works for all GRAM supported planets with an 
atmosphere. Rudimentary property validation and error checking has been implemented but it 
is still at a development level and is not intended for redistribution or re-use. Below are the 
core trajectory propagation and shared handle object class definition files. There are 
numerous development scripts and supporting functions that are not included to limit 
excessive page length.  

 

Tsiolkovsky rocket equation: 
mf is the initial mass and me is 
the final or dry mass  

Calculate propellant mass 
usage Mp 

Calculate burn time for a 
specified ∆𝑉, 9.36 is used 
in conjunction with 9.12 to 
calculate the perigee raise 
maneuver. 

Gravitational perturbation 
based on J2 term only.   

Perturbing Acceleration 
Vector  

Final perturbation 
vector in the ECI frame  
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classdef AeroDB < matlab.System
    % Aerodynamics Database Object. Contains a modified newtonian and free
    % molecular panel codes as well as a sine squared bridging function for
    % the transitional regime. 
    % 
    % Paneling algorithm supports basic
    % axisymmetric bodies with radiused or straight frustrum lengthwise
    % segments
    %
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        g = 1.45; % Specific heat ratio
        Mi = 30; % freestream mach
        Pinf = 10; % (Pa) freestream pressure
        R = 2.5; % Aeroshell Radius
        R2 = 3; % Biconic Radius
        RN = 1.25; % (m) span
        tc1 = 70; % deg
        tc2 = 5.2; % deg
        seg = 8; % nose segments
        rseg = 8; % radial axisymmetric divisions
        pan = 1; % straight panel segments
        trimBeta = 0; % trim sideslip angle
        trimAlpha = 0; % trim angle of attack
 
        % Rarefied gas parameters
        Vi = 9000; % freestream velocity (m/s)
        Tw = 1000; % (K) Wall temperature
        Ti = 300; % (K) Freestream temperature
        Rspec = 287.058; % J/kg K
        sigN = 1; % normal momentum accommodation coefficient (0 for specular 1 for 
diffuse)
        sigT = 1; % tangential momentum accommodation coefficient (0 for specular 1 for 
diffuse)
        kn = 1; % free stream knudsen number
        rarefiedGasEffects = 'off';
        a1 % Bridging Function Constant
        a2 % Bridging Function Constant     
        Xc % Lengthwise X coodinates
        Yc % Lengthwise Y coodinates
        plotX = ["Xc", "alph", "alph", "kn"]; % X axis properties to plot
        plotY = ["Yc", "CA", "CN", "kn"]; % Y axis properties to plot
    end
 
    properties (SetObservable, AbortSet)
        knFm = 10; % knudsen number free molecular bound
        knCont = 0.001; % knudsen number continuum bound
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    end
 
    properties
        CD % Drag Coefficient
        CL % Lift Coefficient
        CZ % Side Force Coefficient 
        CA % Axial Force Coefficient
        CN % Normal Force Coefficient
        CS % Side Slip Coefficient
        alph % Angle of attack
        beta % Angle of sideslip
    end
 
    methods (Access = protected)
 
        function setupImpl(obj)
            % Convert Angles to radians
            radConvert(obj)
 
            % Set up transitional flow regime bridging function
            bridgeSetup(obj)
        end
 
        function stepImpl(obj)
 
            % create vectors
            Tc = [obj.tc1 obj.tc2];
            H = [obj.R obj.R2];
 
            % find angle of one segment
            tseg = (pi/2-obj.tc1)/obj.seg;
 
            % Freestream molecular Speed Ratio
            s = obj.Vi/sqrt(2*obj.Rspec*obj.Ti);
 
            % Isentropic Pressure Ratio
            Pratio = ((obj.g+1)^2*obj.Mi^2/(4*obj.g*obj.Mi^2-2*(obj.g-1)))^(obj.g/(obj.
g-1))*((1-obj.g+2*obj.g*obj.Mi^2)/(obj.g+1));
            
            % Subsonic Error Check
            if ~isreal(Pratio)
                error(['Imaginary Number detected for isentropic Pressure ratio, ' ...
                    'Potentially means vehicle is subsonic, increase velocity 
termination cutoff']);
            end
 
            % Modified Newtonian Multipliers (CpMax)
            Pratio_chem = 515.9397;
            CpMax(1) = 2/(obj.g*obj.Mi^2)*(Pratio-1);
            CpMax(2) = 2/(obj.g*obj.Mi^2)*(Pratio_chem-1);
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            % Disable any transitional effects if flow is fully free
            % molecular or continuum
            if strcmp(obj.rarefiedGasEffects,'on')
                if obj.kn > obj.knFm
                    aeroTyp = 'FM';
                elseif obj.kn < obj.knCont
                    aeroTyp = 'Cont';
                else
                    aeroTyp = 'both';
                end
            else
                aeroTyp = 'Cont';
            end
 
            % **Initialize body length parameterization**
            % x coordinate, y coordinate, and total distance along body surface
            xb = zeros(1,obj.seg+2*obj.pan); yb = xb; db = xb;
 
            % angle of each panel and Cp for each panel, CpN is for regular newtonian,
            thetai = zeros(1,obj.seg+2*obj.pan);
 
            % **Initialize Coefficients **
            CVFi_fm = zeros(3,obj.seg+2*obj.pan); CVFi_cont = CVFi_fm;
 
            for i2 = 1:obj.seg
                % because nose is circular, an angle index can define panels of equal
                % length
                thetai(i2) = pi/2-tseg*(2*i2-1)/2;
 
                % X and Y parameterization
                xb(i2+1) = obj.RN-obj.RN*cos(tseg*i2); yb(i2+1) = obj.RN*sin(tseg*i2); 
db(i2+1) = obj.RN*tseg*i2;
 
                % Call paneling function to calculate coefficients
                [CVFi_fm(:,i2), CVFi_cont(:,i2)] = panelCalc(obj.alph,obj.beta,obj.
rseg,thetai(i2) ...
                    ,yb(i2),yb(i2+1),obj.RN*tseg,s,obj.Tw,obj.Ti,obj.sigT,obj.sigN,
aeroTyp);
            end
 
            % set conditions for straight segments
            j1 = 1;
            for i2 = obj.seg+1:2:2*obj.pan+obj.seg
 
                % set conditions the same at the beginning and end of each panel
                thetai(i2) = Tc(j1);
 
                % X and Y parameterization
                [xb(i2+1), yb(i2+1), dnew] = PointSlope(xb(i2), yb(i2), H(j1), thetai
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(i2));
 
                % Call paneling function to calculate coefficients
                [CVFi_fm(:,i2), CVFi_cont(:,i2)] = panelCalc(obj.alph,obj.beta,obj.
rseg,thetai(i2),yb(i2),yb(i2+1),dnew,s,obj.Tw,obj.Ti,obj.sigT,obj.sigN,aeroTyp);
 
                % Distance between nodes
                db(i2+1) = dnew + db(i2);
 
                % avoids creating duplicate point at end of panel
                if i2 <  2*obj.pan+obj.seg-1
                    xb(i2+2) = xb(i2+1);  yb(i2+2) = yb(i2+1);
                    db(i2+2) = db(i2+1);
                end
                j1 = j1 + 1;
            end
 
            % Aero coefficients in velocity vector frame (first term is newtonian
            % multiplier, 2 for standard and CpMax for modified)
            switch aeroTyp
                case 'FM' % Free molecular
                    CVF = sum(CVFi_fm,2)/(pi*max(yb)^2);
                case 'Cont' % Continuum
                    CVF = CpMax(1)*sum(CVFi_cont,2)/(pi*max(yb)^2);
                case 'both' % Transitional Region
                    CVFfm = sum(CVFi_fm,2)/(pi*max(yb)^2);
                    CVFcont = CpMax(1)*sum(CVFi_cont,2)/(pi*max(yb)^2);
                    
                    % Bridging function
                    Pb = sin(pi*(obj.a1+obj.a2*log10(obj.kn))).^2;
                    CVF = Pb*CVFfm+(1-Pb)*CVFcont;
            end
 
            % Lengthwise coordinates
            obj.Xc = xb; obj.Yc = yb;
 
            % Aero coefficients in body frame
            CBF = RZZ(obj.alph)'*RYY(obj.beta)'*CVF;
 
            % Extract body frame coefficients
            obj.CA = CBF(1); obj.CN = CBF(2); obj.CS = CBF(3);
 
            % Extravt Velocity frame coefficients
            obj.CD = CVF(1); obj.CL = -CVF(2); obj.CZ = CVF(3);
 
 
            function [CVFi_fm, CVFi_cont] = panelCalc(alpha,beta,rseg,theta,y1,y2,d,s,
Tw,Ti,sigT,sigN,aeroTyp)
 
                % Calculate area of one panel



5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 5 of 9

                Atot = pi*d*(y2+y1);
                Arseg = Atot/rseg;
 
                % create series of normal angles for rseg number of panels
                inc = 2*pi/rseg;
                Rang = linspace(0.5*inc,2*pi-0.5*inc,rseg);
 
                % Local Cone angle
                Norm = pi/2-theta;
 
                % Initial normal vector to vehicle surfrace
                V = [cos(Norm)
                    sin(Norm)
                    0];
 
                % Create 3D matrix to revolve normal vector around axisymmetric body
                Rx = [ones(1,rseg); zeros(1,rseg); zeros(1,rseg);
                    zeros(1,rseg); cos(Rang); sin(Rang);
                    zeros(1,rseg); -sin(Rang);  cos(Rang); ];
                Rx = reshape(Rx,3,3,[]);
 
                % Initialize series of normal vectors
                Z = zeros(3,rseg); T = Z;
                Vinf = [-1 0 0]';
 
                for i = 1:rseg
 
                    % Revolve around body
                    Z(:,i) = Rx(:,:,i)*V;
 
                    % Rotate normal vector with respect to velocity vector frame
                    Z(:,i) = RYY(beta)*RZZ(alpha)*Z(:,i);
 
                    % if vehicle surface is in the shadow area, no aero forces are
                    % applied per newtonian mechanics
                    if Z(1,i) < 0
                        Z(:,i) = [0;0;0];
                    end
 
                    % calc tangential vector
                    if strcmp(aeroTyp,'FM') || strcmp(aeroTyp,'both')
                        T(:,i) = (Z(:,i)*dot(Vinf,Z(:,i))-Vinf)/sqrt(1-dot(Vinf,Z(:,i))
^2);
                    end
                end
 
                % Calculate velocity frame coefficients
                switch aeroTyp
                    case 'FM'
                        CVFi_fm = getCoeFm;
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                        CVFi_cont = [0;0;0];
                    case 'Cont'
                        CVFi_fm = [0;0;0];
                        CVFi_cont = getCoeCont;
                    case 'both'
                        CVFi_fm = getCoeFm;
                        CVFi_cont = getCoeCont;
                end
 
                % Free Molecular
                function cOut = getCoeFm
 
                    % Pressure Coefficient
                    Cp = (2-sigN)*1/s^2*(s*Z(1,:)/sqrt(pi).*exp(-(s*Z(1,:)).^2)+(0.5+
(s*Z(1,:)).^2).*(1+erf(s*Z(1,:))))...
                        +sigN/(2*s^2)*sqrt(Tw/Ti)*(s*Z(1,:).*sqrt(pi).*(1+erf(s*Z
(1,:)))+exp(-(s*Z(1,:)).^2))-1/s^2;
 
                    % Shear Coefficient
                    Ct = sigT*cos(asin(Z(1,:)))/s.*(1/sqrt(pi)*exp(-(s*Z(1,:)).^2)+s*Z
(1,:).*(1+erf(s*Z(1,:))));
 
                    cOut = sum((Cp.*Z+Ct.*T)*Arseg,2);
                end
 
                % Continuum (Newtonian)
                function cOut = getCoeCont
                    cOut = sum(Z(1,:).^2.*Z*Arseg,2);
                end
 
                % Free molecular aero coefficients are calculated using a Maxwellian
                % distribution of specular or diffuse particle collisions
 
                % Kenneth A. Hart, Kyle R. Simonis, Bradley A. Steinfeldt, and Robert 
D. Braun. 
                % “Analytic Free-Molecular Aerodynamics for Rapid Propagation of 
Resident Space Objects,
                % ” Journal of Spacecraft and Rockets 2018 55:1, 27-36 
                %%
                % <https://doi.org/10.2514/1.A33606> 
            end
 
            % Z axis rotation matrix
            function Rz = RZZ(ang)
                % for a sphere cone EV, lift up is CCW rotation of alpha (neg sign
                % swap)
                Rz = [cos(ang) sin(ang) 0
                    -sin(ang) cos(ang) 0
                    0        0     1];
            end
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            % Y axis rotation matrix
            function Ry = RYY(ang)
                Ry = [cos(ang) 0 -sin(ang)
                    0     1     0
                    sin(ang) 0  cos(ang)];
            end
 
            % Create connecting points for straight segments
            function [x2, y2, d] = PointSlope(x1, y1, H, theta)
                y2 = H;
                x2 = (y2-y1)/tan(theta)+x1;
                d = sqrt((x2-x1)^2+(y2-y1)^2);
            end
        end
    
    end
 
    methods
        % convert to radians
        function radConvert(obj)
            obj.beta = obj.trimBeta*pi/180;
            obj.alph = obj.trimAlpha*pi/180;
            obj.trimBeta = obj.trimBeta*pi/180;
            obj.trimAlpha = obj.trimAlpha*pi/180;
            obj.tc1 = obj.tc1*pi/180;
            obj.tc2 = obj.tc2*pi/180;
        end
 
        % setup bridging function
        function bridgeSetup(obj)
            A = [1 log10(obj.knFm);1 log10(obj.knCont)];
            B = [0.5;0];
            A12 = A\B;
            obj.a1 = A12(1); obj.a2 = A12(2);
        end
 
        % Generate Sample plots of Aerodatabase
        function plotAero(obj)
 
            % initialize, save current properties in temp variables
            alphTemp = obj.alph; KNtemp = obj.kn;
            setTemp = obj.rarefiedGasEffects;
            viTemp = obj.Vi; sigTtemp = obj.sigT; sigNtemp = obj.sigN;
            tWtemp = obj.Tw;
 
            % Preallocate
            m = 50; alphaSet = 10*pi/180;
            xRange = linspace(0,30,m);
            kNrange = logspace(log10(obj.knCont/10),log10(obj.knFm*10),m);
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            CAfm = zeros(1,m); CAcont = CAfm;
            CNfm = CAfm; CNcont = CAfm; CAkn = CAfm; CNkn = CAfm;
            
            for i1 = 1:m
                obj.(obj.plotX(2)) = xRange(i1)*pi/180;
 
                % Continuum Bound
                obj.rarefiedGasEffects = 'off';
                step(obj);
                CAcont(i1) = obj.CA;
                CNcont(i1) = obj.CN;
 
                % Free Molecular Bound
                obj.rarefiedGasEffects = 'on';
                step(obj);
                CAfm(i1) = obj.CA;
                CNfm(i1) = obj.CN;
            end
 
            obj.rarefiedGasEffects = 'on';
            obj.(obj.plotX(2)) = alphaSet;
 
            % Vary Knudsen Number
            for i1 = 1:m
                obj.kn = kNrange(i1);
                step(obj);
                CAkn(i1) = obj.CA;
                CNkn(i1) = obj.CN;
            end
 
            hold on
            % plot geometry
            subplot(2,2,1)
            plot(obj.Xc,obj.Yc,'LineWidth',2);
            daspect([1 1 1])
            grid on
            xlabel('X (m)');
            ylabel('Y (m)');
            title('Geometry');
            grid on
 
            % Plot CA
            subplot(2,2,2)
            plot(xRange,CAcont,xRange,CAfm,'LineWidth',2)
            title('Axial Force Coefficient')
            xlabel('\alpha (deg)')
            ylabel('C_A')
            legend('Continuum Bound','Free Molecular Bound')
            grid on
 



5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\AeroDB.m 9 of 9

            % Plot CN
            subplot(2,2,3)
            plot(xRange,CNcont,xRange,CNfm,'LineWidth',2)
            title('Normal Force Coefficient')
            xlabel('\alpha (deg)')
            ylabel('C_N')
            legend('Continuum Bound','Free Molecular Bound')
            grid on
            
            % Plot Coefficients vs. Kn
            subplot(2,2,4)
            semilogx(kNrange,CAkn,kNrange,CNkn,'LineWidth',2)
            title(['Aero Coefficients vs. K_n at 10',char(176),'\alpha'])
            xlabel('K_n');
            ylabel('Coefficient');
            legend('C_A ','C_N');
            grid on
 
            % Restore coefficients
            obj.alph = alphTemp; obj.kn = KNtemp;
            obj.rarefiedGasEffects = setTemp;
            obj.Vi = viTemp; obj.sigT = sigTtemp; obj.sigN = sigNtemp;
            obj.Tw = tWtemp;
            step(obj);
        end
    end
end
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classdef AeroPass < OrbitProp
    % Atmospheric Flight Trajectory Propagation Object (subclass of
    % OrbitProp)
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    properties 
        Tmax = 2000 % (s) Maximum time for atmospheric flight
        AeroSpd = 'slow' % fast: fixed L/D, slow: CL,CD,CA, etc. are reclaculated at 
each time step
        AeroStep = 0.5; % Default time step for atmospheric flight
    end
 
    methods (Access = protected)
        function P = Perturb(obj,t,P,R)
 
            % Convert and extract topo coordinates from state object
            obj.Time.elTime = t;
            obj.State.Reci = R(1:3);
            obj.State.Veci = R(4:6);
            obj.State.ECItoLLA;
 
            % Extract Vars from shared objects
            A = obj.SC_DB.A; m = obj.State.ScM; W = obj.Body_DB.W;
            alt = obj.State.Alt; lat = obj.State.Lat; long = obj.State.Long;
            fpa = obj.State.FPA; Az = obj.State.Az; Qmat = obj.State.Qmat;
            
            % Set position/time in GRAM
            obj.GRAM.position.height = alt;
            obj.GRAM.position.latitude = lat;
            obj.GRAM.position.longitude = long;
            obj.GRAM.position.elapsedTime = t;
            obj.GRAM.body.setPosition(obj.GRAM.position);
 
            % update GRAM model
            obj.GRAM.body.update();
 
            % Extract Winds from GRAM
            nsw = obj.GRAM.atmos.nsWind; % north south wind
            eww = obj.GRAM.atmos.ewWind; % east west wind
            vw = obj.GRAM.atmos.verticalWind; % vertical wind
 
            % Velocity vector in the ENZ frame (north south winds are
            % negative as north to south and east to west expressed as a positive 
            % values in GRAM, also convert to km/s
            Venz = [-eww/1000
                    -nsw/1000
                    vw/1000];
            Wvec = Qmat*Venz;



5/11/25 8:02 PM C:\Users\bohda\OneDrive\Des...\AeroPass.m 2 of 3

            
            % Formulate relative velocity vector
            Vrel = R(4:6) - cross(W',R(1:3)); % account for planet rotation
            Vrel = Vrel - Wvec; % account for winds
            vrel = norm(Vrel); % magnitude
            Uv = Vrel/vrel; % unit vector
            % Uvinr = R(4:6)/norm(R(4:6));
            
            % Relative and Inertial Velocity vectors in Velocity frame
            UVF = ROTY(fpa)*ROTZ(90-Az)'*Qmat'*Uv;
            % UVFinr = ROTY(fpa)*ROTZ(90-Az)'*Qmat'*Uvinr;
            
            % Calculate effective angle of attack and sideslip angle based
            % on winds and relative velocity 
            dBeta = real(asin(UVF(2))); dAlpha = real(acos(UVF(1)/cos(dBeta)));
 
            % Update Aero coefficients at each timestep
            if strcmp(obj.AeroSpd,'slow')
                % Update aerodatabase with effective angles of attack and
                % sideslip
                obj.SC_DB.Aero_DB.beta = obj.SC_DB.Aero_DB.trimBeta + dBeta;
                obj.SC_DB.Aero_DB.alph = obj.SC_DB.Aero_DB.trimAlpha + dAlpha;
    
                % Update Aero data needed for coefficients
                obj.SC_DB.Aero_DB.g = obj.GRAM.atmos.specificHeatRatio;
                aCurr = obj.GRAM.atmos.speedOfSound;
                obj.SC_DB.Aero_DB.Mi = vrel*1000/aCurr;
 
                % Rarefied Gas Effects
                if strcmp(obj.SC_DB.Aero_DB.rarefiedGasEffects,'on')
                    % Query additional properties from GRAM
                    obj.SC_DB.Aero_DB.Vi = vrel*1000;
                    obj.SC_DB.Aero_DB.Rspec = obj.GRAM.atmos.specificGasConstant;
                    obj.SC_DB.Aero_DB.Ti = obj.GRAM.atmos.temperature;
    
                    % Calculate Knudsen number
                    obj.chemObj.GRAMatmos = obj.GRAM.atmos;
                    lamda = obj.chemObj.getMeanFreePath;
                    Kn = lamda/obj.SC_DB.D;
                    obj.SC_DB.Aero_DB.kn = Kn;
                end
 
                % Calculate aero coefficients
                obj.SC_DB.Aero_DB.step;
            end
 
            % Aero Coefficients
            CL = obj.SC_DB.Aero_DB.CL;
            CZ = obj.SC_DB.Aero_DB.CZ;
            CD = obj.SC_DB.Aero_DB.CD;
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            % Extract density from GRAM
            rho = obj.GRAM.atmos.density; 
 
            % Perturbation vector in the relative velocity frame with aero
            % coefficients
            PVF = [-CD
                  CZ
                  CL]*A/m*0.5*rho*(1000*vrel)^2/1000;
            
            % Convert from relative velocity to inertial velocity frame
            PVFinr = ROTZ(dBeta*180/pi)'*ROTY(dAlpha*180/pi)*PVF;
 
            % Convert to ECI frame
            PECI = Qmat*ROTZ(90-Az)*ROTY(fpa)'*PVFinr;
 
            % Net Perturbation vector
            P = P + PECI;
        end 
 
    end
    
    methods
        % Setup function, initialize chemistry object
        function setupfun(obj)
            obj.PhysTyp = 'Aero';
            obj.tstep = obj.AeroStep;
            obj.chemObj.GRAMatmos = obj.GRAM.atmos;
            obj.chemObj.setupInds;
        end
    end
end
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classdef Aerothermal < matlab.System
    % Primary trajectory post-processer and plotter, re-runs trajectory
    % position and time data through GRAM to calculate aerothermal and any
    % other time history results
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        TrajPoint % subclass to perform aerotherm calculations at one trajectory point
        plotYN = true % switch to turn on or off plotting
    end
 
    % Shared handle objects
    properties
        State % handle object for current spacecraft state
        Results % handle object for trajectory results/outputs
        Body_DB % handle object for planetary body parameters database
        SC_DB % handle object for spacecraft parameters database
        GRAM % handle object for the GRAM interface
        Time % handle object for tracking elapsed time and time dependent planet 
orientation
        chemObj % handle object for atmospheric chemistry calculations
        plotData % handle object for managing plotting options 
    end
 
    methods
        % Constructor: Pass State and Result Handle objects
        function obj = Aerothermal(varargin)
            % No inputs case, creates default reference objects internally
            if nargin == 0
                % Provide values for superclass constructor
                % and initialize other inputs
                obj.State = SCState;
                obj.Results = TrajResults;
                obj.Body_DB = BodyInputs;
                obj.SC_DB = SCInputs;
                obj.GRAM = gramMgr;
                obj.Time = timeMgr;
                obj.chemObj = chemMgr;
                obj.plotData = plotProps;
 
                % Individaul reference objects passed to constructor as inputs args
            elseif nargin == 8
                % When nargin ~= 0, assign to cell array,
                % which is passed to supclass constructor
                for i1 = 1:8
                    if isa(varargin{i1},'SCState'); obj.State = varargin{i1};
                    elseif isa(varargin{i1},'TrajResults'); obj.Results = varargin{i1};
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                    elseif isa(varargin{i1},'BodyInputs'); obj.Body_DB = varargin{i1};
                    elseif isa(varargin{i1},'SCInputs'); obj.SC_DB = varargin{i1};
                    elseif isa(varargin{i1},'gramMgr'); obj.GRAM = varargin{i1};
                    elseif isa(varargin{i1},'timeMgr'); obj.Time = varargin{i1};
                    elseif isa(varargin{i1},'chemMgr'); obj.chemObj = varargin{i1};
                    elseif isa(varargin{i1},'plotProps'); obj.plotData = varargin{i1};
                    else; error('Invalid shared object inputs');
                    end
                end
 
            % Reference objects passed as a masterHand encapsulating object
            elseif nargin == 1 && isa(varargin{1},'masterHand')
                obj.State = varargin{1}.State;
                obj.Results = varargin{1}.Results;
                obj.Body_DB = varargin{1}.Body;
                obj.SC_DB = varargin{1}.S_C;
                obj.GRAM = varargin{1}.GRAM;
                obj.Time = varargin{1}.Time;
                obj.chemObj = varargin{1}.chemData;
                obj.plotData = varargin{1}.plotData;
            else
                error('Invalid Constructor Inputs')
            end
        end
    end
 
    methods (Access = protected)
        function setupImpl(obj)
            % Perform one-time calculations, such as computing constants
            setupfun(obj);
        end
 
        function stepImpl(obj)
 
            % Will only plot results for atmospheric flight
            if strcmp(obj.Results.Type,'Aero')
 
                % Save current vehicle state to reset to after aerothermal
                % calculations
                obj.State.saveState;
 
                % Loop through generated trajectory to post process
                % aerothermal and other results
                t = obj.Results.t; n = length(t);
                Js = zeros(n,1); 
                out(n) = obj.TrajPoint.step(1);
                for i1 = 1:length(t)
                    out(i1) = obj.TrajPoint.step(i1);
                    qsI = out(i1).qs;
                    if i1 > 1



5/11/25 7:58 PM C:\Users\bohda\OneDrive...\Aerothermal.m 3 of 4

                        Js(i1) = Js(i1-1) + qsI*(t(i1)-t(i1-1)); % total heat load
                    end
                end
 
                % Reset State
                obj.State.reset;
 
                % Reset fallback state to beginning of simulation
                obj.State.revertState;
 
                % Populate results
                obj.Results.alt = [out.alt];
                obj.Results.qs = [out.qs];
                obj.Results.qsMax = max([out.qs]);
                obj.Results.Js = Js;
                obj.Results.jsMax = Js(end);
                obj.Results.fpa = [out.fpa];
                obj.Results.fpaI = obj.Results.fpa(1);
                obj.Results.rho = [out.rho];
                obj.Results.Kn = [out.kn];
                obj.Results.BC = obj.SC_DB.BC;
 
                % Calculate delta V lost with each pass (change in velocity
                % at periapsis)
                mu = obj.Body_DB.mu;
                [aPre,ePre] = ECItoKep(obj.Results.Rt(1,1:3)',obj.Results.Rt(1,4:6)',
mu);
                [aPost,ePost] = ECItoKep(obj.Results.Rt(end,1:3)',obj.Results.Rt(end,4:
6)',mu);
                rpPre = aPre*(1-ePre);
                rpPost = aPost*(1-ePost);
                Vpre = sqrt(2*mu/rpPre-mu/aPre);
                Vpost = sqrt(2*mu/rpPost-mu/aPost);
                obj.Results.dVaero = Vpre-Vpost;
                obj.Results.tPost = 2*pi/sqrt(mu/aPost^3);
 
                % Plot results
                if obj.plotYN
                    obj.plotData.step
                end
            end
        end
    end
 
    methods
        
        function setupfun(obj)
            obj.TrajPoint = AerothermStep(obj);
        end
    end
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end
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classdef AerothermStep < Aerothermal
    % Sub class of aerothermal which calls GRAM for one trajectory point
    % and generates aerothermal and other time history results
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    methods
        % Constructor
        function obj = AerothermStep(varargin)
            if nargin == 1 && isa(varargin{1},'Aerothermal')
                obj.State = varargin{1}.State;
                obj.Results = varargin{1}.Results;
                obj.Body_DB = varargin{1}.Body_DB;
                obj.SC_DB = varargin{1}.SC_DB;
                obj.GRAM = varargin{1}.GRAM;
                obj.Time = varargin{1}.Time;
                obj.chemObj = varargin{1}.chemObj;
            else
                error('Invalid Constructor Inputs')
            end
        end
    end
 
    methods (Access = protected)
        
        function outStrct = stepImpl(obj,inc)
            % Convert and extract topo coordinates from state object
            obj.Time.elTime = obj.Results.t(inc);
            obj.State.Reci = obj.Results.Rt(inc,1:3)';
            obj.State.Veci = obj.Results.Rt(inc,4:6)';
            obj.State.ECItoLLA;
 
            % Extract Vars from shared objects
            W = obj.Body_DB.W; k = obj.Body_DB.k; Qmat = obj.State.Qmat;
            alt = obj.State.Alt; lat = obj.State.Lat; long = obj.State.Long;
            t = obj.Results.t(inc); Reci = obj.State.Reci; 
            Veci = obj.State.Veci; Rn = obj.SC_DB.RN;
            
            % Set position/time in GRAM
            obj.GRAM.position.height = alt;
            obj.GRAM.position.latitude = lat;
            obj.GRAM.position.longitude = long;
            obj.GRAM.position.elapsedTime = t;
            obj.GRAM.body.setPosition(obj.GRAM.position);
 
            % update GRAM model
            obj.GRAM.body.update();
 
            % Calculate Winds
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            nsw = obj.GRAM.atmos.nsWind; % north south wind
            eww = obj.GRAM.atmos.ewWind; % east west wind
            vw = obj.GRAM.atmos.verticalWind; % vertical wind
 
            % Velocity vector in the ENZ frame (north south winds are
            % negative as north to south and east to west expressed as a positive 
            % values in GRAM, also convert to km/s
            Venz = [-eww/1000
                    -nsw/1000
                    vw/1000];
            Wvec = Qmat*Venz;
            
            % Formulate relative velocity vector
            Vrel = Veci - cross(W',Reci); % account for planet rotation
            Vrel = Vrel - Wvec; % account for winds
            vrel = norm(Vrel); % magnitude
 
            % Extract Knudsen Number
            obj.chemObj.GRAMatmos = obj.GRAM.atmos;
            lamda = obj.chemObj.getMeanFreePath;
            Kn = lamda/obj.SC_DB.D;
            
            % Extract density from GRAM
            rho = obj.GRAM.atmos.density; 
 
            % calculate stagnation heat flux (sutton graves correlation)
            qs = k*sqrt(rho/Rn)*(vrel*1000)^3/1e4;
   
            % Struct can be populated with more time resolved properties (long, lat,
            % stag pressure, temperature, etc.
            outStrct.qs = qs;
            outStrct.alt = obj.State.Alt;
            outStrct.fpa = obj.State.FPA;
            outStrct.rho = rho;
            outStrct.kn = Kn;
        end
    end
 
    methods
        % Setup Chemistry solver
        function setupfun(obj)
            obj.chemObj.GRAMatmos = obj.GRAM.atmos;
            obj.chemObj.setupInds;
        end
    end
end
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classdef BodyInputs < matlab.System
    % Class that handles planetary constants and associated properties
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        mu  %km^3/s^2 G*M so specific grav constant
        Re  % (km) primary body equatorial radius
        Rp  % (km) primary body polar radius
        W   % Planet angular velocity vector (rad/s)
        J2  % 2nd Zonal Harmonic
        k  % Aerothermal Constant
 
        AltThr = 150; % (km) altitude threshold where drag comes into effect
        termSpd = 1; % km/s if velocity falls below this value (in aeropass) simulation 
is terminated
        planModel = 'ellipse' % planet shape model (sphere or ellipse) a 
                              % spherical model assumes the equatorial
                              % radius Rp is the spherical radius
 
        RGB % Planet Display Color
    end
 
    % Observable property so other objects can update when planet is
    % changed
    properties (SetObservable, AbortSet, Dependent)
        planet
    end
 
    properties (Access = private)
        storePlanet
    end
 
    methods (Access = protected)
 
        % Output properties as struct if necessary
        function BodyDB = stepImpl(obj)
            BodyDB = struct;
            publicProperties = properties(obj);
            for fi = 1:numel(publicProperties)
                BodyDB.(publicProperties{fi}) = obj.(publicProperties{fi});
            end
        end
 
        % Save Object
        function s = saveObjectImpl(obj)
            s = saveObjectImpl@matlab.System(obj);
            s.storePlanet = obj.storePlanet;
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        end
 
        % Load Object
        function loadObjectImpl(obj,s,isInUse)
            loadObjectImpl@matlab.System(obj,s,isInUse);
            obj.storePlanet = s.storePlanet;
        end
    end
 
    methods
 
        % Planet Shape Model
        function set.planModel(obj,val)
            if strcmp(val,'ellipse') || strcmp(val,'sphere')
                obj.planModel = val;
            else
                error('Planet shape model must either be "ellipse" or "sphere" 
lowercase')
            end
        end
 
        % Pull planet string from privated non-dependent property
        function planetOut = get.planet(obj)
            planetOut = obj.storePlanet;
        end
 
        % Planet set method containing all planetary constants
        % Source: NASA Planetary Fact Sheet
        % https://nssdc.gsfc.nasa.gov/planetary/factsheet/
        function set.planet(obj,body)
            obj.storePlanet = body;
            switch body
                case 'Venus'
                    obj.mu = 324858.592; %km^3/s^2 G*M so specific grav constant
                    obj.Re = 6051.8; % (km) primary body radius
                    obj.Rp = 6051.8; % (km) primary body polar radius
                    obj.W = [ 0 0 -2.9924e-07]; % Planet angular velocity (rad/s)
                    obj.J2 = 4.458E-06; % 2nd Zonal Harmonic
                    obj.k = 0.00019; % Aerothermal Constant
                    obj.RGB = [0.9290 0.6940 0.1250];
                case 'Uranus'
                    obj.mu = 5.7940e6; %km^3/s^2 G*M so specific grav constant
                    obj.Re = 25559; % (km) primary body equatorial radius
                    obj.Rp = 24973; % (km) primary body polar radius
                    obj.W = [ 0 0 -1.0124e-04]; % Planet angular velocity (rad/s)
                    obj.J2 = 3343.43E-06; % 2nd Zonal Harmonic
                    obj.k = 8.645E-5; % Aerothermal Constant
                    obj.RGB = [192 236 240]/255;
                case 'Neptune'
                    obj.mu = 6.8351e6; %km^3/s^2 G*M so specific grav constant
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                    obj.Re = 24764; % (km) primary body equatorial radius
                    obj.Rp = 24341; % (km) primary body polar radius
                    obj.W = [ 0 0 1.0834e-04]; % Planet angular velocity (rad/s)
                    obj.J2 = 3411E-06; % 2nd Zonal Harmonic
                    obj.k = 8.645E-5; % Aerothermal Constant *unverified for neptune, 
set the same as Uranus
                    obj.RGB = [90 145 226]/255;
                case 'Jupiter'
                    obj.mu = 126.687e6; %km^3/s^2 G*M so specific grav constant
                    obj.Re = 71492; % (km) primary body equatorial radius
                    obj.Rp = 66854; % (km) primary body polar radius
                    obj.W = [ 0 0 1.7584e-04]; % Planet angular velocity (rad/s)
                    obj.J2 = 14736E-06; % 2nd Zonal Harmonic
                    obj.k = 8.645E-5; % Aerothermal Constant *unverified for neptune, 
set the same as Uranus
                    obj.RGB = [220 174 66]/255;
                case 'Earth'
                    obj.mu = 0.39860e6; %km^3/s^2 G*M so specific grav constant
                    obj.Re = 6378.137; % (km) primary body equatorial radius
                    obj.Rp = 6356.752; % (km) primary body polar radius
                    obj.W = [ 0 0 7.2921e-05]; % Planet angular velocity (rad/s)
                    obj.J2 =  1082.63E-06; % 2nd Zonal Harmonic
                    obj.k = 1.7415e-4; % Aerothermal Constant 
                    obj.RGB = [58 218 250]/255;
                case 'Mars'
                    obj.mu = 0.042828e6; %km^3/s^2 G*M so specific grav constant
                    obj.Re = 3396.2; % (km) primary body equatorial radius
                    obj.Rp = 3376.2; % (km) primary body polar radius
                    obj.W = [ 0 0 7.0882e-05]; % Planet angular velocity (rad/s)
                    obj.J2 =  1960.45E-06; % 2nd Zonal Harmonic
                    obj.k = 1.9027e-4; % Aerothermal Constant 
                    obj.RGB = [240 118 47]/255;
                case 'Titan'
                    obj.mu = 0.0089781384e6; %km^3/s^2 G*M so specific grav constant
                    obj.Re = 2.5747e+03; % (km) primary body equatorial radius
                    obj.Rp = 2.5747e+03; % (km) primary body polar radius
                    obj.W = [0 0 4.5607e-06]; % Planet angular velocity (rad/s)
                    obj.J2 =  0.315E-06; % 2nd Zonal Harmonic
                    obj.k = 1.9e-4; % Aerothermal Constant 
                    obj.RGB = [250 199 58]/255;
            end
        end
    end
end
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classdef Burn < OrbitProp
    % Propulsive Maneuvers Trajectory Propagation Object (subclass of
    % OrbitProp)
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
    
    methods
        function setupfun(obj)
            obj.PhysTyp = 'Burn';
        end
    end
 
    methods (Access = protected)
 
        % Main Integration replaces superclass to allow for finite time burn
        function mainInt(obj)
 
            % Extract Vars from shared objects
            Reci = obj.State.Reci; Veci = obj.State.Veci;
            t_curr = obj.State.elTime; Tb = obj.State.Tb;
            m_o = obj.State.ScM;
 
            % Warn user if burn time is set to 0 and skip segment
            if Tb == 0
                warning('Burn time (Tb) must be greater than zero, skipping burn 
segment'); 
                return;
            end
            
            % establish timeframe accounting for possibility of burn time being
            % less than 1 time step
            tsteb_b = Tb*obj.tstep_f; % rounding creates potential inaccuracy
 
            % Setup main trajectory segment timespan
            if strcmp(obj.calcSpd, 'continuous')
                tspan = t_curr:tsteb_b:t_curr+Tb;
            elseif strcmp(obj.calcSpd, 'jump')
                tspan = [t_curr t_curr + Tb];
            else
                error('property "calcSpd" set incorrectly')
            end
 
            % Main trajectory integrator call
            [t,Rt] = obj.ODEfun(@(t,R) TwoBody(obj,t,R),tspan,[Reci; Veci; m_o],obj.
opts1);
 
            % Populate Results if necessary
            if strcmp(obj.resultPop,'on')
                obj.Results.t = t; obj.Results.Rt = Rt; obj.Results.te = 0; obj.
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Results.ye = 0; obj.Results.ie = 0;
                obj.Results.Tb = Tb; obj.Results.dVec = obj.State.dVec; 
                % calculate delta V of burn
                ISP = obj.SC_DB.ISP; go = obj.SC_DB.go; me = Rt(end,7); mf = Rt(1,7);
                obj.Results.dV = ISP*go*log(mf/me);
            end
            
            % Populate shared handle objects with new trajectory data
            obj.State.Reci = Rt(end,1:3)';
            obj.State.Veci = Rt(end,4:6)';
            obj.State.ScM = Rt(end,7); 
            obj.State.Tb = 0;
            obj.Time.elTime = t(end);
 
            % Update State
            obj.State.step;
 
        end
 
        function P = Perturb(obj,~,P,R)
            
            % Extract Vars from state object
            dVec = obj.State.dVec;
            v = norm(R(4:6));
 
            % Set thrust value
            if strcmp(obj.Thruster, 'Low')
                T = obj.SC_DB.LowThr;
            elseif strcmp(obj.Thruster, 'High')
                T = obj.SC_DB.Thr;
            else
                error('property "Thruster" set incorrectly')
            end
 
            % Purturbation Vector
            Tvec = T/(1000*R(7)*v);
            P = P + [Tvec*R(4)*dVec(1)
                     Tvec*R(5)*dVec(2)
                     Tvec*R(6)*dVec(3)];
        end              
    end
end
 



5/11/25 8:00 PM C:\Users\bohda\OneDrive\Desk...\chemMgr.m 1 of 2

classdef chemMgr < matlab.System
    % Manages all atmospheric chemistry calcuations, 
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        eqChem = 'off'
        GRAMatmos % GRAM atmospheric state object
        inputSpecies % Property database for species supported by GRAM
        speciesInd logical % Filters GRAM atmos state for consituient gases
        speciesProps % Names of species present in the current atmosphere
        len % Number of species present
    end
 
    methods
        % Function to calculate the mean free path
        function lamda = getMeanFreePath(obj)
            spNames = obj.speciesProps;
            sigTot = 0;
            
            for i1 = 1:obj.len
 
                % Get Species data from GRAM
                species = obj.GRAMatmos.(spNames{i1});
 
                % Compute a weighted average kinetic cross section based on
                % the species mole fractions
                dK = obj.inputSpecies.(spNames{i1}).kinDia; % kinetic diameter
                sigTot = (dK*1e-12)^2*species.moleFraction + sigTot;
 
            end
 
            % Number density from GRAM
            n = obj.GRAMatmos.totalNumberDensity;
 
            % Final mean free path
            lamda = 1/(sqrt(2)*pi*sigTot*n);
        end
    end
 
    methods
 
        % Import species properties
        function obj = chemMgr
            obj.inputSpecies = inputSpecies;
        end
        
        % Initialize the chemistry calculations by predetermining which
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        % species are present in the current planetary atmosphere, ignores
        % species that are not present
        function setupInds(obj)
            props = properties(obj.GRAMatmos);
    
            % Filter by GRAM consituent gas objects
            for i1 = 1:length(props)
                if isa(obj.GRAMatmos.(props{i1}),'clib.GRAMmi.GRAM.ConstituentGas') && 
obj.GRAMatmos.(props{i1}).isPresent
                    obj.speciesInd(i1) = true;
                else
                    obj.speciesInd(i1) = false;
                end
            end
 
            % Names and number of species
            obj.speciesProps = props(obj.speciesInd);
            obj.len = length(obj.speciesProps);     
        end
    end
end
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% Simple example script of a lift up and lift down simulation of a Venus
% aerocapture to 500000 km
 
clear
close all
 
% Load file and set all handle objects to base workspace
load('VenusAerocapt.mat')
saveFile.getHands
 
% Set apoapsis target for optimizer
apoapsis_targ = 500000;
ra_targ = apoapsis_targ + State.Rad;
 
% LIFT DOWN CASE
 
% Optimizer input format
altOpt = optoIn('order','AO','targ',ra_targ,'objective','ra','adjust','FPA');
 
% Optimize trajectory
missionPlan.lookForward(altOpt);
 
% Atmospheric Entry Pass
aeroProp.step;
 
% Post process trajectory, aerothermal calcs, plots
aeroTherm.step;
 
% 3D trajectory plot and store results
visPlot.step
 
% Set coast orbit to stop at apoapsis
orbProp.EventTyp = 'Ae';
 
% Propagate coast orbit and plot result
orbProp.step;
visPlot.step
 
% Reset state 
State.reset
 
% LIFT UP CASE
 
% Set angle of attack
S_C.alpha = 10; 
 
% Optimize Trajectory
missionPlan.lookForward(altOpt);
 
% Propagate Atmospheric entry



5/11/25 8:04 PM C:\Users\bohda\OneDri...\ExampleScript.m 2 of 2

aeroProp.step;
aeroTherm.step;
visPlot.step
 
orbProp.EventTyp = 'Ae';
 
% Propagate coast orbit
orbProp.step;
visPlot.step
State.reset
 
% Generate output summary table
visPlot.AeroTab;
 
 



5/11/25 8:00 PM C:\Users\bohda\OneDrive\Desk...\gramMgr.m 1 of 3

classdef gramMgr < matlab.System
    % Handles the GRAM interface and all initializations
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        % Below parameters are GRAM interface parameters
        inputParameters % GRAM inputs
        reader % Namelist reader
        body % Planet specific object
        ttime % Start time object
        position % position object
        atmos % atmosphere object, contains all relevant atomospheric data normally in 
output file
        Time % Time manager object
    end
 
    % Pre-computed constants or internal states
    properties (Dependent)
        planet
    end
 
    properties (Access = private)
        storePlanet
    end
 
    methods (Access = protected)
        function s = saveObjectImpl(obj)
            s.Time = obj.Time;
        end
    end
 
    methods
        function planetOut = get.planet(obj)
            planetOut = obj.storePlanet;
        end
 
        % Sets up GRAM based on planet entry
        function set.planet(obj,body)
            if isempty(obj.Time); error('Time handle not set in GRAM manager class'); 
end
 
            obj.storePlanet = body;            
            switch body
                case 'Venus'
                    obj.inputParameters = clib.GRAMmi.GRAM.VenusInputParameters();
                    obj.reader = clib.GRAMmi.GRAM.VenusNamelistReader();
                    obj.body = clib.GRAMmi.GRAM.VenusAtmosphere();
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                case 'Uranus'
                    obj.inputParameters = clib.GRAMmi.GRAM.UranusInputParameters();
                    obj.reader = clib.GRAMmi.GRAM.UranusNamelistReader();
                    obj.body = clib.GRAMmi.GRAM.UranusAtmosphere();
                case 'Neptune'
                    obj.inputParameters = clib.GRAMmi.GRAM.NeptuneInputParameters();
                    obj.reader = clib.GRAMmi.GRAM.NeptuneNamelistReader();
                    obj.body = clib.GRAMmi.GRAM.NeptuneAtmosphere();
                case 'Jupiter'
                    obj.inputParameters = clib.GRAMmi.GRAM.JupiterInputParameters();
                    obj.reader = clib.GRAMmi.GRAM.JupiterNamelistReader();
                    obj.body = clib.GRAMmi.GRAM.JupiterAtmosphere();
                case 'Earth'
                    obj.inputParameters = clib.GRAMmi.GRAM.EarthInputParameters();
                    obj.reader = clib.GRAMmi.GRAM.EarthNamelistReader();
                    obj.body = clib.GRAMmi.GRAM.EarthAtmosphere();
                    obj.inputParameters.useNCEP = true;
                    % inputParameters.NCEPPath = '../NCEPdata/FixedBin';
                    obj.inputParameters.dataPath = 'C:
\Users\bohda\OneDrive\Desktop\SJSU\AE295\Simulation Draft V05\GRAM Matlab\GRAMmi';
                case 'Mars'
                    obj.inputParameters = clib.GRAMmi.GRAM.MarsInputParameters();
                    obj.reader = clib.GRAMmi.GRAM.MarsNamelistReader();
                    obj.body = clib.GRAMmi.GRAM.MarsAtmosphere();
                    obj.inputParameters.dataPath = "C:
\Users\bohda\OneDrive\Desktop\SJSU\AE295\Simulation Draft V05\GRAM Matlab\GRAMmi\data";
                case 'Titan'
                    obj.inputParameters = clib.GRAMmi.GRAM.TitanInputParameters();
                    obj.reader = clib.GRAMmi.GRAM.TitanNamelistReader();
                    obj.body = clib.GRAMmi.GRAM.TitanAtmosphere();
            end
 
            obj.reader.tryGetSpicePath(obj.inputParameters);
            % Create a venus atmosphere object
            obj.body.setInputParameters(obj.inputParameters);
 
            % Set the start time of the trajectory
            obj.ttime = clib.GRAMmi.GRAM.GramTime();
            obj.ttime.setStartTime(obj.Time.JD0, clib.GRAMmi.GRAM.GRAM_TIME_SCALE.UTC, 
clib.GRAMmi.GRAM.GRAM_TIME_FRAME.ERT);
            obj.body.setStartTime(obj.ttime);
             
            % create position and atmosphere output objects
            obj.position = clib.GRAMmi.GRAM.Position();
            obj.atmos = obj.body.getAtmosphereState();
 
            % Display version and confirmation message
            fprintf('GRAM Initialized Sucessfully\n')
            disp(obj.body.getVersionString());
        end
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    end
end
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classdef InitState < matlab.System
    % Initial state class for handling default values when a new simulation
    % configuration is created
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        planet = 'Venus';
 
        % TOPOCENTRIC COORDINATES
        FPA = -5; % Flight Path Angle
        V = 11; % Velocity Magnitude
        Alt = 150; % Altitude
        Lat = 5; % Latitude
        Long = 47; % Longitude
        Az =  -90; % Azimuth
 
        % ORBITAL ELEMENTS
        e = 1.3074; % eccentricity
        minalt = 97.6157; % altitude at periapsis Change between 120 and 150 km
        inc = 0; % inclination
        Arg = 0; % arguement of periapsis
        Asc = 0; % ascension of ascending node
        theta = 137; % true anamoly
 
        % POSITION AND VELOCITY VECTORS
        Reci  % Vehicle Position Vector
        Veci  % Vehicle Velocity Vector
 
        % START TIME
        startTime = datetime(2041,05,20,9,3,8);
        JD = 0; % Julian Date
 
        % COORDINATE SELECTION
        % Topo for topocentric, Kepl for keplerial/orbital elements, ECIv for positon 
and velocity vector
        Opt = 'Topo' 
 
    end
 
    methods (Access = protected)
 
        function stepImpl(obj,Body,State,Time,GRAM)
 
            % Set planet
            Body.planet = obj.planet;
            Time.planet = obj.planet;
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            % Set initial Julian date
            if isempty(obj.JD) || obj.JD == 0
                Time.JD0 = juliandate(obj.startTime);
                Time.startTime = obj.startTime;
            else
                Time.JD0 = obj.JD;
            end
 
            % Update GRAM after planet and Julian date have been set
            GRAM.planet = obj.planet;
 
            % Intialize state
            State.step;
 
            % Populate the rest of state based on coordinate selection
            switch obj.Opt
                case 'Topo'
                    State.FPA = obj.FPA; 
                    State.V = obj.V;
                    State.Alt = obj.Alt;
                    State.Lat = obj.Lat; 
                    State.Long = obj.Long;
                    State.Az = obj.Az;
                case 'Kepl'
                    rp = obj.minalt+Body.Re; % periapsis
                    State.a = rp/(1-obj.e);
                    State.e = obj.e;
                    State.inc = obj.inc;
                    State.Arg = obj.Arg;
                    State.Asc = obj.Asc;
                    State.theta = obj.theta;
                case 'ECIv'
                    State.Reci = obj.Reci;
                    State.Veci = obj.Veci;
                otherwise
                    error('Invalid Input Coordinate Option')
            end           
        end
    end
end
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classdef inputSpecies < matlab.System
    % Database for molecular weights and kinetic diameters of all species
    % listed within GRAM. 
    % 
    % Reference: https://cccbdb.nist.gov/introx.asp
    %
    % Future Work: Merge properties with those provided in GRAM or
    % in McBride CEA coefficients Database
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties 
        species
    end
 
    properties (Access=private)
        % Reduction in kinetic diameter for free atomic species vs. their
        % diatomic molecules, initially used the spacing between atoms as
        % an offset however using the same diameter showed better agreement
        % with literature on knudsen number calculations
 
        % hOffset = 74.14
        % oOffset = 120.75
        % nOffset = 109.77
        hOffset = 0
        oOffset = 0
        nOffset = 0
    end
 
    methods 
        function f1 = argon(~)
            f1.molWeight = 39.948;
            f1.kinDia = 340; % picometer (pm)
        end
 
        function f1 = carbonDioxide(~)
            f1.molWeight = 44.0095;
            f1.kinDia = 330; % picometer (pm)
        end
 
        function f1 = carbonMonoxide(~)
            f1.molWeight = 28.0101;
            f1.kinDia = 376; % picometer (pm)
        end
 
        function f1 = dihydrogen(~)
            f1.molWeight = 2.01588;
            f1.kinDia = 289; % picometer (pm)
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        end
 
        function f1 = dinitrogen(~)
            f1.molWeight = 28.0134;
            f1.kinDia = 364; % picometer (pm)
        end
 
        function f1 = dioxygen(~)
            f1.molWeight = 31.9988;
            f1.kinDia = 346; % picometer (pm)
        end
 
        function f1 = helium(~)
            f1.molWeight = 4.002602;
            f1.kinDia = 260; % picometer (pm)
        end
 
        function f1 = hydrogen(obj)
            f1.molWeight = 1.00794;
            f1.kinDia = 289-obj.hOffset; % picometer (pm)
            % ref: https://cccbdb.nist.gov/exp2x.asp
            % dN2 - distance between atoms
        end
 
        function f1 = methane(~)
            f1.molWeight = 16.0425;
            f1.kinDia = 380; % picometer (pm)
        end
 
        function f1 = nitrogen(obj)
            f1.molWeight = 14.0067;
            f1.kinDia = 364-obj.nOffset; % picometer (pm)
        end
 
        function f1 = oxygen(obj)
            f1.molWeight = 15.9994;
            f1.kinDia = 346-obj.oOffset; % picometer (pm)
        end
 
        function f1 = ozone(~)
            f1.molWeight = 47.9982;
            f1.kinDia = 344; % picometer (pm)
        end
 
        function f1 = nitrousOxide(~)
            f1.molWeight = 44.0128;
            f1.kinDia = 330; % picometer (pm)
        end
 
        function f1 = water(~)
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            f1.molWeight = 18.0153;
            f1.kinDia = 265; % picometer (pm)
        end
    end
end
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classdef masterHand < matlab.System
    % All encompassing system object that sets up and contains all handle
    % objects necessary to run the simulation. 
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        S_C % spacecraft inputs class
        Body % body inputs
        State % current spacecraft state
        Results % Results object
        GRAM % GRAM interface object
        Time % handle object for tracking elapsed time and time dependent planet 
orientation
        Inputs % Sets up default values when setting up a new configuration
        orbProp % Coast trajectory 
        aeroProp % Atmospheric flight trajectory
        burnProp % Burn/Maneuver Trajectory
        aeroTherm % Aerothermal postprocessor
        visPlot % 3D Trajectory plotter and results storage
        missionPlan % Trajectory optomization and multi-pass mission planner
        plotData % Handle object containing all 2D trajectory plot options
        chemData % handle object for atmospheric chemistry calculations
    end
 
    % Pre-computed constants or internal states
    properties (Access = private)
        lis event.proplistener % listeners for S_C property changes
        configWindow % object for configuration editor window
    end
 
    methods
        function obj = masterHand
            % Create low level shared handles
            obj.S_C = SCInputs;
            obj.Body = BodyInputs;
            obj.State = SCState;
            obj.Results = TrajResults;
            obj.Time = timeMgr;
            obj.Inputs = InitState;
            obj.GRAM = gramMgr;
            obj.chemData = chemMgr;
            obj.plotData = plotProps;
 
            % Initialize low level shared handles
            stateSetup(obj) 
            obj.GRAM.Time = obj.Time;
            obj.S_C.step;
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            % Create orbit propagation shared handles
            obj.orbProp = OrbitProp(obj);
            obj.aeroProp = AeroPass(obj);
            obj.burnProp = Burn(obj);
            obj.aeroTherm = Aerothermal(obj);
            obj.visPlot = TrajPlot(obj);
 
            % Create mission planner
            obj.missionPlan = MissionPlan(obj);
            
            % populate shared objects with input parameters
            processInputs(obj);
 
            % create listeners to automatically update
            listenScInputs(obj);
        end
    
        % Setup state object
        function stateSetup(obj)
            obj.State.ScM = obj.S_C.m_o; % Initialize S/C mass
            obj.State.setBody(obj.Body);
            obj.State.setTime(obj.Time);
        end
 
        % Automatically flattens class structure and populates workspace
        % with shared objects
        function getHands(obj)
            publicProperties = properties(obj);
            for fi = 1:numel(publicProperties)
                assignin('base',publicProperties{fi},obj.(publicProperties{fi})) 
            end
        end
 
        % Setup Default Values
        function processInputs(obj)
            % Initialize body, state and time shared handle objects
            obj.Inputs.step(obj.Body,obj.State,obj.Time,obj.GRAM);
 
            % Uodate and save initial state
            obj.State.step;
            obj.State.saveState;
            obj.Time.step;
            obj.plotData.Results = obj.Results;
        end
 
        % Opens a configuration editor window and populates with current
        % setup
        function configEditor(obj)
            obj.configWindow = configurationEditor;
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            obj.configWindow.getData(obj);
        end
 
        % Save a default values class
        function saveInputs(obj)
            saveInputs = obj.Inputs;
            save('SimInputs','saveInputs');
        end
 
        % Load a default values class
        function loadInputs(obj)
            inputsIn = load('SimInputs','saveInputs');
            obj.Inputs = inputsIn.saveInputs;
            processInputs(obj);
        end
   
        % Set the integration tolerance for all three trajectory
        % propagation objects
        function setIntTol(obj,relTol,absTol)
            obj.orbProp.RelTol = relTol; obj.orbProp.AbsTol = absTol;
            obj.aeroProp.RelTol = relTol; obj.aeroProp.AbsTol = absTol;
            obj.burnProp.RelTol = relTol; obj.burnProp.AbsTol = absTol;
        end
 
        % Change the ODE solver function for all three trajectory
        % propagation objects
        function setODEfun(obj,func)
            obj.orbProp.ODEfun = func;
            obj.aeroProp.ODEfun = func;
            obj.burnProp.ODEfun = func;
        end
 
        function listenScInputs(obj)
 
            % Create listeners for all Spacecraft object observable
            % properties
            propsSC = properties(obj.S_C);
            for i1 = 1:length(propsSC)
                obj.lis(i1) = addlistener(obj.S_C,propsSC{i1},'PostSet',@(src,evnt)obj.
scEvents(src,evnt,obj));
            end
 
            % Upate the aerodynamics bridging function if the knudsen
            % number bounds are changed
            obj.lis(i1+1) = addlistener(obj.S_C.Aero_DB,'knFm','PostSet',@(src,evnt)
obj.scEvents(src,evnt,obj));
            obj.lis(i1+2) = addlistener(obj.S_C.Aero_DB,'knCont','PostSet',@(src,evnt)
obj.scEvents(src,evnt,obj));
 
            % Update time and GRAM objects if planet is changed
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            obj.lis(i1+3) = addlistener(obj.Body,'planet','PostSet',@(src,evnt)obj.
scEvents(src,evnt,obj));
        end
    end
 
    methods (Static)
      function scEvents(src,evnt,master)
         % terminology
         rocket = ["ISP","Thr","LowThr"];
         geometry = ["D","halfAng","RN","alpha","beta"];
         KN = ["knFm","knCont"];
         mass = "m_o"; planSet = "planet";
 
         % Object triggering event
         inOBJ = evnt.AffectedObject;
 
         % update s/c rocket engine parameters if a property is changed
         if contains(src.Name,rocket) 
             inOBJ.updateEnginePerf;
 
         % update s/c geometry and aero parameters if a property is changed
         elseif contains(src.Name,geometry) 
             inOBJ.updateGeometry;
             inOBJ.Aero_DB.radConvert;
             inOBJ.Aero_DB.step;
             inOBJ.updateBC;
 
         % update ballistic coefficient and mass in state object
         elseif contains(src.Name,mass) 
             inOBJ.updateBC;
             master.State.ScM = inOBJ.m_o;
         
         % update bridging function if kn limits are changed
         elseif contains(src.Name,KN) 
             inOBJ.bridgeSetup;
 
         % update planet in GRAM and time objects if body is updated
         elseif strcmp(src.Name,planSet) 
             master.Time.planet = inOBJ.planet;
             master.GRAM.planet = inOBJ.planet;
         end
      end
   end
 
    methods (Access = protected)
 
        % Save a master handle object which effectively saves the entire
        % configuration and current state of the simulation
        function s = saveObjectImpl(obj)
            s = saveObjectImpl@matlab.System(obj);
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        end
 
        % Load a master handle object
        function loadObjectImpl(obj,s,isInUse)
            loadObjectImpl@matlab.System(obj,s,isInUse);
            
            % Re-initialize GRAM since GRAM C++ objects are not saved
            obj.GRAM = gramMgr;
            obj.GRAM.Time = obj.Time;
            obj.GRAM.planet = obj.Body.planet;
 
            obj.orbProp.GRAM = obj.GRAM;
            obj.aeroProp.GRAM = obj.GRAM;
            obj.burnProp.GRAM = obj.GRAM;
            obj.aeroTherm.GRAM = obj.GRAM;
 
            % Re-populate listeners
            listenScInputs(obj);
        end
    end
end
 
 



5/11/25 8:00 PM C:\Users\bohda\OneDrive...\MissionPlan.m 1 of 9

classdef MissionPlan < matlab.System
    % Contains all trajectory optomization functions and some specific
    % manuever calculations to support a multi-pass aerocapture orbital
    % insertion simulation.
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Mission parameters geared towards a multi-pass
    % orbital insertion
    properties
        raPost = 500000; % Apoapsis of initial post capture orbit (km)
        TCMdelay = 2500; % (s) initial cruise prior to TCM
        % Set calc speed to jump for faster calculation of final states for 
        % trajectory optomization (accuracy may suffer)
        opts1 = struct
('calcSpd','continuous','EventTyp','Aero','output','off','resultPop','off'); 
        opts2 = struct
('calcSpd','continuous','EventTyp','Ae','output','off','resultPop','off');
        psiInt = [-180 180]; % initial attidude guess for burn attitude optomizer
        raTarg % vector of apogee targets for each aeropass
        tolX = 1e-8; % Convergence tolerance for traj optomization
        fzOpts % fzero options struct
    end
 
    % Optomization Inputs
    properties
        check % inputs to look forward and assess current state
        intTCM % inputs for interplanetary perigee trim TCM
        peOpt % inputs for perigee trim between aero passes
    end
 
    % Shared handle objects
    properties
        State % handle object for current spacecraft state
        SC_DB % handle object for spacecraft parameters database
        Body_DB % handle object for planetary body parameters database
        orbProp % handle object for coast trajectory
        aeroProp % handle object for atmospheric flight trajectory
        burnProp % handle object for simulating maneuvers
    end
 
    % Pre-computed constants or internal states
    properties (Access = private)
        currPass = 1 % Current pass number
    end
 
    methods
        % Constructor: Pass State and Result Handle objects 
        function obj = MissionPlan(varargin)
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            if nargin == 0
                % Provide values for superclass constructor
                % and initialize other inputs
                obj.State = SCState;
                obj.Body_DB = BodyInputs;
                obj.SC_DB = SCInputs;
                obj.orbProp = OrbitProp;
                obj.aeroProp = AeroPass;
                obj.burnProp = Burn;
 
            % Individaul reference objects passed to constructor as inputs args   
            elseif nargin == 6
                % When nargin ~= 0, assign to cell array,
                % which is passed to supclass constructor
                for i1 = 1:6
                    if isa(varargin{i1},'SCState'); obj.State = varargin{i1}; 
                    elseif isa(varargin{i1},'BodyInputs'); obj.Body_DB = varargin{i1}; 
                    elseif isa(varargin{i1},'SCInputs'); obj.SC_DB = varargin{i1}; 
                    elseif isa(varargin{i1},'OrbitProp'); obj.orbProp = varargin{i1}; 
                    elseif isa(varargin{i1},'AeroPass'); obj.aeroProp = varargin{i1}; 
                    elseif isa(varargin{i1},'Burn'); obj.burnProp = varargin{i1}; 
                    else; error('Invalid shared object inputs');
                    end
                end
 
            % Reference objects passed as a masterHand encapsulating object
            elseif nargin == 1 && isa(varargin{1},'masterHand')
                obj.State = varargin{1}.State;
                obj.Body_DB = varargin{1}.Body;
                obj.SC_DB = varargin{1}.S_C;
                obj.orbProp = varargin{1}.orbProp;
                obj.aeroProp = varargin{1}.aeroProp;
                obj.burnProp = varargin{1}.burnProp;
            
            else
                error('Invalid Constructor Inputs')
            end
            obj.fzOpts = optimset('Tolx',obj.tolX);
            optionSet(obj);
        end
    end
 
    methods
        %% MISSION PLANNING FUNCTIONS
 
        function [Ntp, dVtp] = numPassCalc(obj, stateI,stateF)
            % calculate current orbit properties
            raF = stateF.ra;  rpI = stateI.rp; aI = stateI.a; mu = obj.Body_DB.mu;
 
            aPost = (rpI+obj.raPost)/2; % Calculate semi major axis of post capture 
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orbit
            aFinal = (raF+rpI)/2; % Calculate semi major axis of final target orbit
 
            VpI = sqrt(mu*(2/rpI-1/aI)); % Velocity at perigee for hyperbolic 
trajectory
            VpPost = sqrt(mu*(2/rpI-1/aPost)); % Velocity at perigee of post capture 
orbit
            VpFinal = sqrt(mu*(2/rpI-1/aFinal)); % Velocity at perigee of final aero 
pass orbit
 
            dVCapt = VpI-VpPost; % delta V required to get into initial captured orbit
            dVRest = VpPost-VpFinal; % delta V required to get from initial captured 
orbit to final target science apogee
 
            Ntp = ceil(dVRest/dVCapt); % Number of Aeropasses
            dVtp = dVRest/Ntp; % dV per aeropass
            ratp = zeros(1,Ntp); % apoapsis of each aeropass
            
            fprintf('Mission Planner found a solution with %d aeropasses, ~%0.3f km/s 
per pass\n',Ntp,dVtp);
            fprintf
('*******************************************************************\n');
            fprintf('Post capture apoapsis altitude: %0.3f km\n',obj.raPost-obj.
Body_DB.Re);
 
            for i1 = 1:Ntp
 
                Vptp = VpPost-dVtp*i1;
                atp = (2/rpI-Vptp^2/mu)^(-1);
                ratp(i1) = 2*atp-rpI;
                fprintf('Pass %d apoapsis altitude: %0.3f km\n',i1,ratp(i1)-obj.
Body_DB.Re);
 
            end
 
            obj.raTarg = ratp;
            obj.currPass = 1;
 
            % set thruster to low for TCM and correction maneuvers
            obj.burnProp.Thruster = 'Low';
            optionSet(obj);
 
        end
 
        %% ORBITAL MANEUVER CALCULATION FUNCTIONS
        
        function Pe_Raise(obj, stateF)
 
            % Break out some variables from shared objects
            ra = obj.State.ra; a = obj.State.a; 
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            rp2 = stateF.rp; a2 = stateF.a; 
            mu = obj.Body_DB.mu; m_o = obj.State.ScM; 
            ISP = obj.SC_DB.ISP; go = obj.SC_DB.go; m_dot = obj.SC_DB.m_dot;
    
            % transfer orbit properties
            at = (ra+rp2)/2;
            
            % Calculate delta V requirements
            Va = sqrt(2*mu/ra-mu/a); % initial orbit velocity at apoapsis (where we 
want initial burn)  
            Vpt = sqrt(2*mu/ra-mu/at); % transfer orbit velocity at periapsis 
            
            Vat = sqrt(2*mu/rp2-mu/at); % transfer orbit velocity at apoapsis 
            Vp2 = sqrt(2*mu/rp2-mu/a2); % Final orbit velocity at periapsis                          
            
            dV1 = Vpt-Va; % Sum delta V for first burn
            dV2 = Vp2-Vat; % Sum delta V for second burn
 
            % calculate propellant masses and burn times
            Mp1 = m_o-m_o*exp(-dV1*1000/(ISP*go));
            Tb1 = -Mp1/m_dot; % m_dot expressed as negative value
            m1 = m_o-Mp1;
            Mp2 = m1-m1*exp(-dV2*1000/(ISP*go));
            Tb2 = -Mp2/m_dot;
 
            % array for two circularization burn times 
            % obj.State.Tb = [Tb1 Tb2 0];
            obj.State.Tb = Tb1;
            obj.State.dVec = [1 1 1]';
 
            % Print periapsis raise data
            fprintf('\nFinal perigee raise solution found: %0.1f s burn for %0.2f 
km/s\n',Tb1,dV1)
 
 
        end
 
        function Intpl_TCM(obj)
            % Save current state
            obj.State.saveState;
            
            % Determine optimal attitude to execute TCM maneuver
            [psiOpt, delta] = fminbnd(@(psi) -dVecOpt(obj,psi), obj.psiInt(1), obj.
psiInt(2));
            
            Reci = obj.State.Reci;
            Veci = obj.State.Veci;
            v = norm(Veci);
            Uv = [Veci(1)/v; Veci(2)/v; Veci(3)/v];
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            ROT = [cosd(psiOpt) -sind(psiOpt) 0
                   sind(psiOpt) cosd(psiOpt) 0
                   0    0   1];
            dVec = ROT*Uv;
            obj.State.dVec = dVec;
            
            % Reset Burn Object
            obj.burnProp.calcSpd = 'continuous'; obj.burnProp.output = 'on';
 
            % Determine current unadjusted trajectory
            obj.lookForward(obj.check);
 
            % Is current trajectory leading us above or below the target
            % apoapsis
            if obj.State.ra < obj.raPost && obj.State.e < 1 % verify spacecraft isn't 
interplanetary 
                obj.State.reset;
 
                % Optomize prograde burn time
                out = lookForward(obj,obj.intTCM);
                fprintf('\nInterplanetary periapsis raise TCM necessary, %0.1f s burn 
converged after %d iterations\n',obj.State.Tb,out);
            else 
                obj.State.reset;
 
                % Retrograde burn necessary to lower periapsis
                obj.State.dVec = -obj.State.dVec;
 
                % Optomize retrograde burn time
                out = lookForward(obj,obj.intTCM);
                fprintf('\nInterplanetary periapsis lower TCM necessary, %0.1f s burn 
converged after %d iterations\n',obj.State.Tb,out);
            end
         
            % burn attitude optimization (optomization of all three euler
            % angles needs to be added)
            function delta = dVecOpt(obj,psi)
                
                % Rotate abount velocity vector
                Vopt = obj.State.Veci;
                vopt = norm(Vopt);
                Uvopt = [Vopt(1)/vopt; Vopt(2)/vopt; Vopt(3)/vopt];
 
                ROTopt = [cosd(psi) -sind(psi) 0
                          sind(psi)  cosd(psi) 0
                          0          0         1];
 
                UvN = ROTopt*Uvopt;
                % quiver3(Reci(1),Reci(2),Reci(3),UvN(1),UvN(2),UvN(3),
750,'g','LineWidth',1);
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                % create test burn to determine optimal burn vector
                obj.State.dVec = UvN;
                obj.State.Tb = 5; 
                rp_old = obj.State.rp;
 
                % Set a few options, propage maneuver trajectory
                obj.burnProp.calcSpd = 'jump'; obj.burnProp.output = 'off';
                obj.burnProp.step;
                
                % Reset for next iteration
                rp_new = obj.State.rp;
                delta = rp_new-rp_old;
                obj.State.reset;
            end
        end
 
        function Aeropass_TCM(obj)
 
            % burn will be inline with velocity vector
            obj.State.dVec = [1 1 1]'; 
 
            % determine if periapsis altitude must be raised or decreased
            obj.lookForward(obj.check);
 
            % set the optomizer to target a predetermined altitude after
            % each pass
            obj.peOpt.targ = obj.raTarg(obj.currPass);
 
            % Is current trajectory leading us above or below the target
            % apoapsis
            if obj.State.ra < obj.raTarg(obj.currPass)
                obj.State.reset;
 
                % Optomize prograde burn time
                out = lookForward(obj,obj.peOpt);
                fprintf('\nPass %d periapsis raise TCM necessary, %0.1f s burn 
converged after %d iterations\n',obj.currPass,obj.State.Tb,out);
            else 
                obj.State.reset;
 
                % Retrograde burn necessary to lower periapsis
                obj.State.dVec = -obj.State.dVec;
 
                % Optomize retrograde burn time
                out = lookForward(obj,obj.peOpt);
                fprintf('\nPass %d periapsis lower TCM necessary, %0.1f s burn 
converged after %d iterations\n',obj.currPass,obj.State.Tb,out);
            end
            obj.currPass = obj.currPass + 1;
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        end
 
        %% TRAJECTORY OPTOMIZATION FUNCTION
 
        function out = lookForward(obj,optIn)
 
            % Save current state before any optomizations
            obj.State.saveState;
 
            % break out variables from options object
            order = optIn.order;
            objective = optIn.objective;
            targ = optIn.targ;
            adjust = optIn.adjust;
 
            % No optomization, just a forward propagation of current
            % trajectory
            if ~optIn.opt
                propForward;
                out = [];
 
            % Perform optomization
            elseif optIn.opt
 
                % Shooting method trajectory optomization optomize the
                % "adjust" property until the "objective" property equals
                % the "target" property
                [Opt,~,~,output] = fzero(@(adj) propForward(adj), optIn.range,obj.
fzOpts);
 
                % Number of iterations required
                out = output.iterations;
 
                % Update state with the optomized parameter
                obj.State.(adjust) = Opt;
                obj.State.step;
 
                % Delete the pre-optomization saved state and revert back to the
                % saved state at the start of the simulation
                obj.State.revertState;
            end
 
            function min = propForward(adj)
                n = length(order);
 
                % Will optomization be performed
                if optIn.opt
                    obj.State.(adjust) = adj;
                    obj.State.step;
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                end
 
                for i1 = 1:n
                    % Bake in a few special cases, i.e. if a burn segment is set
                    % to follow a coast segment, stop at apoapsis 
                    if i1 < n && order(i1) == 'O' && order(i1+1) == 'B'
                        opts = obj.opts2;
                    elseif i1 == n && order(i1) == 'O'
                        opts = obj.opts2;
                    else
                        opts = obj.opts1;
                    end
 
                    % opts.output = 'on';
                    % obj.opts1.output = 'on';
                    switch(order(i1))
                        case 'O' % Coast segment
                            obj.orbProp.step(opts);
                        case 'A' % Atmospheric flight segment
                            obj.aeroProp.step(opts);
                        case 'B' % Propulsive maneuver segment
                            obj.burnProp.step(obj.opts1);
                    end
                end
 
                % Generate outputs
                if optIn.opt
                    switch adjust
                        case 'FPA' % Flight path angle option
                            fprintf('Apoapsis Altitude: %.3f km at %.3f deg\n',obj.
State.(objective)-obj.Body_DB.Re,adj)
                        case 'Tb' % Burn time option
                            fprintf('Apoapsis Altitude: %.3f km at %.3f s burn\n',obj.
State.(objective)-obj.Body_DB.Re,adj)
                    end
 
                    % Primary objective function
                    min = obj.State.(objective)-targ;
 
                    % covers special interplanetary case
                    if strcmp(objective,'ra') && obj.State.e >= 1
                        min = 5e6;
                    end
 
                    % Reset State for next iteration
                    obj.State.reset;
 
                % No optomization case
                else
                    min = [];
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                end
            end
        end
 
        function optionSet(obj)
            % Forward propagation of current trajectory
            obj.check = optoIn('order','OA');
            % interplanetary periapsis trim TCM
            obj.intTCM = optoIn('order','BOA','targ',obj.
raPost,'objective','ra','adjust','Tb');
            % periapsis trim between aero passes
            obj.peOpt = optoIn('order','OBOA','targ',obj.
raPost,'objective','ra','adjust','Tb');
        end
    end
end
 
 



5/11/25 8:01 PM C:\Users\bohda\OneDrive\Deskt...\optoIn.m 1 of 3

classdef optoIn < matlab.System
    % Format for inputs to trajectory optomization function
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    properties
        order % Order of trajectory segments to perform A: Atmospheric flight, B: 
Burn/Maneuver, O: Coast Orbit
        targ % Target or "Objective" of optomization    
    end
 
    properties (Dependent)
        range % Initial values for optomizer
        objective % Objective Function
        adjust % Input parameter to optomize to the objective
        opt % false (0) only one propagation will be performed true (1) optomization 
will be performed
    end
 
    % Private properties to store values for dependent properties
    properties (Access = private)
        stateProps
        objectiveStore
        adjustStore
        fpaRgdef = [-4 -25] % Starting range of flight path angles
        TbRgdef = [0.01 200]
    end
 
    methods (Access = protected)
        % Save Object
        function s = saveObjectImpl(obj)
            s = saveObjectImpl@matlab.System(obj);
            s.stateProps = obj.stateProps;
            s.objectiveStore = obj.objectiveStore;
            s.adjustStore = obj.adjustStore;
            s.fpaRgdef = obj.fpaRgdef;
            s.TbRgdef = obj.TbRgdef;
        end
 
        % Load Object
        function loadObjectImpl(obj,s,isInUse)
            obj.stateProps = s.stateProps;
            obj.objectiveStore = s.objectiveStore;
            obj.adjustStore = s.adjustStore;
            obj.fpaRgdef = s.fpaRgdef;
            obj.TbRgdef = s.TbRgdef;
            loadObjectImpl@matlab.System(obj,s,isInUse);
        end
    end
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    methods
        % Create names of state properties that can be used as objectives
        % for optomization
        function obj = optoIn(varargin)
            state = SCState;
            obj.stateProps = properties(state);
            setProperties(obj,nargin,varargin{:});
        end
 
        % Verify that order inputs are only either 'B','O', or 'A'
        function set.order(obj,val)
            if ischar(val)
                BB = ismember(val,'B');
                OO = ismember(val,'O');
                AA = ismember(val,'A');
                idx = AA | BB | OO;
                if ~any(~idx)
                    obj.order = val;
                else
                    error('First arguement must only contain O, A, or B: O: 
cruise/orbit, A: Aerodynamic pass, B: Maneuver')
                end
            else
                error('First arguement must be a character vector: O: cruise/orbit, A: 
Aerodynamic pass, B: Maneuver')
            end
        end
 
        % Verify that objective is a char and is a state property
        function set.objective(obj,val)
            if ischar(val) && ismember(val,obj.stateProps)
                obj.objectiveStore = val;
            else
                error('Objective must be a state object property character vector')
            end
        end
 
        % Validate target as a numeric double
        function set.targ(obj,val)
            if isa(val,"double")
                obj.targ = val;
            else
                error('Target must be a double')
            end
        end
    
        % Validate adjust as a char and a state property
        function set.adjust(obj,val)
            if ischar(val) && ismember(val,obj.stateProps)
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                obj.adjustStore = val;
            else
                error('adjust must be a state object property character vector')
            end
        end
 
        % Get private stored property for objective
        function val = get.objective(obj)
            val = obj.objectiveStore;
        end
 
        % Get private stored property for adjust
        function val = get.adjust(obj)
            val = obj.adjustStore;
        end
        
        % Currently default initial values are only supported for flight
        % path angle and burn time
        function val = get.range(obj)
            if ~isempty(obj.adjust)
                switch obj.adjust
                    case 'FPA'
                        val = obj.fpaRgdef;
                    case 'Tb'
                        val = obj.TbRgdef;
                end
            else
                val = [];
            end
        end
   
        % Option to either optomize or simply propagate a trajectory
        function val = get.opt(obj)
            optProps = [{obj.targ} {obj.adjust} {obj.objective}];
            valid = cellfun(@isempty,optProps);
 
            if ~any(~valid)
                val = false;
            elseif ~any(valid)
                val = true;
            else
                % error('Three optomization properties must be provided, if no 
optomization is desired, only supply the order input')
            end
        end
    end
end
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classdef OrbitProp < matlab.System
    % This object propogates a trajectory segment, the superclass contains
    % physics for a coast under gravity only. Thrust or atmospheric flight
    % propagations are subclasses of the upper OrbitProp superclass Class
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        Thruster = 'Low'
        PhysTyp = 'Cruise'
        EventTyp = 'Aero'; % Location to stop integration
        laps = 5; % time to move past event to prevent false trigger
        tstep = 60; % (s) timestep
        tstep_f = 0.05; % factor to divide burn time by to create custom timestep for 
burn integrations to ensure start and end points are accurate
        calcSpd = 'continuous'; % 'continuous' specifies a tspan to the ODE integrator 
as a vector, 'jump' specifies only a start and end point
        output = 'on'; % print output option (typically off for optomization runs)
        resultPop = 'on'; % populate results option (typically off for optomization 
runs)
        opts1 % options struct for ODE integrator
        opts2 % 2nd options struct that contains the ODE event function
        ODEfun = @ode45 % ODE integrator function
        warnFlg = true; % Altitude warning flag (prevents repeat warning messages)
        RelTol = 1e-7; % Relative Tolerance
        AbsTol = 1e-8; % Absoluate Tolerance
 
        % it was found with a relative and absolute tolerance of 1e-5
        % and 1e-7 respectively that the error between the first and
        % 4th orbit is on the order of a few hundred meters.
        % 1e-7 and 1e-8 tols did fix some integration issues
        
    end
 
    properties
        State % handle object for current spacecraft state
        Results % handle object for trajectory results/outputs
        Body_DB % handle object for planetary body parameters database
        SC_DB % handle object for spacecraft parameters database
        GRAM % handle object for the GRAM interface
        Time % handle object for tracking elapsed time and time dependent planet 
orientation
        chemObj % handle object for atmospheric chemistry calculations
    end
 
    % Pre-computed constants or internal states
    properties (Access = private)
        stop % stopping criteria vector



5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\OrbitProp.m 2 of 9

        saveStrct % struct to save overwrite options 
    end
 
    methods
        % Constructor: Pass State and Result Handle objects 
        function obj = OrbitProp(varargin)
            % No inputs case, creates default reference objects internally
            if nargin == 0
                % Provide values for superclass constructor
                % and initialize other inputs
                obj.State = SCState;
                obj.Results = TrajResults;
                obj.Body_DB = BodyInputs;
                obj.SC_DB = SCInputs;
                obj.GRAM = gramMgr;
                obj.Time = timeMgr;
                obj.chemObj = chemMgr;
 
            % Individaul reference objects passed to constructor as inputs args   
            elseif nargin == 7
                % When nargin ~= 0, assign to cell array,
                % which is passed to supclass constructor
                for i1 = 1:7
                    if isa(varargin{i1},'SCState'); obj.State = varargin{i1}; 
                    elseif isa(varargin{i1},'TrajResults'); obj.Results = varargin{i1}; 
                    elseif isa(varargin{i1},'BodyInputs'); obj.Body_DB = varargin{i1}; 
                    elseif isa(varargin{i1},'SCInputs'); obj.SC_DB = varargin{i1}; 
                    elseif isa(varargin{i1},'gramMgr'); obj.GRAM = varargin{i1}; 
                    elseif isa(varargin{i1},'timeMgr'); obj.Time = varargin{i1}; 
                    elseif isa(varargin{i1},'chemMgr'); obj.chemObj = varargin{i1}; 
                    else; error('Invalid shared object inputs');
                    end
                end
 
            % Reference objects passed as a masterHand encapsulating object
            elseif nargin == 1 && isa(varargin{1},'masterHand')
                obj.State = varargin{1}.State;
                obj.Results = varargin{1}.Results;
                obj.Body_DB = varargin{1}.Body;
                obj.SC_DB = varargin{1}.S_C;
                obj.GRAM = varargin{1}.GRAM;
                obj.Time = varargin{1}.Time;
                obj.chemObj = varargin{1}.chemData;
            else
                error('Invalid Constructor Inputs')
            end
        end
    end
 
    methods (Access = protected)
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        function setupImpl(obj)
            % Setup solver options and events
            obj.opts1 = odeset('RelTol',obj.RelTol,'AbsTol',obj.AbsTol);
            obj.opts2 = obj.opts1;
            obj.opts2.Events = @(t,R) Event_fcn(t,R,obj.stop,obj.Body_DB,obj.State,obj.
Time);
 
            % placeholder function for subclasses
            setupfun(obj); 
        end
 
        function stepImpl(obj,varargin)
            
            % Skips atmospheric flight integration if altitude is over
            % threshold
            if strcmp(obj.PhysTyp, 'Aero') && obj.State.Alt > obj.Body_DB.AltThr+1
                if strcmp(obj.output,'on')
                    warning('Attempting to enter atmospheric flight phase while above 
threshold, skipping propagation segment')
                end
                return;
            end
 
            % populate properties based on options struct
            if nargin > 0 && ~isempty(varargin) && isa(varargin{1},'struct')
                 optsGen(obj,varargin{1});
            end
 
            % Generate stopping criteria for event functions
            switch obj.EventTyp
                case 'Pe' % periapsis
                    obj.stop = [1 0 0 0 0 0 1 1 0 0];
                case 'Ae' % apoapsis
                    obj.stop = [0 1 0 0 0 0 1 1 0 0];
                case 'Asc' % ascending node
                    obj.stop = [0 0 1 0 0 0 1 1 0 0];
                case 'Dsc' % descending node
                    obj.stop = [0 0 0 1 0 0 1 1 0 0];
                case 'Aero' % aerobrake (stops at certain altitude)
                    % Enable velocity stop if vehicle is in atmosphere
                    if strcmp(obj.PhysTyp,'Aero') 
                        obj.stop = [0 0 0 0 1 1 1 1 1 1];
                    else
                        obj.stop = [0 0 0 0 1 1 1 1 0 0];
                    end
                case 'Crz'  % cruise option, do not stop at any orbital nodes
                    obj.stop = [0 0 0 0 0 0 1 1 0 0];
                case 'Trans' % Transfer Orbit, waits 1/2 period and accounts for burn 
times
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                    obj.stop = [0 0 0 0 0 0 1 1 0 0];
                otherwise
                    error('Invalid BrnTyp Value')
            end
 
            % Main orbit propagation integration
            mainInt(obj);
            
            % Populate shared results object if needed
            if strcmp(obj.resultPop,'on')
                obj.Results.Type = obj.PhysTyp;
                obj.Results.Vi = norm(obj.Results.Rt(1,4:6));
                obj.Results.raAlt = obj.State.ra-obj.Body_DB.Re; % Warning: result is 
approximation if in ellipsoid planet mode
            end
            
            % Print outputs
            if strcmp(obj.output,'on')
                Outputs(obj) % print 
            end
 
            % Reset options properties to defaults
            if nargin > 0 && ~isempty(varargin) && isa(varargin{1},'struct')
                 optsReset(obj,varargin{1});
            end
 
            % Reset Altitude warning flag 
            obj.warnFlg = true;
        end
   
        % Save object to MAT file
        function s = saveObjectImpl(obj)
            s = saveObjectImpl@matlab.System(obj);
            s.stop = matlab.System.saveObject(obj.stop);
            s.saveStrct = matlab.System.saveObject(obj.saveStrct);
        end
 
        % Load object from MAT file
        function loadObjectImpl(obj,s,isInUse)
            obj.stop = s.stop;
            obj.saveStrct = s.saveStrct;
            loadObjectImpl@matlab.System(obj,s,isInUse);
        end
 
    end
 
    methods (Access = protected)
 
        function mainInt(obj)
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            % Break out a few state object properties
            T = obj.State.T; Reci = obj.State.Reci; Veci = obj.State.Veci;
            t_curr = obj.Time.elTime;
            
            % Perform a short integration to bring vehicle slightly past critical
            % point to prevent double triggering of event fcn
            m_o = obj.State.ScM;
            tspanJ = [t_curr t_curr+obj.laps/2 t_curr+obj.laps];
            [t_jump,Rt_jump] = obj.ODEfun(@(t,R) TwoBody(obj,t,R),tspanJ,[Reci; Veci; 
m_o],obj.opts1);
            
            % Reset initial conditions after short step
            Reci = Rt_jump(end,1:3)';
            Veci = Rt_jump(end,4:6)'; 
            t_curr = t_jump(end);
            
            % Setup main trajectory segment timespan
            if strcmp(obj.calcSpd, 'continuous')
                if strcmp(obj.PhysTyp, 'Aero'); T = obj.Tmax; end
                tspan = t_curr:obj.tstep:t_curr + T; 
            elseif strcmp(obj.calcSpd, 'jump')
                if strcmp(obj.PhysTyp, 'Aero'); T = obj.Tmax; end
                tspan = [t_curr t_curr + T];
            else
                error('property "calcSpd" set incorrectly')
            end
 
            % Main trajectory integrator call
            [t,Rt,te,ye,ie] = obj.ODEfun(@(t,R) TwoBody(obj,t,R),tspan,[Reci; Veci; 
m_o],obj.opts2);
            
            % Stitch together short integration and main integration
            t = [t_jump; t]; Rt = [Rt_jump; Rt];
 
            % If next orbital segment is a burn
            if obj.State.Tb > 0
                % go back and find conditions 1/2 the burn time back in orbit to ensure 
burn splits event
                [~,ix] = min(abs(t-(t(end)-obj.State.Tb/2))); 
        
                % populate total array up until burn start
                Rt = Rt(1:ix,:);
                t = t(1:ix,:);   
            end
 
            % Populate Results if necessary
            if strcmp(obj.resultPop,'on')
                obj.Results.t = t; obj.Results.Rt = Rt; obj.Results.te = te; obj.
Results.ye = ye; obj.Results.ie = ie;
                obj.Results.Tb = 0; obj.Results.dVec = 0; obj.Results.dV = 0;
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            end
 
            % Populate shared handle objects with new trajectory data
            obj.State.Reci = Rt(end,1:3)';
            obj.State.Veci = Rt(end,4:6)';
            obj.State.ScM = Rt(end,7); 
            obj.Time.elTime = t(end);
 
            % Update State
            obj.State.step;
            
        end
 
        function drdt = TwoBody(obj,t,R)
 
            % Extract Vars from struct inputs
            mu = obj.Body_DB.mu; Re = obj.Body_DB.Re; 
            
            % Set the massflow rate to zero for cruise and aero orbits
            % when rocket engine isn't burning and S/C isn't loosing mass
            if strcmp(obj.PhysTyp, 'Cruise') || strcmp(obj.PhysTyp, 'Aero')
                m_dot = 0;
            elseif strcmp(obj.Thruster, 'Low')
                m_dot = obj.SC_DB.m_dot_low;
            elseif strcmp(obj.Thruster, 'High')
                m_dot = obj.SC_DB.m_dot;
            else
                error('property "Thruster" set incorrectly')
            end
 
            % Warns user if crossing below altitude threshold while in
            % cruise or burn phase
            if (strcmp(obj.PhysTyp, 'Burn') || strcmp(obj.PhysTyp, 'Cruise')) && obj.
State.Alt < obj.Body_DB.AltThr-1 && strcmp(obj.output,'on') && obj.warnFlg
                warning('Below atmospheric threshold while in cruise or maneuver 
physics (vacuum only) check stopping criteria')
                obj.warnFlg = false;
            end
 
            % Initialization
            r = norm(R(1:3)); % calculate magnitude 
            v = norm(R(4:6));
            
            % OBLATENESS EFFECTS
            J2 = obj.Body_DB.J2; % second zonal harmonic 
            
            x = R(1); y = R(2); z = R(3);
            p1 = x/r*(5*z^2/r^2-1);
            p2 = y/r*(5*z^2/r^2-1);
            p3 = z/r*(5*z^2/r^2-3);
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            % Perturbation vector
            P = 3/2*J2*mu*Re^2/r^4.*[p1
                                    p2
                                    p3];
            
            % Disable J2 perturbations
            % P = [0;0;0];
 
            P = Perturb(obj,t,P,R);
 
            % Kepler ODE in state space form
            drdt = [R(4)
                    R(5)
                    R(6)
                    -mu/r^3*R(1)+P(1)
                    -mu/r^3*R(2)+P(2)
                    -mu/r^3*R(3)+P(3)
                    m_dot];
 
        end
 
        function P = Perturb(~,~,P,~)
            % Default superclass is for a cruise orbit so unperturbed
        end
    end
    
    methods
        function setupfun(~)
            % placeholder for subclasses
        end
 
        % Print termination criteria
        function termfun(~,ie)
            if ~isempty(ie)
                switch ie(end)
                    case 1 % periapsis
                        fprintf('Integration Stopped: Periapsis Reached\n')
                    case 2 % apoapsis
                        fprintf('Integration Stopped: Apoapsis Reached\n')
                    case 3 % ascending node
                        fprintf('Integration Stopped: Ascending Node Reached\n')
                    case 4 % descending node
                        fprintf('Integration Stopped: Descending Node Reached\n')
                    case 5 % aerobrake (stops at certain altitude)
                        fprintf('Integration Stopped: Atmospheric Cutoff Altitude 
Reached (Descending) \n')
                    case 6  % aerobrake (stops at certain altitude)
                        fprintf('Integration Stopped: Atmospheric Cutoff Altitude 
Reached (Ascending) \n')
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                    case 7 % spacecraft has impacted surface
                        fprintf('Integration Stopped: Spacecraft Impacted Surface 
(Descending) \n')
                    case 8 % spacecraft has impacted surface from below (If you see 
this, something is really screwed up)
                        fprintf('Integration Stopped: Spacecraft Impacted Surface 
(Ascending) \n')
                    case 9 % Termination Velocity Reached
                        fprintf('Integration Stopped: Termination Velocity Reached \n')
                    case 10 % Termination Velocity Reached
                        fprintf('Integration Stopped: Termination Velocity Reached \n')
                    otherwise % Termination Velocity Reached
                        fprintf('Integration Stopped: Maximum time step or number or 
orbits reached \n')
                end
            end
        end
 
        % Prints the current state after completing a trajectory segment
        function Outputs(obj)
            fmt = "%-20s %-10.3f %-5s\n";
            fprintf('\nIntegrator completed %s trajectory segment\n', obj.PhysTyp)
            fprintf("Current Vehicle State:\n");
            fprintf(fmt,"Altitude:",obj.State.Alt, "km")
            fprintf(fmt,"Velocity:",obj.State.V, "km/s")
            fprintf(fmt,"Flight Path Angle:",obj.State.FPA, "deg")
            fprintf(fmt,"Azimuth:",obj.State.Az, "deg")
            fprintf(fmt,"Elapsed Time:",obj.State.elTime, "s")
 
            if strcmp(obj.PhysTyp,'Burn')
                fprintf(fmt,"Burn Time:",obj.Results.Tb, "s")
                fprintf(fmt,"Delta V:",obj.Results.dV, "m/s")
            end
            termfun(obj,obj.Results.ie)
        end
 
        % populates properties based on a struct input
        function optsGen(obj,options)
            optFields = fieldnames(options);
            for fi = 1:numel(optFields)
                obj.saveStrct.(optFields{fi}) = obj.(optFields{fi});
                obj.(optFields{fi}) = options.(optFields{fi});
            end
        end
 
        % Reset properties to previous values after run.
        function optsReset(obj,options)
            optFields = fieldnames(options);
            for fi = 1:numel(optFields)
                 obj.(optFields{fi}) = obj.saveStrct.(optFields{fi});
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            end
        end
    end
end
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classdef plotProps < matlab.System
    % Contains all colors and plotting poperties for 2D aerothermal and
    % trajectory plots 
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        Axes % Axis handle
        numPlots = 6; % Number of aerothermal plots
        aeroYax = ["qs","Js","V","alt","alt","alt"]; % x axis data
        aeroXax = ["t", "t", "t", "t","fpa","V"]; % y axis data
        resultYax = ["qsMax"]; % Batch plot run X axis data
        resultXax = ["raAlt"]; % Batch plot run Y axis data
        resultLeg = ["BC","Vi"]; % Legend Properties for batch run plot
        weightFactor = ["tPost"]; % Weight function property
        titles % Title array for plots
        pAxes % Axis handle for batch run plot
        pXaxes % X axis handle for batch run plot
        pYaxes % Y axis handle for batch run plot
        pLegend % Legend for batch run plot
        pLegCt % Legend index
        linewidth = 2; % Line width
        coloFun = @hsv % color array function (jet, hsv, parula, etc)
        pallette = "gem" % color pallete string (see MATLAB documentation)
        colorOpt = "pal" % grad (hsv, parula, jet, etc.) or pal (gem, reef, etc.)
        numColors = 4; % Number of colors before switching line style
        linestyles = ["-","--","-.",":"]; % Line styles
        styleOrder = 'aftercolor'; % aftercolor runs through colors before linestyles, 
beforecolor runs through linestyles first
        col % Matrix of RGB triplets for color
    end
 
    properties
        Results % trajectory results shared object
    end
 
    % Pre-computed constants or internal states
    properties (Access = private)
 
    end
 
    methods (Access = protected)
 
        % Generate plots for initial setup
        function setupImpl(obj)
            plotQuery(obj);
        end
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        function stepImpl(obj)
 
            % regen plots if deleted
            if ~isvalid(obj.Axes)
                plotQuery(obj)
            end
 
            % Plot results
            for i2 = 1:obj.numPlots
 
                % X axis
                Xx = obj.Results.(obj.aeroXax(i2));
 
                % crop to time since entry interface
                if strcmp(obj.aeroXax(i2),"t")
                    Xx = Xx-Xx(1);
                end
 
                % Y axis
                Yx = obj.Results.(obj.aeroYax(i2));
 
                % Get title and x/y label strings from results object
                xLab = obj.Results.plotLabels.(obj.aeroXax(i2)).label;
                yLab = obj.Results.plotLabels.(obj.aeroYax(i2)).label;
                Title = strcat(obj.Results.plotLabels.(obj.aeroYax(i2)).title," vs. ",
obj.Results.plotLabels.(obj.aeroXax(i2)).title);
 
                % query colors and styles
                linestyleorder(obj.Axes(i2),obj.linestyles)
                linestyleorder(obj.Axes(i2),obj.linestyles,obj.styleOrder);
                colororder(obj.Axes(i2),obj.col)
 
                % generate plots, allow for log plots with knudsen number
                if strcmp(obj.aeroXax(i2),'Kn')
                    semilogx(obj.Axes(i2),Xx,Yx,'LineWidth',obj.linewidth)
                elseif strcmp(obj.aeroYax(i2),'Kn')
                    semilogy(obj.Axes(i2),Xx,Yx,'LineWidth',obj.linewidth)
                else
                    plot(obj.Axes(i2),Xx,Yx,'LineWidth',obj.linewidth)
                end
 
                % Plot formatting
                title(obj.Axes(i2),Title)
                xlabel(obj.Axes(i2),xLab)
                ylabel(obj.Axes(i2),yLab)
                grid(obj.Axes(i2),"on")
                hold(obj.Axes(i2),"on")
            end
        end
    end



5/11/25 8:04 PM C:\Users\bohda\OneDrive\De...\plotProps.m 3 of 4

 
    methods
 
        % Plot select properties from batch runs
        function plotResults(obj,xX,yY)
            
            % Re-create figure if it has been deleted
            if isempty(obj.pAxes) || ~isvalid(obj.pAxes)
                figure
                obj.pAxes = axes(); obj.pLegCt = 1;
            end
 
            % Get title and x/y label strings from results object
            xLab = obj.Results.plotLabels.(obj.resultXax).label;
            yLab = obj.Results.plotLabels.(obj.resultYax).label;
            Title = strcat(obj.Results.plotLabels.(obj.resultYax).title," vs. ",obj.
Results.plotLabels.(obj.resultXax).title);
 
            % query colors and styles
            linestyleorder(obj.pAxes,obj.linestyles)
            linestyleorder(obj.pAxes,obj.linestyles,obj.styleOrder);
            colororder(obj.pAxes,obj.col)
 
            % generate plots
            plot(obj.pAxes,xX,yY,'LineWidth',obj.linewidth)
            title(obj.pAxes,Title)
            xlabel(obj.pAxes,xLab)
            ylabel(obj.pAxes,yLab)
            grid(obj.pAxes,"on")
            hold(obj.pAxes,"on")
        end
 
        % Setup plot color and style options
        function colOut = get.col(obj)
            switch obj.colorOpt
                case 'grad'
                    colOut = obj.coloFun(obj.numColors);
                case 'pal'
                    colOut = orderedcolors(obj.pallette);
                otherwise
                    colOut = orderedcolors("gem");
                    colOut = colOut(1:obj.numColors,:);
            end
 
            % Crop color array if needed
            if obj.numColors < height(colOut)
                colOut = colOut(1:obj.numColors,:);
            end
        end
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        % Iteratively populate legend labels
        function setLegend(obj,str)
            obj.pLegend{obj.pLegCt} = str;
            obj.pLegCt = obj.pLegCt + 1;
        end
 
        % Generate legend
        function createLegend(obj)
            % legend(obj.pAxes,obj.pLegend);
 
            legend(obj.pAxes,obj.pLegend(1:3))
            % plot(1,1,'Color','k','LineStyle','-','LineWidth',2)
            % plot(1,1,'Color','k','LineStyle','--','LineWidth',2)
            % plot(1,1,'Color','k','LineStyle','-.','LineWidth',2)
        end
 
        % Generate and setup figures and axes
        function plotQuery(obj)
            figure
            obj.Axes = axes();
            for i1 = 1:obj.numPlots
                if i1 ~= 1
                    figure
                    obj.Axes(i1) = axes();
                end
            end
        end
    end
end
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classdef SCInputs < matlab.System
    % Manages the spacecraft and entry vehicle geometry, contains an
    % aerodatabase object to perform all aerodynamic calculations
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties (SetObservable, AbortSet)
        % Rocket Engine and satellite Parameters
        Thr = 100; % N Thrust
        LowThr = 4; % N Low thrust output for small maneuvers
        m_o = 300; % kg Initial spacecraft mass
        ISP = 300; % seconds specific impulse
        go = 9.8; % gravity m/s^2
        D = 1; % Diameter (m)
        halfAng = 70; % Cone angle (deg)
        biCon = 30; % 2nd biconic angle (deg) Parameter must be set in aeroDB to use
        alpha = 0; % Trim Angle of Attack (deg) % potentially add conversion to 
bank/roll angle 
        beta = 0; % Trim Angle of Sideslip (deg)
        RN = .25; % Nose radius
        m_dot  % mass flow rate (kg/s)
        m_dot_low % low thruster mass flow rate (kg/s)
        A % Frontal area (m^2)
        BC % Ballistic Coefficient (kg/m^2)
        Aero_DB % Aero-database object
    end
 
    % Pre-computed constants or internal states
    properties (Access = private)
        SCDB
    end
 
    methods (Access = protected)
 
        function setupImpl(obj)
            % Initialize rocket engine parameters
            updateEnginePerf(obj)
 
            % Update Aero-database based on geometry inputs
            obj.Aero_DB = AeroDB;
            updateGeometry(obj)
            obj.Aero_DB.step;
 
            % Update ballistic coefficient
            updateBC(obj)
        end
 
        function stepImpl(~)
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        end
    
        % Save object
        function s = saveObjectImpl(obj)
            s = saveObjectImpl@matlab.System(obj);
        end
 
        % Load object
        function loadObjectImpl(obj,s,isInUse)
            loadObjectImpl@matlab.System(obj,s,isInUse);
        end
    end
 
    methods
        % Export current object properties as a struct
        function strctOut = get.SCDB(obj)
            strctOut = struct;
            publicProperties = properties(obj);
            for fi = 1:numel(publicProperties)
                strctOut.(publicProperties{fi}) = obj.(publicProperties{fi});
            end
        end
 
        % Update rocket engine parameters
        function updateEnginePerf(obj)
            obj.m_dot = -obj.Thr/(obj.ISP*obj.go); % kg/s
            obj.m_dot_low = -obj.LowThr/(obj.ISP*obj.go); % kg/s
        end
 
        % Update geometry and aerodatabase
        function updateGeometry(obj)
            obj.A = pi/4*(obj.D^2); %Frontal area (m^2)
            obj.Aero_DB.R = obj.D/2; % Diameter (m)
            obj.Aero_DB.RN = obj.RN; % Nose Radius (m)
            obj.Aero_DB.tc1 = obj.halfAng; % Sphere cone half angle (deg)
            obj.Aero_DB.tc2 = obj.biCon; % Bi-conic half angle (deg)
            obj.Aero_DB.trimAlpha = obj.alpha; % trim angle of attack (deg)
            obj.Aero_DB.trimBeta = obj.beta; % trim angle of sideslip (deg)
        end
 
        % Update Ballistic Coefficient 
        function updateBC(obj)
            obj.BC = obj.m_o/(obj.Aero_DB.CD*obj.A); %kg/m^2
        end
    end
end
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classdef SCState < matlab.System
    % This object represents all orbital elements, state vectors and
    % properties needed to pass from one orbit propagation to another. The
    % methods are used to calculate other properties given a few
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties 
        %% TOPOCENTRIC COORDINATES
        FPA = 0; % Flight Path Angle
        V = 0; % Velocity Magnitude
        Alt = 0; % Altitude
        Lat = 0; % Latitude
        Long = 0; % Longitude
        Az = 0; % Azimuth
 
        %% Keplerian Elements
        e  = 0; % eccentricity
        a = 0; % Semi Major Axis
        inc = 0; % inclination
        Arg = 0; % arguement of periapsis
        Asc = 0; % ascension of ascending node
        theta = 0; % true anamoly
 
        %% ADDITIONAL ORBITAL PARAMETERS
        minalt = 0; % altitude at periapsis Change between 120 and 150 km
        rp = 0; % Radius at perigee
        ra = 0; % Radius at apogee
        h = 0; % Angular Momentum
        T = 0; % Orbital Period
        v_inf = 0; % Escape Velocity
 
        %% POSITION AND VELOCITY VECTORS
        Reci = zeros(3,1); % Vehicle Position Vector
        Veci = zeros(3,1); % Vehicle Velocity Vector
        QECI = zeros(3,3); % ECI to Perifocal Coordinate Transformation Matrix
        Qmat = zeros(3,3); % ECI to ENZ Coordinate Transformation Matrix
        R = 0; % Position Magnitude
 
        %% TIME PARAMETERS
        elTime = 0; % Elapsed time
 
        %% MASS AND MANEUVERING PARAMETERS
        ScM = 0; % Spacecraft Mass
        Tb = 0; % Burn Time
        dVec = zeros(3,1); % Burn Vector
    end
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    properties (Dependent)
        Rad % local body radius dependent on whether spherical or ellipsoid
    end
 
    %% Shared Handle Objects and Internal States
    properties (Access = private)
        radSave % Stored value for local body radius
        prevState % Previous saved states
        StStrct % Struct Representing all elements in state
        Body_DB % Planetary parameters shared handle object
        timeObj % Time dependent property shared handle object
        resetFlag = false; % Flag indicating wheter object has just reset
    end
 
    methods
        % Constructor: Pass State and Result Handle objects
        function obj = SCState(InState)
            % Create a state based on struct input
            if nargin ~= 0
                popState(obj,InState)
            end
        end
    end
 
    %% Protected System Object Methods
    % System object specific methods like stepImpl, resetImpl, 
    % processTunedPropertiesImpl, saveObjectImpl, and loadObjectImpl
 
    methods (Access = protected)
 
        function processTunedPropertiesImpl(obj)
            if obj.resetFlag
                obj.resetFlag = false;
            else
 
                % Check if position and velocity vectors have changed
                rChg = isChangedProperty(obj,'Reci');
                vChg = isChangedProperty(obj,'Veci');
                if rChg && vChg
                    ECItoKep(obj)
                    ECItoLLA(obj)
                else
 
                    % Check if keplerian elements have changed
                    aChg = isChangedProperty(obj,'a');
                    eChg = isChangedProperty(obj,'e');
                    incChg = isChangedProperty(obj,'inc');
                    ArgChg = isChangedProperty(obj,'Arg');
                    AscChg = isChangedProperty(obj,'Asc');
                    ThetaChg = isChangedProperty(obj,'theta');
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                    minaltChg = isChangedProperty(obj,'minalt');
                    if aChg || eChg || incChg || ArgChg || AscChg || ThetaChg || 
minaltChg
                        % allows adjustment of minimum altitude
                        if minaltChg
                            obj.rp = obj.minalt+obj.Rad; % periapsis
                            obj.a = obj.rp/(1-obj.e);
                            obj.e = obj.e;
                        end
                        KeptoECI(obj)
                        ECItoLLA(obj)
                    else
 
                        % Check if topocentric coordinates have changed
                        VChg = isChangedProperty(obj,'V');
                        AltChg = isChangedProperty(obj,'Alt');
                        LongChg = isChangedProperty(obj,'Long');
                        LatChg = isChangedProperty(obj,'Lat');
                        fpaChg = isChangedProperty(obj,'FPA');
                        AzChg = isChangedProperty(obj,'Az');
 
                        if VChg || AltChg || LongChg || LatChg || fpaChg || AzChg
                            LLAtoECI(obj)
                            ECItoKep(obj)
                        end
                    end
                end
                ExtraProps(obj)
            end
        end
 
        function stepImpl(~)
            
        end
 
        % reset supports only two saved states, one as an initial starting
        % state, and one prior to any optomization or look-forward
        % functions
        function resetImpl(obj)
            if length(obj.prevState) == 2
                popState(obj,obj.prevState(2))
                obj.timeObj.elTime = obj.prevState(2).elTime;
 
                % update state to reinitialize properties
                obj.resetFlag = true; obj.step;
            elseif isscalar(obj.prevState)
                popState(obj,obj.prevState)
                obj.timeObj.elTime = obj.prevState.elTime;
 
                % update state to reinitialize properties
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                obj.resetFlag = true; obj.step;
            end
        end
    
        % Save state object
        function s = saveObjectImpl(obj)
            s = saveObjectImpl@matlab.System(obj);
            s.Body_DB = obj.Body_DB;
            s.timeObj = obj.timeObj;
            s.prevState = obj.prevState;
            s.resetFlag = obj.resetFlag;
        end
 
        % Load state object
        function loadObjectImpl(obj,s,isInUse)
            obj.Body_DB = s.Body_DB;
            obj.timeObj = s.timeObj;
            obj.prevState = s.prevState;
            obj.resetFlag = s.resetFlag;
            loadObjectImpl@matlab.System(obj,s,isInUse);
        end
    end
 
    methods
        %% SAVED STATE MANAGEMENT
        % State object supports up to two saved states one at the start of
        % the trajectory, and a 2nd prior to any optomizations
 
        % Clears previous states and sets the current state to the initial
        % state
        function newState(obj)
            obj.prevState = [];
            obj.saveState;
        end
 
        % Stores previous states in structs
        function saveState(obj)
            % supports storing of two previous states
            if isempty(obj.prevState)
                obj.prevState = obj.StStrct;
            else
                obj.prevState = [obj.prevState(1) obj.StStrct];
            end
        end
 
        % reduces the number of saved states from 2 to 1
        function revertState(obj)
            if length(obj.prevState) == 2
                obj.prevState = obj.prevState(1);
            end
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        end
        
        % Populates properties from struct
        function popState(obj,inStruct)
            publicProperties = properties(obj);
            if  length(fieldnames(inStruct)) == numel(publicProperties)
                for fi = 1:numel(publicProperties)
                    obj.(publicProperties{fi}) = inStruct.(publicProperties{fi});
                end
            end
        end     
 
        %% COORDINATE TRANSFORMATION FUNCTIONS
 
        % Keplerian Elements to ECI position and velocity Vector
        function KeptoECI(obj)
            % Extract Gravitational Parameter
            mu = obj.Body_DB.mu;
 
            % Angular momentum
            obj.h = sqrt(obj.a*mu)*sqrt(1-obj.e^2); % km^2/s
 
            % Calculate r and v in perifocal frame
            RpF = obj.h^2/(mu*(1+obj.e*cosd(obj.theta))).*[cosd(obj.theta);sind(obj.
theta);0];
            VpF = mu/obj.h.*[-sind(obj.theta); obj.e+cosd(obj.theta); 0];
 
            % formulate perifocal to ECI transform matrix
            Qeci1 = [cosd(obj.Arg) sind(obj.Arg) 0
                -sind(obj.Arg) cosd(obj.Arg) 0
                0 0 1];
 
            Qeci2 = [1 0 0
                0 cosd(obj.inc) sind(obj.inc)
                0 -sind(obj.inc) cosd(obj.inc)];
 
            Qeci3 = [cosd(obj.Asc) sind(obj.Asc) 0
                -sind(obj.Asc) cosd(obj.Asc) 0
                0 0 1];
 
            % Formulate matrix
            obj.QECI = Qeci1*Qeci2*Qeci3;
 
            % compute transpose
            obj.QECI = obj.QECI';
 
            % ECI Position and Velocity vector
            obj.Reci = obj.QECI*RpF;
            obj.Veci = obj.QECI*VpF;
            obj.R = norm(obj.Reci);
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        end
 
        % ECI position and velocity Vector to keplerian Elements
        function ECItoKep(obj)
            % Extract Gravitational Parameter
            mu = obj.Body_DB.mu;
 
            % Total Radius 
            obj.R = norm(obj.Reci); % km
 
            % radial velocity
            vrad = dot(obj.Reci,obj.Veci)/obj.R;
 
            % calculating angular momentum
            H = cross(obj.Reci,obj.Veci); % km^2/s
            obj.h = sqrt(dot(H,H)); % km^2/s
 
            % inclination
            obj.inc = acosd(H(3)/obj.h);
            if obj.inc == 180 % establish that 0 and 180 inclinationa are the same
                obj.inc = 0;
            end
 
            % Nodal Vector
            K = [0 0 1];
            N = cross(K,H);
            n = norm(N);
 
            % Calculate ascending node with quadrant ambiguity
            if N(2) >= 0
                obj.Asc = acosd(N(1)/n);
            else
                obj.Asc = 360-acosd(N(1)/n);
            end
 
            % calculating eccentricity vector and magnitude
            E = cross(obj.Veci,H)./mu-obj.Reci./obj.R;
            obj.e = norm(E);
 
            % calculate argument of periapsis with quadrant ambiguity
            if E(3) >= 0
                obj.Arg = acosd(dot(N,E)/(n*obj.e));
            else
                obj.Arg = 360-acosd(dot(N,E)/(n*obj.e));
            end
 
            % calculate true anamoly with quadrant ambiguity (use radial velocity)
            if vrad >= 0
                obj.theta = acosd(dot(E/obj.e,obj.Reci/obj.R));
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            else
                obj.theta = 360-acosd(dot(E/obj.e,obj.Reci/obj.R));
            end
 
            % Semi major axis
            obj.a = obj.h^2/(mu*(1-obj.e^2));
 
            % Formulate Matrix
            Qeci1 = [cosd(obj.Arg) sind(obj.Arg) 0
                -sind(obj.Arg) cosd(obj.Arg) 0
                0 0 1];
 
            Qeci2 = [1 0 0
                0 cosd(obj.inc) sind(obj.inc)
                0 -sind(obj.inc) cosd(obj.inc)];
 
            Qeci3 = [cosd(obj.Asc) sind(obj.Asc) 0
                -sind(obj.Asc) cosd(obj.Asc) 0
                0 0 1];
 
            obj.QECI = Qeci1*Qeci2*Qeci3;
 
            % compute transpose
            obj.QECI = obj.QECI';
 
        end
        
        % Topocentric coordinates to ECI position and velocity Vector
        function LLAtoECI(obj)
 
            % Get current sidereal time from time object 
            W = obj.timeObj.Wcurr;
 
            % longitude (long) must be expressed in 0-360 scale for this calculation
            sid = W + obj.Long; 
            
            % Rotation matrix from the ENZ (East, North, Zenith) frame to the ECI
            % (Equator Centered Inertial) Frame (switch away from cosd/sind
            % to radians for slight performance boost)
            Q = [-sind(sid) -sind(obj.Lat)*cosd(sid) cosd(obj.Lat)*cosd(sid)
                 cosd(sid) -sind(obj.Lat)*sind(sid) cosd(obj.Lat)*sind(sid)
                 0          cosd(obj.Lat)           sind(obj.Lat)           ];
            
            % Position vector in the ENZ frame
            Renz = [0; 0; obj.Rad+obj.Alt];
 
            % Create ECI position Vector
            obj.Reci = Q*Renz; 
            
            % Velocity vector in the ENZ frame
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            Venz = [cosd(obj.FPA)*sind(obj.Az)
                    cosd(obj.FPA)*cosd(obj.Az)
                    sind(obj.FPA)];
            
            % Create ECI velocity Vector
            obj.Veci = obj.V*Q*Venz; 
        end
        
        % ECI position and velocity Vector to topocentric coordinates
        function ECItoLLA(obj)
            % Get current sidereal time from time object 
            W = obj.timeObj.Wcurr;
 
            % Enforce longitude convention is 0 to 360 
            sid = atan2d(obj.Reci(2),obj.Reci(1));
            if sid < 0 
                sid = 360 + sid;
            end
 
            % Calculate Longitude
            obj.Long = sid-W;
            if obj.Long < 0 % Longitude convention is 0 to 360
                obj.Long = 360 + obj.Long;
            end
 
            % Calculate Geocentric Latitude
            obj.Lat = 90-atan2d(sqrt(obj.Reci(1)^2+obj.Reci(2)^2),obj.Reci(3));
 
            % Geocentric Altitude
            obj.Alt = norm(obj.Reci)-obj.Rad;
 
            % Rotation matrix from the ENZ (East, North, Zenith) frame to the ECI
            % (Equator Centered Inertial) Frame (switch away from cosd/sind
            % to radians for slight performance boost)
            Q = [-sind(sid) -sind(obj.Lat)*cosd(sid) cosd(obj.Lat)*cosd(sid)
                cosd(sid) -sind(obj.Lat)*sind(sid) cosd(obj.Lat)*sind(sid)
                0          cosd(obj.Lat)           sind(obj.Lat)           ];
 
            % Inertial Velocity
            obj.V = norm(obj.Veci);
            Venz = Q'*obj.Veci/obj.V;
 
            % Flight Path Angle
            obj.FPA = asind(Venz(3));
 
            % Necessary to force a real value here as roundoff errors can produce a
            % value slightly above 1 (on order of 1+1e-16) and acos will spit out
            % an imaginary value (often occurs near north pole)
            % Azimuth
            obj.Az = real(acosd(Venz(2)/cosd(obj.FPA)));
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            % Quadrant Check (supports -180 to 180 convention)
            if Venz(1) < 0
                obj.Az = -obj.Az;
            end
            obj.Qmat = Q;
        end
 
        % Additional orbital parameters dependent on keplerian elements
        function ExtraProps(obj)
            % Bounded Orbit
            if obj.e < 1 
                obj.T = 2*pi/sqrt(obj.Body_DB.mu/obj.a^3);
 
            % Interplanetary Hyperbolic Orbit
            else % bad practice hardcoded limit, need additional property to limit 
maximum time
                obj.T = 2*pi/sqrt(obj.Body_DB.mu/900000^3); 
                obj.v_inf = sqrt(-obj.Body_DB.mu/obj.a);
            end
            obj.rp = obj.a*(1-obj.e);
            obj.ra = obj.a*(1+obj.e);
            obj.minalt = obj.rp - obj.Body_DB.Re;
        end
 
        %% GET/SET METHODS
 
        % Create a struct of all current state properties
        function Out = get.StStrct(obj)
            publicProperties = properties(obj);
            for fi = 1:numel(publicProperties)
                Out.(publicProperties{fi}) = obj.(publicProperties{fi});
            end
        end
 
        % Extract struct private property
        function Out = passStrct(obj)
            Out = obj.StStrct;
        end
       
        % Extract Elapsed time from time manager object
        function timeOut = get.elTime(obj)
            if isempty(obj.timeObj)
                timeOut = [];
            elseif isa(obj.timeObj,'timeMgr')
                timeOut = obj.timeObj.elTime;
            else
                error('Invalid State inputs, time manager object may be set 
incorrectly')
            end
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        end
 
        % Position dependent body radius, variable if ellipsoid planet
        % model is used
        function radOut = get.Rad(obj)
            if isempty(obj.Body_DB)
                radOut = [];
            elseif strcmp(obj.Body_DB.planModel,'sphere')
                radOut = obj.Body_DB.Re; obj.radSave = radOut;
            elseif strcmp(obj.Body_DB.planModel,'ellipse')
                Re = obj.Body_DB.Re; Rp = obj.Body_DB.Rp;
                radOut = Re*Rp/(sqrt((Rp*cosd(obj.Lat))^2+(Re*sind(obj.Lat))^2));
                obj.radSave = radOut;
            else
                error('Planet shape model must be either "ellipse" or "sphere" ')
            end
        end
        
        % Set private property to store value
        function set.Rad(obj,val)
            obj.radSave = val;
        end
 
        % Shared handle object for planetary body inputs
        function setBody(obj,bodIn)
            obj.Body_DB = bodIn;
        end
 
        % Shared handle object time dependent properties 
        function setTime(obj,timeIn)
            obj.timeObj = timeIn;
        end  
    end
end
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classdef timeMgr < matlab.System
    % Handles time dependent planetary properties
 
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        planet % Planet
        a0 % Polar axis orientation angle
        d0 % Polar axis orientation angle
        Wcurr % Current sidereal time
        W0 % Initial sidereal time
        JDcurr % Current Julian date
        JDelapse % Julian date since standard epoch
        elTime = 0; % elapsed time
        Epoch = 2451545; % Standard Epoch 2000 January 1 12 h TDB
        wNut = 'off' % model nutation of planetary body rotation rate
        ICRF = 'off' % Model trajectory propagations in the high accuracy 
                     % ICRF inertial frame, Z axis points normal to the ICRF 
                     % equator and the tilt and precession of the planetary
                     % rotation axis is modeled with the a0 and d0
                     % parameters 
        setFlag = false
    end
    
    properties (SetObservable, AbortSet)
        JD0
        startTime = datetime(2025,3,25,12,0,0);
    end
 
    methods (Access = protected)
        function setupImpl(obj)
            setW0(obj);
        end
 
        function stepImpl(~)
 
        end
    end
 
    methods
 
        function obj = timeMgr
            % allows the julian date or UTC time to automatically update
            % when the other is set
            addlistener(obj,'JD0','PostSet',@obj.setJD0);
            addlistener(obj,'startTime','PostSet',@obj.setStartTime);
        end
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        function setW0(obj)
            obj.W0 = obj.Wcurr; % initialize sidereal time
        end
 
        function jOut = get.JDcurr(obj)
            jOut = obj.JD0 + obj.elTime/86400;
        end
 
        function jOut = get.JDelapse(obj)
            jOut = obj.JDcurr-obj.Epoch;
        end
 
        function wOut = get.Wcurr(obj)
            if isempty(obj.planet); error('planet not set in time object'); end
            switch obj.planet
                case 'Venus'
                    wOut = 160.20 - 1.4813688*obj.JDelapse;
                case 'Uranus'
                    wOut = 203.81 - 501.1600928*obj.JDelapse;
                case 'Neptune'
                    N = 357.85 + 52.316*obj.JDelapse/36525;
                    wOut = 249.978+541.1397757*obj.JDelapse-0.48*sin(N);
                case 'Jupiter'
                    wOut = 284.95+870.536*obj.JDelapse;
                case 'Earth'
                    wOut = 360.9852*obj.JDelapse; % Warning, Earth rotation model 
should refer to IERS data
                case 'Mars'
                    wOut = 176.049863 + 350.891982443297*obj.JDelapse + 0.555;
                    if strcmp(wOut,'on')
                        T = obj.JDelapse/36525;
                        wOut = 176.049863 + 350.891982443297*obj.JDelapse...
                            +  0.000145*sin(129.071773 + 19140.0328244*T )...
                            + 0.000157*sin(36.352167 + 38281.0473591*T )...
                            + 0.000040*sin(56.668646 + 57420.9295360*T )...
                            + 0.000001*sin(67.364003 + 76560.2552215*T )...
                            + 0.000001*sin(104.792680 + 95700.4387578*T )...
                            + 0.584542*sin(95.391654 + 0.5042615*T );
                    end
                case 'Titan'
                    wOut = 186.5855 + 22.5769768*obj.JDelapse;
                otherwise
                    error('Invalid Planet Entry')
            end
 
            % sidereal time in degrees from 0 to 360
            wOut = wOut/360;
            wOut = (wOut-floor(wOut))*360;
 
            % Archinal, B.A., Acton, C.H., A’Hearn, M.F. et al. Report of the IAU 
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Working Group on Cartographic Coordinates and
            % Rotational Elements: 2015. Celest Mech Dyn Astr 130, 22 (2018). https:
//doi.org/10.1007/s10569-017-9805-5
 
        end
    end
    
    methods (Static)
        function setJD0(~,evnt)
            if ~evnt.AffectedObject.setFlag
                jd = evnt.AffectedObject.JD0;
                evnt.AffectedObject.setFlag = true;
                evnt.AffectedObject.startTime = datetime
(jd,'convertfrom','juliandate');
                evnt.AffectedObject.setFlag = false;
                setW0(evnt.AffectedObject);
            end
        end
 
        function setStartTime(~,evnt)
            if  isa(evnt.AffectedObject.startTime,'datetime')
                if ~evnt.AffectedObject.setFlag
                    evnt.AffectedObject.setFlag = true;
                    evnt.AffectedObject.JD0 = juliandate(evnt.AffectedObject.
startTime); 
                    evnt.AffectedObject.setFlag = false;
                    setW0(evnt.AffectedObject);
                end
            else
                warning('Attempted to set start time in time manager with a non 
datetime formatted object')
            end
        end
    end
end
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classdef TrajPlot < matlab.System
    % Handles 3D plotting of trajectory results. Tabulates and store
    % results across multiple trajectory segments
    
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Pre-computed constants or internal states
    properties 
        resultCell % Run history cell array of all trajectory segments
        stateCell % Run history cell array of state values at nodes between trajectory 
segments
        ResultsStr % output struct array of entire trajectory history
        StateStr % output struct array of all vehicle states at trajectory nodes
        seg = 1; % Number of trajectory segments
        Axes % 3D plot axes handle
        profileResults % Cell array for batch run results
        profileAxes % Axis handle for batch run results plot
    end
 
    properties
        State % Object Handle for Current Vehicle State Between Segments
        Results % Object handle for Trajectory Outputs of one orbital segment
        Body_DB % handle object for planetary body parameters database
        SC_DB % handle object for spacecraft parameters database
        plotData % handle object for managing plotting options 
    end
 
    methods
        % Constructor: Pass State and Result Handle objects 
        function obj = TrajPlot(varargin)
            % No inputs case, creates default reference objects internally
            if nargin == 0
                % Provide values for superclass constructor
                % and initialize other inputs
                obj.State = SCState;
                obj.Results = TrajResults;
                obj.Body_DB = BodyInputs;
                obj.SC_DB = SCInputs;
                obj.plotData = plotProps;
 
            % Individaul reference objects passed to constructor as inputs args   
            elseif nargin == 5
                % When nargin ~= 0, assign to cell array,
                % which is passed to supclass constructor
                for i1 = 1:5
                    if isa(varargin{i1},'SCState'); obj.State = varargin{i1}; 
                    elseif isa(varargin{i1},'TrajResults'); obj.Results = varargin{i1}; 
                    elseif isa(varargin{i1},'BodyInputs'); obj.Body_DB = varargin{i1}; 
                    elseif isa(varargin{i1},'SCInputs'); obj.SC_DB = varargin{i1};  
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                    elseif isa(varargin{i1},'plotProps'); obj.plotData = varargin{i1};
                    else; error('Invalid shared object inputs');
                    end
                end
 
            % Reference objects passed as a masterHand encapsulating object
            elseif nargin == 1 && isa(varargin{1},'masterHand')
                obj.State = varargin{1}.State;
                obj.Results = varargin{1}.Results;
                obj.Body_DB = varargin{1}.Body;
                obj.SC_DB = varargin{1}.S_C;
                obj.plotData = varargin{1}.plotData;
            else
                error('Invalid Constructor Inputs')
            end
        end
    end
 
    methods (Access = protected)
 
        % Setup, called only once upon first step
        function setupImpl(obj)
            initPlot(obj)
        end
 
        % Step: plots the trajectory contained within the results shared
        % handle object
        function stepImpl(obj)
 
            % Skip plot if results are empty
            if ~isempty(obj.Results.Rt)
                Rt = obj.Results.Rt;
 
                % Red for aero segment, blue for coast, and green for burn
                % (Make adjustable in future)
                switch obj.Results.Type
                    case 'Aero'
                        C = 'r';
                    case 'Cruise'
                        C = 'b';
                    case 'Burn'
                        C = 'g';
                    otherwise
                end
 
                % If plot has been closed or axes deleted, create a new
                % figure window and plot
                if ~isvalid(obj.Axes)
                    initPlot(obj)
                end
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                % Plot trajectory
                plot3(obj.Axes,Rt(:,1),Rt(:,2),Rt(:,3),'LineWidth',1.25,'Color',C);
                hold on
                
            end
 
            % Populate results and current state into a run history cell
            % array
            obj.resultCell{obj.seg} = obj.Results.step;
            obj.stateCell{obj.seg} = obj.State.passStrct;
            obj.seg = obj.seg + 1;
        end
 
        % Clear run history results and state data
        function resetImpl(obj)
            obj.resultCell = [];
            obj.stateCell = [];
            obj.seg = 1;
        end
    end
 
    methods
 
        % Setup function for 3D trajectory plot
        function initPlot(obj)
            Re = obj.Body_DB.Re;
            figure
            obj.Axes = axes();
 
            % plot primary body location
            % scatter(0,0,'r'); 
            hold on
 
            % Label formatting
            xlabel('ec_{x} (km)'); ylabel('ec_{y} (km)'); zlabel('ec_{z} (km)');
            
            % % plot event locations
            % scatter3(Ye(:,1),Ye(:,2),Ye(:,3));
            % hold on
            
            % Add orgin and ECI reference frame
            quiver3(0,0,0,1,0,0,Re+0.25*Re,'r','LineWidth',3,'MaxHeadSize',1)
            quiver3(0,0,0,0,1,0,Re+0.25*Re,'g','LineWidth',3,'MaxHeadSize',1)
            quiver3(0,0,0,0,0,1,Re+0.25*Re,'b','LineWidth',3,'MaxHeadSize',1)
 
            % Add a wiremesh around planet
            [X,Y,Z] = sphere;
            r = Re;
            X2 = X * r;
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            Y2 = Y * r;
            Z2 = Z * r;
 
            % Create planet visualization and format the 3D plot
            mesh(X2+5,Y2-5,Z2,'FaceAlpha',0.1,'EdgeColor',0.75*obj.Body_DB.RGB);
            surf(X2+5,Y2-5,Z2,'FaceAlpha',0.35,'EdgeColor','none','FaceColor',obj.
Body_DB.RGB,'LineWidth',.1);
            ax = gca;
            ax.ClippingStyle = "rectangle";            
            daspect([1 1 1]) % fix aspect ratio
            grid on
        end
            
        % Function to export all trajectory results and node states as structs  
        function [ResultsStr, StateStr] = getResults(obj)
            ResultsStr = [obj.resultCell{:}];
            StateStr = [obj.stateCell{:}];
        end
 
        % Plots results from batch runs (warning: experimental)
        function optOut = plotResult(obj,n)
            % n is the amount of profiles in each x-y plot step
            m = length(obj.resultCell);
            resultProfile = [obj.resultCell{m-n+1:m}];
            
            xDat = obj.plotData.resultXax;
            xX = [resultProfile.(xDat)];
 
            yDat = obj.plotData.resultYax;
            yWeight = obj.plotData.weightFactor;
            yW = [resultProfile.(yWeight)];
            yP = [resultProfile.(yDat)];
            % yY = [resultProfile.(yDat)];
            % % Create a weighted profile between two constraints
            wRange = [yW(end)  yW(1)];
            yRange = [yP(1)  yP(end)];
            % 
            yY = sqrt(((yW-wRange(2))./(wRange(1)-wRange(2))).^2 + ((yP-yRange(2))./
(yRange(1)-yRange(2))).^2);
            [~,I] = min(yY);
            optOut = yP(I);
            % obj.plotData.plotResults(xX,yY);
    
            
            obj.plotData.plotResults(xX,yP);
            % yyaxis right
            % obj.plotData.plotResults(xX,yW/3600);
 
            ticks = [500 100000:100000:900000];
            xticks(ticks);
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            xticklabels(string(ticks));
            xlabel('Apoapsis Altitude (km)');
 
            % Create Legend Labels
            var1 = obj.plotData.resultLeg(1);
            var2 = obj.plotData.resultLeg(2);
            label = join([var1,'=',resultProfile(n).(var1),',',var2,'=',resultProfile
(n).(var2)]);
            obj.plotData.setLegend(label)
        end
 
        % Creates an output summary table of all atmospheric entries
        function AeroTab(obj)
 
            % Number of trajectory segments
            n = length(obj.resultCell);
 
            % Column labels
            aeroLabel = {'Pass';'Peak Conv. Heat Flux (W/cm^2)';'Conv. Heat Load 
(J/cm^2)';'Delta V Lost (km/s)';'EFPA (deg)'};
 
            k1 = 1; 
            for i1 = 1:n
 
                % Filter by atmospheric flight segments only
                if ~isempty(obj.resultCell{i1}) && strcmp(obj.resultCell{i1}.
Type,'Aero')
 
                    % Heat Rate and Heat Load
                    Qs(k1) = obj.resultCell{i1}.qsMax;
                    Js(k1) = obj.resultCell{i1}.jsMax;
 
                    % Delta V lost with each pass
                    dV(k1) = obj.resultCell{i1}.dVaero;
 
                    % Flight Path angle at entry interface
                    EFPA(k1) = obj.resultCell{i1}.fpaI;
 
                    % Pass number
                    pass(k1) = append("Pass ",num2str(k1));
                    k1 = k1 + 1;
                end
            end
            
            % Generate and display table
            fprintf('*****Atmospheric Entries Summary*****\n')
            aeroTab = table(pass',Qs',Js',dV',EFPA','VariableNames',aeroLabel);
            disp(aeroTab);
        end
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        % Creates an output summary table of all propulsive maneuvers
        function BurnTab(obj)
 
            % Number of trajectory segments
            n = length(obj.resultCell); 
 
            % Column labels
            burnLabel = {'Maneuver';'Delta V (m/s)';'Burn Time (s)';'Propellant (kg)'};
 
            j1 = 1;
            for i1 = 1:n
 
                % Filter by atmospheric flight segments only
                if strcmp(obj.resultCell{i1}.Type,'Burn')
                    
                    % Index
                    burn(j1) = string(j1);
 
                    % Delta V
                    DV(j1) = obj.resultCell{i1}.dV;
 
                    % Burn Time
                    TB(j1) = obj.resultCell{i1}.Tb;
 
                    % Propellant mass usage
                    Prop(j1) = obj.stateCell{i1-1}.ScM - obj.stateCell{i1}.ScM;
                    j1 = j1 + 1;
                end
            end
 
            % Calculate totals
            burn(j1) = 'Totals'; DV(j1) = sum(DV); TB(j1) = sum(TB); Prop(j1) = sum
(Prop);
 
            % Generate and display table
            fprintf('\n*****Maneuver Con-Ops Summary*****\n')
            burnTab = table(burn',DV',TB',Prop','VariableNames',burnLabel);
            disp(burnTab);
        end
    end
end
 
 



5/11/25 8:01 PM C:\Users\bohda\OneDrive...\TrajResults.m 1 of 3

classdef TrajResults < matlab.System
    % Stores and manages trajectory time history results
    
    % Written by: Bohdan Wesely, MSAE at SJSU, NASA ARC Entry Systems
    % and Technology Division, May 2025, MATLAB 2024b.
 
    % Public, tunable properties
    properties
        Type % Obital Segment Type (Cruise, Aero, or Burn)
        Rt % Trajectory position and velocity array (km, km/s)
        t % Trajectory time array (s)
        ye % Position and velocity at event (km, km/s)
        ie % Event type indication
        te % Time of Event (s) 
        qs % Stagnation heat flux (W/cm^2)
        Js % stagnation heat load (J/cm^2)
        qsMax % Maximum Stag heat flux (W/cm^2)
        jsMax % Maximum Stag heat load (J/cm^2)
        dVec % Attitude vector for burns (km/s)
        Tb % Burn time for burns (s)
        dV % Total delta V for burns (m/s)
        dVaero % Delta V lost from drag (km/s)
        alt % Geocentric Altitude (km)
        V % Inertial Velocity (km/s)
        Vi % Initial Velocity (km/s)
        fpa % Flight Path Angle (deg)
        fpaI % Initial Flight Path Angle (deg)
        tPost % Orbital period of post exit trajectory (s)
        rho % Density (kg/m^3)
        Kn % Knudsen Number
        BC % Ballistic Coefficient (kg/m^2)
        raAlt % Apoapsis Altitude (km)
    end
 
    properties 
        plotLabels % Property storing all labels and units for plotting
        StStrct % Property for outputting Results in struct format
    end
 
    methods
        % Class Constructor
        function obj = TrajResults
            populateLabels(obj);
        end
    end
 
    methods (Access = protected)
        % Create a Struct of all time history Properties
        function Out = stepImpl(obj)
            publicProperties = properties(obj);
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            for fi = 1:numel(publicProperties)
                if ~strcmp(publicProperties{fi},'plotLabels') && ~strcmp
(publicProperties{fi},'StStrct')
                    obj.StStrct.(publicProperties{fi}) = obj.(publicProperties{fi});
                end
            end 
            Out = obj.StStrct;
        end
    end
 
    methods
        % Label database for all results (currently only a fraction of all
        % possible time history results)
        function populateLabels(obj)
            obj.plotLabels = struct();
            obj.plotLabels.t.label = "Time Since Entry Interface (s)";
            obj.plotLabels.t.title = "Time";
            obj.plotLabels.qs.label = "Heat Flux (W/cm^2)";
            obj.plotLabels.qs.title = "Stagnation Heat Flux";
            obj.plotLabels.Js.label = "Heat Load (J/cm^2)";
            obj.plotLabels.Js.title = "Stagnation Heat Load";
            obj.plotLabels.alt.label = "Altitude (km)";
            obj.plotLabels.alt.title = "Geocentric Altitude";
            obj.plotLabels.V.label = "Velocity (km/s)";
            obj.plotLabels.V.title = "Velocity";
            obj.plotLabels.fpa.label = "Flight Path Angle (deg)";
            obj.plotLabels.fpa.title = "Entry Flight Path Angle";
            obj.plotLabels.rho.label = "Density (kg/m^3)";
            obj.plotLabels.rho.title = "Density";
            obj.plotLabels.Kn.label = "K_n";
            obj.plotLabels.Kn.title = "Knudsen Number";
            obj.plotLabels.Vi.label = "V_i";
            obj.plotLabels.Vi.title = "Entry Velocity (km/s)";
            obj.plotLabels.BC.label = "B_C";
            obj.plotLabels.BC.title = "Ballistic Coefficient (kg/m^2)";
            obj.plotLabels.raAlt.label = "R_a (km)";
            obj.plotLabels.raAlt.title = "Apoapsis Altitude (km)";
            obj.plotLabels.qsMax.label = "Heat Flux (W/cm^2)";
            obj.plotLabels.qsMax.title = "Peak Conv. Heat Flux";
            obj.plotLabels.jsMax.label = "Heat Load (J/cm^2)";
            obj.plotLabels.jsMax.title = "Conv. Heat Load";
            obj.plotLabels.dVaero.label = "Delta V (km/s)";
            obj.plotLabels.dVaero.title = "Delta V due to Drag";
            obj.plotLabels.fpaI.label = "Flight Path Angle (deg)";
            obj.plotLabels.fpaI.title = "Initial Flight Path Angle";
            obj.plotLabels.tPost.label = "Orbital Period (hr)";
            obj.plotLabels.tPost.title = "Post-Exit Orbital Period";
        end
        
        % calculates inertial velocity from trajectory data
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        function vOut = get.V(obj)
            if isempty(obj.Rt)
                vOut = [];
            else
                vOut = vecnorm(obj.Rt(:,4:6),2,2);
            end
        end
    end
end
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