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ABSTRACT

CFD ANALYSIS OF A VISCOUS OPTIMIZED CONICAL WAVE RIDER IN
THE MARTIAN ATMOSPHERE

by Carlos Pagan

This study investigates the aerodynamic performance of a viscous-optimized conical
waverider in the Martian atmosphere using SolidWorks Flow Simulation. Waveriders are
hypersonic vehicles that achieve high lift-to-drag ratios (L/D) by riding on their own
attached shock waves. This research focuses on evaluating the University of Maryland’s
optimized waverider design under entry conditions at Mach 19 and two Martian altitudes,
20 km and 30 km across a fully laminar, fully turbulent, and transitional flow regimes.

Simulations show that at lower altitude, the turbulent model produces the highest lift
but also the greatest skin friction drag, resulting in the lowest L/D. The transitional flow
regime produced the most favorable performance by balancing lift and drag. At higher
altitudes, all aerodynamic forces decreased due to the lower density, and the laminar
model showed the best efficiency. For both altitudes the pressure drag predictions closely
matched referenced values, while friction drag was consistently over predicted, likely
due to turbulence modeling and wall resolution limitations.

The results demonstrate that SolidWorks Flow Simulation can be used for prelim-
inary hypersonic design and Martian entry analysis, though higher-fidelity tools are
recommended for detailed performance prediction. These findings support the continued
development of waverider configurations for future spaceflight applications, including
aero-gravity assist and planetary reentry missions.



ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to my advisor, Dr. Yawo Ezunkpe,
whose guidance, expertise, and encouragement have been invaluable. Their insightful
feedback and unwavering support helped me navigate the complexities of my project work.
I appreciate the time that they have dedicated to mentoring me and their commitment to
fostering a collaborative learning environment.

In addition, I would like to acknowledge Dr. Nikos Mourtos, the head of Aerospace
Engineering, for their leadership and support within the department. Their vision and
dedication to academic excellence have created an enriching environment that has greatly
benefited all students. I also want to recognize my fellow students and friends at San Jose
State University for their camaraderie and support during this challenging yet rewarding
experience.

iv



TABLE OF CONTENTS
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Project Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Wave Rider Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Caret Wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Conical Wave Riders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Numerical Solution to the Taylor-Maccoll Equation. . . . . . . . . . . . . 26
2.2.2 Bottom Surface Streamline tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Viscous Optimized Waveriders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Calculation of Viscous effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Integral Boundary Layer Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Reference Temperature Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Lift, Drag and Moment Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Inviscid Lift Drag and Moment Coefficients . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Viscous Lift Drag and Moment Coefficients . . . . . . . . . . . . . . . . . . . . . 40

2.5 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 SolidWorks Flow Simulation Computational Fluid Dynamics (CFD) . . . . . . . . 47
3.1 Favre-averaged Navier-Stokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 k− ε Turbulent Stress Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 Heat transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Joule Heating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Boundary Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5 Real Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Numerical Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.1 Criterion for Mass Equation Convergence . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.2 Criterion for Energy Equation Convergence. . . . . . . . . . . . . . . . . . . . . . 66
3.7.3 Criterion for Momentum Equation Convergence. . . . . . . . . . . . . . . . . 67
3.7.4 Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



4 SolidWorks Flow Simulation Martian Waverider Simulation . . . . . . . . . . . . . . . . . 70
4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.1 Recommendations for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Appendix A: Matlab Code for % Difference Calculations . . . . . . . . . . . . . . . . . . . . . . . . 95

vi



vii

LIST OF TABLES

Table 4.1. Summary of CFD simulation cases in Mars atmosphere. . . . . . . . . . . . 78

Table 4.2. Dynamic pressure parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 4.3. Aerodynamic outputs for hypersonic waverider at 20 km Mars
altitude
(Mach 19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 4.4. Aerodynamic outputs for hypersonic waverider at 30 km Mars
altitude
(Mach 19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 4.5. Percent difference between reference values (20 km) . . . . . . . . . . . . . . . 87

Table 4.6. Percent difference between reference values (30 km) . . . . . . . . . . . . . . . 87



viii

LIST OF FIGURES

Fig. 1.1. Caret wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Fig. 1.2. Prof. Terence Nonweiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Fig. 1.3. Conical flow wave rider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Fig. 1.4. Viscous optimized wave rider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Fig. 1.5. X-30 hypersonic scramjet SSTO concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Fig. 1.6. X-43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Fig. 1.7. NASA combined cycle engine large scale inlet mode transition
experiment (CCE LIMX). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Fig. 1.8. Turbine based combined cycle (TBCC) propulsion system . . . . . . . . . 12

Fig. 1.9. North American X-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Fig. 1.10. X-43A under B-52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Fig. 1.11. DARPA FALCON project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Fig. 1.12. USSR Buran. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Fig. 1.13. China’s Starry Sky 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Fig. 2.1. 2D wedge with oblique shock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Fig. 2.2. 3D wedge with oblique shock plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Fig. 2.3. Rear profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Fig. 2.4. Caret waverider shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Fig. 2.5. Multiview orthographic projection of caret wing waverider. . . . . . . . . 25

Fig. 2.6. Geometry for the numerical solution of flow over a cone . . . . . . . . . . 27

Fig. 2.7. Streamline tracing axes geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Fig. 2.8. Solution to conical flow field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Fig. 2.9. Conical waverider being carved out of the inviscid flow field. . . . . . 31



ix

Fig. 2.10. Conical waverider with attached shock.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Fig. 2.11. Final conical waverider shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Fig. 2.12. Waverider optimization scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Fig. 3.1. Rectangular mesh domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Fig. 4.1. Conical waverider designed for Mars 3D CAD model . . . . . . . . . . . . . . 71

Fig. 4.2. Analysis type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Fig. 4.3. Mars atmosphere model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Fig. 4.4. Fluids model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Fig. 4.5. Wall condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Fig. 4.6. Initial and ambient conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Fig. 4.7. Computational domain and mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Fig. 4.8. Fully laminar at 20 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Fig. 4.9. Fully turbulent at 20 km.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Fig. 4.10. Transition at 20 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Fig. 4.11. Fully laminar at 30 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Fig. 4.12. Fully turbulent at 30 km.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Fig. 4.13. Transition at 30 km. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Nomenclature

Latin Symbols

A Surface area [m2]
a, b, c Triangle side lengths for area calculation
CL Coefficient of lift, CL = L

qS
CD Coefficient of drag, CD = D

qS
CDp Coefficient of pressure drag
CD f Coefficient of friction drag
CM Pitching moment coefficient
C f Local skin friction coefficient
C f ,T R Transitional skin friction coefficient
D Total drag force [N]
Dp Pressure drag force [N]
D f Friction drag force [N]
E Total energy per unit mass [J/kg]
e Internal energy [J/kg]
F Force [N]; also used in optimization and real gas formulations
g Function used in friction correlation
H Total enthalpy per unit mass [J/kg]
h Static enthalpy per unit mass [J/kg]
k Turbulent kinetic energy
l Waverider centerline length [m]
L Lift force [N]
M Mach number
Me Edge Mach number
m Mass flow rate [kg/s]
p Static pressure [Pa]
p∞ Freestream pressure [Pa]
q Dynamic pressure [Pa]
qw Wall heat flux [W/m2]
Re Reynolds number
S Reference area (wetted or planform) [m2]
T Temperature [K]
Tw Wall temperature [K]
T0 Total (stagnation) temperature [K]
u, v, w Velocity components [m/s]
u∞ Freestream velocity [m/s]
V Total velocity magnitude [m/s]
Vc Circular orbit velocity [m/s]
Vr, Vθ Velocity components in conical coordinates
x,y,z Cartesian coordinates [m]
∆t Time step [s]

x



Greek Symbols

α Reflection coefficient (simplex method)
β Contraction coefficient (simplex method); also flow angle
δ Boundary layer thickness [m]; also deflection angle
ε Turbulent dissipation rate
γ Ratio of specific heats
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1. Introduction

1.1 Motivation

The motivation behind this project is to conduct preliminary research into the aerodynamics
of an air-breathing single-stage-to-orbit (SSTO) space vehicle operating at extreme hypersonic
speeds. Unlike traditional multi-stage launch systems that rely on vertically stacked expendable
rocket stages, an SSTO vehicle is designed to achieve orbital velocity in a single, reusable
platform. This concept, if realized, promises a revolutionary leap in space access by drastically
reducing launch costs, increasing flight frequency, and improving system reliability through
full reusability.

A key enabler of SSTO feasibility lies in efficient hypersonic aerodynamics and propulsion
integration. Since the vehicle must travel through the atmosphere for a substantial portion
of its ascent, minimization of aerodynamic drag and thermal loads is critical. Here, the
waverider configuration emerges as a highly suitable candidate. Waveriders are designed to
”ride” their attached shock wave, maximizing lift while minimizing wave drag. This property
is particularly valuable in the high-Mach, high-altitude regime encountered both during the
acceleration to orbit and during atmospheric reentry, where thermal and structural loads are
severe.

The goal of this project is to replicate and analyze existing waverider designs using
Computational Fluid Dynamics (CFD), with a focus on understanding their behavior at high
Mach numbers. By reproducing validated results from known literature, the aim is to deepen
understanding of waverider performance and assess its applicability for an air-breathing orbital
vehicle. This work serves both as a validation exercise for CFD tools in extreme hypersonic
conditions and as a foundation for future design optimization, potentially extending toward
planetary entry scenarios such as Mars, where similar aerodynamic and thermal challenges
arise.
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1.2 Literature Review

Figure 1.1. Caret wing (1).

A wave rider is a specially shaped vehicle design which uses attached shock waves
generated when going faster than the speed of sound to generate additional lift. This increases
its lift-to-drag ratio in a phenomenon known as compression lift. The idea was first proposed
by Terence Nonweiler in 1959 (2). Nonweiler’s original design was based on planar 2d
shocks, used a caret wing shape which had sharp leading edges, and did not include viscous
effects. Researchers later updated the caret wing design using 3d conical shock theory to
produce a class of wave riders known as conical flow wave riders. Both the caret wing and
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conical flow wave rider designs do not take into account the viscous effects of the fluid. The
third breakthrough in wave rider design came when computational power increased to the
point that CFD could be used to combine viscous effects with 3d conical shock theory and
optimization to produce another class of wave riders known as viscous optimized wave riders
(3).

Figure 1.2. Prof. Terence Nonweiler (4).

Wave riders are ideal for supersonic and hypersonic flight due to the efficient use of the
shockwaves generated to increase lift and decrease drag. This design creates the greatest
lift-to-drag ratio at high Mach numbers (5). Another advantage that wave riders have as a
space vehicle compared to the space shuttle and blunt body style reentry capsules is its ability
to maneuver during reentry. At the upper atmospheres, during the reentry phase of flight at
Mach 25, the thin atmosphere does not provide enough flow over the control surfaces of the
space shuttle type vehicle for maneuvering. A wave rider would be able to take advantage of
the compression lift for maneuvering during reentry by controlling its lift distribution.

3



Figure 1.3. Conical flow wave rider (6).

In space, wave riders can take advantage of the aerogravity assist maneuver (7). The
aerogravity assist maneuver differs from a traditional gravity assist by having the spacecraft
fly into the edge of the upper atmosphere of a planetary body and use compression lift to
augment the gravity assist. The additional compression lift results in a higher change in
velocity compared to a pure gravity assist.
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Figure 1.4. Viscous optimized wave rider (8).

The Mach 25 capable single stage to orbit space vehicle idea is based on the X-30
National Aero-Space Plane (9). The X-30 National Aero-Space Plane was a joint project
between NASA and the Department of Defense from 1986-1993. The goal of the project was
to develop a single stage to orbit spacecraft that could take off and land like a conventional
aircraft.
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Figure 1.5. X-30 hypersonic scramjet SSTO concept (10).

The X-30 featured a wave rider design with a flat conical nose and integrated engine
and fuselage. The propulsion system consisted of a turbine-based combined-cycle scramjet
engine and used slush hydrogen as fuel. The slush hydrogen would also be used to keep the
surface of the airframe cool (11). The X-30 would take off like a conventional aircraft from a
runway and accelerate to Mach 25 to reach orbit without the aid of rockets. It was eventually
canceled when it was determined that Mach 20 was the theoretical maximum achievable
speed because of the technological limitations of the time. Mach 25 was the theoretical speed
required to achieve orbit without using rockets. The research done on the X-30 was then
carried over to the X-43 program.

Wave riders are designed to travel at hypersonic speeds, which are defined as speeds
greater than Mach 5 (approximately 3,800 miles per hour or 6,200 kilometers per hour).
These vehicles utilize a unique aerodynamic phenomenon called ”shockwave compression
lift” to generate lift and achieve stable flight at hypersonic speeds. Wave riders are specifically
designed to ride on the shockwaves generated by their own flight, allowing them to efficiently
travel at extremely high speeds.

6



Figure 1.6. X-43 (12).

To understand how hypersonic wave riders work, it is important to grasp the basic
aerodynamic principles involved. At hypersonic speeds, the air surrounding an aircraft
becomes highly compressed due to the intense pressure generated by its motion. This
compression leads to the formation of shockwaves, which are abrupt changes in air density
and temperature.

Conventional aircraft typically aim to minimize the effects of shockwaves, as they can
cause drag and instability. However, wave riders take advantage of these shock waves to
generate lift and maintain stability. By carefully shaping the body and wings of the vehicle,
engineers can create a lifting surface that interacts with the shock wave in a beneficial way.

Shockwave compression lift is the key concept behind hypersonic wave rider design.
When an aircraft reaches hypersonic speeds, the shockwaves it generates compress the air
beneath its wings. This compression increases the air density and creates additional lift
force on the aircraft. Wave riders are specifically designed with a sharp leading edge and
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a wedge-like shape to maximize the compression effects. The leading edge of the vehicle
creates a strong shockwave that compresses the air underneath, while the wedge shape helps
to maintain stability by distributing the forces evenly across the vehicle’s surface (13).

By riding on these shockwaves and utilizing shockwave compression lift, hypersonic
wave riders can achieve stable flight at hypersonic speeds with relatively low drag. This
enables them to travel faster and more efficiently than traditional aircraft designs. Designing
and operating hypersonic wave riders presents numerous challenges and limitations. The
extreme speeds involved introduce significant thermal and aerodynamic stresses on the
vehicle, requiring advanced materials and cooling systems to withstand the high temperatures
generated by air friction.

Boundary layer shock interaction is especially important and is an important phenomenon
that needs to be controlled at hypersonic speeds. Boundary layer shock interaction refers to
the phenomenon that occurs when a shock wave interacts with the boundary layer of a fluid
flow (14). In aerodynamics, the boundary layer is the thin layer of fluid adjacent to a solid
surface where viscous effects dominate. When a shock wave impinges on this boundary layer,
it can have significant effects on the flow properties and lead to various flow phenomena.

When a shock wave interacts with the boundary layer, several important phenomena
occur. These include shockwave/boundary-layer interaction (SBLI), shock-induced separation,
shock-induced transition, and shock-induced combustion instability. Understanding these
interactions is crucial for optimizing aerodynamic designs at hypersonic speeds and improving
the performance of the wave rider concept (14).

SBLI is a complex phenomenon that arises due to the interaction between the high-
pressure region of a shock wave and the low-pressure region within the boundary layer. The
interaction can lead to changes in flow properties such as pressure, temperature, density, and
velocity. SBLI can cause significant alterations in the boundary layer structure and influence
the overall aerodynamic characteristics of a vehicle or aircraft and has been shown to cause
damage and control surface problems in the X-15.

SBLI effects include shock-induced separation, shock-induced transition, and shock-
induced combustion instability within the propulsion system.

Shock-induced separation refers to the separation of the boundary layer from a solid
surface due to the presence of a shock wave. This phenomenon is particularly relevant in
high-speed flows where shocks can cause adverse pressure gradients leading to flow separation.
Separation can result in increased drag, reduced lift, and compromised control authority,
impacting the performance and maneuverability of an aircraft or vehicle.

Shock-induced transition occurs when a shock wave triggers a laminar-to-turbulent
transition within the boundary layer. The transition from laminar to turbulent flow alters the
flow characteristics and can affect heat transfer rates, skin friction, and overall aerodynamic
performance. Controlling shock-induced transition is essential for designing high-performance
inlets for hypersonic vehicles and optimizing the heat transfer on the skin surface.

In the context of scramjet engines or supersonic combustion, shock-induced combustion
instability can occur when a shock wave interacts with the combustion process. This interaction
can lead to unsteady combustion, pressure oscillations, and even flame extinction. Managing
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shock-induced combustion instability is needed to ensure stable and efficient combustion in
high-speed propulsion systems.

Another challenge is the control and stability of wave riders at hypersonic speeds. The
interaction between shockwaves and the vehicle’s surfaces can lead to complex flow patterns
and instabilities, making it vital to develop sophisticated control systems that can maintain
stability in such conditions. Because of the immense speed hypersonic vehicles travel,
aerodynamic forces are amplified, and the outside environment becomes hazardous due
to intense heat, and other atmospheric effects. Challenges in the control and stability of
wave riders are numerous and include dealing with the significant increase in aerodynamic
forces, such as drag, lift, and pitching moment at hypersonic speeds. These forces can cause
instability and affect the vehicle’s control. The intense heat generated during hypersonic flight
can cause thermal degradation of materials, affecting the vehicle’s structure and performance.
The atmosphere’s density and composition change with altitude, leading to variations in
aerodynamic forces and heat transfer rates.

Still greater challenge hypersonic vehicles have is the limited control surfaces due to
their high speeds, making it difficult to maintain stability and control. On reentry, the Space
Shuttle can reach speeds of up to Mach 25, with the control surfaces having no effect on
maneuvering.

The high velocity also makes it a challenge for data processing and communications. The
high data rates generated during hypersonic flight require much more powerful computers
with advanced data processing and communication systems to manage and transmit the
information required for control and stability.

Several strategies have been proposed to address the challenges of controlling and
maintaining stability in hypersonic vehicles such as using model-based control, adaptive
control, and machine learning algorithms to overcome the limitations of traditional control
systems and maintain stability at hypersonic speeds. Optimizing the vehicle’s shape and
using modern advanced materials can reduce aerodynamic forces and improve stability.

At such high velocities, aerodynamic heating will be a major challenge and will require
active cooling systems, such as cryogenic cooling or liquid cooling, to be used in combination
with thermal protection systems, like ablative or reusable insulation. This is essential to
mitigate the effects of intense heat on the vehicle’s structure and performance. Advanced
sensors that can withstand the intense heat will need to be developed to be able to provide
accurate data for the fly-by-wire control system for stability at hypersonic speeds. The use
of advanced materials and manufacturing techniques, such as metal 3D printing, will be
required to improve the vehicle’s structural integrity and heat dissipation.

Additionally, the propulsion systems for hypersonic wave riders must be capable of
providing sufficient thrust to overcome drag forces at hypersonic speeds. Various propulsion
technologies, such as ramjets, and scramjets are being explored to meet these requirements.

Scramjet (Supersonic combustion ramjet) engines are a key technology for achieving
hypersonic speeds. Unlike traditional jet engines that rely on rotating compressor blades to
compress incoming air, scramjets compress air using supersonic combustion. This allows for
efficient propulsion at extremely high speeds. Scramjets operate by ingesting atmospheric air
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through an inlet and then compressing it before mixing it with fuel. The mixture is ignited
and expands through a nozzle, generating thrust. Since scramjets rely on atmospheric oxygen
for combustion, they are most effective at high altitudes where the air density is low.

Ramjet engines are similar to scramjets but operate at lower speeds. They compress
incoming air using subsonic combustion rather than supersonic combustion. Ramjets are
typically used for speeds up to Mach 5 and can transition into scramjets at higher speeds.
Ramjets work by slowing down incoming air to subsonic speeds using a diffuser, compressing
it, mixing it with fuel, igniting the mixture, and then accelerating it through a nozzle. While
ramjets provide efficient propulsion at high speeds, they require initial acceleration before
they can start operating effectively.

Ramjets and scramjets have limitations in that they cannot be started on their own and can
only operate when the vehicle is already moving faster than the speed of sound. A possible
solution being developed is the use of Turbine or rocket-based combined cycle engines.

A turbine-based combined cycle propulsion system (TBCC) is a turbine engine combined
with a ramjet and scramjet. It will allow the vehicle to take off using a traditional turbojet
engine and transition to ramjet/scramjet operation when it reaches the speed of sound (15).
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Figure 1.7. NASA combined cycle engine large scale inlet mode transition experiment (CCE
LIMX) (15).

Rocket-based combined cycle (RBCC) engines combine elements of both scramjets and
rockets. The main components of an RBCC engine typically include a rocket combustion
chamber, an air-breathing inlet, a supersonic combustion ramjet (scramjet), and an exhaust
nozzle. The rocket combustion chamber is responsible for providing initial thrust during
takeoff and ascent. Once the vehicle reaches a certain altitude and speed, the air-breathing
inlet begins to collect atmospheric air, which is then compressed and mixed with fuel
in the scramjet. The mixture is ignited and burned in the scramjet, generating additional
thrust. Finally, the exhaust gases are expelled through the exhaust nozzle, providing further
propulsion.

The RBCC engine operates in different modes depending on the flight conditions. At
lower speeds, it functions as a ramjet or scramjet, utilizing atmospheric air for combustion.
As the vehicle accelerates and climbs to higher altitudes, it transitions to rocket mode, where
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it carries its own oxidizer and operates similarly to traditional rockets. An RBCC engine
was originally proposed for the X-30 National Space Plane concept.

Figure 1.8. Turbine based combined cycle (TBCC) propulsion system (15).

As previously stated, the Wave rider design concept was first developed by Terence
Nonweiler, a British aerospace engineer, in the 1950s. Nonweiler’s concept aimed to create
a supersonic aircraft that could travel at hypersonic speeds while generating lift through
the compression of air underneath its wings, rather than relying solely on conventional
aerodynamic lift. Nonweiler proposed that by shaping an aircraft’s body in a specific manner,
it would be possible to capture and utilize the shockwaves generated during hypersonic flight.
This unique design would allow for increased stability and control at high speeds, as well as
improved aerodynamic efficiency.

Early research into hypersonic flight began with the X-15 program. The X-15 was a
rocket-powered aircraft designed to be air-launched from a modified B-52 bomber. It featured
a slender fuselage with a delta-wing configuration, providing stability during high-speed
flight. The aircraft’s structure was primarily constructed from titanium alloy, which allowed
it to withstand the intense heat generated during re-entry. The X-15 reached speeds up to
Mach 6.7 and was used to gather valuable data on hypersonic flight characteristics. These
early experiments laid the foundation for future hypersonic designs (16).
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Figure 1.9. North American X-15 (16).

The X-15 was powered by a Reaction Motors XLR-99 rocket engine, which burned a
mixture of liquid oxygen and anhydrous ammonia. The engine provided thrust for the aircraft
during its high-speed flights, enabling it to reach speeds exceeding Mach 6 (approximately
4,520 mph) and altitudes above 350,000 feet. In the 1980s, the X-30 National Aerospace
Plane (NASP) program made significant progress in hypersonic research. The X-30 NASP
program was a joint research effort by NASA and the United States Department of Defense
(DoD) in the late 1980s and early 1990s. The primary objective of the program was to
develop a reusable spaceplane that could take off from conventional runways, reach hypersonic
speeds, and then return to Earth for rapid turnaround and reuse. The National Aerospace
Plane was also to be single-stage-to-orbit and capable of flying at speeds up to Mach 25.
Various configurations were explored, including air-breathing engines combined with rocket
propulsion systems. The proposed spaceplane would have been powered by a revolutionary
air-breathing engine called the Combined-Cycle Engine (CCE), which was designed to operate
efficiently at both subsonic and supersonic speeds. The X-30 NASP program faced numerous
technological challenges that ultimately contributed to its cancellation in 1993. Some of the
key challenges included:
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• Thermal Management: The extreme temperatures generated during hypersonic flight
posed significant challenges in terms of thermal protection systems and managing heat
transfer throughout the vehicle structure.

• Structural Integrity: The high speeds and dynamic loads experienced during hypersonic
flight required the development of lightweight yet structurally robust materials and
designs.

• Propulsion System: The development of the air-breathing CCE engine proved to be a
significant technical challenge, as it required complex integration of various propulsion
modes (ramjet, scramjet, and rocket) into a single engine.

• Cost and Funding: The X-30 NASP program faced increasing budgetary pressures and
concerns over its cost-effectiveness, leading to its eventual cancellation.

Despite significant progress in developing advanced technologies for hypersonic flight, the
X-30 NASP program was officially canceled in 1993 due to technical difficulties, schedule
delays, and rising costs. The cancellation of the program marked a shift in priorities for both
NASA and the DoD, with subsequent focus on other space transportation initiatives such as
the Space Shuttle program and the development of expendable launch vehicles.

However, the research conducted under the X-30 NASP program laid the foundation for
future advancements in hypersonic flight and aerospace technology. Many of the lessons
learned from this program have been applied to subsequent projects, including current
efforts to develop reusable spaceplanes and hypersonic vehicles. The next significant research
project into hypersonic flight was the X-43 program. The X-43 aircraft was an experimental
hypersonic aircraft developed by NASA. The X-43A specifically focuses on the development
of scramjet technology and has set several speed records for an air-breathing aircraft. The
X-43A is an unmanned aircraft designed to fly at hypersonic speeds, which are speeds greater
than Mach 5 (five times the speed of sound). It was developed by NASA’s Dryden Flight
Research Center (now Armstrong Flight Research Center) in collaboration with other industry
partners. The primary goal of the X-43A program was to demonstrate the feasibility and
effectiveness of scramjet engines for high-speed flight.

The X-43A aircraft underwent a series of flight tests to validate the performance and
capabilities of scramjet technology. These tests involved launching the aircraft from a B-52
bomber at high altitudes and speeds, after which it would separate and ignite its scramjet
engine. The X-43A would then fly autonomously at hypersonic speeds, collecting data on
aerodynamics, propulsion, and other relevant parameters.
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Figure 1.10. X-43A under B-52 (17)

The initial flight tests of the X-43A were conducted using a modified Pegasus rocket
booster to accelerate the aircraft to its desired speed and altitude. Later flights utilized an
air-launch method, where the X-43A was dropped from a B-52 bomber before igniting its
scramjet engine. The data collected from these flight tests helped researchers gain valuable
insights into hypersonic flight and scramjet technology. It contributed to advancements in
aerodynamics, propulsion systems, materials science, and other areas related to high-speed
flight (12).

The success of the X-43A program paved the way for future endeavors such as the
Boeing X-51 Wave rider program. In the early 2000s, the United States Air Force (USAF)
initiated the X-51 program to develop a practical hypersonic wave rider vehicle. Boeing was
awarded the contract to build and test the X-51 Wave rider demonstrator. This unmanned
vehicle was designed to be air-launched from a B-52 bomber and reach speeds up to Mach
5. The X-51 utilized a scramjet engine and had a slender, missile-like shape optimized for
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high-speed flight. It successfully completed several test flights, including a record-breaking
flight in 2013 where it sustained hypersonic speeds for over six minutes (12).

In 2003 the Defense Advanced Research Projects Agency (DARPA) launched the Falcon
(Force Application and Launch from Continental United States) project, aiming to develop
an operational hypersonic wave rider vehicle. The project focuses on developing technologies
for responsive and affordable access to space. Under the Falcon program, various wave rider
designs have been explored, including the Hypersonic Technology Vehicle 2 (HTV-2) and the
Hypersonic Air-breathing Weapon Concept (HAWC). These vehicles incorporate advanced
materials, improved aerodynamics, and state-of-the-art propulsion systems to achieve sustained
hypersonic flight (18). Hypersonic wave rider technology continues to evolve rapidly, with
ongoing research and development efforts worldwide. Several countries, including the United
States, China, Russia, and Australia, are actively pursuing hypersonic capabilities.

Figure 1.11. DARPA FALCON project (18).
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In recent years, advancements in materials science, computational modeling, and propulsion
systems have enabled the design of more efficient and capable hypersonic wave riders. Future
applications of this technology include military reconnaissance, space access, and high-speed
transportation.

During the Cold War, the Soviet Union also made significant contributions to hypersonic
wave rider research. In the 1960s, Soviet scientists developed the concept of a “lifting
reentry vehicle” (LRV) as part of their space program. The LRV was designed to return
cosmonauts from orbit to Earth and featured a wave rider-like shape to enhance its aerodynamic
performance during reentry. Additionally, the Soviet Union conducted extensive research
on hypersonic flight with their Buran space shuttle program. Although the Buran was not
a wave rider per se, it incorporated many design principles relevant to hypersonic flight,
including advanced thermal protection systems and aerodynamic configurations suitable for
high-speed travel (19).

Figure 1.12. USSR Buran (19).

Several countries have continued to invest in hypersonic wave rider technology, aiming
to develop practical applications for both civilian and military purposes. Notably, China has
made significant strides in this field. In 2018, China successfully tested its Xingkong-2 (Starry
Sky-2) hypersonic wave rider vehicle, which reached speeds up to Mach 6 (approximately
4,563 mph or 7,346 km/h). This achievement marked a major milestone in China’s pursuit of
hypersonic technology (20). The United States has also intensified its efforts in hypersonic
research and development. The Defense Advanced Research Projects Agency (DARPA) has
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been actively involved in various hypersonic projects, including the Hypersonic Air-breathing
Weapon Concept (HAWC) program. This program aims to develop an air-launched hypersonic
cruise missile using wave rider technology.

Figure 1.13. China’s Starry Sky 2 (20).

The development of hypersonic wave riders has the potential to revolutionize transportation,
defense, and space exploration. Hypersonic passenger aircraft could significantly reduce
travel times for long-haul flights, enabling faster global connectivity. In the military domain,
hypersonic wave riders could provide rapid response capabilities and enhanced maneuverability,
challenging existing defense systems. Furthermore, the knowledge gained from hypersonic
research may contribute to advancements in space exploration, reentry vehicles, and satellite
deployment.

Hypersonic wave riders have numerous practical applications including military, com-
mercial and Space. In the military domain, hypersonic propulsion offers several advantages.
Hypersonic weapons can travel at high speeds, making them difficult to intercept or defend
against. They provide shorter response times and increased precision for striking time-sensitive
targets. Additionally, hypersonic vehicles can be used for reconnaissance purposes due to
their ability to cover large distances quickly. Hypersonic propulsion also holds potential
for commercial applications such as high-speed passenger travel. With hypersonic aircraft,
long-distance flights could be completed in significantly shorter time frames. However,
challenges such as cost-effectiveness, safety considerations, and environmental impact need
to be addressed before commercial hypersonic travel becomes a reality.
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Wave riders will play a crucial role in advancing space exploration capabilities. The ability
to reach hypersonic speeds will lead to SSTO and reduce the time for launch. Wave rider
technology could be used in spacecraft reentry vehicles, allowing them to safely return to
Earth from orbit at hypersonic speeds. The unique shape also allows the use of an aerogravity
assist maneuver for inter planetary travel (21).

1.3 Project Proposal

This project aims to evaluate the aerodynamic performance of a conical viscous-optimized
waverider under Martian atmospheric entry conditions using SolidWorks Flow Simulation CFD.
Hypersonic waveriders are designed to ride along their own attached shock waves, yielding
exceptionally high lift-to-drag ratios (L/D)—a critical aerodynamic feature for vehicles
undergoing planetary entry at extreme speeds. The conical viscous-optimized waverider
further improves traditional inviscid designs by accounting for boundary layer development
and viscous effects, which are especially significant in the low-density, carbon dioxide rich
Martian atmosphere.

Mars presents a complex entry environment. Its thin atmosphere, roughly 1% the density
of Earth’s, leads to low Reynolds numbers, more pronounced viscous interactions, and altered
shock layer behavior. In such an environment, even small aerodynamic inefficiencies can
drastically affect deceleration, heating, and trajectory control. Accurate aerodynamic modeling
is essential for designing vehicles that can survive and perform well during entry, descent,
and landing phases. Waveriders, with their superior high-speed aerodynamic performance,
are strong candidates for these missions—particularly when integrated with gravity assist
maneuvers used in interplanetary flight (21).

In this study, SolidWorks Flow Simulation will be used to model the flow around a conical
viscous-optimized waverider geometry under conditions that mimic those encountered during
gravity-assisted Martian entry. The simulation will estimate surface pressure distribution,
skin friction, heat flux, and most importantly, the lift-to-drag ratio at different altitudes and
entry angles. Although SolidWorks is traditionally used for subsonic and low-supersonic
applications, its performance will be evaluated under extreme hypersonic conditions. The
results will be compared with existing research to assess the accuracy, suitability, and validity
of SolidWorks Flow Simulation.

1.4 Methodology

The waverider model selected for this study is derived from the University of Maryland’s
viscous-optimized waverider design, as presented in the foundational work by Anderson Jr.
(21). Unlike conventional waverider geometries that are typically derived from inviscid flow
assumptions, this design incorporates the effects of viscous boundary layers, which become
increasingly significant in low Reynolds number, low-density environments such as the
Martian atmosphere. By accounting for viscous effects during the shaping process, the model
offers more accurate predictions of real-world aerodynamic behavior, particularly in areas
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critical to hypersonic planetary entry, including aerodynamic heating, shear stress distribution,
and flow separation control. These characteristics are essential for assessing the feasibility and
survivability of entry vehicles operating at high Mach numbers in extraterrestrial atmospheres.

To support computational analysis, a three-dimensional conical waverider geometry—based
on this viscous-optimized design—has been sourced from the open-access modeling repository
Thingiverse (22). The geometry closely follows the parameters established in the University of
Maryland’s Martian waverider study and captures the essential aerodynamic features needed
for hypersonic CFD evaluation, including a sharp leading edge, curved compression surface,
and shock-adapted body profile. These features ensure proper shock attachment and optimal
lift generation during high-speed flight, making the model suitable for detailed simulation
under planetary entry conditions.

The 3D waverider model will be imported into SolidWorks Flow Simulation, a commercial
CFD tool integrated within the SolidWorks CAD environment. The simulation will be set up
to model a high-speed compressible flow environment at Mach 19, representing a realistic
velocity for a spacecraft entering Mars’ atmosphere for a lift enhanced gravity-assist maneuver.

The Martian atmospheric conditions will be defined at two characteristic altitudes, 20 km,
and 30 km to reflect realistic entry interface conditions and compare to previous work (21).
Each scenario will incorporate Mars-specific environmental parameters, including ambient
pressure, temperature, and a carbon dioxide-dominated atmospheric composition, consistent
with the Mars Global Reference Atmosphere. These conditions are essential to correctly
model the thermodynamic behavior of the gas, capture shock-layer development, and replicate
the aerothermal environment experienced during entry. To enhance accuracy, the CFD setup
will include laminar-to-turbulent transition, as this can significantly affect thermal loads and
pressure distribution during hypersonic entry in thin atmospheres.

The simulation results will provide detailed insight into the vehicle’s aerodynamic
performance, including the lift-to-drag ratio, surface pressure coefficients, heat flux, and shear
stress distributions. The analysis will also assess the capability and accuracy of SolidWorks
Flow Simulation when applied to extreme hypersonic conditions outside its conventional
subsonic and transonic use cases.
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2. Wave Rider Design Methodology

2.1 Caret Wing

In 1959, Prof. Terence Nonweiler came up with the wave rider idea while working on
a reusable reentry vehicle for the British space program. His design methodology relied
on known solutions to an inviscid flow field using the θ −β −M relation shown below as
equation 2.1.

tan(θ) =
2cot(β )

M2 sin2(β )−1
(2.1)

First, a design Mach number is selected. Then a 2D flow field for an arbitrary wedge
with a half angle θ was solved using equation 2.1. The solution to the 2D flow field gives
the deflection angle of the shock wave β . Figure 2.1 shows the oblique shock line generated
by the wedge in green.

Figure 2.1. 2D wedge with oblique shock.

This 2D wedge can be extended to an infinitely long 3D wedge and the shock line becomes
a shock plane as shown in figure 2.2. Then an arbitrary surface is chosen that connects from
the top of the wedge to the bottom of the shock plane in the direction perpendicular to the
flow as shown in Figures 2.3 and 2.4. This forms the side profile of the caret wing and
ensures that the oblique shock remains attached to the leading edges of the caret wing.
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Figure 2.2. 3D wedge with oblique shock plane.

The bottom profile of the caret wing is generated by following the streamlines of the
flow which form a streamsurface. This is done by solving the following set of equations:

ψ(x,y) = constant (2.2)

u =
∂ψ

∂y
(2.3)

v =−∂ψ

∂x
(2.4)
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Figure 2.3. Rear profile.

Figure 2.3 shows the rear profile staring to form. The arbitrary surface which extends
from the top of the wedge to the bottom of the shock is traced out from the rear and will be
cut out to form the profile in the next step.
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Figure 2.4. Caret waverider shape.

Figure 17 shows the side profile of the caret wing that extends down to the oblique shock.
Notice that the center of the caret wing is the original 2D wedge profile with angle θ . The
green surface is the part of the original inflinately long 3D wedge geometry. The surfaces in
blue are the flow field extended down into the shock plane, shown in red.
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Figure 2.5. Multiview orthographic projection of caret wing waverider.

Figure 2.5 shows the final caret wing wave rider geometry. Notice that the top, wings,
and nose have a sharp leading edge. If this geometry was built and flown, the sharp nose
and leading edges would melt at hypersonic speeds due to the intense heat generated from
the air friction as our current understanding of material science has not produced anything
that can withstand such a high temperature concentrated in such a tiny volume.

2.2 Conical Wave Riders

The next development in wave rider design came from in 1963 from Jones (23). The
2D oblique shock flow field was extended into an axisymmetric 3D flow field using cones.
This method is similar Nonweiler’s of solving the flow field of a wedge. but instead of an
arbitrary wedge, a cone shape is selected, and the flow field that is generated by the cone
and it’s oblique shock is found using the Taylor Maccoll equation below (23).
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(2.5)
The Taylor-Maccoll equation gives a solution for conical flow fields. It is an ordinary

differential equation with the dependent variable Vr. VR is a function of θ with

Vθ =
dVr

dθ
(2.6)

The solution to the Taylor-Maccoll equation must be solved numerically as no analytical
solution has been found (23). Typically, the velocity V is non-dimensionalized as

V ′ ≡ dVr

dθ
(2.7)

to simplify solving the numerical solution. Then equation 2.5 becomes
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(2.8)
with the non dimensional V’ expressed as a function of the mach number

V
Vmax

≡V ′ =

[
2

γ −1
M2 +1

]−1
2

(2.9)

Where V ′ = f (M), given M, V’ can be found (23).

2.2.1. Numerical Solution to the Taylor-Maccoll Equation

The steps to numerically solve the Taylor-Maccoll Equation taken from (23) are as follows
1. First assume a shock wave angle θs and a free stream Mach number M∞. From this,

the Mach number and flow deflection angle, M2 and δ , immediately behind the shock can
be found from the oblique shock relations. Note that, unlike equation 2.1, the flow deflection
angle is here denoted by δ so as not to confuse it with the polar coordinate θ .

2. From M∞ and δ , the radial and normal components of flow velocity, V ′
r and V ′

θ
, directly

behind the shock can be found from the geometry of Figure 2.6. Note thatV ′ is obtained by
inserting M2 into Equation (10.16).
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Figure 2.6. Geometry for the numerical solution of flow over a cone (23).

3. Using the above value of V ′
r directly behind the shock as a boundary value, solve

Equation 2.9 for V ′
r numerically in steps of θ , marching away from the shock. Here, the

flow field is divided into incremental angles ∆θ , as sketched in Figure 2.6. The ordinary
differential equation 2.8 can be solved at each ∆θ using any standard numerical solution
technique, such as the Runge-Kutta method.

4. At each increment in θ , the value of V ′
θ

is calculated from Equation 2.6. At some
value of θ , namely θ = θc, we will find V ′

θ
= 0. The normal component of velocity at an

impermeable surface is zero. Hence, when V ′
θ
= 0 at θ = θc then θc must represent the surface

of the particular cone that supports the shock wave of given wave angle θs at the given Mach
number M∞ as assumed in step 1. That is, the cone angle compatible with M∞ and θs is θc.
The value of V ′

r at θc gives the Mach number along the cone surface via Equation 2.9.
5. In the process of steps 1 through 4 here, the complete velocity flow field between the

shock and the body has been obtained. Note that, at each point (or ray), V ′ =
√
(V ′

r )
2 +(V ′θ)2

and M follow from Equation 2.9. The pressure, density, and temperature along each ray can
then be obtained from the isentropic relations
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Figure 2.7. Streamline tracing axes geometry (24).

P0
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(2.10)
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T
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2

M2
)

(2.12)

If a different value of M∞ and/or θs is assumed in step 1, a different flow field and cone
angle θc will be obtained from steps 1 through 5. By a repeated series of these calculations,
tables or graphs of supersonic cone properties can be generated.

2.2.2. Bottom Surface Streamline tracing

After solving the flowfield using the Taylor-Maccoll equations, the lower surface can be
found by solving the streamfunction using the steps outlined below (24):

1. The values of the density ρ , and the z component of velocity, denoted by w are
discretized in the axial and radial directions. Axis directions are shown in figure 2.7.

2. FIt a cubic spline for as a prduct of the density and z component of velocity, ρw, such
that

ρw(y j,z) = a j +b(y− y j)+ c j(y− y j)
2 +d j(y− y j)

3 (2.13)
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for each (n-1) intervals of the n grip points discretiozed along the z direction. a j,b j,c j,d j
are all constant coefficients and y is the coordinates in the vertical direrction such that

y j ≤ y ≤ y j+1 (2.14)

with j being a grid point on the index.
3. Calculate the mass flow ṁ between grid points as

ṁ =
∫ y j+1

y j

(ρw j)dy (2.15)

Subsiting equation 2.13 into equation 2.15, the mass flow per unit width becomes

ṁ = a j∆y+
1
2

b j∆y2 +
1
3

c j∆y3 +
1
4

d j∆y4 (2.16)

with

∆y = y j+1 − y j (2.17)

4. In terms of the streamfunction, the mass per unit width can be written as

ṁ = ψ j+1 −ψ j (2.18)

The mass flow between each pair of grid points was found in step 3. Therefore the
streamfunction at j + 1 can be found using equation 2.18 assuming the value of the
streamfunction is known at point j. By arbitrarily setting the value of the streamfunction to
zero at the surface of the body, the discretized values of the streamfunction along z can be
found.

5. Fit a cubic spline to the y variation of the streamfunction at each z location. The y
coordinate of a given streamline is calculated at each grid point. The streamline can then be
traced through the flow field.

The top surface of the waverider is generated by following the freestream from the leading
edge to the rear. The pressure on the upper surface is simply the freestream pressure, p∞.

In the 1980s, this method was expanded upon using right circular cones and elliptic
cones to develop flow fields utilizing hypersonic small disturbance theory and calculus of
variations (1).
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Figure 2.8. Solution to conical flow field.

Figure 2.8 show the flow field generated by an arbitrary cone shape. The flow field was
solved using the Taylor-Mccoll equation.
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Figure 2.9. Conical waverider being carved out of the inviscid flow field.

Then the waverider shape can be generated by carving out the lower surface by following
the streamlines of the flow field.The upper surface follows the freestream flow. Note that the
edges of the conical waverider lie on the edge of the generated shock. This ensures that the
shock is attached along the leading edge of the conical waverider.
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Figure 2.10. Conical waverider with attached shock.

Figure 2.10 shows the resulting conical waverider geometry with the attached shock all
along the leading edge to the rear of the waverider. This provides a high pressure region
for the waverider to ”ride” on. The attached shock ensures no spillage of the high pressure
region from the bottom to the top. This is what increases the efficiency of the waverider and
allows it to obtain high values of the lift to drag ratio.
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Figure 2.11. Final conical waverider shape.

2.3 Viscous Optimized Waveriders

The caret wing and conical flow waveriders previously described are designed using
inviscid flow theory. Skin friction and boundary layer interaction are not factored in to the
predicted lift to drag ratio. Only the effects of wave drag are included, resulting in exaggerated
lift to drag values.

Starting in 1987, John Anderson and his students at the University of Maryland began
to develop methods for including the skin friction effects into the design of hypersonic
waveriders, optimizing the waverider geometry for Mach number as well as viscous effects;
creating a new class of waveriders known as viscous optimized waveriders. The approach
to designing viscous optimized waveriders relies on using numerical optimization based on
the simplex method. The steps taken to design a viscous optimized waverider are as follows
from (23):

1. The lower (compression) surface was generated by a stream surface behind a conical
shock wave. The inviscid conical flow field was obtained from the numerical solution of the
Taylor-Maccoll equation, discussed in 2.2.1.

2. The upper surface was treated as an expansion surface, generated in a manner similar
to that for the inviscid flow about a tapered, axisymmetric cylinder at zero angle of attack,
and calculated by means of the axisymmetric method of characteristics.
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3. The viscous effects were calculated by means of either a reference temperature method
or an integral boundary-layer analysis following surface streamlines, including transition
from laminar to turbulent flow.

4. Blunt leading edges were included to the extent of determining the maximum leading-
edge radius required to yield acceptable leading-edge surface temperatures, and then the
leading-edge drag was estimated by modified newtonian theory.

5. The final waverider configuration, optimized for maximum L/D at a given Mach
number and Reynolds number with body fineness ratio as a constraint, was obtained from
the numerical simplex method taking into account all of the effects itemized in steps 1–4
within the optimization process itself.

2.3.1. Calculation of Viscous effects

Two separate methods can be used to calculate the viscous effects of early viscous
optimized waveriders. The Integral Boundary layer method of Walz (25) or the Reference
Temperature method of Eckert (26).

2.3.2. Integral Boundary Layer Method

The first method to predict the laminar-viscous interaction of the boundary layer is known
as Walz’s integral method (25). Walz’s method requires a solution of a set of coupled first-
order ordinary differential equations given by the boundary layer momentum and mechanical
energy (27) (28).

Momentum : Z′+
u′e
ue

F1Z −F2 = 0 (2.19)

Mechanical Energy : W ′+
u′e
ue

F3W − F4

Z
= 0 (2.20)

Z = δ2

(
ρeueδ2

µw

)
(2.21)

W = δ3/δ2 (2.22)

Boundary layer thicknesses δ being

Displacement : δ1 ≡
∫

δ

0

(
1− ρu

ρeue

)
dy (2.23)

Momentum : δ2 ≡
∫

δ

0

ρu
ρeue

(
1− u

ue

)
dy (2.24)

Energy : δ3 ≡
∫

δ

0

ρu
ρeue

(
1− u2

u2
e

)
dy (2.25)
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F1 = 3+2H −M2
e +n

µ ′
w/µw

u′/ue
, n =

{
0, Tw = constant
1, Tw ̸= constant

(2.26)

F2 =
2a
b

(2.27)

F3 = 1+H + r(γ −1)M2
e

(
1− θ̃

W

)
(2.28)

F4 =
(2β −aW )

b
(2.29)

In the above equations, prime represents differentiation with respect to x, the boundary
layer coordinate in the streamline direction. The variables in equations 2.26-2.29 are defined
as

H =
δ1

δ2
= bH12 + r

γ −1
2

M2
e (W̄ − θ̃) (2.30)

a = 1.7261(W ∗−1.515)0.7158 (2.31)

b =
(δ2)u

δ2
= 1+ r

γ −1
2

M2
e (W̄ − θ̃)(2−W ) (2.32)

r =
√

Pr (2.33)

θ̃ =
Taw(x)−Tw(x)
Taw(x)−Te(x)

(2.34)

β = βuχ (2.35)

H12 = 4.0306−4.2845(W ∗−1.515)0.3886 (2.36)

Taw = Te +
ru2

e

2cp
(2.37)

W ∗ =
(δ3)u/(δ2)u

W/ψ
(2.38)

ψ = 1+
(ψ12 −1)Me

Me +
ψ12−1

ψ0

(2.39)
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ψ12 =
2− (δ1)u/δ

W ∗θ̃
+

1− (δ1)u/δ

W ∗g
(1− θ̃) (2.40)

ψ
′
0 = 0.0144(2−W ∗)(2−θ)0.8 (2.41)

(δ1)u/δ = 0.420− (W ∗−1.515)0.424W ∗ (2.42)

g = 0.324+0.336(W ∗−1.515)0.555 (2.43)

βu = 0.1564+2.1921(W ∗−1.515)1.70 (2.44)

χ =
[1+ r( γ−1

2 )M2
e [1.16W ∗−1.072− θ̃(2W ∗−2.581)]]0.7

[1+ r( γ−1
2 )M2

e (1− θ̃)]0.7
(2.45)

Finally, the local skin friction coefficient of the laminar flow can be calculated from (27)

C f (x) =
τw

1
2ρeu2

e
= 2

a
b

(
µw

ρeueδ2

)
= 2

a
b

(
µ

ρeuew

)1/2

(2.46)

After the boundary layer transition, the viscous interaction of the turbulent boundary
layer is calculated using the method of White and Christoph (29). This method requires
the solution of one of two first-order differential equations along the boundary layer edge
streamlines, which depend on the parameter λ

λmax
(27) (28) where

λ =

√
2

C f
(2.47)

λmax = 8.75log10Re∗ (2.48)

S =

(
Taw
Te

)1/2

sin−1A+ sin−1B
(2.49)

Re∗ =
−ρe

µw

(
Te

Tw

)1/2 u2
e

u′e
(2.50)

with the parameters A,B in equation 2.49 defined as

A = a/c (2.51)
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B = b/c (2.52)

with

a =
Taw +Tw

Te
−2 (2.53)

b =
Taw +Tw

Te
(2.54)

c =

[(
Taw +Tw

Te

)2

−4
Tw

Te

]1/2

(2.55)

Taw is given by equation equation 3.52 with the recovery factor being the turbulent value

r = Pr1/3 (2.56)

From (29), if λ

λmax
< 0.36 or Re∗ < 0 then

λ
′ =

1
8

ρe

ρw

(
Te

Tw

)1/2

ueexp
(
−0.48

λ

S

)
−5.5

u′e
Ue

(2.57)

If λ

λmax
> 0.36, then

λ
′ =

−u′e
ue

(1+9S−2g∗Re∗0.07)

0.16 f ∗S3 +
[ueU ′′

e −2(U ′
e)

2

uu′ ](3S2 ∗Re∗0.07)

0.16 f ∗S3 (2.58)

with
f ∗ = (2.434z+1.443z2)exp(−44z6) (2.59)

g∗ = 1−2.3z+1.76z3 (2.60)

z = 1− λ

λmax
(2.61)

as in the laminar case, the prime denotes differentiation with respect to the streamline
coordinate x (27).

C f (x) =
0.455

S2 ln2
(

0.06
S Rex

µe
µw

√
Te
Tw

) (2.62)

The local turbulent skin friction is calculated with equation 2.62
The transition from laminar to turbulent flow is based on experimental data from sharp

cones at zero angle of attack (30) and wings with blunt swept edges (27).
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log10(Rext ) = 6.421exp
(

1.209×10−4M2
e

2.641
)

(2.63)

Equation 2.63 gives the Reynolds number for the local transition Rext as a function of
the Mach number at the local edge Me (30).

This is then modified for leading edge sweep, giving

(Rext)Λ

(Rext)Λ=0
= 0.787cos4.346

Λ−0.7221e−0.0991Λ +0.9464 (2.64)

Λ is the angle of sweep of the leading edge of the wing, with (Rext)Λ=0 taken from
equation 2.63. The end of the transition region is then predicted using a relation ship developed
by Harris and Blanchard (31), giving the following.

xte = xti
[
1+5(Rex)

−0.2
ti
]

(2.65)

xte ,xti are the distances along the streamline from the leading edge to the beginning and
end of transition. (Rex)ti is the local Reynolds number from equation 2.64.

In the transition region, the skin friction coefficient C fT R , is assumed to be a linear
combination of the laminar C fL and turbulent C fT values.

C fT R(x) = (1−ξ )C fL +ξC fT (2.66)

Where ξ is a weighting factor (27)

ξ (x) = 1− e−3[exp ln2
5xti

(Rex)
0.2
ti (x−xti)]−1]2 (2.67)

2.3.3. Reference Temperature Method
The reference temperature method of Eckert (26) is another method used to predict the

skin friction distribution along the streamlines that form the waverider. It uses a flat plate
assumption at each discretized point for laminar and turbulent flow with an estimate for the
boundary layer transition point. This method is much simpler than the integral boundary
layer method and the results were found to be within 10% of each other (24).

For a flat plate in laminar flow, the local skin friction coefficient is given as equation
2.68 below

C f = 0.664
1√
Rex

T ′(ω−1)/2

T∞

(2.68)

with the local Reynolds number defined as

Rex =
ρ∞V∞x

µ∞

(2.69)

T ′ is the reference temperature and is defined as
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(
T ′

T∞

)
= 1+0.032M2

∞ +0.58
(

Tw

T∞

−1
)

(2.70)

ω in equation 2.68 is the exponent of an assumed exponential variation of µ with(
µ ′

µ∞

)
=

(
T ′

T∞

)ω

(2.71)

For a flat plate in turbulent flow, the local skin friction coefficient is given as equation
2.68 below

C f =
0.0592
(Re′x)0.2 (2.72)

with

Re′x =
ρ ′

∞V∞x
µ ′

∞

(2.73)

with ρ ′,µ ′ calculated at the reference temperature.
The boundary layer transition is predicted using experimental data for transition on

sharp cones at zero angle of attack, from the work of DiCristina (30), giving the empirical
correlation as follows

log10Rext = 6.421e(1.209x10−4M2.641
e ) (2.74)

2.4 Lift, Drag and Moment Calculations

The lift drag and moment coefficients are calculated by integrating the pressure and
shear stresses on the surface of the waverider. The base drag is typically not included in the
analysis, as it can be assumed to be negligible compared to the drag of the main body at
hypersonic speeds(24) (28).

2.4.1. Inviscid Lift Drag and Moment Coefficients

The inviscid lift Lp is calculated by integrating over the projected planform of the
waverider surface in the equation below given in Cartesian coordinates (24). p(x,z) is the
pressure distribution, l is the length, f (z) is the function of the waverider planform in the
(x,z) plane. 0 denotes the origin beginning at the tip of the nose, and the integration is done
over half the symmetric waverider and multiplied by 2 (24).

Lp = 2
∫ l

0

∫ x= f (z)

0
p(x,z)dxdz (2.75)

The inviscid drag Dp can be estimated if needed by integrating over the base area of the
waverider in polar coordinates in Equation 2.76 below. g(θ) is the function that defines the
base of the waverider in the ((x,y) plane, and 0 denotes the origin from the centerline.
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Dp = 2
∫

π/2

0

∫ r=g(θ)

0
[p(r,θ)− p∞]r dr dθ (2.76)

The inviscid pitching moment Mp has two components, the pitching moment about the
nose Mp,plan due to the pressure distribution over the planform, and the pitching moment
due to the pressure distribution over the base Mp,base .

Mp,plan = 2
∫ 1

0

∫ x= f (z)

0
p(x,z)zdxdz (2.77)

Mp,base = 2
∫

π/2

0

∫ r=g(θ)

0
p(r,θ)r2 dr dθ (2.78)

The total pitching moment is being

Mp = Mp,plan +Mp,base (2.79)

The integrations of Equations 2.75 - 2.78 are done numerically with the composite
trapezoidal rule shown in Equation 2.80 below with an arbitrary function, f of two variables
x and y (24).

∫ b

a

∫ d(x)

c(x)
f (x,y)dydx =

[
b−a

4

]
[(d[a]− c[a]) ( f [a, c(a)]

+ f [a, d(a)])+(d[b]− c[b]) ( f [b, c(b)]+ f [b, d(b)])]
(2.80)

2.4.2. Viscous Lift Drag and Moment Coefficients

The calculation of lift, drag, and moment due to skin friction is conceptually similar to
that for aerodynamic forces caused by pressure distribution. Shear stress values are known
along streamlines that describe the upper and lower surfaces of the waverider.

The surface is divided into triangular panels whose vertices are data points along these
streamlines. The average shear stress over a panel is calculated by averaging the shear stress
at its three corners:

τavg =
1
3
(τ1 + τ2 + τ3) (2.81)

The viscous force on a panel is then:

Fpanel = τavgApanel (2.82)

where Apanel is the area of the triangular panel, calculated by:

Apanel =
√

s(s−a)(s−b)(s− c) (2.83)
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s =
1
2
(a+b+ c) (2.84)

with a,b,c being the side lengths of the triangle.
The viscous force on each panel is split into lift and drag components:

Lt,panel = Fpanel cos(θyt) tan(θv) (2.85)

Dt,panel = Fpanel cos(θyt)cos(θxz) (2.86)

where angles θyt and θxz relate to the orientation of the panel relative to the coordinate axes.
The force acts at the shear-stress weighted centroid of the panel. The coordinates of the
centroid (yc,zc) are:

yc =
y1τ1 + y2τ2 + y3τ3

τ1 + τ2 + τ3
(2.87)

zc =
z1τ1 + z2τ2 + z3τ3

τ1 + τ2 + τ3
(2.88)

The contribution to the pitching moment about the leading edge from a panel is:

Mpanel = ycFpanel,x + zcFpanel,z (2.89)

The total lift, total drag, and total pitching moment due to skin friction are obtained by
summing the contributions over all panels:

L =
N

∑
i=1

Lt,i (2.90)

D =
N

∑
i=1

Dt,i (2.91)

M =
N

∑
i=1

Mt,i (2.92)

where N is the total number of panels.
The total aerodynamic forces and moments on the waverider are calculated by summing

the contributions from both inviscid (pressure) and viscous (shear stress) sources. The total
lift L, drag D, and pitching moment M about the leading edge are defined by the following
equations:

L = LP +LT (2.93)

D = DP +DT (2.94)
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M = MP +MT (2.95)

Here, LP, DP, and MP represent the inviscid (pressure) contributions, while LT , DT , and
MT represent the viscous (shear stress) contributions.

Aerodynamic coefficients are then defined for these total quantities. The lift coefficient
CL, drag coefficient CD, and moment coefficient CM are given by:

CL =
L

q∞S
(2.96)

CD =
D

q∞S
(2.97)

CM =
M

q∞Sl
(2.98)

In these expressions, S is the waverider’s planform area, l is the waverider centerline
length, and q∞ is the freestream dynamic pressure defined as:

q∞ =
1
2

ρ∞V 2
∞ (2.99)

Finally, the lift-to-drag ratio is simply defined as the ratio of the lift coefficient to the
drag coefficient:

L
D

=
CL

CD
(2.100)

This framework allows the total aerodynamic performance of the waverider, including
the combined effects of pressure and shear forces, to be properly evaluated.

2.5 Optimization

The construction and aerodynamic analysis of a single waverider configuration involves
steps labeled A through F as shown on Figure 2.12 using a numerical routine.

The optimization is performed by adjusting the shape of the waverider’s leading edge curve
until an optimum configuration is found that maximizes the lift-to-drag ratio or minimizes
total drag.

The Simplex Method, developed by Nelder and Mead, is used for the numerical optimiza-
tion (24). It is a zero-order method, meaning it relies only on function evaluations, without
requiring derivative information. Each function evaluation corresponds to calculating a figure
of merit (such as L/D or CD) for a given waverider shape.

The simplex method minimizes a function of n variables by comparing function values
at n+ 1 vertices. The vertex with the highest function value is replaced by a new point
through operations such as reflection, expansion, or contraction, moving the simplex toward
the minimum of the function surface.
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Figure 2.12. Waverider optimization scheme (24).
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In general, the Simplex Method is a technique used to find the minimum or maximum of
a function when you do not have access to its derivatives, only the values of the function
itself.

It works by creating a simplex, which is a geometric figure with n+1 points (vertices)
in n dimensions. For example, in 2D, a simplex is a triangle; in 3D, it’s a tetrahedron.
Here’s the basic idea:

At each iteration, the method evaluates the function at all vertices of the simplex. It
identifies the vertex where the function is the worst (highest value if minimizing). Then
it tries to replace that worst vertex by moving in directions like reflection, expansion, or
contraction:

• Reflection: Flip the worst point across the centroid of the remaining points, hoping to
find a better one.

• Expansion: If the reflection gives a really good new point, stretch further in that direction.
• Contraction: If the reflection doesn’t help, pull the simplex inward toward better points.
• Shrinkage: If nothing works, shrink the whole simplex toward the best point.

The simplex gradually moves and deforms over the surface of the function until it finds the
minimum (or maximum).
Key points about the Simplex Method:

• It does not require gradients (no need to compute derivatives).
• It is good for noisy, irregular, or complicated functions.
• It can be slower than methods that use derivatives but is often very robust.

The algorithm follows these steps (24):
First, define the objective function F as a function of n variables.

F = F(x1,x2,x3, ...,Xn) (2.101)

Then, generate an initial simplex consisting of n+1 vertices, each representing a set of
variables.

X j = X j(x1,x2,x3, ...,Xn) (2.102)

Evaluate the objective function at each vertex and order the function values. Identify the
worst vertex (highest function value) and order the functions such that:

F1 < F2 < F <3 ... < Fn < Fn+1 (2.103)

Next, calculate the centroid of the best n vertices.

C̄ =
1
N

n

∑
j=1

X j (2.104)

Generate a new vertex Xr by reflecting the worst vertex across the centroid with α being the
reflection coefficient.

Xr = C̄+α(C̄−Xn+1) (2.105)
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After evaluating the objective function at the reflected point Xr, three possible actions are
considered:

1. Regular Reflection
If the function value at the reflected point satisfies:

Fbest < Fr < Fsecond worst (2.106)

then Xr is better than the old worst point but not the best overall. In this case, replace the
worst vertex Xn+1 with Xr, and start a new iteration.

2. Expansion
If the reflected point is even better than the current best point, meaning:

Fr < F1 (2.107)

then an expansion step is attempted to explore even farther along the same direction. A new
point Xe is computed as:

Xe = Xr + γ(Xr −C̄) (2.108)

where γ is the expansion coefficient (usually γ = 2).
If Fe < Fr, then Xe replaces Xn+1. Otherwise, keep the reflected point Xr. Then start a

new iteration.
—
3. Contraction

If the reflected point is too large, meaning:

Fr > Fn (2.109)

then a contraction step is attempted. There are two types:
Outside contraction (if Fr < Fn+1):

Xc = C̄+β (Xr −C̄) (2.110)

Inside contraction (if Fr > Fn+1):

Xc = C̄+β (Xn+1 −C̄) (2.111)

where β is the contraction coefficient. If Fc is better than both Fr and Fn+1, accept Xc and
replace the worst vertex. If contraction fails, shrink the entire simplex toward the best point:

Xc =
Xc +X1

2
(2.112)

Then start a new iteration.
The optimization is stopped after a specified number of iterations. Typically, 100 iterations

are used to achieve convergence, with reflection, contraction, and expansion coefficients (α ,
β , γ) set to 1, 0.5, and 2, respectively (24).
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Constraints are enforced as barriers that the simplex is not allowed to cross, ensuring
that the geometry remains feasible (24).

The optimization parameter is the leading edge curve of the waverider. This curve is
defined by five points in the x-y plane between the centerline and the wingtip. Due to
symmetry and geometric constraints, only eight variables actually define the curve (24).

To start the optimization, nine initial leading edge shapes are required, forming the basis
simplex (24). These basis shapes are selected to be diverse. Six shapes are polynomials of
the form (24):

yle =C1 +C2xle +C3x2
le +C4x3

le (2.113)

and three of the basis shapes are of the form (24):

yle =C5 +C6(1− cos
πxle

rs
) (2.114)

yle =C7 +C8sin(
πxle

rs
) (2.115)

xle and yle are the x and y coordinates of the leading edge. rs is the radius of the shockwave
at the base of the waverider (24).

The choice of basis shapes strongly influences the final optimized result. Finally, the
optimized leading edge shape is traced by the best configuration found using the simplex
method.
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3. SolidWorks Flow Simulation Computational Fluid Dynam-
ics (CFD)

The CFD analysis will be performed using SolidWorks Flow Simulation. SolidWorks
Flow Simulation is an advanced Computational Fluid Dynamics (CFD) tool integrated within
the SolidWorks 2025 student edition provided free to students enrolled at San Jose State
University. It is a general parametric flow simulation tool that uses the finite-volume method
to ”solve” the Navier-Stokes equations in order to simulate the flow of liquid or gas. It can
also simulate heat transfer due to convection, radiation, and conduction.

Flow Simulation solves the Navier-Stokes equations, which represent the conservation
of mass, momentum, and energy in fluid flows. These equations are enhanced with state
equations and empirical formulas that account for how fluid properties like density, viscosity,
and thermal conductivity vary with temperature. For inelastic non-Newtonian fluids, viscosity
also depends on shear rate and temperature, while compressible liquids involve density
changes with pressure. Each simulation is defined by its specific geometry and boundary and
initial conditions (32).

The software models both laminar and turbulent flows. Laminar flow, characterized by
smooth and stable motion, occurs at low Reynolds numbers. When the Reynolds number
exceeds a critical point, turbulence arises, leading to chaotic and fluctuating flow behavior.
Since most engineering flows are turbulent, Flow Simulation is primarily tailored for those
conditions (32).

To handle turbulence, the software uses Favre-averaged Navier-Stokes equations, which
capture the time-averaged influence of turbulence while still accounting for large-scale,
time-dependent phenomena. This introduces turbulent stresses into the equations, which are
modeled using the k−ε turbulence model. This model solves transport equations for turbulent
kinetic energy and its dissipation rate, providing the necessary closure for the system (32).

A unified system of equations governs both laminar and turbulent regimes, allowing
the simulation to handle transitions between the two. Flow Simulation also accommodates
moving walls by applying appropriate boundary conditions, and for rotating components, it
operates in a rotating coordinate system (32).

3.1 Favre-averaged Navier-Stokes

As previously stated, Flow Simulation uses the Favre-averaged Navier-Stokes equations
along with the k− ε model to accurately simulate and predict turbulent flows by considering
both averaged effects and direct influences of turbulence (33).

The Favre-averaged Navier-Stokes equations come from the formulations of mass,
momentum and energy conservation laws and are as follows:

∂ρ

∂ t
+

∂ (ρui)

∂xi
= 0 (3.1)
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∂ (ρui)

∂ t
+

∂

∂xi
(ρuiu j)+

∂P
∂xi

− ∂

∂x j
(τi j + τ

R
i j)+Si (3.2)

∂ρH
∂ t

+
∂ρuiH

∂xi
− ∂

∂x j

(
ui(τi j + τ

R
i j)+q j

)
+

∂P
∂ t

− τ
R
i j

∂ui

∂x j
+ρE +Siui +QH (3.3)

H = h+
u2

2
(3.4)

For calculation of high speed compressible flows with shock waves, the following energy
equation is used:

∂ρE
∂ t

+
∂

∂xi

(
ρui

(
E +

P
ρ

)
− ∂

∂x j

(
ui(τi j + τ

v
i j)+q j

)
− τ

R
i j

∂ui

∂x j
+ρE +Siui +QH

)
(3.5)

Where

E = e+
u2

2
(3.6)

To predict turbulent flows, the Favre-averaged Navier-Stokes equations (FANS) are
employed. These equations account for the time-averaged effects of turbulence on various
flow parameters while directly incorporating large-scale, time-dependent phenomena. This
approach leads to the emergence of additional terms known as the turbulent stresses, which
require supplementary information for their resolution (33).

To close this system of equations, SolidWorks Flow Simulation utilizes transport equa-
tions specifically designed for turbulent kinetic energy and its dissipation rate. The model
implemented for this purpose is the k− ε model, which is a widely recognized approach in
computational fluid dynamics (CFD) for modeling turbulence (33).

3.2 k− ε Turbulent Stress Model

The k-epsilon (k − ε) turbulence model is one of the most widely used models in
computational fluid dynamics (CFD) for simulating turbulent flow conditions. It is a two-
equation model that provides a general description of turbulence through two transport
equations: one for turbulent kinetic energy (k) and another for the rate of dissipation of
turbulent kinetic energy (ε). This model was developed to improve upon earlier turbulence
models, particularly the mixing-length model, by providing a more robust framework for
predicting turbulent flows in various applications (33).

The equation governing turbulent kinetic energy (k) is given as:

∂ρk
∂ t

+
∂ρkui

∂xi
=

∂

∂xi

((
µ +

µt

σk

))
+ τ

R
i j

∂ui

∂xi
−ρε +µtPB (3.7)
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The equation for the dissipation rate (ε) is expressed as:

∂ρε

∂ t
+

∂ρεui

∂xi
=

∂

∂xi

((
µ +

µt

σε

)
∂ε

∂xi

)
+Cε1

ε

k

(
f1τ

R
i j

∂ui

∂xi
+CBµtPB

)
− f2Cε2

ρε2

k
(3.8)

with
τi j = µsi j (3.9)

τ
R
i j = µtsi j −

2
3

ρkδi j (3.10)

si j =
∂ui

∂x j
+

∂u j

∂xk
− 2

3
δi j

∂uk

∂xk
(3.11)

PB =− gi

σB

1
ρ

∂ρ

∂xi
(3.12)

with the following constants determined empirically:

cµ = 0.09 (3.13)

cε1 = 1.44 (3.14)

cε2 = 1.92 (3.15)

σk = 1 (3.16)

σε = 1.3 (3.17)

σB = 0.9 (3.18)

cB = 1 i f PB > 0 (3.19)

cB = 0 i f PB < 0 (3.20)

The turbulent viscosity term µt is determined from :

µt = fu
Cuρk2

ε
(3.21)

fu = (1− e−0.025Ry)2
(

1+
20.5
Rt

)
(3.22)
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Ry =
ρ
√

ky
µ

(3.23)

Rt =
ρk2

µε
(3.24)

f 1 = 1+
(

0.05
fu

)3

(3.25)

f2 = 1− eR2
t (3.26)

The heat flux qi is defined by:

qi =

(
µ

Pr
+

µt

σc

)
∂h
∂xi

(3.27)

3.3 Heat transfer

SolidWorks Flow simulation has the ability to calculate heat transfer through conduction,
Joule heating, and radiation. Heat transfer in fluids is described by the energy equation,
equation 3.3, while the heat flux is defined by equation 3.27.

3.3.1. Conduction

The phenomenon of heat conduction in solid media is described by the following equation
(32):

∂ρe
∂ t

=
∂

∂xi

(
λi

∂T
∂xi

)
+QH (3.28)

where e is the specific internal energy,

e =CT (3.29)

and C the specific heat and QH the specific heat release per unit volume. λi are the
eigenvalues of the thermal conductivity tensor. For an isotropic medium:

λ1 = λ2 = λ3 = λ (3.30)

3.3.2. Joule Heating

For Joule Heating, the specific Joule heat released from an isentropic material QJ is given
as:
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QJ = r · i2 (3.31)

Where r is the solids resistivity and i is the electric current density vector given as:

i =−
(

1
r11

∂φ

∂x1
,

1
r22

∂φ

∂x2
,

1
r33

∂φ

∂x3
,

)
(3.32)

The electric current density vector i is found from the electric potential φ . Flow Simulation
uses the steady state Laplace equation:

∂

∂xi

(
1
rii

∂φ

∂xi

)
= 0 (3.33)

The Laplace equation is solved numerically within sub-domains containing electrically
conductive materials, excluding dielectric and fluid regions. Users can specify electric current
or potential as boundary conditions. Interfaces between conductive solids are assumed to have
zero resistance unless a specific contact resistance is defined, which causes Joule heating
and creates surface heat sources. Thermal contact resistance is considered between different
solid materials, leading to temperature steps at interfaces. Thin material layers are modeled
similarly using their thermal conductivity and thickness. Heat exchange between solids and
fluids is calculated via normal heat flux, considering surface temperatures, fluid boundary
layers, and radiation if applicable (33).

3.3.3. Radiation

For heat transfer through radiation, SolidWorks Flow Simulation offers two simplified
models (33):

1) Ray Tracing, also known as Discrete Transfer
2) Discrete Ordinates (Discrete ordinates is only available for the HVAC module and

not relevant to aerodynamics)
Ray Tracing assumes diffuse radiation emission and reflection (Lambert’s law), with solar

and thermal radiation treated separately. Solids can be set as transparent to various types of
radiation, with optional refraction. Fluids are transparent to thermal radiation. Surfaces are
modeled as gray bodies unless otherwise specified, and spectrum dependency is ignored (33).

The main idea of discrete transfer is that radiation from a surface can be approximated by
rays traveling in specific directions. These rays carry heat and are traced through transparent
media until they reach another radiative surface. This method, known as ray tracing, enables
the calculation of exchange factors, which represent how much radiation energy is transferred
between surfaces. The exchange factors are calculated as the fractions of the total radiation
energy emitted from one of the radiative surfaces that is intercepted by other radiative surfaces
(this quantity is a discrete analog of view factors). The exchange factors between the radiative
surface mesh elements are calculated in the initial stage of the solver, it allows one to form
a matrix of coefficients for a system of linear equations which is solved on each iteration
(32). The following assumptions are made for the Discrete Transfer model (32):
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• Diffuse radiation: Emitted and reflected radiation from solid surfaces (except symmetry
types) is diffuse, following Lambert’s law—radiation intensity is uniform in all directions.

• Graybody assumption: Non-blackbody/whitebody surfaces are treated as ideal graybodies
with emissivity independent of wavelength, though it may vary with temperature.

• Solar vs. thermal radiation: Solar radiation interacts with surfaces separately from thermal
radiation emitted by other sources.

• Radiation transparency: Specified solids can be transparent to thermal radiation, solar
radiation, or both, allowing radiation to pass through without absorption.

In the ray-tracing model, radiative surfaces can emit, absorb, and reflect both solar and
thermal radiation. Equation 3.35 defines the thermal radiation.

Qout
T = ε ·σ ·T 4 ·A+(1− ε) ·Qin

T (3.34)

Where ε is the surface emissivity. σ is the Stefan-Boltzmann constant. T is the temperature
of the surface. (ε ·σ ·T 4) is the heat flux radiated by this surface in accordance with the
Stefan-Boltzmann law. A is the radiative surface area. Qin

T is the incident thermal radiation
that reaches this surface (32).

Equation 3.35 defines the solar radiation. The net radiation Qnet for each surface is
calculated as the difference between the outgoing radiation Qout and the incoming radiation
Qin.

• Q in
s : solar radiation arriving at the surface

• Q source
s : solar radiation from solar sources

The net radiation equation 3.36, is calculated for all surfaces involved in radiation heat
transfer.

Qout
s = (1− ε) · (Qin

s +Qsource
s ) (3.35)

Qnet = Qout −Qin = (Qout
T +Qout

s )− (Qin
T +Qin

s ) (3.36)

To reduce memory and computational requirements, radiative heat transfer is calculated
using a discrete ray Monte Carlo method. This approach begins by clustering mesh cells that
approximate radiative surfaces, based on criteria such as face area and orientation. Clusters
are formed to minimize the number of radiation rays needed, except when surfaces with
different emissivities meet—those cells remain separate. This clustering process is applied
after the creation of the mesh and after any adaptive mesh refinement (32).

From each cluster, radiation rays are emitted within a hemisphere defined by the surface
normal. This hemisphere is divided into nearly equal solid angles using several zenith
(latitudinal) and azimuth (longitudinal) angles. A ray is emitted randomly within each solid
angle and traced through fluid and transparent solids until it strikes another radiative surface,
known as a target cluster. The number and orientation of these rays determine the accuracy
of the heat transfer between surfaces, though the net radiated heat from a surface remains
constant regardless of ray count (32).
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The total number of rays emitted from each cluster depends on the View Factor resolution
level, which can be adjusted by the user. A higher resolution level increases accuracy but
also significantly raises computation time and resource demands. During the simulation,
the number of emitted rays may automatically increase for clusters with higher surface
temperatures and emissivity, helping to evenly distribute heat across solid angles (32).

When a ray reaches a target cluster, the associated heat is evenly distributed over the
area of the cluster. If multiple rays strike the same cluster, their heat is similarly shared.
To further smooth out any uneven heat distribution, a portion of the incident radiation can
also be shared with neighboring clusters. Additionally, solid heat conduction helps to reduce
small temperature fluctuations across surfaces (32).

The exchange factor Fi j represents the portion of total radiation energy emitted from one
cluster that is intercepted by another. To compute this, radiation rays are emitted from the
center of a cluster point j in multiple directions and traced until they strike another point i.
The incident radiation at point i, Qin

i , is determined by summing the contributions from all
rays reaching that point. Incident radiation is divided into two types: thermal and solar.

Incident thermal radiation, equation 3.37 is calculated based on contributions from
surrounding radiative surfaces. while the incident solar radiation, equation 3.38 is based on
rays originating from solar sources.

Qin
Ti = ∑

j
Fi jQout

T j (3.37)

Qin
Si = ∑

j
Fi jQout

S j (3.38)

The outgoing radiation from cluster i of Qout
i includes both the portion of incoming

radiation that is reflected and the surface’s own emitted radiation. Separate expressions are
used for thermal and solar radiation components denoted by the subscripts Ti,Si.

Qout
Ti = (1− εi)Qin

T j + εiσT 4
i Ai (3.39)

Qout
Si = (1− εi)(Qin

S j +Qsource
S j ) (3.40)

The solar radiation arriving at cluster i from solar sources is calculated using two methods,
backward and forward solar ray tracing. In the backward method, rays are traced from the
surface toward the solar sources. A ray reaches a boundary or a surface with suitable radiation
conditions, and the exchange factor is estimated based on whether the solar source is visible to
the cluster. In the forward method, rays are emitted from solar sources and evenly distributed,
and the radiation received by each cluster is based on how many rays it intercepts. The
forward method is preferred when dealing with refractive or reflective surfaces (32).

Backwards solar ray tracing is calculated with equation 3.41 while forwards solar ray
tracing is calculated with equation 3.42 below:
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Qsource
Si = ∑

k
ISk ·FSki ·δki (3.41)

Qsource
Si = Qray

S ·Ni (3.42)

FSki is the exchange factor and can be estimated using equation 3.43 below:

FSki = (ηSk ,ni)+ ·Ai (3.43)

The ISk is the solar radiation intensity of the k-th solar source. The value δki equals 1 if
the i-th cluster is visible for the k-th solar source, and 0 if not (32).

Qray
S =

∑k Qsource
Sk

Nrays
(3.44)

The radiation transferred by each ray, Qray
S , can be estimated by summing up the radiation

emitted by all solar sources, Qsource
Sk

, and then divided by the number of emitted rays, Nrays
(32). The value Ni is the number of rays intercepted the i-th cluster. The forward method is
recommended in case of refraction and reflection radiative surfaces (32).

Flow Simulation allows users to select the solar ray tracing method and adjust the
number of rays traced through the Calculation Control Options. It’s important to note that
the described equations focus only on cluster-to-cluster radiation transfer and exclude outer
boundary and diffusive radiation sources, which are accounted for in the complete model.
Heat fluxes from radiation are also taken into account in the energy balance at fluid-solid
interfaces and within semi-transparent solids.

The discrete ordinates method (DOM) is a numerical approach used to solve the Radiative
Transfer Equation (RTE) in media where radiation interacts with matter through absorption,
emission, and sometimes scattering. Instead of treating radiation as traveling in all possible
directions continuously, DOM simplifies the problem by dividing the angular domain into a
finite set of discrete directions, called ordinates(34). The RTE is then solved along each of
these directions.

To implement DOM, the entire solid angle around a point in space is discretized into
specific angular segments. For each of these directions, the method calculates the radiation
intensity, considering the contributions of emission from the medium, absorption of radiation
passing through it, and any scattering that might occur. These individual directional solutions
are then combined to compute quantities like the radiative heat flux and source terms through
numerical integration over the discrete angles(34).

DOM is particularly useful in handling complex geometries and media with non-uniform
properties. It allows detailed modeling of radiative behavior in environments such as
combustion chambers, furnaces, and high-temperature flows. However, the accuracy of
DOM depends on how finely the angular space is divided; too few directions can result in
ray effects, which are artificial patterns in the solution due to limited angular resolution. To
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improve accuracy, more discrete directions are used, but this also increases the computational
cost (34).

The general form of the Radiative Transfer Equation is:

dI(r,s)
ds

=−κI(r,s)+κIb(r)+σs

∫
4π

I(r,s′)Φ(s′,s)dΩ
′ (3.45)

• I(r,s) is the radiation intensity at position r in the direction s
• s is the distance along direction s
• κ is the absorption coefficient
• Ib(r) = σT 4/π is the blackbody intensity at local temperature T
• σs is the scattering coefficient
• Φ(s′,s) is the phase function describing scattering from direction s′ to s
• dΩ′ is a differential solid angle element
In DOM, the angular domain 4π is discretized into N discrete directions sn with associated

weights wn, and the RTE becomes (34):

sn ·∇In(r)+κIn(r) = κIb(r)+σs

N

∑
m=1

wmΦ(sm,sn)Im(r) (3.46)

• In(r) is the radiation intensity at point r in the direction sn
• The summation over m represents the discretized scattering integral
After solving the RTE for all directions, the radiative heat flux vector qr is calculated by

summing the directional contributions (34):

qr(r) =
N

∑
n=1

wnIn(r)sn (3.47)

And the radiative source term (used in the energy equation for heat transfer) is (34):

Sr(r) = 4πκIb(r)−κ

N

∑
n=1

wnIn(r) (3.48)

These equations allow DOM to capture how radiation interacts with the medium and
boundaries across discrete directions. The accuracy of the results depends on the number of
directions (ordinates) and the spatial resolution of the problem (34).

3.4 Boundary Layers

SOLIDWORKS Flow Simulation uses non-body-fitted Cartesian meshes to create a
seamless CAD/CFD bridge. This approach is ideal for handling native CAD geometry, but
resolving near-wall boundary layers on coarse meshes presents challenges. To address this,
the software employs an original Two-Scale Wall Function (2SWF) method to accurately
model skin friction and heat flux at the wall, even with limited mesh resolution (33). This
2SWF method includes two main approaches (32):
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1. Thin-Boundary-Layer Treatment is used when the mesh is too coarse to resolve
the boundary layer accurately. It uses the Prandtl boundary layer equations integrated along
the surface normal, solved along streamlines. For laminar flows, the Shvetz trial functions
method is applied; for turbulent or transitional flows, a generalized form using Van Driest’s
mixing length model is used. This approach also considers surface roughness, turbulence,
compressibility, and body forces through empirical corrections. From this, boundary layer
thickness (δ ), wall shear stress (τew), and wall heat flux (qew) are derived and used as
boundary conditions in the main Navier-Stokes equations (33).

τw = τ
e
w (3.49)

qw = qe
w (3.50)

Boundary conditions for k and ε are determined from the condition of turbulence
equilibrium in the near-wall computational mesh cell (33):

∂k
∂y

= 0, (3.51)

ε =
C0.75

µ k1.5

κy
(3.52)

2. Thick-Boundary-Layer Approach is applied when the mesh has enough resolution
(typically more than 10 cells across the boundary layer). Laminar boundary layers are resolved
directly with the Navier-Stokes equations. For turbulent flows, a modified wall function is
used, based on the full Van Driest velocity profile rather than the classical logarithmic law.

u+ =
∫ y+

0

2 ·dη

1+

√
1+4 ·κ2 ·η2 ·

[
1− exp

(
− η

Av

)]2
(3.53)

Karman constant:
κ = 0.4054 (3.54)

Van Driest coefficient:
Av = 26 (3.55)

For intermediate cases, a smooth transition between the thin and thick models is used,
ensuring continuity and accuracy as the mesh changes or the boundary layer evolves along
the surface.

This hybrid approach enables SOLIDWORKS Flow Simulation to provide accurate
boundary layer predictions directly from CAD models, without needing mesh body-fitted
refinements.

56



3.5 Real Gases

SOLIDWORKS Flow Simulation supports modeling of real gases across a wide range of
conditions, including both subcritical and supercritical regions. When a gas approaches the
gas-liquid phase transition or exceeds its critical point, the ideal gas law becomes inaccurate,
and the real gas model should be enabled to account for intermolecular forces and phenomena
like the Joule-Thomson effect (32).

For such scenarios, Flow Simulation uses a modified version of the Redlich-Kwong
equation. This equation is applied either in a user-defined or pre-defined form. The user-defined
model allows one real gas (possibly mixed with ideal gases) and calculates properties using
critical parameters (pressure, temperature, volume, and compressibility factor). Corrections
for thermophysical properties like viscosity, thermal conductivity, and specific heat are added
using semi-empirical equations (e.g., Jossi-Stiel-Thodos, Stiel-Thodos) depending on whether
the gas is polar or non-polar (32).

Modified Redlich-Kwing Equation:

Pr = Tr

(
1

Φr −b
− a ·F

Φr · (Φr + c)

)
(3.56)

Pr =
P
Pc

(3.57)

Tr =
T
Tc

(3.58)

Φr =Vr ·Zc (3.59)

Vr =
V
Vc

(3.60)

F = Tr −1.5 (3.61)

The user-specified critical parameters of a gas define the gas’s behavior at its critical point
are:

• critical pressure (Pc)
• critical temperature (Tc)
• critical specific volume (Vc)

Along with the compressibility factor (Zc), these parameters are used to calculate the constants
a, b, and c in the real gas state equations (such as the modified Redlich-Kwong equation),
which are essential for accurately modeling real gas behavior under non-ideal conditions.
(33).

In addition to the Redlich-Kwong model, the Wilson, Barnes-King, and Soave modifica-
tions can be used to further refine calculations based on temperature dependence and the
Pitzer acentricity factor.
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Wilson Modification:
F = 1+(1.57+1.62ω)

(
T−1

r −1
)

(3.62)

Barnes King Modification:

F = 1+(0.9+1.21ω)(T−1.5
r −1) (3.63)

Soave Modification

F =
1
Tr

[
1+(0.48+1.574ω +0.176ω

2)(1−T 0.5
r )2

]2
(3.64)

The software calculates specific heat at constant pressure (Cp) as a sum of a user-defined
temperature-dependent polynomial and an automatically computed correction. Cv is then
derived from Cp using the gas state equation.

The basic temperature dependency of a gas’s dynamic viscosity (µ) is defined using a
power-law function.

µ = a ·T n (3.65)

For liquids, viscosity can be defined either with the same power-law form or with the
exponential function shown below:

µ = 10a( 1
T − 1

n) (3.66)

Corrections to these base values are applied depending on the gas’s polarity. For non-
polar gases, the Jossi-Stiel-Thodos equation is used, while for polar gases, the Stiel-Thodos
equations are applied. These corrections account for pressure effects and improve accuracy
in non-ideal conditions (32).

Similarly, the thermal conductivity (k) for both gases and liquids can be specified by the
user using either a linear:

k = a+n ·T (3.67)

or power-law form:

k = a ·T n (3.68)

and corrections are again determined using the Stiel-Thodos equations.
All coefficients must be provided in SI units, except those used in the exponential form of

liquid viscosity, which must follow values specifically from Ref. 13. This modeling framework
ensures accurate property predictions across a wide range of conditions, including subcritical
and supercritical regions up to 1.1×Pc (32).

For pre-defined real gases, a variant of the Redlich-Kwong equation is used, where
coefficients a, b, and c vary with reduced temperature to accurately represent both phase
transitions (at P < Pc) and supercritical behavior (at P > Pc) (32).
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Pr = Tr ·
(

1
Φr −b

− a
Φr · (Φr + c)

)
(3.69)

If a real gas is mixed with ideal gases, mixture properties are computed as mass or
volume fraction weighted averages as seen in equation 3.70 below. However, mixtures of
multiple real gases are not supported.The model has a few limitations:

• Accuracy may drop near the critical point or at supercritical pressures, especially for
user-defined gases.

• User-defined property functions must be valid over the entire expected temperature
range.

• The minimum temperature (Tmin) for a user-defined gas must be set 5–10 K above the
triple point.

v =
N

∑
i=1

yivi (3.70)

Warnings are issued if simulation conditions exceed the model’s valid range, and properties
are then extrapolated linearly outside the supported region.

Compressible, liquids, those whose density varies with pressure and temperature, can be
modeled using two main approximations:
1. Logarithmic law:

ρ = ρ0 ·
(

1+C · ln
(

1+
P−P0

B

))
(3.71)

Here, ρ0 is the density at reference pressure P0, and C and B are coefficients that may
depend on temperature. P is the computed pressure.
2. Power law:

ρ = ρ0 ·
(

1+
P−P0

B

)n

(3.72)

This form uses the same parameters as the logarithmic law, with the addition of n, a
power index that can also vary with temperature.

If the liquid’s dynamic viscosity (µ) is pressure-dependent, it can be modeled as:

µ = µ0 ·
(

1+a · ln
(

1+
P−P0

P′

))
(3.73)

Where µ0 is the viscosity at reference pressure P0, a is a temperature-dependent coefficient,
and P′ = 105 Pa is a constant.

These models provide flexibility for accurately simulating the behavior of compressible
liquids under various pressure and temperature conditions.

3.6 Mesh

In Flow Simulation, the meshing process begins with the creation of a rectangular
computational domain that encloses the model geometry. This domain, aligned with the

59



Figure 3.1. Rectangular mesh domain (32).

global coordinate system, is automatically adjusted depending on whether the simulation is
internal or external. For internal flows, the domain wraps either around the flow passage or
the entire model, depending on whether heat conduction in solids is enabled. For external
flows, the domain is expanded away from the model automatically (32).

The meshing itself starts with a basic mesh, which divides the computational domain
into uniform rectangular cells referred to as zero-level cells. Based on this foundation, Flow
Simulation builds the initial mesh by applying various types of refinement. These refinements
subdivide the basic cells further to better represent complex geometry, boundary layers, and
regions with high gradients in the flow or temperature fields. Each refinement can occur up
to nine levels deep, where each subsequent level represents a cell eight times smaller in
volume than the previous (32).

The cells in the computational mesh are categorized as fluid cells, which are fully within
the fluid region; solid cells, which are entirely inside solid geometry; and solid-fluid boundary
cells, which intersect both regions. The meshing system ensures that these cells conform to
a rule called the Cell Mating rule, which restricts neighboring cells to have refinement levels
that differ by no more than one. This rule ensures smooth transitions and numerical stability
(32).

Mesh refinement is carried out based on specific geometric and physical criteria. Cell
Type Refinement ensures that both fluid and solid regions meet a minimum refinement level.
Small Solid Features Refinement targets sharp features or small geometries by identifying
cells where the angle between surface normals exceeds 120 degrees. Curvature Refinement
focuses on smooth but curved surfaces, refining cells where curvature exceeds a user-defined
threshold. Tolerance Refinement controls how closely polygonal mesh surfaces approximate
actual curved surfaces, splitting cells when this approximation error exceeds a set limi (32)t.
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Channel Refinement is applied to resolve narrow flow passages by ensuring a sufficient
number of cells across the channel height. It works by evaluating the width between solid-fluid
boundary cells and adjusting the mesh to meet the user-defined characteristic number of cells.
The refinement occurs only if the resulting cell size does not exceed the maximum allowable
refinement level for that region.

Thin walls, unlike channels, can sometimes be resolved within a single cell because their
opposite faces may lie within the same computational cell. This technique reduces the need
for excessive refinement while maintaining accuracy in heat transfer and flow predictions
across thin surfaces.

Flow Simulation includes Automatic Parameters Definition (APD), a tool that sets mesh
and refinement settings based on model dimensions, flow type, minimum feature sizes, and
initial mesh level. APD configures the computational domain size, control planes, cell count,
and refinement levels automatically, ensuring a balanced mesh without manual input (32).

Control planes are used to stretch or contract the basic mesh in targeted regions. By
setting these planes along the global coordinate directions and assigning appropriate ratios,
users can locally refine or coarsen the mesh to optimize accuracy and performance (32).

Local mesh settings allow more detailed mesh zones within specific areas, using geometric
entities like bodies, faces, edges, or volumes. These settings override the global mesh controls
and are especially useful for resolving areas with small features, high gradients, or complex
boundary interactions. Equidistant Refinement within local settings enables mesh generation
based on distance from selected geometry (32).

To ensure the mesh adequately resolves critical features, it is important to test mesh
convergence. This involves running multiple simulations with progressively finer meshes and
observing whether results such as velocity, pressure, or temperature stabilize. Once additional
refinement no longer significantly changes the results, mesh convergence is considered
achieved, and the mesh can be deemed sufficiently accurate (32).

3.7 Numerical Solver

Flow Simulation uses a numerical solution technique that typically does not require
users to understand or adjust mesh or solver parameters. However, for complex models
that demand excessive computational resources, users can manually tune solver settings to
optimize performance.

The solver is based on the finite volume method (FVM) applied to a Cartesian coordinate
system. For most of the domain, a regular axis-aligned rectangular grid is used. Near geometry
boundaries, a Cartesian cut-cell approach is employed. In this approach, standard rectangular
cells that intersect the geometry are cut to form polyhedral cells, which better represent the
model’s surface while still leveraging the efficiency of a regular grid in the bulk domain (32).

Mesh refinement is applied automatically and locally, especially around solid-fluid
interfaces and regions with high solution gradients, enhancing accuracy where needed.

Physical quantities such as mass, momentum, and energy are associated with the centers
of control volumes, and the solver directly discretizes the integral forms of the governing
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equations. This ensures conservation of mass, momentum, and energy in the numerical
solution.

Spatial derivatives are approximated using second-order implicit difference schemes, while
time derivatives are handled with a first-order implicit Euler method. This combination results
in low numerical diffusion and sufficient accuracy for most practical engineering problems.

Flow Simulation uses a Cartesian-based finite volume method with a locally refined
rectangular mesh to solve fluid flow and heat transfer problems. The mesh is constructed
automatically and aligns with the global coordinate system. Far from geometry boundaries,
mesh cells are standard rectangular parallelepipeds. Near geometry boundaries, a cut-cell
approach is used: curved surfaces are approximated using flat polygons that cut through the
original cells, resulting in polyhedral cells with a mix of axis-aligned and arbitrarily oriented
faces. These cells are then classified as fluid or solid volumes. The meshing process follows
multiple stages (32):

• A basic mesh is created by slicing the computational domain into uniformly sized cells
based on user-defined control planes and cell counts.

• Cells intersecting the solid/fluid interface are recursively refined by dividing them into
eight smaller child cells until the target resolution is achieved.

• Further refinement is applied based on the curvature of the solid/fluid interface. Cells
are split if the angle between surface normals within the cell exceeds a set threshold.

• Additional refinement is done to resolve narrow channels, ensuring a minimum number
of cells exist across a channel in the direction normal to the solid/fluid boundary.

This process produces a final mesh composed of both regular and refined polyhedral cells,
optimized for accuracy and computational efficiency.

If more resolution is needed during the simulation, solution-adaptive mesh refinement can
be triggered at specific times. This refinement increases resolution in high-gradient regions
by splitting cells, while coarsening is applied in low-gradient areas by merging cells (32).

To accurately model boundary layers, Flow Simulation employs the Two-Scales Wall
Functions (2SWF) model, which dynamically selects between two wall modeling strategies
based on the mesh resolution. When the mesh is fine, with six or more cells across the
boundary layer, the thick-boundary-layer approach is applied. In this method, laminar flow is
calculated using the Navier-Stokes equations, while turbulent flow relies on a modified wall
function. Instead of the classical logarithmic velocity profile, the Van Driest profile is used,
with other assumptions remaining similar to the traditional wall function approach (32).

For coarse meshes with four or fewer cells across the boundary layer, the thin-boundary-
layer approach is used. This involves solving the Prandtl boundary layer equations integrated
from the wall up to the boundary layer thickness along streamlines. In laminar regions, the
method uses Shvetz trial functions, and for turbulent or transitional flows, it generalizes this
method using Van Driest’s hypothesis on mixing length in turbulent boundary layers (32).

In cases where the mesh falls between fine and coarse, a combination of both approaches
ensures a smooth transition between models as the boundary layer develops or the mesh is
refined (32).

62



Additionally, the thin-channel approach is used to simulate flow through narrow slots or
channels when the mesh across the slot has seven or fewer cells. This method estimates shear
stress and heat flux near walls using approximations derived from experimental data (32).

The simulation software automatically selects the most appropriate model based on mesh
resolution. Generally, all these approaches maintain good accuracy, even with a coarse mesh.
However, accuracy may drop when the mesh is too fine for the thin-boundary-layer approach
but not refined enough for the thick-boundary-layer model. In such cases, improving the
mesh resolution can gradually enhance the accuracy of the solution (32).

The cell-centered finite volume (FV) method is used to obtain conservative approximations
of the governing equations on a locally refined grid. This grid is made up of parallelepipeds
and more complex polyhedrons near boundaries. The FV method involves integrating the
governing equations over each control volume, which corresponds to a mesh cell, and then
approximating them. All primary variables are associated with the mass centers of the control
volumes, and these cell-centered values are used for the approximations.

The integral conservation laws are expressed through cell volume and surface integrals:

∂

∂ t

∫
U dv+

∮
Fds =

∫
Qdv (3.74)

which are then converted into discrete the form:

∂

∂ t
(U · v)+∑

Nc

F ·S = Q · v (3.75)

with Nc being the number of faces of the cell in the formulation. Fluxes (F) across cell
faces are approximated based on the type of face. Faces are categorized into two groups:
axis-oriented faces common to two adjacent control volumes, and arbitrarily oriented boundary
faces. Different approximation strategies are applied to each group.

For faces shared by two adjacent cells, second-order approximations are used. Convective
fluxes are treated using an upwind approach, and nonlinear approximations with limiters
are applied to ensure monotonic discrete solutions. For diffusive terms, a central difference
approximation is employed. All these approximations are treated implicitly.

To ensure high fidelity to the original differential equations, Flow Simulation uses
particularly consistent approximations for convective terms by employing ’div’ and ’grad’
operators. This method not only preserves the conservation of mass, momentum, and energy
but also maintains key properties of the original mathematical problem.

On arbitrarily oriented boundary faces, the fluxes are approximated according to the
specified boundary conditions while also considering the effects of curved boundary geometries.
To accurately calculate boundary fluxes at the solid/fluid interface, Flow Simulation uses an
advanced boundary layer model.

Conjugate heat transfer between fluid and solid regions is handled simultaneously as a
single unified problem, rather than splitting it into two separate, explicitly connected problems.
This approach ensures a more accurate and consistent simulation of thermal interactions
across interfaces.
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The time derivatives are approximated using an implicit first-order Euler scheme. The
continuity and convection/diffusion equations for quantities like momentum and temperature
are treated with time-implicit approximations combined with an operator-splitting technique.
This technique improves efficiency and addresses the issue of pressure-velocity decoupling.

Using a SIMPLE-like approach (33), an elliptic-type discrete pressure equation is derived
by algebraically transforming the discrete mass and momentum equations while incorporating
the boundary conditions for velocity. This method ensures stable and accurate coupling
between pressure and velocity fields during the simulation.

The numerical algorithm for advancing from time-level n to n+1 uses intermediate flow
parameter values, denoted by an asterisk (*), and follows a structured multi-step process
using the equations below:

U∗−Un

∆t
+Au(Un, pn)U∗ = Sn (3.76)

LhδP =
divh (ρ u∗)

∆t
+

1
∆t

ρ̇ −ρn

ρn (3.77)

ρ
∗ = ρ(pn +δ p,T ∗,y∗) (3.78)

ρ
n+1 = ρ

∗−∆t ·∇ ·δP (3.79)

pn+1 = pn +δ p (3.80)

ρT n+1 = ρT ∗ (3.81)

ρKn+1 = ρK∗ (3.82)

ρen+1 = ρe∗ (3.83)

ρyn+1 = ρy∗ (3.84)

ρ
n+1 = ρ

(
pn+1,T n+1,yn+1) (3.85)

The full set of basic flow variables, excluding pressure, is grouped into a vector U =
(ρu,ρT,ρκ,ρε,ρy)T , where u = (u1,u2,u3)

T is the velocity vector, and y = (y1,y2, ...,yM)T

represents component concentrations in fluid mixtures. Pressure correction, denoted as
δ p = pn+1 − pn, is introduced to properly adjust the velocity field.
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The discrete functions U , u, and δ p are all stored at the centers of mesh cells, and discrete
operators Ah, divh, gradh, and Lh = divhgradh are used to approximate the corresponding
differential operators with second-order accuracy.

The algorithm proceeds as follows:
First, equation 3.76 is solved to obtain intermediate values. This step involves solving

fully implicit discrete convection-diffusion equations for momentum, as well as final values
for turbulent parameters, temperature, and species concentrations.

Next, equation 3.77, an elliptic-type equation, is solved to compute the pressure correction
δ p. The pressure correction ensures that the final momentum field ρun+1, obtained from
adjusting the intermediate momentum field, satisfies the fully implicit discrete continuity
equation.

After obtaining the pressure correction, final updated values for flow parameters are
determined through equations 3.79 to 3.85, completing the advancement to time-level n+1.

This process ensures that mass, momentum, energy, and species conservation laws are all
satisfied with high accuracy while maintaining numerical stability.

Several methods are used to solve the linear algebraic systems that arise from discretizing
the governing equations.

For non-symmetric problems, such as those resulting from the approximations of mo-
mentum, temperature, and species equations (described in equation 3.76), a preconditioned
generalized conjugate gradient method is employed. In this method, an incomplete LU
factorization is used as the preconditioner to accelerate convergence.

For symmetric problems, particularly the pressure-correction equation (3.77), a double-
preconditioned iterative procedure is applied. This approach is based on a specially developed
multi-grid method designed for high efficiency.

The multi-grid method itself is a key acceleration technique. It constructs a hierarchy of
coarser grids from the original mesh. The residuals of the algebraic systems are transferred
to these coarser grids to form new right-hand sides. Solutions on coarse grids are interpolated
back to finer grids as corrections, and smoothing iterations are performed at each level. This
multilevel procedure greatly reduces the overall solution time. The system coefficients for
each grid level are computed once and stored to optimize performance.

Additionally, Flow Simulation applies a technique called nested iterations. Instead of
solving the full non-linear set of equations with non-linear boundary conditions simultaneously,
each equation is solved separately in a linearized form. Within each time step, nested iterations
are carried out, treating the interaction between flow parameters and non-linear terms more
accurately. These iterations are repeated until solver convergence is achieved, a maximum
number of iterations is reached, or all conservation law convergence conditions (mass, energy,
and momentum) are satisfied.

The convergence criteria for mass, energy, and momentum equations during nested
iterations are based on residual errors and corresponding reference residual values. These
ensure that the solution is sufficiently accurate at each time step before moving forward.

3.7.1. Criterion for Mass Equation Convergence
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At each nested iteration, the residual error for mass conservation is calculated by comparing
the predicted density ρk at t +∆t with the initial density ρ0. k being a number of the nested
iteration. The residual over the domain is computed as:

rk
mass =

∥∥∥rk
mass,cv

∥∥∥= ∑
Ω

∣∣∣rk
mass,cv

∣∣∣ (3.86)

with ∑Ω being the sum over all the control volume domains.

rk
mass,cv =

ρk −ρ0

∆t
Vcv +∑

fcv

jk
f cv (3.87)

where jmass, fcv is the mass flux at the control volume face ( fcv).
The reference residual value rref

mass is defined based on the sum of inlet and outlet mass fluxes
across each control volume.

rk
mass,re f = ∑

Ω

rk
mass,cv,re f = ∑

Ω

∑
fcv

∣∣∣ jk
mass, fcv

∣∣∣= 2⟨ jmass,cv⟩ (3.88)

The stopping criterion for mass is:

rk
mass ≤ εmass · rk

mass, ref (3.89)

where εmass is a small tolerance value (user-defined or default).

⟨rmass,cv⟩k

2⟨ jmass,cv⟩k ≤ εmass (3.90)

3.7.2. Criterion for Energy Equation Convergence

Similarly, the residual error for the energy equation rk
en is based on the difference between

the calculated and expected heat transfer.

rk
en,cv =

∥∥∥rk
en,cv

∥∥∥
1
= ∑

Ω

∣∣∣rk
en,cv

∣∣∣ (3.91)

It uses a discrete operator L that approximates the convection and diffusion terms in the
control volume.

Lk
H,Conv+Di f f (H

k) = ∑
j=ωcv

c j ·Hk
j (3.92)

ωcv is a stencil of the operator L at the control volume (cv), c0 is a coefficient for H in
the control volume under consideration, and c j( j ̸=0) are coefficients for other control volumes
from the stencil.
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c j ∼

[
ρun +

λh
hcv

2

]
S fcv (3.93)

un is the velocity component normal to the face and hcv is the characteristic size of the control
volume. The explicit member f k

H contains approximations of other terms of the equation and
the heat source at the face of the control volume is equal to q ·Vcv.
The residual error per control volume is:

rk
en,cv = ρ

0 (H
k +H0)

∆t
Vcv +Lk

H,Conv+Di f f (H
k)− f k

H (3.94)

where H represents the enthalpy.
The reference value rk

en,ref is based on both convection/diffusion heat fluxes and internal heat
sources.

rk
en,ref = ∑

Ω

rk
en,cv,re f = ∑

Ω

(
max

(∣∣∣∣c0 +
ρ0

∆t
Vcv

∣∣∣∣ ,max j∈ω, j ̸=0|c j|
)
· |Hk|+

∣∣∣∣ f k
H +

ρ0H0

∆t
Vcv

∣∣∣∣)
(3.95)

If ∆t ≫ hcv
un

+
h2

cv
λH/ρ

, the first summation is the reference value of the energy flux through
the control volume (cv). The second summation is the reference value of the energy flux
in/out of the control volume due to the heat source q ·Vcv.

If ∆t is small:

rk
en,cv,re f −→ ∞ as ∆t → 0 (3.96)

The stopping criterion for energy is:

rk
en ≤ εen · rk

en,ref (3.97)

⟨ren,cv⟩k

⟨ jen,cv⟩k ≤ εen (3.98)

3.7.3. Criterion for Momentum Equation Convergence

The residual error for the momentum equation rk
mom is computed similarly. It involves the

difference between the intermediate momentum and the expected momentum, considering
pressure gradients and external forces.

rk
mom =

∥∥∥rk
mom,cv

∥∥∥
1
= ∑

Ω

(∣∣∣rk
mom0cv

∣∣∣+ |rk
mom1cv|+ |rk

mom2cv|
)

(3.99)

For each component of the velocity, the residual error at each ith component of the control
volume is:
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rk
mom,cv =

(mi
k −m0

i )

∆t
Vb +Lmi,Conv+Di f f (mk

i )−Fk
mi
, i = 0,1,2 (3.100)

Lmi,Conv+Di f f (mk
i ) = ∑

j∈ωcv

ci j ·mk
i j (3.101)

ci j ∼

(
un +

µ +µt
hcv
2

)
S fcv (3.102)

The reference value rk
mom,cv,ref is based on the momentum flux ( jmom,cv) through the

control volume.

rk
mom,re f = ∑

Ω

(∣∣∣rk
mom0,cv,re f

∣∣∣+ |rk
mom1,cv,re f |+ |rk

mom2,cv,re f |
)

(3.103)

rk
momi,cv,re f = ∑

Ω

(
max

(∣∣∣∣ci0 +
Vb

∆t

∣∣∣∣ ,max j∈ω, j ̸=0|ci j|
)
· |mk|+

∣∣∣∣ f k
mi
+

m0
i

∆t
Vb

∣∣∣∣) (3.104)

The stopping criterion for momentum is:

rk
mom ≤ εmom · rk

mom,ref (3.105)

⟨rmom,cv⟩k

⟨ jmom,cv⟩k ≤ εmom (3.106)

For each equation, convergence is achieved when the normalized residual error becomes
smaller than a small fraction (like 10−3 or 10−4) of the corresponding reference value. This
ensures that all the physical conservation laws are accurately satisfied before moving on.

3.7.4. Residuals

Residuals provide a measure of how well the numerical solution satisfies the discrete
equations, but they do not directly indicate the actual accuracy of the solution. In complex
flows, it is often difficult to determine the correct time scale for unsteady processes. If the
time step used in the simulation is too large compared to the characteristic time scale of the
flow, the residuals may not decrease significantly, even though the physical process is being
captured correctly.

Importantly, low residuals do not guarantee an accurate solution, and high residuals do
not necessarily imply an incorrect solution. Residual behavior mainly reflects how well the
numerical solver is balancing the current form of the equations, not the true physical fidelity.

To assess the accuracy of the simulation, convergence studies must be performed by
decreasing the time step size and observing whether the physical parameters, such as pressure,
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velocity, or temperature, converge toward consistent values. Only this method can reliably
indicate the quality of the discrete solution.
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4. SolidWorks Flow Simulation Martian Waverider Simula-
tion

The waverider model selected for simulation in this study is based on the University
of Maryland’s viscous-optimized waverider design for Mars, as detailed in the work by
Anderson Jr. (21). This particular configuration was chosen because of the availability of
published data, including lift-to-drag (L/D) ratios, which serve as a benchmark for evaluating
the accuracy of the present CFD simulations.

The selected waverider is specifically designed to perform an aero-gravity assist maneuver
by executing a high-speed atmospheric flyby of Mars. During this maneuver, the vehicle dips
into the upper layers of the Martian atmosphere, utilizing the lift generated at hypersonic
speeds to alter its trajectory more significantly than would be possible through gravitational
interaction alone. This aerodynamic contribution enhances the angular deflection of the
spacecraft’s path, allowing it to exit the flyby with a beneficial change in velocity vector.
This technique can be especially valuable for interplanetary missions seeking fuel-efficient
trajectory modifications without requiring significant propulsion expenditure.

To maximize aerodynamic efficiency during the maneuver, the waverider is designed to
invert (fly upside down) upon atmospheric entry. This orientation allows it to generate lift in
the direction that augments the natural curvature of its trajectory around the planet, effectively
increasing the magnitude of the gravity assist. The ability of the waverider to maintain
shock-attached flow along its leading edges ensures high lift and low wave drag throughout
the maneuver, a performance advantage critical for hypersonic planetary applications.

The viscous-optimized design used here accounts for boundary layer growth and skin
friction, which are especially important in Mars’ thin, low-density atmosphere. By simulating
this specific waverider configuration in SolidWorks Flow Simulation and comparing the
resulting aerodynamic forces - particularly lift, drag, and L / D ratio with published values
from (21), the study aims to validate the CFD model and assess its suitability for preliminary
analysis of aeroassist trajectories. The ability to match or closely approximate the benchmark
L/D values serves as an important metric for evaluating both the physical accuracy and
computational reliability of the SolidWorks Flow Simulation framework under Martian
hypersonic conditions.

The waverider CAD model, figure 4.1 used in this study was obtained from the open-source
platform Thingiverse (22), which hosts publicly shared 3D models.
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Figure 4.1. Conical waverider designed for Mars 3D CAD model (22).

4.1 Simulation Setup

The flow simulation setup for this study was established as an external compressible
flow analysis using SolidWorks Flow Simulation, leveraging its seamless CAD integration to
simulate aerodynamic performance around complex geometries. The waverider model, based
on the University of Maryland’s viscous-optimized Mars entry design (21), was imported
into SolidWorks and processed using Boolean geometry recognition, allowing the software
to clearly distinguish between the solid body and the surrounding fluid domain. This setting
is depicted in Figure 4.2.
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Figure 4.2. Analysis type.

To accurately replicate Martian flight conditions, the fluid domain was configured to
simulate a perfect gas, with thermophysical properties aligned with a carbon dioxide-dominated
atmosphere, as found on Mars. SolidWorks Flow Simulation includes a predefined gas model
for the Martian atmosphere, available from its integrated engineering database, as shown in
Figure 4.3. This simplifies the model setup for simulating compressible high-speed external
flow over a hypersonic vehicle.
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Figure 4.3. Mars atmosphere model.

Although SolidWorks treats carbon dioxide as a perfect gas in this configuration (i.e.,
assuming constant specific heats and neglecting real-gas or chemical reaction effects), this
simplification is valid for the entry altitudes (20–30 km) and temperatures ( 1000 K) considered.
These conditions fall below the thresholds where thermal dissociation or vibrational excitation
become dominant. As such, the perfect gas assumption is sufficient for evaluating pressure
distribution, skin friction, and lift-to-drag ratios, which are the primary aerodynamic metrics
of interest in this preliminary design study.
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Figure 4.4. Fluids model.

Three distinct flow regimes were investigated to account for different possible boundary
layer behaviors and to understand the sensitivity of the aerodynamic outputs to turbulence
modeling:

• A fully laminar model, which assumes that the boundary layer remains stable and smooth
throughout the body, a condition more likely in low Reynolds number flows at high
altitudes or along short flow paths.

• A fully turbulent model, representing the opposite extreme, assuming that the flow tran-
sitions to turbulence immediately at the leading edge. This often leads to overestimated
skin friction and heat transfer, providing conservative performance estimates.

• A transitional flow model that allows the flow to transition between laminar and turbulent
behavior based on local flow parameters, as permitted by the integrated transition
modeling of SolidWorks.
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The thermal boundary condition applied to the waverider surface was a fixed wall
temperature of 1000 K, consistent with the design assumptions in the University of Maryland’s
Martian waverider study (21). This value approximates radiative equilibrium conditions
expected during hypersonic planetary entry. In addition, the waverider surface was assumed
to be perfectly smooth, with zero surface roughness, to eliminate additional flow disturbances
and match the baseline configuration used in the reference work.

Figure 4.5. Wall condition.

To represent realistic Martian entry environments, the simulations were conducted at two
representative altitudes: 20 km and 30 km. These altitudes were chosen because reference data
is available for comparison of the simulation results. The ambient atmospheric conditions for
each altitude were derived from data collected by NASA’s Viking 1 mission, which provided
one of the most reliable profiles of the Martian atmosphere following its landing in 1976.
These conditions were implemented manually within the simulation environment and include:

At 20 km altitude: Ambient pressure of 205 Pa, ambient temperature of 116 K.
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At 30 km altitude: Ambient pressure of 47 Pa, ambient temperature of 183 K. These
parameters are presented in Figure 4.6, and ensure that the simulations reflect the thermal
and dynamic state of the actual Martian atmosphere.

Figure 4.6. Initial and ambient conditions.

The freestream Mach number was fixed at Mach 19 for all simulation cases, consistent
with expected entry velocities resulting from gravity-assist flybys or high-energy Mars transfer
trajectories. The freestream flow vector was defined along the X-axis, representing level flight
at a zero-degree angle of attack. While future work may consider varying angles of attack to
study control and trim characteristics, this initial zero-angle assumption is consistent with
the assumptions in the University of Maryland’s Martian waverider study (21)..

For computational efficiency, the flow domain was reduced by symmetry. A symmetry
plane was applied along the centerline of the vehicle, reducing the model to a half-domain
without sacrificing accuracy due to the symmetric nature of both the geometry and the flow
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field at zero angle of attack. This setup is shown in Figure 4.7, where the computational
domain and mesh are visualized.

Figure 4.7. Computational domain and mesh.

The computational mesh was generated using SolidWorks’ automatic meshing algorithm,
which applies local refinement based on geometry curvature, flow gradients, and boundary
proximity. The mesh was allowed to automatically densify near regions of high curvature (e.g.,
leading edges and compression surfaces), which is essential for capturing shock–boundary
layer interaction and flow separation, especially in hypersonic flow fields. Although SolidWorks
does not offer fine-grained control over boundary-layer inflation layers like specialized CFD
packages (e.g., ANSYS Fluent or OpenFOAM), the automatic mesh has been validated
in multiple external flow studies for producing accurate integral results such as drag and
pressure distribution. Mesh independence was not explicitly tested in this initial study, but
the literature (33) suggests that the default mesh setting in SolidWorks provides adequate
resolution for preliminary aerodynamic evaluations in external flows.

In total, six simulation cases were executed to span the combination of altitude and flow
regime parameters. These cases are summarized in the table below:
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TABLE 4.1. Summary of CFD simulation cases in Mars atmosphere

Case Altitude (km) Flow Regime Mach Wall Temp (K) AOA (°)
1 20 Laminar 19 1000 0
2 20 Turbulent 19 1000 0
3 20 Transitional 19 1000 0
4 30 Laminar 19 1000 0
5 30 Turbulent 19 1000 0
6 30 Transitional 19 1000 0

4.2 Results

Figure 4.8. Fully laminar at 20 km.
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Figure 4.9. Fully turbulent at 20 km.

Figure 4.10. Transition at 20 km.
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Figure 4.11. Fully laminar at 30 km.

Figure 4.12. Fully turbulent at 30 km.
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Figure 4.13. Transition at 30 km.

Figures 4.8 through 4.13 present the static pressure contours and isolines around the
waverider geometry in the Martian atmosphere at Mach 19 for three different flow regimes:
laminar, turbulent, and transitional, at two distinct altitudes: 20 km and 30 km. These
visualizations provide critical information on the shock structure, flow field behavior, and
aerodynamic loading experienced by the vehicle under hypersonic entry conditions.

Across all six images, a prominent feature is the presence of well-defined shock structures
that remain mostly attached to the leading edges of the waverider. Although there is evidence
of a weak, localized shock spillover near the leading edge of the waverider, particularly
visible in some of the turbulent and high-altitude flow cases. This shock appears to extend
slightly beyond the intended compression surface, failing to remain perfectly aligned with
the vehicle’s leading edge as designed. While minor, this deviation may result in a portion
of the high-energy flow bypassing the lower surface, thereby reducing pressure recovery and
diminishing lift generation in that region.

One plausible explanation for this effect is the presence of numerical integration errors
inherent in the discretization methods used by SolidWorks Flow Simulation. Finite-volume
solvers, particularly those relying on cell-centered schemes and default mesh settings,
may struggle to resolve very sharp gradients—such as those present across a hypersonic
shock—without sufficient mesh refinement. When the mesh resolution near the leading edge
or within the shock region is too coarse, or when the numerical dissipation of the scheme is
relatively high, the solver may smear or misalign the shock, causing a partial detachment or
”leakage” of the shock over the surface.

Additionally, the simplified turbulence and transition models in SolidWorks may not
fully capture the complex interactions between the shock and the boundary layer, further
contributing to slight discrepancies in shock placement. These small deviations do not indicate
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a failure of the solver, but rather reflect the limits of accuracy in capturing steep gradients
within commercial CFD packages not explicitly tailored for high-fidelity hypersonic flow
prediction. Although the observed shock spillover is minimal, it may result from a combination
of numerical artifacts, mesh limitations, and modeling simplifications.

Nevertheless, this observation is consistent with the theoretical intent of the waverider
configuration, which is designed to ride its own attached oblique shock wave to maximize
lift and aerodynamic efficiency. The fact that the bow and oblique shocks are clearly
attached—rather than detached or smeared—validates both the geometric fidelity of the
conical waverider and the adequacy of the mesh and solver resolution in capturing shock
behavior.

Another consistent trend observed in all cases is the significantly higher static pressure
distribution along the lower surface of the waverider compared to the upper surface. This
pressure differential is most pronounced near the leading edge and first compression surface,
where flow impingement is strongest and compression is maximized. On the upper surface,
pressures remain relatively low due to flow expansion and minimal surface interaction. This
contrast between upper and lower surface pressures confirms that the waverider is generating
net positive lift, even at zero angle of attack, as intended by its aerodynamic design.

Notably, the pressure contours also reveal secondary shock structures forming along
surface deflections and compression ramps on the underside of the vehicle. These features
contribute to additional pressure buildup on the lower surface, enhancing lift further. In
several cases, shock reflections or shock-shock interactions can be identified downstream,
particularly in the turbulent and transitional flow regimes, where boundary layer development
and shock-boundary layer interaction become more complex.

At the higher altitude of 30 km, the images show slightly more diffuse pressure gradients
and weaker shock strength, consistent with the reduced atmospheric density at this elevation.
While the shock remains attached in all cases, the bow shock stand-off distance appears
slightly greater, and overall pressure levels are lower—particularly in the laminar and turbulent
cases—demonstrating the sensitivity of hypersonic aerodynamic behavior to ambient density.

These pressure contour plots provide clear visual confirmation of key aerodynamic
principles central to the waverider concept. The attachment of oblique shocks, the high-
pressure recovery on the lower surface, and the consistent lift generation across varying flow
regimes and altitudes all support the aerodynamic viability of the conical waverider for Mars
entry missions. These findings reinforce the waverider theory and further validate the use of
SolidWorks Flow Simulation for qualitative hypersonic flow field analysis.

The aerodynamic force results in this study were obtained from SolidWorks Flow
Simulation by evaluating the total integrated forces acting on the external surface of the
waverider geometry. These forces are calculated by numerically integrating both pressure
forces (arising from the normal component of the stress tensor) and viscous shear forces
(tangential components) across the entire surface mesh. The result is a total aerodynamic force
vector resolved in the Cartesian coordinate system defined within the simulation environment,
where the X-axis is aligned with the freestream flow direction, and the Y-axis represents the
vertical (lift-producing) direction.
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The total lift force was determined by extracting the Y-component of the total aerodynamic
force vector. This component corresponds to the net vertical force generated due to pressure
differentials between the lower (compression) and upper (freestream-facing) surfaces of the
waverider. Because the waverider is designed to ride its attached shockwave and maintain
high pressure on the underside of the vehicle, it generates lift without requiring large angles of
attack. In this study, the vehicle was evaluated at zero angle of attack, simulating level flight,
and the lift arose purely from the shaping and flow compression inherent to the waverider
configuration.

The drag force, acting in opposition to the direction of motion, was computed as the X-
component of the total force vector. SolidWorks separates the total drag into two components:

Pressure drag (also called wave drag in hypersonic regimes), which is derived from the X-
component of the normal force vector. This drag arises primarily from the vehicle’s interaction
with compressible shock waves, expansion fans, and the pressure gradients generated by
the sharp leading edges and compression surfaces. In hypersonic flow, pressure drag can be
particularly dominant due to the strong bow shocks and highly compressed flow regions.

Friction drag, which is calculated based on the viscous shear stresses acting tangentially
across the waverider surface. SolidWorks Flow Simulation automatically computes the local
shear stress at each surface element, which is then integrated over the full surface area to
obtain the total viscous drag force. This component becomes significant in high-speed flows
with large wetted surface areas, such as those found in waverider configurations. In planetary
atmospheres like that of Mars, where Reynolds numbers are relatively low, friction drag can
constitute a larger percentage of total drag compared to similar vehicles flying in denser
Earth conditions.

By summing the pressure drag and friction drag, the total drag force is obtained. This
total drag aligns with the X-component of the net aerodynamic force vector and represents the
actual retarding force the vehicle experiences during flight. The ability to distinguish between
pressure and viscous contributions to drag is essential for evaluating design efficiency and
for identifying aerodynamic optimization opportunities.
Summary of the lift and drag components:

• Lift → Y-component of the total force
• Total Drag → X-component of the total force
• Pressure Drag → X-component of normal force
• Friction Drag → Derived from integrated shear force on all surfaces
This decomposition of forces not only facilitates the calculation of key aerodynamic

coefficients, such as the lift coefficient (CL), the pressure drag coefficient (CDp), the friction
drag coefficient (CD f ), and the total drag coefficient (CDtotal), but also allows a nuanced
analysis of the lift-to-drag ratio (L/D), a primary performance metric for hypersonic vehicles
performing aeroassist maneuvers or atmospheric entry.

After the surface forces were calculated from the CFD simulation, they were normalized
to obtain dimensionless aerodynamic coefficients, allowing for meaningful comparison across
different flow conditions, vehicle sizes, and altitudes. This normalization process involved
converting the raw lift and drag forces into their respective coefficients of lift (CL) and
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drag ((CD), which are the standard parameters used in aerodynamic analysis to describe
performance independently of scale.

The normalization was achieved by dividing the computed forces by the product of the
dynamic pressure (q) and the reference area (S) of the waverider. The dynamic pressure is a
function of the freestream density (ρ) and velocity (u), and is given by:

q =
1
2

ρu2 (4.1)

TABLE 4.2. Dynamic pressure parameters

Parameter 20 km 30 km

S [m2] 5.7686×10−4 5.7686×10−4

ρ

[
kg
m3

]
9.25×10−3 1.34×10−3

u
[m

s

]
3225.708 4051.554

This represents the kinetic energy per unit volume of the oncoming flow and serves as a
reference quantity for force based coefficients in compressible flow. The reference area S, in
this case, is the wetted surface area of the waverider, which is appropriate for hypersonic
vehicles where the entire body interacts with the flow and contributes to both lift and drag
production.

The lift coefficient (CL) and drag coefficient (CD) are thus calculated using the following
relationships:

CL =
L
qS

(4.2)

CD =
D
qS

(4.3)

where L is the lift force (Y-component of the total aerodynamic force), and D is the total
drag force (X-component of the total aerodynamic force, including both pressure and friction
components).

These coefficients provide a normalized basis for evaluating aerodynamic efficiency across
a range of test conditions. For example, the ratio CL

CD
, commonly referred to as the lift-to-drag

ratio (L/D), is a key performance metric used to assess a vehicle’s ability to produce lift
relative to its aerodynamic resistance. Maximizing the L/D directly contributes to extending
glide range, improving trajectory control, and minimizing heat loads through optimized
atmospheric flight profiles. By converting the raw forces to non-dimensional coefficients,
ensures that the aerodynamic results are directly comparable with existing literature’

The results of the simulation, including both the raw aerodynamic forces (lift, pressure
drag, friction drag, and total drag) and their corresponding dimensionless aerodynamic
coefficients, are systematically summarized in the tables presented below. These values
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were extracted directly from SolidWorks Flow Simulation post-processing tools, which
compute surface-integrated force vectors and decompose them into their respective Cartesian
components.

Each table reports the aerodynamic performance of the waverider configuration under
specific Martian atmospheric conditions—at altitudes of 20 km and 30 km, and across three
distinct flow regimes: laminar, turbulent, and transitional. For each case, the raw force outputs
are presented in units of Newtons (N), reflecting the total lift force, pressure drag, friction
drag, and the resultant total drag acting on the waverider and their nondimensional coefficients
during hypersonic flight at Mach 19.

TABLE 4.3. Aerodynamic outputs for hypersonic waverider at 20 km Mars altitude
(Mach 19)

Parameter Laminar Turbulent Transitional
Lift, L [N] 0.502 0.514 0.503

Pressure Drag, Dp [N] 0.081 0.081 0.081
Friction Drag, D f [N] 0.168 0.177 0.166
Total Drag, Dtot [N] 0.249 0.258 0.247

CL 0.0180 0.0185 0.0181
CDp 0.00291 0.00291 0.00291
CD f 0.00604 0.00638 0.00598
CDtot 0.00895 0.00929 0.00889

L/Dp 6.19 6.34 6.21
L/D f 2.99 2.90 3.03
L/Dtot 2.01 1.99 2.03

TABLE 4.4. Aerodynamic outputs for hypersonic waverider at 30 km Mars altitude
(Mach 19)

Parameter Laminar Turbulent Transitional
Lift, L [N] 0.121 0.111 0.121

Pressure Drag, Dp [N] 0.021 0.020 0.021
Friction Drag, D f [N] 0.094 0.093 0.115
Total Drag, Dtot [N] 0.115 0.113 0.136

CL 0.0191 0.0175 0.0191
CDp 0.0033 0.0032 0.0033
CD f 0.0148 0.00147 0.0181
CDtot 0.0184 0.0178 0.0214

L/Dp 5.76 5.55 5.76
L/D f 1.29 1.19 1.05
L/Dtot 1.05 0.982 0.89

4.3 Analysis

A particularly notable outcome from the CFD simulations is observed in Table 4.3, which
summarizes the aerodynamic performance at 20 km altitude in the Martian atmosphere.
Counterintuitively, the fully turbulent model produced the highest lift, exceeding the laminar
and transitional models. This result may be explained by the increased momentum transport
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within a turbulent boundary layer. In high-speed external flows, turbulent eddies enhance the
mixing of momentum perpendicular to the wall, making the boundary layer more robust and
resistant to flow separation. This phenomenon leads to improved pressure recovery on the
compression surface of the waverider and results in increased lift.

However, under hypersonic conditions, the boundary layer is already heavily energized
due to the high freestream kinetic energy, and flow separation is less likely to occur even in
laminar regimes. Therefore, the increase in lift from turbulence may not solely be due to
delayed separation, but rather due to numerical factors within the turbulence model amplifying
the surface pressure differentials, particularly on the lower (compression) surface of the
vehicle.

As expected, the fully turbulent model also generated the highest friction drag, attributed
to the enhanced shear forces resulting from a turbulent boundary layer. In contrast to laminar
flow, where near-wall velocity gradients are smoother, turbulent flow features steeper gradients
and higher eddy viscosity, both of which increase wall shear stress. Despite this, pressure drag
remained nearly constant across all three cases. This indicates that the shock structure and
pressure distribution—primarily governed by the vehicle’s geometry and Mach number—were
largely unaffected by the turbulence model.

Due to the significant rise in friction drag, the overall lift-to-drag ratio (L/D) for the
turbulent case was the lowest among the three. While the increased lift is favorable, the
accompanying drag penalty offsets any aerodynamic gains.

Interestingly, the transitional model yielded the highest L/D, representing the optimal trade-
off between lift enhancement and drag minimization. This suggests that the transitional flow
may have energized the boundary layer just enough to delay or mitigate separation—similar to
the turbulent case—but without fully incurring the high skin friction penalties associated with
fully turbulent flow. This behavior reinforces the importance of accurate transition modeling in
hypersonic vehicle simulations, where small changes in surface shear and pressure gradients
can have large impacts on overall aerodynamic efficiency.

Surprisingly, the laminar case produced the lowest lift but also showed relatively high
friction drag, which deviates from expected trends. Typically, laminar flows yield lower skin
friction due to smoother velocity profiles. However, in hypersonic flows, this may be offset
by localized thermal effects, low Reynolds numbers, and potentially under-resolved boundary
layer behavior in the CFD mesh, leading to overestimation of shear forces.

At 30 km altitude, as shown in Table 4.4, the flow regime behavior shifts. At this higher
altitude, where the Martian atmosphere is thinner and freestream density is lower, the turbulent
case generated the least lift. This is in contrast to the 20 km results and may be due to
diminished boundary layer development, as the low-density environment provides less mass
and energy to support a strong turbulent boundary layer. The lack of strong momentum
exchange in the boundary layer reduces compression surface pressure recovery, thus lowering
lift.

Both the laminar and transitional models produced identical lift values, suggesting that at
this altitude, the effect of flow regime on pressure-driven lift may be minimized due to the
already thin atmosphere.
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However, a significant departure from expected trends is that the transitional case produced
the highest friction drag, surpassing even the fully turbulent model. This could be due to
localized shock–boundary layer interactions, which are known to occur in hypersonic flow
over curved or compression surfaces. If captured by SolidWorks Flow Simulation’s transition
model, these interactions could cause intensified shear stress in transitional zones—leading
to spikes in skin friction. Such interactions are highly sensitive to surface curvature, thermal
gradients, and flow alignment, and are known contributors to drag and surface heating in
reentry applications.

Notably, the laminar case achieved the highest L/D at 30 km, which aligns with
expectations. In low-density atmospheres, turbulence tends to be suppressed, and the reduced
energy available to sustain turbulence makes laminar flow more efficient. Additionally,
the low atmospheric density results in lower dynamic pressure and therefore reduced skin
friction—favoring laminar flow in terms of drag minimization.

These findings highlight the sensitivity of aerodynamic performance to flow regime
modeling, especially in the unique atmospheric conditions of Mars. The fully turbulent model
enhances lift but at the cost of higher friction drag, lowering efficiency. The transitional model
provides an ideal balance, especially at moderate altitudes where it can leverage turbulent
benefits without the full penalties. At higher altitudes, laminar flow becomes more efficient,
and turbulence contributes little to performance improvement.

Percent Difference =
|Xsim −Xref|

Xsim+Xref
2

×100 (4.4)

TABLE 4.5. Percent difference between reference values (20 km)

Reference Laminar % Diff Turbulent % Diff Transitional % Diff
CL 0.0342 0.0180 62 0.0185 60 0.0181 61

CDp 0.0039 0.00291 28 0.00291 28 0.00291 28
CD f 0.0013 0.00604 129 0.00638 132 0.00598 129
CDtot 0.0052 0.00895 54 0.00929 57 0.00889 53

L/Dp 8.88 6.19 35 6.34 33 6.21 35
L/D f 26.3 2.99 159 2.90 160 3.03 159
L/Dtot 6.63 2.01 107 1.99 108 2.03 106

TABLE 4.6. Percent difference between reference values (30 km)

Reference Laminar % Diff Turbulent % Diff Transitional % Diff
CL 0.334 0.0191 178 0.0175 180 0.0191 178

CDp .00363 0.0033 9 0.0032 14 0.0033 9
CD f .00266 0.0148 139 0.00147 139 0.0181 149
CDtot .00629 0.0184 97 0.0178 96 0.0214 109

L/Dp 9.2 5.76 46 5.55 49 5.76 46
L/D f 12.554 1.29 163 1.19 165 1.05 169
L/Dtot 5.38 1.05 135 0.982 138 0.89 143
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When comparing the lift-to-drag ratios obtained from the current CFD simulations in
SolidWorks Flow Simulation to the reference values published by the University of Maryland’s
study on the Martian waverider (21), the results are wildly inconsistent, especially in the
context of total aerodynamic efficiency. Tables 4.5 and 4.6 present a detailed comparison of
all key aerodynamic coefficients along with the percent difference of each quantity relative
to the reference case.

The most striking discrepancy appears in the final row of both tables, where the computed
lift-to-drag ratios diverge from the reference values by over 100% in all flow regimes. In
particular, the lift generated in all SolidWorks simulations is significantly lower than the
reference values, with the percent difference in lift more than doubling between 20 km and
30 km altitudes. This increasing disparity with altitude may reflect SolidWorks’ difficulty in
resolving accurate lift forces under extreme low-density conditions, common in the Martian
upper atmosphere, especially when relying on RANS-based turbulence models not originally
designed for such thin flow environments.

One potential explanation for this discrepancy lies in the treatment of the waverider base.
The University of Maryland study have excluded the contribution of the base surface in
their aerodynamic calculations, an omission that can significantly affect drag predictions. In
hypersonic flows, the base of the waverider is a major contributor to pressure drag due to
low pressure recovery and potential flow separation in the aft region. If base drag is excluded
in the reference model but included in the SolidWorks simulations, this would artificially
inflate the drag in the present results and explain the large deviations in CD and L/D values.

Despite these discrepancies, the pressure drag values computed in SolidWorks show
relatively small deviations from the reference, confirming the University of Maryland’s
assumption in which the drag contribution from the waverider base is negligible. In contrast,
the friction drag is consistently over predicted across all altitudes and flow regimes. As
discussed previously, this may stem from SolidWorks Flow Simulation capturing localized
shock–boundary layer interactions, especially near surface discontinuities and sharp gradients.
These interactions are known to cause spikes in skin friction, particularly in high-speed, high-
Reynolds-number boundary layers where laminar-turbulent transition or shock impingement
can intensify wall shear stress.

A particularly insightful observation emerges when only pressure drag is considered in
the lift-to-drag ratio calculation. In this simplified form, the simulated L/Dp values closely
match the total L/D values reported in the reference study, as shown in bold in the tables.
This convergence strongly implies that the discrepancies in L/D are driven almost entirely by
excessive friction drag in the SolidWorks model, rather than differences in pressure-induced
forces. Therefore, the reference study’s simplification of friction drag, possibly due to the use
of inviscid or semi-viscous approximations, may explain why their total L/D values align
more closely with SolidWorks’ L/Dp values rather than with full drag-inclusive results.

This finding underscores an important limitation in comparing viscous-optimized waverider
performance across different CFD frameworks. High-fidelity viscous modeling—especially
in thin planetary atmospheres like Mars—requires not only accurate turbulence modeling but
also careful treatment of wall boundary conditions, thermal loads, and transition behavior, all
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of which can significantly affect shear forces and therefore drag. Furthermore, it highlights
the sensitivity of hypersonic vehicle performance metrics to the treatment of the vehicle’s
aft geometry, which in high-Mach environments, contributes disproportionately to drag and
thermal loading.

While SolidWorks Flow Simulation appears capable of predicting pressure-related aero-
dynamic behavior with reasonable accuracy, its estimates for friction drag may be overly
conservative, leading to underpredicted lift-to-drag ratios. This work supports the use of
SolidWorks for preliminary hypersonic design and entry analysis, but also emphasizes the
need for supplementary validation using higher-fidelity solvers or experimental data when
precise drag breakdown and heat transfer characteristics are critical for mission design. Further
investigation into mesh resolution near boundary layers and advanced wall modeling could
help reduce these discrepancies in future work.
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5. Conclusion

This project presented a computational fluid dynamics (CFD) analysis of a viscous-
optimized conical waverider designed for hypersonic entry into the Martian atmosphere. The
waverider concept, originally introduced by Terence Nonweiler and later refined by Bowcutt,
Anderson, and others, has long been recognized for its potential to achieve high lift-to-drag
ratios (L/D) by maintaining an attached shock wave along the leading edge. This design
principle enables superior aerodynamic efficiency, especially in high-Mach, high-altitude
flight regimes, where traditional blunt-body configurations become drag-dominated and offer
limited control.

The primary objective of this study was to evaluate the aerodynamic performance of such a
waverider under realistic Martian entry conditions and to assess the capabilities and limitations
of using SolidWorks Flow Simulation as a CFD tool for hypersonic planetary entry modeling.
SolidWorks, while not traditionally used for hypersonic flow analysis, offers a user-friendly
and CAD-integrated platform suitable for preliminary aerodynamic investigations, particularly
in educational or early-phase design settings.

The waverider model was based on previous work of a viscous-optimized design developed
at the University of Maryland. The simulations included modeling hypersonic flow at Mach
19 across two altitudes representative of Mars’ upper atmosphere, 20 km and 30 km, across
three different flow regimes: laminar, turbulent, and transitional. These conditions were
selected to evaluate how atmospheric density and boundary layer development influence the
lift, drag, and overall aerodynamic efficiency of the vehicle.

The CFD results provided several key insights:
• At 20 km altitude, the higher atmospheric density enabled greater aerodynamic force

generation. The fully turbulent model yielded the highest lift due to increased momentum
mixing in the boundary layer, which enhances pressure recovery on the lower surface.
However, this came at the cost of significantly increased skin friction drag, resulting in
the lowest L/D ratio among the three regimes.

• The transitional flow regime consistently delivered the best balance between lift and
drag, achieving the highest L/D ratios at both altitudes. This outcome suggests that
controlled boundary layer transition, whether natural or induced, can offer performance
benefits by energizing the flow without incurring the full penalties of turbulence.

• At 30 km altitude, all aerodynamic forces were significantly reduced due to the thinner
atmosphere. Interestingly, the turbulent model performed worse in terms of lift generation,
possibly because the reduced atmospheric density weakens turbulent mixing. The laminar
case exhibited the highest L/D at this altitude, demonstrating that turbulence may not
be beneficial in extremely low Reynolds number environments.

• Friction drag was the dominant contributor to total drag in nearly all simulation cases,
with the pressure drag remaining nearly constant. This result underscores the importance
of accurately modeling wall shear stress in hypersonic CFD, particularly when using
simulation tools that rely on wall functions or approximate turbulence models.
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• Comparing the SolidWorks results to the University of Maryland reference data revealed
notable discrepancies in total drag and L/D values. While pressure drag closely matched
the reference data, friction drag was consistently overpredicted. This may be attributed
to SolidWorks’ tendency to overestimate shear stress due to coarse mesh resolution near
walls or limitations in turbulence and transition modeling.

• A particularly insightful result emerged when only the pressure drag was used to
compute L/D. In this case, the computed ratios more closely matched the reference
values, suggesting that the main source of deviation lies in the overprediction of skin
friction rather than in the resolution of the pressure field. This finding highlights the need
for careful interpretation of friction drag in simulations conducted using general-purpose
CFD software.

Overall, this study demonstrates that SolidWorks Flow Simulation can provide reasonable
estimates for hypersonic aerodynamic behavior in Martian conditions, particularly in terms
of pressure-related forces. The software’s limitations are more evident in its handling of skin
friction and transitional flow dynamics, which are critical in low-density environments like
Mars. Nevertheless, for preliminary design studies, parametric comparisons, or educational
purposes, SolidWorks can serve as a valuable tool. The research also reinforces several
broader themes in hypersonic vehicle design:

• Viscous effects are not just secondary corrections to inviscid models—they are integral
to accurate performance prediction in planetary entry scenarios.

• Boundary layer transition modeling can have a profound impact on drag prediction and,
consequently, on mission-critical parameters such as entry heating, deceleration rates,
and trajectory shaping.

• Hypersonic CFD must balance model fidelity, computational cost, and solver capability.
In design phases where high accuracy is not yet required, accessible platforms like
SolidWorks can bridge the gap before high-fidelity tools such as DPLR, US3D, or
FUN3D are employed.

5.1 Recommendations for Future Work

This investigation opens the door for several areas of future research:
• Mesh refinement studies should be conducted to assess the sensitivity of wall shear

stress and boundary layer resolution to grid density near the surface, particularly around
leading edges and compression surfaces.

• Alternative turbulence models, such as k -ω SST or Spalart-Allmaras, may be explored
to determine whether improved friction drag predictions can be achieved.

• Higher-fidelity solvers that support advanced transition modeling and real gas effects
should be used to validate the results obtained here. This would help determine how much
of the observed discrepancy is due to solver limitations versus modeling assumptions.

• Parametric geometry variations, including angle of attack, planform curvature, and
leading-edge bluntness, could be studied to identify optimal configurations for Martian
entry and aero-gravity assist missions.
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• Thermal analysis coupling with structural materials and TPS (thermal protection sys-
tems) could extend the model to assess survivability, not just aerodynamic performance.
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Appendix A.
Matlab Code for % Difference Calculations

clc
clear
close all
%% 20

rho=9.25e-03;
u=3225.708;
L=[.502 .514 .503];
D_p=[.081 .081 .081];
D_f=[.168 .177 .166];
D_tot=D_p+D_f;

S=576.85786/1000ˆ2;
Q=.5*rho*uˆ2;

CL=L/(Q*S);
CD_p=D_p/(Q*S);
CD_f=D_f/(Q*S);
CD_tot=CD_p+CD_f;

LD_p=CL./CD_p;
LD_f=CL./CD_f;
LD=CL./CD_tot;

ref=[.0342 .00515-.0013 .0013 .00515 .0342/(.00515-.0013)
.0342/.0013 6.63]';

x=[CL; CD_p; CD_f; CD_tot; LD_p; LD_f; LD;];
xref=repelem(ref,1,3);
y=(xref+x)/2;
PerD=abs(xref-x)./y*100;
%% 30

rho=1.34e-03;
u=4051.554;
L=[.121 .111 .121];
D_p=[.021 .02 .021];
D_f=[.094 .093 .115];
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D_tot=D_p+D_f;

S=576.85786/1000ˆ2;
Q=.5*rho*uˆ2;

CL=L/(Q*S);
CD_p=D_p/(Q*S);
CD_f=D_f/(Q*S);
CD_tot=CD_p+CD_f;

LD_p=CL./CD_p;
LD_f=CL./CD_f;
LD=CL./CD_tot;

ref=[.334 .00363 .00266 .00629 9.2 12.554 5.38]';
x=[CL; CD_p; CD_f; CD_tot; LD_p; LD_f; LD;];
xref=repelem(ref,1,3);
y=(xref+x)/2;
PerD=100*abs(xref-x)./y;
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