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ABSTRACT 

 

A Study of the Most Efficient Earth-to-Titan Orbit Trajectory Using the N-Body Problem 
 

Christian Ancheta 

This paper explores the theory of sending a satellite to orbit Saturn’s moon, Titan, using the N-
body problem. The study examines what is the most efficient flight path to entire the Titan 
atmosphere, and what makes that specific flight path efficient. The equations of relative motion 
and related orbital mechanics equations are used to accomplish these objectives. The N-body 
simulation is run in MATLAB and simulates the Solar System as the satellite makes its path.  
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Nomenclature 
a  = semi-major axis 
ω  = angular velocity 
𝑒!  = eccentricity 
G  = Universal Gravitational Constant 
h  = angular momentum 
M  = Mass 
Q  = Spacecraft 
r  = radius 
SOI  = Sphere of Influence 
v  = velocity 
𝑣"  = arrival velocity 
𝑣#  = departure velocity 
𝑣$  = excess velocity 
δ  = turn angle 
𝜋1  = mass ratio 
ϕ%  = angle of arrival velocity 
ϕ#  = angle of departure velocity 
θ  = true anomaly 
θinitial = Initial Phase Angle 
θfinal  = Final Phase Angle 
nplanet = mean motion 
τ  = period 
t12  = Synodic Period 
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1.0 Introduction 
1.1 Motivation 
 

The current problem is developing the most efficient flight path from Earth to orbit Titan 
using N-body simulations. Titan is the largest of Saturn’s 82 moons. Titan is believed to have the 
potential to sustain life, being a celestial body that possesses lakes and seas filled with visible 
fluid. The distance between the Sun and Titan is approximately 1.4 billion km, meaning the 
sunlight is not as present as on Earth [1]. Multiple missions prior, such as the Cassini spacecraft, 
have provided a significant amount of information that allows for a reason for further study and 
exploration on Titan.   

There have been plenty of studies about the two-body problem, the three-body problem, 
and the four body problem for transfer design. However, the question has not been asked if it is 
possible to create an n-body simulation for an efficient flight path from Earth to Titan. This 
paper will uncover the answer to this problem. 
 
1.2 Literature Review 
 
1.2.1 Stability of P-type orbits around stellar binaries: An extension to counter-rotating orbits 
 

Chaelin Hong and Maurice H. P. M. van Putten explored the idea of  counter-rotating 
planetary orbits around stellar binaries. The motivation behind this concept is that an 
understanding of circumbinary systems can be reached. In order to reach this understanding, 
Hong and van Putten first discuss the initial conditions of P-type orbits. These conditions are the 
positions of three bodies, which all have a coplanar configuration. Studying the dynamical 
stability of this three-body problem, initial distance and angle can be found  in order to answer if 
the orbit is stable or unstable. The equations of motion are explored next in the two-body and 
three-body problems. The importance of these referenced problems is to establish which 
equations are to be used in order to accurately determine the stability of the orbits. Using an N-
body simulation in MATLAB, the results of the study show an increase in the upper critical orbit 
(UCO) and the lower critical orbit (LCO), which are the orbital radius of the third object. Hong 
and van Putten concluded that counter rotating orbits are more stable than corotation orbits. This 
assessment is essential in uncovering the habitability based on the P-type orbit stability changes 
[2]. 

 
1.2.2 Numerical multistep methods for the efficient solution of quantum mechanics and related 
problems 
 

Zacharias A. Anastassi and Theodore E. Simos present an in-depth study of linear 
multistep methods and hybrid methods. The difference between linear multistep methods and 
hybrid methods is that the main objective of the hybrid method is to retain the amount of steps in 
the method while optimizing it, whereas linear multistep methods use additional approximations 
to increase algebraic order. Both methods were tested on the Schrödinger equation, the N-body 
problem, the inhomogeneous equation, the nonlinear equation, and the two-body problem that 
uses various low eccentricities. These five systems of ordinary differential equations (ODE) were 



2 
 

tested to see if they have oscillatory solutions. Each ODE system had a chart that displayed the 
efficiency for each method. The mathematical steps to each system were presented with the 
theory behind each of the five systems of ODEs. Anastassi and Simos concluded that high order 
of fitting provides efficient data for the Schrödinger equation integration. They also concluded 
that the method for an oscillatory problem, such as the N-body problem, needs to have the key 
aspect of a long interval of periodicity for integration. The third point the authors established was 
that the high order fitted explicit symmetric method was the most efficient for the 
inhomogeneous equation, nonlinear equation and the low eccentricity two-body problem [3]. 
 
1.2.3 Dynamics of the terrestrial planets from a large number of N-body simulations 
 

Rebecca A. Fischer and Fred J. Ciesla examine the dynamic properties of the Solar 
System. The incentive behind this research was to understand historical accretion ranges of the 
planets under various dynamic circumstances. The second objective in this research was to 
evaluate how applicable N-body simulations are in understanding the formation of Earth. In 
order to accomplish this task, Fischer and Ciesla performed 100 N-body simulations of the planet 
accretion. This is accomplished by calculating the gravitational interactions of celestial bodies 
that evolve into a planetary formation. The orbital configurations that were tested were Jupiter 
and Saturn with two different cases, The first is the Eccentric Jupiter and Saturn (EJS) case, 
which are planets current orbits. The second is the Circular Jupiter and Saturn Case (CJS), where 
both planets are given non-eccentric orbits. The N-body simulations resulted in accurate values 
for the EJS configuration. Fischer and Ciesla concluded that the formation of Earth is correlated 
with the late veneer mass and the timescale of Earth. This study helps promote a deeper 
understanding and method development for N-body simulations [4]. 
 
1.2.4 Plasma environment at Titan’s orbit with Titan present and absent 
 

Wei, Russell, Wellbrock, Doughert, and Coates performed a study on Titan’s plasma 
environment when Titan is present and absent. The objective behind this study was to understand 
the influence of the plasma environment on Titan. This was done by examining the magnetic 
field measurements that were obtained from the Cassini magnetometer and the Cassini plasma 
spectrometer. The authors concluded that Titan being present displays an effective impact on its 
plasma environment [5]. 
 
1.2.5 An empirical model for the plasma environment along Titan’s orbit based on Cassini 
plasma observations 
 

Todd Smith and Abigail M. Rymer modeled the plasma environment along Titan’s orbit. 
Titan was identified as having a dense atmosphere of nitrogen that Cassini observed while in 
Saturn's atmosphere. Smith and Rymer provided evidence that Saturn’s magnetopause was 
impacted by the location of Titan. The technique to detect ionization particles leaving Titan 
depends on the surrounding plasma environment. There were four plasma categories formed 
after the analysis of 54 Titan interactions. The categories are the plasma sheet, lobe-like, 
magnetosheath, and bimodal plasma. Smith and Rymer created an empirical model based upon 
Saturn local time that  applies the probability of each category [6]. 
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1.2.6 Titan aerogravity-assist maneuvers for Saturn/Enceladus missions 
 

Ye Lu and Sarag J. Saikia developed a design method for a Saturn and Enceladus mission 
using Titan aerogravity assist (AGA) maneuvers. AGA refers maneuvers where the spacecraft 
uses a hyperbolic trajectory to enter and exit the atmosphere. This study can be broken down into 
three sections: arrival, atmospheric flight, and post-orbit. When designing the trajectory, research 
needs to be done on Titan. Titan’s orbit about Saturn is almost circular with near zero inclination 
and axial tilt to Saturn. This allows for a spacecraft to interact with Titan at different points. The 
AGA maneuver will have an impact on the excess velocity that is dependent on the direction of 
the orbital velocity. The two missions have differences in the approach, however, Lu and Saikia 
concluded that AGA is possible for both a Saturn mission and an Enceladus mission. The 
promising aspect of this study is the foundation of mission design and trade analysis as another 
method for interplanetary travel, instead of other methods such as gravity assists or moon tours 
[7]. 
 
1.2.7 Reduction of Saturn Orbit Insertion Impulse using Deep-Space Low Thrust 
 

Elena Fantino, Roberto Flores, Jesus Pelaez, and Virginia Raposo-Pulido establish a 
system to reduce the hyperbolic excess velocity to Saturn using electric propulsion. The motive 
behind this study is that understanding planets such as Jupiter and Saturn can potentially lead to 
understanding how the Solar System was formed. The missions dedicated to these planets require 
a substantial amount of propellant, thus, finding the most efficient flight path while searching for 
alternative propulsion systems would reduce costs greatly. The trajectory that was designed is an 
Earth to Saturn path that involves a gravity assist at Jupiter. The strategy to reduce excess speed 
from Jupiter to Saturn is a low-thrust (LT) transfer. The mission requirements for this study 
involved the transfer time from Earth to Jupiter to be within a three year time frame and the post 
gravity assist thrust should not last more than four years. The authors obtained results that would 
have the lowest propellant budget and had a total mission time of 13 years. The assumption of 
the spacecraft had a mass of 1000 kg. This design presents possible trajectories for interplanetary 
travel and introduces an inexpensive strategy to go to Saturn [8]. 
 
1.2.8 The spatial Hill four-body problem I—An exploration of basic invariant sets 
 

In Jaime Burgos-Garcia, Abimael Bengochea, and Luis Franco-Perez’s study of the 
spatial Hill four-body problem, the authors examine the basic invariant sets. Since the spatial Hill 
three-body problem is insufficient in modeling dynamics of specific celestial bodies, the 
objective behind this research is to build upon the three-body problem. This paper introduces the 
restricted four-body problem (R4BP), where three points with gravitational forces come into 
contact with a massless particle. The equations of motions involved have the assumption that the 
three points move in circular orbits and have a constant angular velocity. The invariant sets are 
examined and were computed numerically, reaching a possibility that polar orbits bifurcate. The 
authors developed the study of the four-body problem that has an emphasis on equilibrium points 
and symmetric periodic orbits. The symmetric periodic orbits were numerically solved with 
boundary value problems. The Jacobi constant was found to have multiple bifurcations at various 
values for mass. It was determined that this study needs further development to reach a more 
comprehensive understanding [9]. 
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1.2.9 Comparisons between the circular restricted three-body and bi-circular four body problems 
for transfers between the two smaller primaries 
 

Allan Kardec de Almeida Junior and Antonio Fernando Bertachini de Almeida Prado 
discuss the distinctions between the circular restricted three body problem (CR3BP) and the bi-
circular four body problem (4BP) and develop a method that measures those differences. One 
major factor of this study is the inclusion of the Sun in the equations of motion. The four systems 
that were looked at were the Sun-Earth-Moon system, the Sun-Mars-Phobos system, the Sun-
Saturn-Titan system, and the Sun-Ida-Dactyl system. The orbit transfer for all four systems 
involves a bi-impulsive maneuver, where two impulses are initiated, the first is at the main 
celestial mass, and the second is at a certain point in the orbit of the corresponding moon. The 
authors concluded that the shorter the distance of the spacecraft from the Earth-moon barycenter, 
the magnitude of the perturbation is lower. The Sun-Ida-Dactyl system had the fewest 
distinctions between the CR3BP and the 4BP, while the Sun-Mars-Phobos system had the most 
differences. The analysis drawn from these results is that the higher the cumulative mass of the 
celestial bodies, the more differences are found [10]. 
 
1.2.10 Orbital dynamics in the planar Saturn-Titan system 
 

In Euaggelos E. Zotos’ paper “Orbital dynamics in the planar Saturn-Titan system”, 
Zotos explores the orbital dynamics of varying bodies in orbit about the Saturn and Titan system. 
The research involves understanding how escaping orbits is not a concept that has been 
thoroughly studied. The model used for this project was the planar circular restricted three-body 
problem (PCRTBP). This involves two primaries with circular orbits and a particle that interacts 
with the primaries on the same plane. The variable that is changing in this study is the Jacobi 
constant. The first conclusion Zotos drew is that Jacobi constants with high values correlate with 
collisional orbits. Jacobi constants with low values correlate to orbits escaping. The second 
conclusion drawn is that an increasing Jacobi constant means an increasing collisional time, 
while a decreasing Jacobi constant lowers the average escape time. The results and conclusions 
presented further advances the current information about the Saturn-Titan system and its 
corresponding orbital dynamics [11]. 
 
1.2.11 Generalizing the restricted three-body problem. The Bianular and Tricircular coherent 
problems 
 

In Gabern and Jorba’s paper “Generalizing the restricted three-body problem. The 
Bianular and Tricircular coherent problems”, the authors create two models with the Sun, Jupiter, 
Saturn and Uranus and have a particle interact with the gravitational forces. The reason behind 
this study is that the restricted three-body problem is not as accurate as it does not include 
specific conditions. The first dynamic model is the Sun-Jupiter-Saturn system. The second model 
is the Sun-Jupiter-Saturn-Uranus system. The N-planetary problem is examined and is defined as 
a planar problem N bodies revolve around the main body in orbit. Simulations were run for the 
N-body problem for the motion of an asteroid in the models. Quasi-periodic solutions have been 
found for both the Sun-Jupiter-Saturn system and the Sun-Jupiter-Saturn-Uranus system. Gabern 
and Jorba state that the models created still resemble the restricted three-body problem too 
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closely, and cannot be considered as an alternative. The models are to be viewed as an 
optimization and simplification  of certain aspects of the three-body problem [12]. 
 
1.2.12 Reflections on the Hohmann transfer 
 

In Meile, Ciarcia, and Mathwig’s paper “Reflections on the Hohmann Transfer”, the 
authors complete an in-depth study of the Hohmann transfer maneuver. There are important 
properties that are required to understand the transfer in itself. The first assumption made is that 
the orbits are circular and coplanar. The second assumption made is that there is a singular 
gravitational force. The third assumption is that the departure and arrival of the spacecraft are 
assumed to have circular motions. The final assumption is that the velocity impulses are 
tangential and exclusively for the terminal points. The velocity impulses accelerate for an 
ascending Hohmann transfer, whereas the descending transfer the impulses are braking. The 
inclination is affected for an ascending transfer as well, where it is positive everywhere except 
the endpoints, where it does not exist. An optimization of the Hohmann transfer was also proven, 
where the assumption is based upon having non-tangential velocity impulses at departure and 
arrival. The authors concluded that there is a maximum point on the inclination path. It was also 
determined that for the Hohmann transfer, the spacecraft velocity and the local circular velocity 
are the same at departure, mid-radius, and arrival [13]. 
 
1.2.13 Summary of References 
 
 The references discussed involve topics such as plasma on Titan, four-body problems, N-
body problems, and trajectory planning. Each topic was specifically chosen to broaden the 
understanding and provide the mission objective direction. An understanding of the two-body, 
three-body and four-body problems are essential to understanding the N-body problem. The 
research provided mentions how accurate the N-body problem works and how accurate it can be.  
 
1.3 Project Proposal 
 

The objective of this study is to develop an efficient orbital transfer from Earth to orbit 
Titan using N-body simulations. The report will go in-depth on two main topics. The first is to 
design and calculate the ideal flight path from Earth to Titan’s sphere of influence. The second is 
to apply this design using N-body simulations. These simulations will include major elements of 
the solar system in order to accurately predict a flight path. To execute the N-body problem, the 
simulations will be run in MATLAB. 
 
1.4 Methodology 
 

The process of launching a spacecraft from Earth is a careful and meticulous process that 
requires an agenda. This project will be organized in three main segments. The first segment will 
be the research phase, where the historical data is collected and utilized to have a further 
understanding of this project. The second segment will consist of trajectory designs and 
calculations of the celestial bodies involved. The design phase will determine the most efficient 
method to send a spacecraft to orbit Titan. The third segment, which is predicted to be the most 
time-consuming, will handle the n-body simulations of the intended celestial bodies. These N-
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body simulations will be run in MATLAB and incorporate specific characteristics to accurately 
portray the flight path. 
 

2.0 Trajectory Planning 
 
2.1 Measures of Merit 
 

To achieve the objective of the mission of finding the most efficient Earth to Titan 
trajectory, the exact method requires calculations and planning. The efficiency of the mission is 
dependent on how many maneuvers the flight would have and how much time the spacecraft 
takes to get to Titan’s orbit. 
 
2.2 Methods 
 

There will be nine paths that will be closely examined for this study, as shown in Fig. 3.1. 
These nine paths were chosen based on inspiration from the Cassini-Huygens mission. 
 

 
Figure 2.1 Trajectory paths 

 
2.3 Time Frame 
 

The ideal frame for the study is for Saturn and Earth to be at a true anomaly of 180 
degrees, which would allow for simpler calculations. Another factor for this frame would be for 
Saturn and Earth to be within a closer distance of each other for a more fuel-efficient orbit. 
 
2.4 Assumptions 

 
 In order to design a trajectory that can be understood, there will be assumptions made. 
The first is to assume all the planetary orbits are circular. The second assumption is that 
inclination will be the same, meaning the orbital bodies all lie on the same Z-plane. The third 
assumption will be assuming that the flight path for each transfer is 180 degrees.  
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3.0 Astrodynamics 
 
3.1 Orbital Mechanics 
 
3.1.1 Basics of Orbital Mechanics 
 

The study of orbital mechanics focuses on problems concerning spacecraft motions. The 
solutions resolving these issues deal with specific equations of motion that involve Newton’s 
laws of motion and gravitation. Newton’s law of gravitation describes the force of gravity as two 
bodies with a distance between the two, written as 
 
𝐹! 	= 	𝐺 "&"'

#'
           (3.1) 

 
3.1.2 Orbital Parameters 
 
The mass of the sun is represented as  
 
𝑀$%& 	= 	1.989	𝑥	10'(	𝑘𝑔 
 
The Universal Gravitational Constant is 
 

𝐺	 = 	6.67	𝑥	10)*( 	
𝑘𝑚'

𝑘𝑔𝑠* 

Table 3.1 Mass of each planet 
Planet M (kg) 

Venus 4.87	𝑥	10*+ 

Earth 5.97	𝑥	10*+ 

Mars 6.42	𝑥	10*' 

Jupiter 1.898	𝑥	10*, 

Saturn 5.683	𝑥	10*- 
 

Table 3.2 Radius of planets 
Planet r (km) 

Venus 108.2	𝑥	10- 
Earth 149.6	𝑥	10- 

Mars 228.0	𝑥	10- 

Jupiter 778.5	𝑥	10- 

Saturn 143.2	𝑥	10, 
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3.2 Relative Motion Equations 
 
There are required parameters to calculate prior to making the calculations for the trajectory to 
Titan. These are determined by the equations of relative motion. 
 

𝑣.$%& /01&23 = 7
45()*
#+,-*./

           (3.2) 

 
Table 3.3 Circular orbital velocity 

Planet Velocity w/ respect to the Sun v (km/s) 

𝑣.$%& 62&%$ 35.016 

𝑣.$%& 71#38 29.7793 

𝑣.$%& 51#$ 24.122 

𝑣.$%& 9%/:32# 13.0542 

𝑣.$%& ;13%#& 9.6252 
 

𝑎.<= <> = ?
*
(𝑟<= + 𝑟<>)         (3.3) 

 
Equation (3.2) represents the circular orbital velocity of the given planet that is relative to the 
sun. Equation (3.3) is a method to calculate the semi-major axis, which is the mean distance 
between one celestial body and another body. 
 
3.3 Sphere of Influence 
 

𝑟;@A 	= 	 𝑟/01&23	 =
5+,-*./

5()*
>
*/D

         (3.4) 

 
Table 3.4 Sphere of influence 

Planet SOI (km) 

Venus 616289.732 

Earth 924415.913 

Mars 577424.152 

Jupiter 48208452.07 

Saturn 54743849.22 

 
The Sphere of Influence (SOI) is critical to understand the distance required for the spacecraft to 
leave the planet’s gravitational influence, which is calculated with Eq. (3.4). 
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4.0 Interplanetary Transfer 
 

4.1 Introduction to Hohmann Transfers 
 

The Hohmann transfer was developed in 1925 by Wolfgang Hohmann. In order to be fuel 
efficient, this method was developed for transferring one spacecraft from one circular orbit to 
another circular orbit. The Hohmann transfer is critical to understand in order to grasp the 
concept of an interplanetary flyby. The beginning of a transfer is the same process for the 
interplanetary flyby. The objective of the beginning steps is to obtain the arrival velocity of the 
spacecraft with respect to the sun, 𝑣1

E
.

$%& .  
 

 
Figure 4.1 Sun reference frame 

 
Fig. (4.1) displays the Sun reference frame, where Planet A is where the spacecraft departs and 
Planet B is where the spacecraft approaches. Sun reference frame is defined as Sx, Sy, and Sz. 
 
4.2 Interplanetary Transfer Approach 
 

In order to fully understand the mission, the process of interplanetary flybys can be 
broken into three phases: departure, transit, and arrival. Fig. (4.2) shows the reference frame for 
an Earth to Saturn transfer.  
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Figure 4.2 Earth to Saturn diagram 

4.2.1 Transit Phase 
 
The transit phase begins when the spacecraft exits the SOI of the planet it departs from. In this 
specific example, the transit phase will begin once the spacecraft leaves Earth’s SOI. The 
objective of the transit phase is to find the hyperbolic excess speed, v∞. 
 

 
Figure 4.3 Earth to Saturn velocity visual 

 
The first step in this stage is to find the circular orbit speeds of both planets using Eq. (3.2), in 
this case, Earth and Saturn. According to Table 3.3, the circular orbit velocities are: 
 

𝑣.$%& 71#38 		= 		29.779	km/s	𝐒𝐲 
 

𝑣.$%& ;13%#& 		= 		−9.885	km/s	𝐒𝐲 

 
The next step of the transit phase is to calculate the velocity of the spacecraft departing Earth, 
𝐯F
E

.
$%& . 



11 
 

 

𝐯F
E 						=	.

$%& GH𝐺𝑀;%&I J7
*
#01

− ?
1.01 03K Sy       (4.1) 

 
Using Eq. (3.3) to solve for 𝑎.71#38 ;13%#&,  
 

𝑎.71#38 ;13%#& =
1
2
(𝑟71#38 + 𝑟;13%#&) 

𝑎.71#38 ;13%#& =
1
2
(149.6	𝑥	10- + 143.2	𝑥	10,) 

𝑎.71#38 ;13%#& = 	7.908	𝑥	10G km 
 
Substituting the values into Eq. (3.2),  
 

𝐯F
E 						=	.

$%& 364233.8535	𝑥 L7 *
?+H.-	I	?(4

− ?
,.H(G	I	?(5

M Sy 

𝐯F
E 						=	.

$%& + 40.073	𝑘𝑚/𝑠	𝐒𝐲	 
 
𝐯J6 is the velocity of the spacecraft departing Earth with respect to the Sun. 
  
𝐯F
E

.
$%& 						= 		 𝐯.$%& /01&23 	+ 	 𝐯F

E 	.
/01&23        (4.2) 

 
𝐯F
E 	=			.

/01&23 𝐯F
E 	.

$%& −	 𝐯.$%& /01&23        (4.3) 
 

𝐯F
E 	= 	 𝐯J6.

/01&23           (4.4) 
 
Using Eq. (4.2) – (4.4), the 𝐯J-can be solved with the values of the circular orbital velocity of 
Earth and the spacecraft velocity departing Earth.  
 
𝐯F
E

.
$%& 						= 		 𝐯.$%& 71#38 	+ 	 𝐯F

E 	.
71#38  

 
𝐯F
E 	=			.

71#38 𝐯F
E 	.

$%& −	 𝐯.$%& 71#38 
        

𝐯F
E 	=			.

71#38 40.073	𝑘𝑚/𝑠	𝐒𝐲 − 	29.779	𝑘𝑚/𝑠	𝐒𝐲 

 
𝐯F
E 	= 	10.294	𝑘𝑚/𝑠	𝐒𝐲	.

71#38  
 

𝐯F
E 	= 	 𝐯J6.

71#38  
 
𝐯J6 	= 	10.294	𝑘𝑚/𝑠	𝐒𝐲 
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The next step of the transit phase is to calculate the velocity of the spacecraft approaching 
Saturn, 𝐯1

E
.

$%& . 
 

𝐯1
E 						=	.

$%& GH𝐺𝑀;%&I J7
*
#03

− ?
1.01 03K Sy       (4.5) 

𝐯1
E 						=	.

$%& GH𝐺𝑀;%&I J7
*

#7-/)8*
− ?

1.9-8/: 7-/)8*K Sy  

 
Substituting the values into Eq. (3.2),  
 

𝐯1
E 						=	.

$%& 364233.8535	𝑥 L7 *
?+'.*	I	?(;

− ?
,.H(G	I	?(5

M Sy 

𝐯1
E 						=	.

$%& − 4.186	𝑘𝑚/𝑠	𝐒𝐲	 
       
 𝐯J- is the velocity of the spacecraft approaching Saturn with respect to the Sun. 
 
𝐯1
E

.
$%& 						= 		 𝐯.$%& /01&23 	+ 	 𝐯1

E 	.
/01&23        (4.6) 

 
𝐯1
E 	=			.

/01&23 𝐯1
E 	.

$%& −	 𝐯.$%& /01&23        (4.7) 
 

𝐯1
E 	= 	 𝐯J-.

/01&23           (4.8) 
 
Using Eq. (4.6) – (4.8), the 𝐯J-can be solved with the values of the circular orbital velocity and 
the spacecraft velocity approaching Saturn.  
 
𝐯1
E

.
$%& 						= 		 𝐯.$%& ;13%#& 	+ 	 𝐯1

E 	.
;13%#&  

 
𝐯1
E 	=			.

;13%#& 𝐯1
E 	.

$%& −	 𝐯.$%& ;13%#& 
        

𝐯1
E 	=			.

;13%#& − 4.186	𝑘𝑚/𝑠	𝐒𝐲 −	(−9.6252	𝑘𝑚/𝑠)	𝐒𝐲 

 
𝐯1
E 	= 	5.4388	𝑘𝑚/𝑠	𝐒𝐲	.

;13%#&  
 

𝐯1
E 	= 	 𝐯J-.

;13%#&  
 
𝐯J- 	= 	5.4388	𝑘𝑚/𝑠	𝐒𝐲 

 
4.2.2 Rendezvous Phase  
 
Once the spacecraft enters the orbit of the approaching planet, the spacecraft will either 
rendezvous or perform a flyby. In order to do this, the flyby hyperbola needs to be defined with a 
given altitude, which would allow eccentricity, 𝑒8, to be solved for.  
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𝑒8 	= 	1	 +	 #+K<'

45+,-*./
          (4.9) 

 
Eq. (4.9) is used to find the eccentricity of the flyby hyperbola. The radius will have a range of 
values to understand the relationship between the radius and the eccentricity. The eccentricity is 
critical in solving for the turn angle, 𝛿, which affects the departure angle, ϕF. Eq. (4.10) 
represents the angle between the departure velocity and the arrival velocity with respect to the 
Sun reference frame. Eq. (4.11) is the angle between the departure velocity and the arrival 
velocity of the target planet.  
 
 
𝛿 = 2𝑠𝑖𝑛)? =?

2
>          (4.10) 

 
ϕF 	= 	ϕ1 	+ 	𝛿          (4.11) 
 
After arriving at the planet, the spacecraft will make a flyby at a calculated departure angle. 
Similar to Eq. (4.6) and (4.7), finding the departure velocity of the flyby can be solved with Eq. 
(4.12) - (4.15).  
 
𝐯FL
E

.
$%& 						= 		 𝐯.$%& /01&23 	+ 	 𝐯FL

E 	.
/01&23        (4.12) 

 
𝐯FL
E 	=			.

/01&23 𝐯FL
E 	.

/01&23 −	 𝐯.$%& /01&23       (4.13) 
 

𝐯FL
E 	= 		 𝐯J6= 	.

/01&23           (4.14) 
 
𝐯J6= 	= 	 𝑣J-𝑐𝑜𝑠MSy −	𝑣J-𝑐𝑜𝑠M Sx        (4.15) 
 
Eq. (4.16) is the change in velocity between the spacecraft departure velocity and the spacecraft 
arrival velocity with respect to the sun. 
 
∆𝐯	 = 	 𝐯FL

E
.

$%& 	− 	 𝐯1
E

.
$%&          (4.16) 

 
The final steps are to calculate specific values of the flyby departure trajectory. The first is 
angular momentum, ℎ*, where v is the velocity tangent to the ellipse. The velocity that is tangent 
to the ellipse in the scenario would be in the Sy direction. 
 
ℎ* 	= 	 𝑟/01&23𝑣N          (4.17) 
 
The second value to calculate would be the magnitude of the velocity, 𝑣*, which is crucial for the 
energy equation, Eq. (4.19).  
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𝑣* 	= 	 W 𝐯FL
E

.
$%& W          (4.18) 

 

𝑣** = 𝐺𝑀$%& J
*

#+,-*./
− ?

1'
K         (4.19) 

 
Eq. (4.20) represents the eccentricity of the flyby hyperbola upon departure. Eq. (4.21) is the 
orbit equation which can be manipulated into Eq. (4.22) to find the angle between the transfer 
ellipse and the perihelion.  
 
 

𝑒* = 71 − 8''

1'45()*
          (4.20) 

 
𝑟/01&23 	= 	

8''

45()*(?P2' QRS N')
         (4.21) 

 

cos 𝜃* 	= 	
8''	)	#+,-*./45()*
#+,-*./45()*2'

         (4.22) 

 

 
Figure 4.4 Saturn flyby trajectory  

 
Fig. (4.4) shows the purpose of the calculations, to manipulate the flyby trajectory by having an 
ideal approaching velocity, which is critical in designing the next flyby departure velocity. 
 
4.3 Rendezvous Opportunities 
 
For an interplanetary transfer to succeed, the timing of the launch needs to be correct. This 
process involves determining how long it will take for the spacecraft to arrive and when it should 
leave based on the position of the planets. 
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Figure 4.5 Earth to Saturn rendezvous 

 
4.3.1 Initial Phase  
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Figure 4.6 Earth to Saturn departure 

 
 

𝜃:&:3:10 is the required angle for the planets to have between each other to have an arrival at the 
line of apses.  
 
𝜃:&:3:10 	= 	𝜋	 −	𝑛*𝑡?*         (4.23) 
 
𝑛?	and 𝑛* are the mean motions of the planets, in this case, 𝑛?	and 𝑛* are Earth and Saturn, 
respectively.  
 

Table 4.1 Orbital period of planets 
Planet Orbital Period (𝑇<01&23) 
Venus 225.0 
Earth 365.256 
Mars 687.0 

Jupiter 4333.0 
Saturn 10759.0 
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𝑛<01&23 	= 	
*U

V0,-*./
          (4.24) 

 

𝑛71#38 	= 	
2𝜋

𝑇71#38
 

 

𝑛71#38 	= 	
2𝜋

365.256 

 
𝑛71#38 	= 	 .0172 rad/day 
  
Using Eq. (4.24) and Table 4.1, the mean motions of Earth can be found to be .0172 rad/day and 
Saturn can be found to be 5.8399 x 10-4 rad/day. The next step to solve Eq. (4.23) would be to 
solve for the synodic period, which is given by: 
 

𝑡?* 	= 	
U

WX()*
=Y&PY'

*
>
'/*

         (4.25) 

 
R1 and R2 represent the radius of the planets. Plugging in the values for an Earth and Saturn 
synodic period, t12 is 2.2200 x 103 days. Substituting n2 and t12 into Eq. (4.23),  
 
𝜃:&:3:10 	= 	𝜋	 −	(5.8399	x	10)+	rad/day)(2.2200	x	10'	day)  
 
𝜃:&:3:10 	= 	𝜋	 − 	1.2965	𝑟𝑎𝑑 

 
𝜃:&:3:10 	= 	1.8541	𝑟𝑎𝑑 or 105.7175°  
 
This means that the angle between Earth and Saturn would need to be 1.8541	𝑟𝑎𝑑 or 105.7175° 
upon departure. 
 
4.3.2 Final Phase 
 
When the spacecraft arrives at the desired planet, there will be a new phase angle between the 
departure planet and the arrival planet, 𝜃L:&10.  
 
𝜃L:&10 	= 	𝜋	 −	𝑛?𝑡?*         (4.26) 
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Figure 4.7 Earth to Saturn arrival 

 
Using Eq. (4.26) and Eq. (4.25), 𝜃L:&10 can be found after the spacecraft departs Earth. 
 
𝜃L:&10 = 𝜋 − (0.0172)(2.2200	x	10'	day) 
 
𝜃L:&10 	= 	𝜋	 − 	38.184 
 
𝜃L:&10 	= 	−35.042	𝑟𝑎𝑑	𝑜𝑟	 − 2007.8° 
 
This is the angle when between Earth and Saturn when the spacecraft arrives at Saturn. 
 
5.0 Saturn to Titan 
 
5.1 Characteristics of Titan 

 
 

Table 5.1 Titan properties 
Mass 1.345	𝑥	10*' kg 
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Perigee 1186680 km 

Apogee 1257060 km 

Radius 1221870 km 

radius 2575.4	𝑘𝑚 

SOI 43306.04056 km 
 

 
Figure 5.1 Saturn and Titan reference frame 

 
 
Modifying the Eq. (3.2),  
 

𝑣.;13%#& V:31& = 7457-/)8*
#>?/-*

          (5.1) 

 

𝑣.;13%#& V:31& = 7(-.-,	I	?(@'A)(D.-G'	I	?('4)
?**?G,(

   

 

𝑣.;13%#& V:31& = 	5.569795	km/s          
 

𝑣2V:31& = 7*45>?/-*
#1F:%$

           (5.2) 
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𝑣2V:31& = 7*(-.-,	I	?(@'A)(?.'+D	I	?('B)
*D,D.+

          

  
𝑣2V:31& = 2.6394	𝑘𝑚/𝑠  
 
 
The circular orbital velocity of Titan is 5.5698 km/s. The escape velocity of Titan is 2.6394 km/s. 
 
Using Eq. (3.3), the semi-major axis of the transfer orbit can be found. For this example, 
arbitrary values of 10000 km for 𝑎:&:3:10 and 1257000 for 𝑎L:&10 . 
 

𝑎.L : =
1
2 G𝑎L:&10 + 𝑎:&:3:10I

 

𝑎.L : =
1
2
(1257000 + 10000) 

𝑎.L : = 633500	𝑘𝑚 
 

𝐯J6
E 	.

;13%#& 	= 	 GH𝐺𝑀;13%#&I ef
2

𝑎:&:3:10
−

1
𝑎.L :g

 

 

𝐯J6
E 	.

;13%#& 	= 	 G√37905610Ief
2

10000 −
1

633500g
 

𝐯J6
E 	.

;13%#& 	= 	86.725	𝑘𝑚/𝑠 
 
∆𝐯	 = 	 𝑣J6

E 	.
;13%#& 	− 	 𝑣.;13%#& V:31& 

 
∆𝐯	 = 	86.725	 − 	5.5698 
 
∆𝐯	 = 	81.1555	𝑘𝑚/𝑠  
 
 

𝑣	 = 	 GH𝐺𝑀;13%#&I ef
2

𝑎L:&10
−

1
𝑎.L :g

 

 

𝑣J-
E 	.

;13%#& 	= 	 G√37905610Ief
2

1257000 −
1

633500g
 

𝑣J-
E 	.

;13%#& 	= 	 .6899	𝑘𝑚/𝑠 
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𝑣J/8
E 	.

;13%#& 	= 	 GH𝐺𝑀;13%#&I ef
2
𝑟 −

1
𝑎g

 

 

𝑣J/8
E 	.

;13%#& 	= 	 G√37905610Ief
2

1257000 −
1

1257000g 

𝑣J/8
E 	.

;13%#& 	= 	5.491	𝑘𝑚/𝑠 velocity of transfer orbit 
 
∆𝐯	 = 	 𝑣J/8

E 	.
;13%#& 	− 	 𝑣J-

E 	.
;13%#&  

 
∆𝐯	 = 	5.491	 −	 .6899 
 
∆𝐯	 = 	4.8015	𝑘𝑚/𝑠  
 
 
Now that this orbit is inserted into Titan’s SOI, the velocity must not exceed Titan’s escape 
velocity, which is 2.6394 km/s. Seeing how the insertion orbit exceeds the escape velocity, the 
spacecraft needs a burn to slow down the spacecraft. In this example, the spacecraft will orbit 
Titan at an arbitrary altitude of 20000. 
 
 

𝑣J-
E 	.

V:31& 	= 	 GH𝐺𝑀V:31&I ef
2
𝑟 −

1
𝑎g 

 

𝑣J-
E 	.

V:31& 	= 	 G√8971.15Ief
2

20000 −
1

20000g 

𝑣J-
E 	.

V:31& 	= 	 .6697	𝑘𝑚/𝑠 
 

𝐯1
E

.
V:31& 						= 		 𝐯.V:31& ;13%#& 	+ 	 𝐯E 	.

;13%#&        (5.3) 
 

𝐯1
E

.
V:31& 						= 		−	 𝐯.;13%#& V:31& 	+ 	 𝐯1

E 	.
;13%#&        (5.4) 

 
The circular orbit velocity of Titan with respect to Saturn was solved using Eq. (5.1), which is 
5.5698 km/s . The arrival velocity of the spacecraft with respect to Saturn departing from Earth 
was solved using Eq. (4.8) and calculated to be 5.699 km/s.  
 

𝐯1
E

.
V:31& 						= 		−5.5698	 + 	5.699 
 

𝐯1
E

.
V:31& 						= 		0.1292 
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Figure 5.2 Saturn and Titan transfer 

5.2 Three-Body Problem 
 

The three-body problem is a situation where three bodies of similar mass are within a relative 
distance between one another. Each body is affected by the gravitational influence of the 
other two bodies. If one of the masses is significantly smaller than the other two masses that 
it could be considered negligible, then the problem would turn into a restricted three body 
problem. The spacecraft arriving to Titan from Saturn would be a perfect example of this 
problem.  
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Figure 5.3 Three-body problem 

 
 

 
Figure 5.4 Three-body problem forces 

 
As shown in Fig. 3.2, the only forces are the ones acting on the planets are the forces that 
have mutual gravitation. The forces FAB and FBa are equal and opposite. 
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Figure 5.5 Three-body problem force of masses 

 
The equations of motion of particle A are: 
 
𝐹= 	= N F

F3
	NrA           (5.5) 

𝐹= 	= 	𝐹>= + 𝐹Z= 	= 	𝐺𝑚=	[
"3(#3)#1)
|#3)#1|B

	− 	"C(#C)#1)
|#C)#1|B

]      (5.6) 

 
𝒓𝑨 	= NrA = 𝒓𝑨𝒂𝒓 	= 	 𝒓𝑨 𝐜𝐨𝐬𝜽𝑨𝒏𝒙	 + 	𝒓𝑨 𝐬𝐢𝐧𝜽𝑨 𝒏𝒚	     (5.7) 
 
𝑎= 	=	NaA = (r′′= 𝐜𝐨𝐬𝜽𝑨	 − 	𝟐𝑟′=𝜽𝑨 𝐬𝐢𝐧𝜽𝑨 −	𝑟=𝜽′′𝑨 𝐬𝐢𝐧𝜽𝑨 	− 	𝑟=𝜽′𝟐𝑨 𝐜𝐨𝐬𝜽𝑨	) 𝒏𝒙 
      + (r′′= 𝐬𝐢𝐧𝜽𝑨 − 	𝟐𝑟′=𝜽𝑨 𝐬𝐢𝐧𝜽𝑨 −	𝑟=𝜽′′𝑨 𝐜𝐨𝐬𝜽𝑨 	− 	𝑟=𝜽′𝟐𝑨 𝐬𝐢𝐧𝜽𝑨	) 𝒏𝒚  (5.8) 
 
r′′= 	= 	

4"3
#13
B 	[𝑟> 𝐜𝐨𝐬(𝜽𝑩 	− 	𝜽𝑨) 	−	𝒓𝑨	] 	+ 	

4"C
#1C
B 	 [𝑟Z 𝐜𝐨𝐬(𝜽𝑪 	− 	𝜽𝑨) 	−	𝒓𝑨	] 	+ 	𝑟=𝜽′=* (5.9) 

 

𝜽′′𝑨 	= 	
4"3#3
#13
B #1

𝐬𝐢𝐧(𝜽𝑩 	− 	𝜽𝑨) 	+	
4"C#C
#1C
B #1

𝐬𝐢𝐧(𝜽𝑪 	− 	𝜽𝑨) 	−	
𝟐#c1𝜽c1

'

𝒓𝑨
	    (5.10) 

 
𝑟=> 	= 	 |𝑟= 	− 	𝑟>| 	= 	 |𝑟> 	− 	𝑟=|	        (5.11) 
 
Assume the three particles in the three-body problem were Saturn, Titan and a spacecraft, where 
the spacecraft is in Titan’s SOI. Since Titan is in Saturn’s SOI, the spacecraft would be in both 
Titan and Saturn’s SOI. Assuming the spacecraft’s mass is small in comparison to Titan and 
Saturn, the spacecraft’s mass can be negligible. This would turn the three-body problem into the 
restricted three body problem. 
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Figure 5.6 Restricted three-body problem 

 
 
BrM1 = −𝑥?𝑏I           (5.12) 
 
BrM2 = 𝑥*𝑏I           (5.13) 
 
BrQ = 𝑥𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f , where H𝑥* + 𝑦* + 𝑧* 	= 	𝑟     (5.14) 
 
M1rQ = (𝑥 + 𝑥?)𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f        (5.15) 
 
M2rQ = (𝑥	 −	𝑥*)𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f        (5.16) 
 
Angular Velocity 
 
𝜔	 = 	 *U

g
           (5.17) 

 
𝜏	 = 	 *U

W4(5&P5')
𝑟?*
'/*          (5.18) 

 

𝜔	 = 	W4(5&P5')
#&'
B/'           (5.19) 

 
−𝑀?𝑥? 	+ 	𝑀*𝑥* 	= 	0	 → 	𝑥? 	= 	

5'
5&
𝑥*       (5.20) 

 
𝑟?* 	= 	 𝑥* 	+ 	𝑥?          (5.21) 
 
𝑟?* 	= 	 𝑥* 	+ (	

5'
5&
𝑥*) 	= 	 (

5&P5'
5&

)𝑥*        (5.22) 
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𝑟?* 	= 	 (

5&P5'
5&

)𝑥?          (5.23) 
 
Defining 𝜋? 	= 	

5&
5&P5'

 and 𝜋* 	= 	
5'

5&P5'
, then: 

𝑥? 	= 	𝜋*𝑟?*           (5.24) 
 
𝑥* 	= 	𝜋?𝑟?*           (5.25) 
 
Applying these steps to the Saturn and Titan system, 
 

 
Figure 5.7 Restricted Saturn-Titan problem 

 
BrSaturn = −𝑥?𝑏I          (5.26) 
 
BrTitan = 𝑥*𝑏I           (5.27) 
 
BrQ = 𝑥𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f , where H𝑥* + 𝑦* + 𝑧* 	= 	𝑟     (5.28) 
 
SaturnrQ = (𝑥 + 𝑥?)𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f        (5.29) 
 
TitanrQ = (𝑥	 −	𝑥*)𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f        (5.30) 
 
Angular Velocity 
 
𝜔	 = 	 *U

g
           (5.31) 

 
𝜏	 = 	 *U

W4(57-/)8*P5>?/-*)
𝑟?*
'/*         (5.32) 
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𝜏	 = 	 *U

h-.-,	I	?(@'A	FG
B

FH('
(D.-G'	I	?('4	i!	P?.'+D	I	?('B	i!)

(1221870	𝑘𝑚)'/*  

 
𝜏	 = 1378206.637	𝑠  
 

𝜔	 = 	W4(5&P5')
#&'
B/'           (5.33) 

 

𝜔	 = 	
h-.-,	I	?(@'A	FG

B

FH('
(D.-G'	I	?('4	i!	P?.'+D	I	?('B	i!)

(?**?G,(	i")B/'
      (5.34) 

 
𝜔	 = 4.5589583	𝑥	10)- rad/s  
 
−𝑀;13%#&𝑥? 	+ 	𝑀V:31&𝑥* 	= 	0	 → 	𝑥? 	= 	

5>?/-*
57-/)8*

𝑥*     (5.35) 

 
𝑟?* 	= 	 𝑥* 	+ 	𝑥?          (5.36) 
 
According to Eq. (3.24) and (3.25), 𝑥? 	= 	𝜋*𝑟?* and 𝑥* 	= 	𝜋?𝑟?*.  
 
Defining 𝜋? 	= 	

57-/)8*
57-/)8,*P5>?/-*

 and 𝜋* 	= 	
5>?/-*

57-/)8*P5>?/-*
, then: 

 
𝜋? 	= 	

D.-G'	I	?('4	i!
D.-G'	I	?('4	i!	P?.'+D	I	?('B	i!

  
 
𝜋? 	= 	0.999763	𝑘𝑔  
 
𝜋* 	= 	

?.'+D	I	?('B	i!
D.-G'	I	?('4	i!	P?.'+D	I	?('B	i!

  
 
𝜋* 	= 2.3661	𝑥	10)+	𝑘𝑔  
 
𝑥? 	= 	𝜋*𝑟?*           (5.37) 
 
𝑥? 	= (2.3661	𝑥	10)+	𝑘𝑔)(1221870	𝑘𝑚)  
 
𝑥? 	= 289.1127  
 
𝑥* 	= 	𝜋?𝑟?*           (5.38) 
 
𝑥* 	= (0.999763	𝑘𝑔)(1221870	𝑘𝑚)  
 
𝑥* 	= 1221580.887  
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Deriving the EOM for the Saturn and Titan, the position vectors can be rewritten as: 
 
M1rQ = (𝑥 + 𝜋*𝑟?*)𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f 
 
M2rQ = (𝑥	 −	𝜋?𝑟?*)𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f 
 
The particle EOM can be seen in Eq. (5.39).  
 
∑𝐹 	= 	𝑚;𝑎E           (5.39) 
 
The forces considered are the gravitational forces of Saturn and Titan.  
 
− 45&"

#&'
	𝑢#& 	− 	

45'"
#''

	𝑢#' 	= 	𝑚
;𝑎E 	        (5.40) 

−
𝐺𝑀?𝑚
𝑟?*

	𝑢#& 	− 	
𝐺𝑀*𝑚
𝑟**

	𝑢#' 

= 	𝑚�(𝑥′′	 − 	2ωy′	 −	ω*𝑥)𝑏I 	+ 	(𝑦′′	 + 	2ωx′	 −	ω*𝑦)𝑏e 	+ 	(𝑧′′)𝑏f�   (5.41) 
 

𝑢#& 	= 	
#J& K

j #J& Kj
	= 	 (IPU'#&')kL	P	ekM	PfkN

#&
        (5.42) 

 

𝑢#' 	= 	
#J' K

j #J' Kj
	= 	 (I	)	U&#&')kL	P	ekM	PfkN

#'
        (5.43) 

 
− 45&

#&B
{(𝑥 + 𝜋*𝑟?*)𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f} 		− 	

45'
#'B

{(𝑥	 −	𝜋?𝑟?*)𝑏I 	+ 	𝑦𝑏e 	+ 𝑧𝑏f} 

 
= �(𝑥′′	 − 	2ωy′	 −	ω*𝑥)𝑏I 	+ 	(𝑦′′	 + 	2ωx′	 −	ω*𝑦)𝑏e 	+ 	(𝑧′′)𝑏f�   (5.44) 
 
After simplifying, this leaves the scalar equations for the Saturn-Titan system. 
 
(bx)	𝑥′′	 − 	2ωy′′	 − 	ω*𝑥	 = − 45&

#&B
{(𝑥 + 𝜋*𝑟?*) 	−	

45'
#'B
(𝑥	 −	𝜋?𝑟?*)}   (5.45) 

 
(by) (𝑦′′	 + 	2ωx′	 −	ω*𝑦) 	= 	 (− 45&

#&B
	− 	45'

#'B
)𝑦	      (5.46) 

 
(bz) 𝑧′′	 = 	 (− 45&

#&B
	− 	45'

#'B
)𝑧         (5.47) 

 
 

6.0 Results 
 
6.1 Calculations 

 
The calculations from Tables (6.1) to (6.8) were calculated with MATLAB simulations. 
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Table 6.1 Velocity of spacecraft on arrival to planet w/ respect to the Sun calculations 
Planet A Planet B Result (km/s) 

Earth Venus -37.7230 
Earth Mars -21.4723 
Earth Jupiter -7.4120 
Earth Saturn -4.1864 
Venus Mars -19.3527 
Venus Jupiter -6.4490 
Venus Saturn -3.6079 
Mars Jupiter -8.7867 
Mars Saturn -5.0447 

Jupiter Saturn -8.0781 
 

Table 6.2 Velocity of spacecraft on arrival to planet w/ respect to planet “B” calculations 
Planet A Planet B Result (km/s) 

Earth Venus -2.7070 
Earth Mars 2.6497 
Earth Jupiter 5.6422 
Earth Saturn 5.4388 
Venus Mars 4.7692 
Venus Jupiter 6.6052 
Venus Saturn 6.0173 
Mars Jupiter 4.2675 
Mars Saturn 4.5805 

Jupiter Saturn 1.5471 
 

Table 6.3 Time of flight from planet “A” to planet “B” 
Planet A Planet B Result (s) 

Earth Venus 1.2623 x 107 

Earth Mars 2.2375 x 107 

Earth Jupiter 8.6222 x 107 

Earth Saturn 1.9181 x 108 

Venus Mars 1.8798 x 107 

Venus Jupiter 8.0517 x 107 

Venus Saturn 1.8433 x 108 

Mars Jupiter 9.7374 x 107 

Mars Saturn 2.0625 x 108 

Jupiter Saturn 3.1693 x 108 

 
Table 6.4 Time of flight of designated path 

Path Result (s) Result (days) 
1 1.9181 x 108 2.200 x 103 

2 1.9695 x 108 2.2795 x 103 

3 2.3767 x 108 2.7508 x 103 

4 4.1007 x 108 4.7462 x 103 

5 4.4572 x 108 5.1588 x 103 

6 2.2862 x 108 2.6461 x 103 

7 4.3668 x 108 5.0541 x 103 

8 4.0315 x 108 4.6661 x 103 
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Table 6.5 Synodic period 
Planets Time (days) 

Earth relative to Venus 585.9471 
Mars relative to Venus 334.5779 

Jupiter relative to Venus 237.3211 
Saturn relative to Venus 229.8059 
Mars relative to Earth 779.9085 

Jupiter relative to Earth 398.8734 
Saturn relative to Earth 378.0918 
Jupiter relative to Mars 816.4200 
Saturn relative to Mars 733.8595 

Saturn relative to Jupiter 7.2569 x 103 
 

Table 6.6 Mean motions 
Planet Velocity (rad/day) 
Venus 0.0279 
Earth 0.0172 
Mars 0.0091 

Jupiter 0.0014 
Saturn 5.8399 x 10-4 

 
Table 6.7 Phase angles 

Planets Initial Phase Angle (degrees) Final Phase Angle (degrees) 
Venus to Earth 36.0073 -53.7519 
Venus to Mars 65.9873 -168.1187 

Venus to Jupiter 102.5878 -1.3111 x 103 
Venus to Saturn 108.6150 -3.2335 x 103 
Earth to Mars 44.2923 -75.2489 

Earth to Jupiter 97.1034 -803.5765 
Earth to Saturn 105.7175 -2.0081 x 103 
Mars to Jupiter 86.3808 -410.5780 
Mars to Saturn 100.1263 -1.0709 x 103 

Jupiter to Saturn 57.2625 -124.7055 
 

Table 6.8 Wait time 
Planets Time (days) 

Venus to Earth -1.0025 x 104 
Venus to Mars -1.7905 x 104 

Venus to Jupiter -9.9040 x 104 
Venus to Saturn -2.3653 x 105 
Earth to Mars -1.8681 x 104 

Earth to Jupiter -1.0203 x 105 
Earth to Saturn -2.4167 x 105 
Mars to Jupiter -1.0670 x 105 
Mars to Saturn -2.5015 x 105 

Jupiter to Saturn -2.8806 x 105 
 
 

6.2 Flyby Hyperbola Calculations 
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Figure 6.1 Venus to Mars, Rp vs. eh 

Fig. (6.1) displays the relationship between the radius and the eccentricity where the spacecraft 
departs from Venus and approaches Mars. The values for Rp are a percentage of the Mars Sphere 
of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the Mars Rp 
increases, the eccentricity also increases.  

 

 
Figure 6.2 Venus to Jupiter, Rp vs. eh 
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Fig. (6.2) shows the relationship between the radius and the eccentricity where the spacecraft 
departs from Venus and approaches Jupiter. The values for Rp are a percentage of the Jupiter 
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This shows that as the 
Jupiter Rp increases, the eccentricity also increases.  
 

 

 
Figure 6.3 Venus to Saturn, Rp vs. eh 

 
Fig. (6.3) presents the relationship between the radius and the eccentricity where the spacecraft 
departs from Venus and approaches Saturn. The values for Rp are a percentage of the Saturn 
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This represents that as the 
Saturn Rp increases, the eccentricity also increases.  
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Figure 4.8 Earth to Mars, Rp vs. eh 

 
Fig. (6.4) shows the relationship between the radius and the eccentricity where the spacecraft 
departs from Earth and approaches Mars. The values for Rp are a percentage of the Mars Sphere 
of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the Mars Rp 
increases, the eccentricity also increases.  
 

 
Figure 6.5 Earth to Saturn, Rp vs. eh 
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Fig. (6.5) displays the relationship between the radius and the eccentricity where the spacecraft 
departs from Earth and approaches Saturn. The values for Rp are a percentage of the Saturn 
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This shows that as the 
Saturn Rp increases, the eccentricity also increases.  
 

 
Figure 6.6 Earth to Jupiter, Rp vs. eh 

 

Fig. (6.6) displays the relationship between the radius and the eccentricity where the spacecraft 
departs from Earth and approaches Jupiter. The values for Rp are a percentage of the Jupiter 
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the 
Jupiter Rp increases, the eccentricity also increases.  
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Figure 6.7 Mars to Jupiter, Rp vs. eh 

 
Fig. (6.7) shows the relationship between the radius and the eccentricity where the spacecraft 
departs from Mars and approaches Jupiter. The values for Rp are a percentage of the Jupiter 
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This shows that as the 
Jupiter Rp increases, the eccentricity also increases.  

 
 

 
Figure 6.8 Mars to Saturn, Rp vs. eh 
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Fig. (6.8) displays the relationship between the radius and the eccentricity where the spacecraft 
departs from Mars and approaches Saturn. The values for Rp are a percentage of the Saturn 
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the 
Saturn Rp increases, the eccentricity also increases.  
 

 
Figure 6.9 Jupiter to Saturn, Rp vs. eh 

 
Fig. (6.9) displays the relationship between the radius and the eccentricity where the spacecraft 
departs from Jupiter and approaches Saturn. The values for Rp are a percentage of the Saturn 
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the 
Saturn Rp increases, the eccentricity also increases.  
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Figure 6.10 Venus to Mars, eh vs. ϕd 

 

Fig. (6.10) displays the relationship between the eccentricity and the angle of the departure 
velocity, where the spacecraft departs from Venus and approaches Mars. The values for eh are 
the values calculated from the Rp from Fig. (6.1). This indicates that as the Mars Rp increases, 
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity. 

 

 
Figure 6.11 Venus to Jupiter, eh vs. ϕd 

 
Fig. (6.11) displays the relationship between the eccentricity and the angle of the departure 
velocity, where the spacecraft departs from Venus and approaches Jupiter. The values for eh are 
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the values calculated from the Rp from Fig. (6.2). This shows that as the Jupiter Rp increases, the 
eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity. 

 

 
Figure 6.12 Venus to Saturn, eh vs. ϕd 

 
Fig. (6.12) displays the relationship between the eccentricity and the angle of the departure 
velocity, where the spacecraft departs from Venus and approaches Saturn. The values for eh are 
the values calculated from the Rp from Fig. (6.3). This shows that as the Saturn Rp increases, the 
eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity. 

 

 
Figure 6.13 Earth to Mars, eh vs. ϕd 
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Fig. (6.13) displays the relationship between the eccentricity and the angle of the departure 
velocity, where the spacecraft departs from Earth and approaches Mars. The values for eh are the 
values calculated from the Rp from Fig. (6.4). This represents that as the Mars Rp increases, the 
eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity. 
 

 
Figure 6.14 Earth to Jupiter, eh vs. ϕd 

 
Fig. (6.14) displays the relationship between the eccentricity and the angle of the departure 
velocity, where the spacecraft departs from Earth and approaches Jupiter. The values for eh are 
the values calculated from the Rp from Fig. (6.5). This shows that as the Jupiter Rp increases, the 
eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity. 
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Figure 6.15 Earth to Saturn, eh vs. ϕd 

 
Fig. (6.15) displays the relationship between the eccentricity and the angle of the departure 
velocity, where the spacecraft departs from Earth and approaches Saturn. The values for eh are 
the values calculated from the Rp from Fig. (6.6). This indicates that as the Saturn Rp increases, 
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity. 

 

 
Figure 6.16 Mars to Jupiter, eh vs. ϕd 
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Fig. (6.16) displays the relationship between the eccentricity and the angle of the departure 
velocity, where the spacecraft departs from Mars and approaches Jupiter. The values for eh are 
the values calculated from the Rp from Fig. (6.7). This indicates that as the Jupiter Rp increases, 
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity. 
 

 
Figure 6.17 Mars to Saturn, eh vs. ϕd 

 
Fig. (6.17) displays the relationship between the eccentricity and the angle of the departure 
velocity, where the spacecraft departs from Mars and approaches Saturn. The values for eh are 
the values calculated from the Rp from Fig. (6.8). This indicates that as the Saturn Rp increases, 
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity. 
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Figure 6.18 Jupiter to Saturn, eh vs. ϕd 

 
Fig. (6.18) displays the relationship between the eccentricity and the angle of the departure 
velocity, where the spacecraft departs from Jupiter and approaches Saturn. The values for eh are 
the values calculated from the Rp from Fig. (6.9). This indicates that as the Saturn Rp increases, 
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.  
 

6.3 Rendezvous 
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Figure 6.19 Position of planets upon departure 
 
 

 
Figure 6.20 Position of planets upon departure as two-dimensional 

 
Fig. (6.19) and (6.20) display the results of where planets are to be positioned when there is an 
ideal departure for an Earth to Saturn to Titan transfer. Since the most efficient method is to go 
from Earth to Saturn, the initial phase angle that is required is 105.7 degrees. 
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Figure 6.21 Position of planets upon arrival 

 
 

 
Figure 6.22 Position of planets upon arrival as two-dimensional 
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Fig. (6.21) and (6.22) display the results of where planets are to be positioned after the departure 
from Earth and the spacecraft has arrived at Saturn to Titan. The final phase angle that is 
required is -207.8 degrees. 

 
 

7.0 Analysis 
 
7.1 Flyby Analysis 
 

 
Figure 7.1 Various flyby analysis 

In Fig. (6.1) – (6.9), the graphs display how the eccentricity increases as the radius 
increases. The calculations were completed in MATLAB. The rp used is a range of the SOI, 
using one percent of the total SOI, to using 100% of the total SOI. In Fig. (6.10) – Fig. (6.18), 
the graphs display how the angle of the departure velocity decreases as the eccentricity 
decreases. The results of Fig. (6.1) – (6.18) can be analyzed and concluded in Fig. (6.19), which 
shows how an increase in rp would result in a decrease in eccentricity, which affects the 
trajectory and angle of the flyby.  

Understanding the angle of the flyby trajectory can be manipulated by the radius and 
eccentricity is significant to the calculations. These results prove that an increase in eccentricity 
results to a decrease in the departure angle. The departure angles must be ideal for the most 
efficient flybys and rendezvous for Titan. 
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7.2 Mission Analysis 
 
The most cost-efficient method to get from Earth to Titan is to use a Hohmann transfer to Saturn. 
This method would take longer, however, the wait time to launch to Saturn is calculated to be 
306.96 days. The time to get from Earth to Saturn would be 2.2200 x 103 days, or 6.08 years. To 
use an efficient flyby analysis to get from Earth to Jupiter to Saturn would be more than 100 
years. Once at Saturn, the restricted three body problem for the Saturn-Titan system. The total 
time this mission would take to get to Titan is seven years, with no gravity assistance. 

 
 
 

7.3 Discussion 
 

The mission design was guided by the assumptions, which led to an efficient and simple 
trajectory. The Earth to Saturn to Titan path is the simplest and fastest, neglecting the wait time. 
If the assumption that of the flight path was removed, the results would be different. This current 
design uses equations of motion to calculate the velocities required in order to ensure a path 
without any excessive burns. 
 

8.0 Conclusion 
 
The Earth to Titan mission design is an interest in aerospace for the purpose that Titan has 
potential to host life. This evidence was provided by the Cassini mission. Previous studies have 
shown that life is possible because of the atmospheric makeup. The method to calculate an 
efficient path is the Hohmann transfer. Going step by step, the velocities were calculated through 
MATLAB and the results would show that an increase in the altitude increases the eccentricity, 
which would result in a gradual decrease in theta. The assumptions allowed for the design to 
focus on the velocity that would be ideal and reduce any unnecessary burns, resulting in an Earth 
to Saturn to Titan path. 
 Using the N-body simulations, an ideal path could be found using calculations for the 
synodic period and phase angles. The MATLAB code ran 100 years of iterations, which resulted 
in finding the most efficient path to be the Earth to Saturn Hohmann transfer. The total time 
would take seven years for the spacecraft to get into Titan’s orbit. This path takes the least 
amount of time to send a spacecraft to orbit Saturn and is the most cost efficient. The concept of 
sending a spacecraft to Titan would advance the science in the aerospace industry. 
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APPENDIX A. EARTH TO TITAN MATLAB CODE 
 

close all; 
clear all; 
clc; 

Initial Conditions 
Julian Day (JD): 001 2023 UTC: 00:00:00 

    % Variables 
G = (6.67 * 10^(-20)); % (km^3)/(kgs^2) 
Msun = 1.989 * (10^30); % kg 
year = 2*pi; % Every 2*pi is equal to one year 
Years = 200*year; 
 
% Mass (kg) 
M_Venus = 4.87 * (10^24); 
M_Earth = 5.97 * (10^24); 
M_Mars = 6.42 * (10^23); 
M_Jupiter = 1.898 * (10^27); 
M_Saturn = 5.683 * (10^26); 
 
mu = G*Msun; 
muv = G*M_Venus 
mue = G*M_Earth 
mum = G*M_Mars 
muj = G*M_Jupiter 
mus = G*M_Saturn 
 
% radius of planet (km) 
r_Venus = 6051; 
r_Earth = 6378.1; 
r_Mars = 3389.5; 
r_Jupiter = 69911; 
r_Saturn = 58232; 
 
% semi-major axis (km) 
a_Venus = 108.2 *(10^6); 
a_Earth = 149.6 *(10^6); 
a_Mars = 228.0 *(10^6); 
a_Jupiter = 778.5 *(10^6); 
a_Saturn = 143.2 *(10^7); 

muv = 
 
   3.2483e+05 
 
 
mue = 
 
      398199 
 
 
mum = 
 
   4.2821e+04 
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muj = 
 
   1.2660e+08 
 
 
mus = 
 
   3.7906e+07 
 
Calculations 
% Escape Velocity 
Esc_Venus = sqrt((2*G*M_Venus)/r_Venus); 
Esc_Earth = sqrt((2*G*M_Earth)/r_Earth); 
Esc_Mars = sqrt((2*G*M_Mars)/r_Mars); 
Esc_Jupiter = sqrt((2*G*M_Jupiter)/r_Jupiter); 
Esc_Saturn = sqrt((2*G*M_Saturn)/r_Saturn); 
 
% Circular Orbital Velocity of the planet with respect to the Sun (km/sec) 
SVV = -sqrt(mu/a_Venus); 
SVE = -sqrt(mu/a_Earth); 
SVM = -sqrt(mu/a_Mars); 
SVJ = -sqrt(mu/a_Jupiter); 
SVS = -sqrt(mu/a_Saturn); 
 
% semi-major axis between planets 
EAV = (a_Earth + a_Venus)*.5; 
EAM = (a_Earth + a_Mars)*.5; 
EAJ = (a_Earth + a_Jupiter)*.5; 
EAS = (a_Earth + a_Saturn)*.5; 
VAM = (a_Venus + a_Mars)*.5; 
VAJ = (a_Venus + a_Jupiter)*.5; 
VAS = (a_Venus + a_Saturn)*.5; 
MAJ = (a_Mars + a_Jupiter)*.5; 
MAS = (a_Mars + a_Saturn)*.5; 
JAS = (a_Jupiter + a_Saturn)*.5; 
 
% Velocity of Spacecraft on departure of Planet w/ respect to the Sun 
vd_EAV = sqrt(mu)*sqrt((2/a_Earth)-(1/EAV)); 
vd_EAM = sqrt(mu)*sqrt((2/a_Earth)-(1/EAM)); 
vd_EAJ = sqrt(mu)*sqrt((2/a_Earth)-(1/EAJ)); 
vd_EAS = sqrt(mu)*sqrt((2/a_Earth)-(1/EAS)); 
vd_VAM = sqrt(mu)*sqrt((2/a_Venus)-(1/VAM)); 
vd_VAJ = sqrt(mu)*sqrt((2/a_Venus)-(1/VAJ)); 
vd_VAS = sqrt(mu)*sqrt((2/a_Venus)-(1/VAS)); 
vd_MAJ = sqrt(mu)*sqrt((2/a_Mars)-(1/MAJ)); 
vd_MAS = sqrt(mu)*sqrt((2/a_Mars)-(1/MAS)); 
vd_JAS = sqrt(mu)*sqrt((2/a_Jupiter)-(1/JAS)); 
 
% Velocity of Spacecraft on arrival to Planet w/ respect to the Sun 
v_EAV = -sqrt(mu)*sqrt((2/a_Venus)-(1/EAV)); 
v_EAM = -sqrt(mu)*sqrt((2/a_Mars)-(1/EAM)); 
v_EAJ = -sqrt(mu)*sqrt((2/a_Jupiter)-(1/EAJ)); 
v_EAS = -sqrt(mu)*sqrt((2/a_Saturn)-(1/EAS)); 
v_VAM = -sqrt(mu)*sqrt((2/a_Mars)-(1/VAM)); 
v_VAJ = -sqrt(mu)*sqrt((2/a_Jupiter)-(1/VAJ)); 
v_VAS = -sqrt(mu)*sqrt((2/a_Saturn)-(1/VAS)); 
v_MAJ = -sqrt(mu)*sqrt((2/a_Jupiter)-(1/MAJ)); 
v_MAS = -sqrt(mu)*sqrt((2/a_Saturn)-(1/MAS)); 
v_JAS = -sqrt(mu)*sqrt((2/a_Saturn)-(1/JAS)); 
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% Velocity of Spacecraft on arrival to Planet w/respect to the Planet 
% +/- dependent on Sun coordinate system 
v_iEV = v_EAV - SVV; 
v_iEM = v_EAM - SVM; 
v_iEJ = v_EAJ - SVJ; 
v_iES = v_EAS - SVS; 
v_iVM = v_VAM - SVM; 
v_iVJ = v_VAJ - SVJ; 
v_iVS = v_VAS - SVS; 
v_iMJ = v_MAJ - SVJ; 
v_iMS = v_MAS - SVS; 
v_iJS = v_JAS - SVS; 

 
SOI Radius (km) 
% Sphere of Influence (SOI) 
VSOI = 616289.732; 
ESOI = 924415.913; 
MSOI = 577424.152; 
JSOI = 48208452.07; 
SSOI = 54743849.22; 
 
% Time of Flight (seconds) 
 
tof_VE = (pi/sqrt(mu))*(EAV)^(3/2); 
tof_VM = (pi/sqrt(mu))*(VAM)^(3/2); 
tof_VJ = (pi/sqrt(mu))*(VAJ)^(3/2); 
tof_VS = (pi/sqrt(mu))*(VAS)^(3/2); 
tof_EM = (pi/sqrt(mu))*(EAM)^(3/2); 
tof_EJ = (pi/sqrt(mu))*(EAJ)^(3/2); 
tof_ES = (pi/sqrt(mu))*(EAS)^(3/2); 
tof_MJ = (pi/sqrt(mu))*(MAJ)^(3/2); 
tof_MS = (pi/sqrt(mu))*(MAS)^(3/2); 
tof_JS = (pi/sqrt(mu))*(JAS)^(3/2); 
 
% Convert Time of Flight to days 
dof_VE = tof_VE/86400; 
dof_VM = tof_VM/86400; 
dof_VJ = tof_VJ/86400; 
dof_VS = tof_VS/86400; 
dof_EM = tof_EM/86400; 
dof_EJ = tof_EJ/86400; 
dof_ES = tof_ES/86400; 
dof_MJ = tof_MJ/86400; 
dof_MS = tof_MS/86400; 
dof_JS = tof_JS/86400; 
 
% Flight Paths 
%Earth to Saturn 
fp_ES = tof_ES; 
%Earth to Venus to Saturn 
fp_EVS = tof_VE + tof_VS; 
%Earth to Venus to Mars to Saturn 
fp_EVMS = tof_VE + tof_VM + tof_MS; 
%Earth to Venus to Jupiter to Saturn 
fp_EVJS = tof_VE + tof_VJ + tof_JS; 
%Earth to Venus to Mars to Jupiter to Saturn 
fp_EVMJS = tof_VE + tof_VM + tof_MJ + tof_JS; 
%Earth to Mars to Saturn 
fp_EMS = tof_EM + tof_MS; 
%Earth to Mars to Jupiter to Saturn 
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fp_EMJS = tof_EM + tof_MJ + tof_JS; 
%Earth to Jupiter to Saturn 
fp_EJS = tof_EJ + tof_JS; 
 
%Flight Paths conversion to days (1 day = 86400 s) 
%Earth to Saturn 
dfp_ES = fp_ES/86400; 
%Earth to Venus to Saturn 
dfp_EVS = fp_EVS/86400; 
%Earth to Venus to Mars to Saturn 
dfp_EVMS = fp_EVMS/86400; 
%Earth to Venus to Jupiter to Saturn 
dfp_EVJS = fp_EVJS/86400; 
%Earth to Venus to Mars to Jupiter to Saturn 
dfp_EVMJS = fp_EVMJS/86400; 
%Earth to Mars to Saturn 
dfp_EMS = fp_EMS/86400; 
%Earth to Mars to Jupiter to Saturn 
dfp_EMJS = fp_EMJS/86400; 
%Earth to Jupiter to Saturn 
dfp_EJS = fp_EJS/86400; 

 
Rp 
%this is the radius of the planet plus the altitude 
%the altitude is a range of the planet's SOI 
 
dx = .01; %step 
%Venus 
hv = (.01*VSOI):dx*VSOI:(1.0*VSOI); 
vrp = r_Venus + hv; 
%Earth 
he = (.01*ESOI):dx*ESOI:(1.0*ESOI); 
erp = r_Earth + he; 
%Mars 
hm = (.01*MSOI):dx*MSOI:(1.0*MSOI); 
mrp = r_Mars + hm; 
%Jupiter 
hj = (.01*JSOI):dx*JSOI:(1.0*JSOI); 
jrp = r_Jupiter + hj; 
%Saturn 
hs = (.01*SSOI):dx*SSOI:(1.0*SSOI); 
srp = r_Saturn + hs; 
 

The Eccentricity of the flyby hyperbola 
% Venus to Mars 
VMeh = 1 + ((mrp*(v_iVM)^2)/(G*M_Mars)); 
% Venus to Jupiter 
VJeh = 1 + ((jrp*(v_iVJ)^2)/(G*M_Jupiter)); 
% Venus to Saturn 
VSeh = 1 + ((srp*(v_iVS)^2)/(G*M_Saturn)); 
% Earth to Mars 
EMeh = 1 + ((mrp*(v_iEM)^2)/(G*M_Mars)); 
% Earth to Jupiter 
EJeh = 1 + ((jrp*(v_iEJ)^2)/(G*M_Jupiter)); 
% Earth to Saturn 
ESeh = 1 + ((srp*(v_iES)^2)/(G*M_Saturn)); 
% Mars to Jupiter 
MJeh = 1 + ((jrp*(v_iMJ)^2)/(G*M_Jupiter)); 
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% Mars to Saturn 
MSeh = 1 + ((srp*(v_iMS)^2)/(G*M_Saturn)); 
% Jupiter to Saturn 
JSeh = 1 + ((srp*(v_iJS)^2)/(G*M_Saturn)); 

 
 

figure('Name','R_p vs e_h','NumberTitle','off'), 
t = tiledlayout(3, 3) 
nexttile 
plot(mrp, VMeh, 'm') 
title('Venus to Mars, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(jrp, VJeh, 'm') 
title('Venus to Jupiter, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(srp, VSeh, 'm') 
title('Venus to Saturn, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(mrp, EMeh) 
title('Earth to Mars, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(jrp, EJeh,'b') 
title('Earth to Jupiter, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(srp, ESeh,'b') 
title('Earth to Saturn, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
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nexttile 
plot(jrp, MJeh,'r') 
title('Mars to Jupiter, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(srp, MSeh,'r') 
title('Mars to Saturn, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(srp, JSeh,'c--') 
title('Jupiter to Saturn, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 

t =  

 

  TiledChartLayout with properties: 

 

    TileArrangement: 'fixed' 

           GridSize: [3 3] 

            Padding: 'loose' 

        TileSpacing: 'loose' 

 

  Use GET to show all properties 
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one = 1; 

phi_a = 180 

 

% Venus to Mars 
VMdelta = 2*asind(one./VMeh); 
% Venus to Jupiter 
VJdelta = 2*asind(one./VJeh); 
% Venus to Saturn 
VSdelta = 2*asind(one./VSeh); 
% Earth to Mars 
EMdelta = 2*asind(one./EMeh); 
% Earth to Jupiter 
EJdelta = 2*asind(one./EJeh); 
% Earth to Saturn 
ESdelta = 2*asind(one./ESeh); 
% Mars to Jupiter 
MJdelta = 2*asind(one./MJeh); 
% Mars to Saturn 
MSdelta = 2*asind(one./MSeh); 
% Jupiter to Saturn 
JSdelta = 2*asind(one./JSeh); 
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phi_a = 

 

   180 

VMphi_d = phi_a + VMdelta; 

% Venus to Jupiter 
VJphi_d = phi_a + VJdelta; 
% Venus to Saturn 
VSphi_d = phi_a + VSdelta; 
% Earth to Mars 
EMphi_d = phi_a + EMdelta; 
% Earth to Jupiter 
EJphi_d = phi_a + EJdelta; 
% Earth to Saturn 
ESphi_d = phi_a + ESdelta; 
% Mars to Jupiter 
MJphi_d = phi_a + MJdelta; 
% Mars to Saturn 
MSphi_d = phi_a + MSdelta; 
% Jupiter to Saturn 
JSphi_d = phi_a + JSdelta; 

 
Eccentricity vs Delta Phi plot 

figure('Name','e_h vs. \phi_d','NumberTitle','off'), 
t = tiledlayout(3, 3) 
nexttile 
plot(VMeh,VMphi_d,'m') 
title('Venus to Mars, e_h vs \phi_d') 
xlabel('e_h') 
ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(VJeh,VJphi_d,'m') 
title('Venus to Jupiter, e_h vs \phi_d') 
xlabel('e_h') 
ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(VSeh,VSphi_d,'m') 
title('Venus to Saturn, e_h vs \phi_d') 
xlabel('e_h') 
ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
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nexttile 
plot(EMeh,EMphi_d,'b') 
title('Earth to Mars, e_h vs \phi_d') 
xlabel('e_h') 
ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(EJeh,EJphi_d,'b') 
title('Earth to Jupiter, e_h vs \phi_d') 
xlabel('e_h') 
    ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(ESeh,ESphi_d,'b') 
title('Earth to Saturn, e_h vs \phi_d') 
xlabel('e_h') 
ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(MJeh,MJphi_d,'r') 
title('Mars to Jupiter, e_h vs \phi_d') 
xlabel('e_h') 
ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(MJeh,MJphi_d,'r') 
title('Mars to Saturn, e_h vs \phi_d') 
xlabel('e_h') 
ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
nexttile 
plot(MSeh,MSphi_d,'c--') 
title('Jupiter to Saturn, e_h vs \phi_d') 
xlabel('e_h') 
ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 

t =  

 

  TiledChartLayout with properties: 
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    TileArrangement: 'fixed' 

           GridSize: [3 3] 

            Padding: 'loose' 

        TileSpacing: 'loose' 

 

  Use GET to show all properties 

 

Delta Velocity 
% Venus to Mars 
vd_iVM = [sin(VMdelta); cos(VMdelta)].*v_iVM; %V_INF * COS(DELTA) SY - 
V_INF*SIN(DELTA) SX 
vdVM = [0; SVM] - vd_iVM; %Flyby Departure Velocity of the Spacecraft w/respect to the 
Sun 
VMgradvel = vdVM - [0; v_VAM]; % Flyby Departure Velocity - Flyby Arrival Velocity 
w/respect to the Sun (Change in Vel.) 
VMgradvelfin = sqrt(sum(VMgradvel.^2)); %magnitude of the change in velocity (km/sec) 
VMvsubinf = vdVM(2,:); %Isolate second row (SY) 
h_VM = a_Mars * VMvsubinf; %specific angular momentum 
vdVMtwo = sqrt(sum(vdVM.^2)); %magnitude of departure velocity 
a_VM = -(((vdVMtwo.^2)/mu) - (2/a_Mars)); 
newaVM = a_VM.^(-1); 
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VMetwo = sqrt(1-((h_VM.^2)/(newaVM*mu))); 
VMnumtheta = ((h_VM.^2)-a_Mars*mu); 
VMdentheta = (a_Mars*mu*VMetwo); 
VMnewtheta = acosd(VMnumtheta/VMdentheta); 
 
% Venus to Jupiter 
vd_iVJ = [sin(VJdelta); cos(VJdelta)].*v_iVJ; 
vdVJ = [0; SVJ] - vd_iVJ; 
VJgradvel = vdVJ - [0; v_VAJ]; 
VJgradvelfin = sqrt(sum(VJgradvel.^2)); 
VJvsubinf = vdVJ(2,:); 
h_VJ = a_Jupiter * VJvsubinf; 
vdVJtwo = sqrt(sum(vdVJ.^2)); 
a_VJ = -(((vdVJtwo.^2)/mu) - (2/a_Jupiter)); 
newaVJ = a_VJ.^(-1); 
VJetwo = sqrt(1-((h_VJ.^2)/(newaVJ*mu))); 
VJnumtheta = ((h_VJ.^2)-a_Jupiter*mu); 
VJdentheta = (a_Jupiter*mu*VJetwo); 
VJnewtheta = acosd(VJnumtheta/VJdentheta); 
 
% Venus to Saturn 
vd_iVS = [sin(VSdelta); cos(VSdelta)].*v_iVS; 
vdVS = [0; SVS] - vd_iVS; 
VSgradvel = vdVS - [0; v_VAS]; 
VSgradvelfin = sqrt(sum(VSgradvel.^2)); 
VSvsubinf = vdVS(2,:); 
h_VS = a_Saturn * VSvsubinf; 
vdVStwo = sqrt(sum(vdVS.^2)); 
a_VS = -(((vdVStwo.^2)/mu) - (2/a_Saturn)); 
newaVS = a_VS.^(-1); 
VSetwo = sqrt(1-((h_VS.^2)/(newaVS*mu))); 
VSnumtheta = ((h_VS.^2)-a_Saturn*mu); 
VSdentheta = (a_Saturn*mu*VSetwo); 
VSnewtheta = acosd(VSnumtheta/VSdentheta); 
 
% Earth to Mars 
vd_iEM = [sin(EMdelta); cos(EMdelta)].*v_iEM; 
vdEM = [0; SVM] - vd_iEM; 
EMgradvel = vdEM - [0; v_EAM]; 
EMgradvelfin = sqrt(sum(EMgradvel.^2)); 
EMvsubinf = vdEM(2,:); 
h_EM = a_Mars * EMvsubinf; 
vdEMtwo = sqrt(sum(vdEM.^2)); 
a_EM = -(((vdEMtwo.^2)/mu) - (2/a_Mars)); 
newaEM = a_EM.^(-1); 
EMetwo = sqrt(1-((h_EM.^2)/(newaEM*mu))); 
EMnumtheta = ((h_EM.^2)-a_Mars*mu); 
EMdentheta = (a_Mars*mu*EMetwo); 
EMnewtheta = acosd(EMnumtheta/EMdentheta); 
 
% Earth to Jupiter 
vd_iEJ = [sin(EJdelta); cos(EJdelta)].*v_iEJ; 
vdEJ = [0; SVJ] - vd_iEJ; 
EJgradvel = vdEJ - [0; v_EAJ]; 
EJgradvelfin = sqrt(sum(EJgradvel.^2)); 
EJvsubinf = vdEJ(2,:); 
h_EJ = a_Jupiter * EJvsubinf; 
vdEJtwo = sqrt(sum(vdEJ.^2)); 
a_EJ = -(((vdEJtwo.^2)/mu) - (2/a_Jupiter)); 
newaEJ = a_EJ.^(-1); 
EJetwo = sqrt(1-((h_EJ.^2)/(newaEJ*mu))); 
EJnumtheta = ((h_EJ.^2)-a_Jupiter*mu); 
EJdentheta = (a_Jupiter*mu*EJetwo); 
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EJnewtheta = acosd(EJnumtheta/EJdentheta); 
 
% Earth to Saturn 
vd_iES = [sin(ESdelta); cos(ESdelta)].*v_iES; 
vdES = [0; SVS] - vd_iES; 
ESgradvel = vdES - [0; v_EAS]; 
ESgradvelfin = sqrt(sum(ESgradvel.^2)); 
ESvsubinf = vdES(2,:); 
h_ES = a_Saturn * ESvsubinf; 
vdEStwo = sqrt(sum(vdES.^2)); 
a_ES = -(((vdEStwo.^2)/mu) - (2/a_Saturn)); 
newaES = a_ES.^(-1); 
ESetwo = sqrt(1-((h_ES.^2)/(newaES*mu))); 
ESnumtheta = ((h_ES.^2)-a_Saturn*mu); 
ESdentheta = (a_Saturn*mu*ESetwo); 
ESnewtheta = acosd(ESnumtheta/ESdentheta); 
 
% Mars to Jupiter 
vd_iMJ = [sin(MJdelta); cos(MJdelta)].*v_iMJ; 
vdMJ = [0; SVJ] - vd_iMJ; 
MJgradvel = vdMJ - [0; v_MAJ]; 
MJgradvelfin = sqrt(sum(MJgradvel.^2)); 
MJvsubinf = vdMJ(2,:); 
h_MJ = a_Jupiter * MJvsubinf; 
vdMJtwo = sqrt(sum(vdMJ.^2)); 
a_MJ = -(((vdMJtwo.^2)/mu) - (2/a_Jupiter)); 
newaMJ = a_MJ.^(-1); 
MJetwo = sqrt(1-((h_MJ.^2)/(newaMJ*mu))); 
MJnumtheta = ((h_MJ.^2)-a_Jupiter*mu); 
MJdentheta = (a_Jupiter*mu*MJetwo); 
MJnewtheta = acosd(MJnumtheta/MJdentheta); 
 
% Mars to Saturn 
vd_iMS = [sin(MSdelta); cos(MSdelta)].*v_iMS; 
vdMS = [0; SVS] - vd_iMS; 
MSgradvel = vdMS - [0; v_MAS]; 
MSgradvelfin = sqrt(sum(MSgradvel.^2)); 
MSvsubinf = vdMS(2,:); 
h_MS = a_Saturn * MSvsubinf; 
vdMStwo = sqrt(sum(vdMS.^2)); 
a_MS = -(((vdMStwo.^2)/mu) - (2/a_Saturn)); 
newaMS = a_MS.^(-1); 
MSetwo = sqrt(1-((h_MS.^2)/(newaMS*mu))); 
MSnumtheta = ((h_MS.^2)-a_Saturn*mu); 
MSdentheta = (a_Saturn*mu*MSetwo); 
MSnewtheta = acosd(MSnumtheta/MSdentheta); 
 
% Jupiter to Saturn 
vd_iJS = [sin(JSdelta); cos(JSdelta)].*v_iJS; 
vdJS = [0; SVS] - vd_iJS; 
JSgradvel = vdJS - [0; v_JAS]; 
JSgradvelfin = sqrt(sum(JSgradvel.^2)); 
JSvsubinf = vdJS(2,:); 
h_JS = a_Saturn * JSvsubinf; 
vdJStwo = norm(vdJS); 
a_JS = -(((vdJStwo.^2)/mu) - (2/a_Saturn)); 
newaJS = a_JS.^(-1); 
JSetwo = sqrt(1-((h_JS.^2)/(newaJS*mu))); 
JSnumtheta = ((h_JS.^2)-a_Saturn*mu); 
JSdentheta = (a_Saturn*mu*JSetwo); 
JSnewtheta = acosd(JSnumtheta/JSdentheta); 
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% Titan 
 
M_Titan = 1.345 * (10^23); % Mass of Titan (kg) 
r_Titan = 2575 % radius of Titan (km) 
a_Titan = 1221870 % semi-major axis of Titan (km) 
mut = G*M_Titan 
 
% Barycenter 
mass_planet = M_Saturn 
mass_moon = M_Titan 
 
pi_one = mass_planet/(mass_planet+mass_moon) 
pi_two = mass_moon/(mass_moon+mass_planet) 
 
mr_one = pi_two*a_Titan % mass ratio of planet 
mr_two = pi_one*a_Titan % mass ratio of moon 
 
% Angular Velocity 
av = (sqrt(G*(mass_planet+mass_moon)))/a_Titan^(3/2) ; 

r_Titan = 

 

        2575 

 

 

a_Titan = 

 

     1221870 

 

 

mut = 

 

   8.9711e+03 

 

 

mass_planet = 
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   5.6830e+26 

 

 

mass_moon = 

 

   1.3450e+23 

 

 

pi_one = 

 

    0.9998 

 

 

pi_two = 

 

   2.3661e-04 

 

 

mr_one = 

 

  289.1125 

 

 

mr_two = 

 

   1.2216e+06 
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Titan Calculations 

% Circular Orbital Velocity of Titan with respect to Saturn (km/sec) 
SVT = -sqrt((G*M_Saturn)/a_Titan); 
 
% semi-major axis between Saturn & Titan 
SAT = (a_Saturn + a_Titan)*.5; 
 
% Velocity of Spacecraft on arrival to Titan w/ respect to Saturn 
v_SAT = -sqrt(G*M_Saturn)*sqrt((2/a_Titan)-(1/SAT)); 
 
% Velocity of Spacecraft on arrival to Titan w/respect to Saturn 
% +/- dependent on Saturn coordinate system 
v_iST = v_SAT + SVT; 
 
% Titan SOI (km) 
TSOI = 43306.04056; 
 
% Rp 
ht = (.01*TSOI):dx*TSOI:(1.0*TSOI); 
trp = r_Titan + ht; 
 
% Saturn to Titan 
STeh = 1 + ((trp*(v_iST)^2)/(G*M_Titan)); 
 
figure('Name','R_p vs e_h','NumberTitle','off'), 
plot(trp, STeh, 'c') 
title('Saturn to Titan, R_p vs e_h') 
xlabel('R_p (km)') 
ylabel('e_h') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
 
% Saturn to Titan delta 
STdelta = 2*asind(one./STeh); 
STphi_d = phi_a + STdelta; 
 
figure('Name','e_h vs. \phi_d','NumberTitle','off'), 
plot(STeh,STphi_d,'r') 
title('Saturn to Titan, e_h vs \phi_d') 
xlabel('e_h') 
ylabel('\phi_d (degrees)') 
set(findall(gcf,'type','line'),'linewidth',2) 
set(gca,'fontsize',8) 
grid on 
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Synodic Period 
Amount of days for specified planet to orbit the sun 

V_days = 225.0 % Venus 
E_days = 365.256 % Earth 
M_days = 687.00 % Mars 
J_days = 4333.80 % Jupiter 
S_days = 10759.00 % Saturn 
 
% Earth Days Ratio 
per_V = (E_days/V_days) 
per_M = (E_days/M_days) 
per_J = (E_days/J_days) 
per_S = (E_days/S_days) 
per_T = 0.04357674 
 
% Position of Titan 
pos_Titan = a_Saturn + a_Titan 
 
% Syndodic Period (days) 
% Venus 
T_VE = (V_days*E_days)/abs(V_days - E_days); % Earth relative to Venus 
T_VM = (V_days*M_days)/abs(V_days - M_days); % Mars relative to Venus 
T_VJ = (V_days*J_days)/abs(V_days - J_days); % Jupiter relative to Venus 
T_VS = (V_days*S_days)/abs(V_days - S_days); % Saturn relative to Venus 
 
% Earth 
T_EM = (E_days*M_days)/abs(E_days - M_days); % Mars relative to Earth 
T_EJ = (E_days*J_days)/abs(E_days - J_days); % Jupiter relative to Earth 
T_ES = (E_days*S_days)/abs(E_days - S_days); % Saturn relative to Earth 
 
% Mars 
T_MJ = (M_days*J_days)/abs(M_days - J_days); % Jupiter relative to Mars 
T_MS = (M_days*S_days)/abs(M_days - S_days); % Saturn relative to Mars 
 
% Jupiter 
T_JS = (J_days*S_days)/abs(J_days - S_days); % Saturn relative to Jupiter 
 
% mean motions (rad/day) 
n_Venus = (2*pi)/V_days; 
n_Earth = (2*pi)/E_days; 
n_Mars = (2*pi)/M_days; 
n_Jupiter = (2*pi)/J_days; 
n_Saturn = (2*pi)/S_days; 
 
% Initial Phase Angle (degrees) 
% Venus 
IPA_VE = (pi - (n_Earth*dof_VE))*(180/pi); % Venus to Earth 
IPA_VM = (pi - (n_Mars*dof_VM))*(180/pi); % Venus to Mars 
IPA_VJ = (pi - (n_Jupiter*dof_VJ))*(180/pi); % Venus to Jupiter 
IPA_VS = (pi - (n_Saturn*dof_VS))*(180/pi); % Venus to Saturn 
 
% Earth 
IPA_EM = (pi - (n_Mars*dof_EM))*(180/pi); % Earth to Mars 
IPA_EJ = (pi - (n_Jupiter*dof_EJ))*(180/pi); % Earth to Jupiter 
IPA_ES = (pi - (n_Saturn*dof_ES))*(180/pi); % Earth to Saturn 
 
% Mars 
IPA_MJ = (pi - (n_Jupiter*dof_MJ))*(180/pi); % Mars to Jupiter 
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IPA_MS = (pi - (n_Saturn*dof_MS))*(180/pi); % Mars to Saturn 
 
% Jupiter 
IPA_JS = (pi - (n_Saturn*dof_JS))*(180/pi); % Jupiter to Saturn 
 
% Final Phase Angle 
% Venus 
FPA_VE = (pi - (n_Venus*dof_VE))*(180/pi); % Venus to Earth 
FPA_VM = (pi - (n_Venus*dof_VM))*(180/pi); % Venus to Mars 
FPA_VJ = (pi - (n_Venus*dof_VJ))*(180/pi); % Venus to Jupiter 
FPA_VS = (pi - (n_Venus*dof_VS))*(180/pi); % Venus to Saturn 
 
% Earth 
FPA_EM = (pi - (n_Earth*dof_EM))*(180/pi); % Earth to Mars 
FPA_EJ = (pi - (n_Earth*dof_EJ))*(180/pi); % Earth to Jupiter 
FPA_ES = (pi - (n_Earth*dof_ES))*(180/pi); % Earth to Saturn 
 
% Mars 
FPA_MJ = (pi - (n_Mars*dof_MJ))*(180/pi); % Mars to Jupiter 
FPA_MS = (pi - (n_Mars*dof_MS))*(180/pi); % Mars to Saturn 
 
% Jupiter 
FPA_JS = (pi - (n_Jupiter*dof_JS))*(180/pi); % Jupiter to Saturn 
 
% Wait time (assuming n1 < n2) (days) 
NN = 0 
 
% Venus 
twait_VE = (-2*FPA_VE - (2*pi*NN))/(n_Earth - n_Venus); 
twait_VM = (-2*FPA_VM - (2*pi*NN))/(n_Mars - n_Venus); 
twait_VJ = (-2*FPA_VJ - (2*pi*NN))/(n_Jupiter - n_Venus); 
twait_VS = (-2*FPA_VS - (2*pi*NN))/(n_Saturn - n_Venus); 
 
% Earth 
twait_EM = (-2*FPA_EM - (2*pi*NN))/(n_Mars - n_Earth); 
twait_EJ = (-2*FPA_EJ - (2*pi*NN))/(n_Jupiter - n_Earth); 
twait_ES = (-2*FPA_ES - (2*pi*NN))/(n_Saturn - n_Earth); 
 
% Jupiter 
twait_MJ = (-2*FPA_MJ - (2*pi*NN))/(n_Jupiter - n_Mars); 
twait_MS = (-2*FPA_MS - (2*pi*NN))/(n_Saturn - n_Mars); 
 
% Saturn 
twait_JS = (-2*FPA_JS - (2*pi*NN))/(n_Saturn - n_Jupiter); 

V_days = 

 

   225 

 

 

E_days = 

 

  365.2560 
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M_days = 

 

   687 

 

 

J_days = 

 

   4.3338e+03 

 

 

S_days = 

 

       10759 

 

 

per_V = 

 

    1.6234 

 

 

per_M = 

 

    0.5317 
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per_J = 

 

    0.0843 

 

 

per_S = 

 

    0.0339 

 

 

per_T = 

 

    0.0436 

 

 

pos_Titan = 

 

   1.4332e+09 

 

 

NN = 

 

     0 

Plotting the Solar System 

Radius = a_Saturn + a_Titan + 2*r_Titan % Maximum graph dimensions 
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% Assume Circular Orbits for each planet 
Et = 0:pi/180:Years; % Earth time span(1.0149*pi)/180 
EarthX = a_Earth * cos(Et); 
EarthY = a_Earth * sin(Et); 
EarthZ = 0*tan(Et); 
 
Vt = 0:(per_V*pi)/180:Years; % Venus time span 
VenusX = a_Venus * cos(Vt); 
VenusY = a_Venus *sin(Vt); 
VenusZ = 0*tan(Vt); 
 
Mt = 0:(per_M*pi)/180:Years; % Mars time span 
MarsX = (a_Mars * cos(Mt)); 
MarsY = (a_Mars *sin(Mt)); 
MarsZ = 0*tan(Mt); 
 
Jt = 0:(per_J*pi)/180:Years; % Jupiter time span 
JupiterX = a_Jupiter * cos(Jt); 
JupiterY = a_Jupiter *sin(Jt); 
JupiterZ = 0*tan(Jt); 
 
St = 0:(per_S*pi)/180:Years; % Saturn time span 
SaturnX = a_Saturn * cos(St); 
SaturnY = a_Saturn * sin(St); 
SaturnZ = 0*tan(St); 
 
Tt = -Years*pi:(2*pi)/180:Years; % Titan time span 
TitanX = a_Titan*cos(Tt); 
TitanY = a_Titan*sin(Tt); 
TitanZ = 0*tan(Tt); 
 
% Satellite (Q) 
%syms QX QY; 
%fimplicit(1.34364042*(10)*QX^2+2.6714264*(10)*QX*QY+1.33754593*(10)*QY^2==1); 
qt = 0:(per_S*pi)/180:Years; 
QX = 1.34364042.*cos(qt).^2 - 2.6714264.*cos(qt).*sin(qt); 
QY = 1.33754593.*sin(qt).^2 + 2.6714264.*cos(qt).*sin(qt); 
QZ = 0 
 
x0 = [0]; 
y0 = [0]; 
z0 = [0]; 
 
% Plotting the planets initial position 
figure('Name','N-Body','NumberTitle','off') 
Sun = plot3(x0, y0, z0, '.y', 'MarkerSize',30') % Sun coordinates 
hold on 
xlabel('X') 
ylabel('Y') 
zlabel('Z') 
grid on 
%Venus = plot3(-108051715.7,-5662750.465,z0,'.m','MarkerSize',10) % Venus coordinates 
Earth = plot3(x0,a_Earth,z0, '.g','MarkerSize',10) ;% Earth coordinates 
%Q = plot3(a_Earth+r_Earth,y0,z0,'.y','Markersize',5) % Starting Satellite coordinate 
Mars = plot3(-59010742.28,-220231088.4,z0,'.r','MarkerSize',10) ;% Mars coordinates 
Jupiter = plot3(a_Jupiter/sqrt(2),a_Jupiter/sqrt(2),z0,'.k','MarkerSize',45); % 
Jupiter coordinates 
Saturn = plot3((a_Saturn/2)*sqrt(3),-a_Saturn/2,z0,'.m','MarkerSize',5) ;% Saturn 
coordinates 
Titan = plot3(a_Titan+(a_Saturn/2)*sqrt(3),a_Titan+(-
a_Saturn/2),z0,'.b','Markersize',5); % Titan coordinates 
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axis([-Radius, +Radius, -Radius, +Radius, -Radius, +Radius]); % make sure the axis is 
fixed; 
 
for n = 9273:14426; 
 
    set(Earth, 'XData', EarthX(n), 'YData', EarthY(n), 'ZData', EarthZ(n)); %// update 
Earth position 
    %set(Venus, 'XData', VenusX(n), 'YData', VenusY(n),'ZData', VenusZ(n)); % Update 
Venus position 
    set(Mars, 'XData', MarsX(n), 'YData', MarsY(n),'ZData', MarsZ(n)); % Update Mars 
position 
    set(Jupiter, 'XData', JupiterX(n), 'YData', JupiterY(n),'ZData', JupiterZ(n)); % 
Update Jupiter position 
    set(Saturn, 'XData', SaturnX(n), 'YData', SaturnY(n),'ZData', SaturnZ(n)); % 
Update Saturn position 
 
    set(Titan, 'XData', TitanX(n) + SaturnX(n), 'YData', TitanY(n)+ 
SaturnY(n),'ZData', TitanZ(n) + SaturnZ(n)); % Update Titan position 
    drawnow %// refresh figure 
end 
 
% Plotting the planets Final position 
figure('Name','N-Body Final','NumberTitle','off') 
Sun = plot3(x0, y0, z0, '.y', 'MarkerSize',30') % Sun coordinates 
hold on 
xlabel('X') 
ylabel('Y') 
zlabel('Z') 
grid on 
%Venus = plot3(-108051715.7,-5662750.465,z0,'.m','MarkerSize',10) % Venus coordinates 
Earth = plot3(-1.4733e+08,-2.5978e+07,z0, '.g','MarkerSize',10) % Earth coordinates 
%Q = fplot3(a_Earth,y0,z0,'.b','Markersize',20) % Starting Satellite coordinate 
Mars = plot3(-1.3515e+08,-1.8363e+08,z0,'.r','MarkerSize',10) % Mars coordinates 
Jupiter = plot3(7.7404e+08,8.3225e+07,z0,'.k','MarkerSize',45) % Jupiter coordinates 
Saturn = plot3(1.4197e+09,1.8752e+08,z0,'.m','MarkerSize',5) % Saturn coordinates 
Titan = plot3(a_Titan+(1.4197e+09),a_Titan+(1.8752e+08),z0,'.b','Markersize',5); % 
Titan coordinates 
axis([-Radius, +Radius, -Radius, +Radius, -Radius, +Radius]); % make sure the axis is 
fixed; 
 
for n = 14426:25185; 
 
    set(Earth, 'XData', EarthX(n), 'YData', EarthY(n), 'ZData', EarthZ(n)); %// update 
Earth position 
    %set(Q, 'XData', QX(n), 'YData', QY(n), 'ZData', QZ(n)); %// update Satellite 
position 
    %set(Venus, 'XData', VenusX(n), 'YData', VenusY(n),'ZData', VenusZ(n)); % Update 
Venus position 
    set(Mars, 'XData', MarsX(n), 'YData', MarsY(n),'ZData', MarsZ(n)); % Update Mars 
position 
    set(Jupiter, 'XData', JupiterX(n), 'YData', JupiterY(n),'ZData', JupiterZ(n)); % 
Update Jupiter position 
    set(Saturn, 'XData', SaturnX(n), 'YData', SaturnY(n),'ZData', SaturnZ(n)); % 
Update Saturn position 
 
    set(Titan, 'XData', TitanX(n) + SaturnX(n), 'YData', TitanY(n)+ 
SaturnY(n),'ZData', TitanZ(n) + SaturnZ(n)); % Update Titan position 
    drawnow %// refresh figure 
end 

Radius = 
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   1.4332e+09 

 

 

QZ = 

 

     0 

 

 

Sun =  

 

  Line with properties: 

 

              Color: [1 1 0] 

          LineStyle: 'none' 

          LineWidth: 0.5000 

             Marker: '.' 

         MarkerSize: 30 

    MarkerFaceColor: 'none' 

              XData: 0 

              YData: 0 

              ZData: 0 

 

  Use GET to show all properties 

 

 

Sun =  
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  Line with properties: 

 

              Color: [1 1 0] 

          LineStyle: 'none' 

          LineWidth: 0.5000 

             Marker: '.' 

         MarkerSize: 30 

    MarkerFaceColor: 'none' 

              XData: 0 

              YData: 0 

              ZData: 0 

 

  Use GET to show all properties 

 

 

Earth =  

 

  Line with properties: 

 

              Color: [0 1 0] 

          LineStyle: 'none' 

          LineWidth: 0.5000 

             Marker: '.' 

         MarkerSize: 10 

    MarkerFaceColor: 'none' 
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              XData: -147330000 

              YData: -25978000 

              ZData: 0 

 

  Use GET to show all properties 

 

 

Mars =  

 

  Line with properties: 

 

              Color: [1 0 0] 

          LineStyle: 'none' 

          LineWidth: 0.5000 

             Marker: '.' 

         MarkerSize: 10 

    MarkerFaceColor: 'none' 

              XData: -135150000 

              YData: -183630000 

              ZData: 0 

 

  Use GET to show all properties 

 

 

Jupiter =  
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  Line with properties: 

 

              Color: [0 0 0] 

          LineStyle: 'none' 

          LineWidth: 0.5000 

             Marker: '.' 

         MarkerSize: 45 

    MarkerFaceColor: 'none' 

              XData: 774040000 

              YData: 83225000 

              ZData: 0 

 

  Use GET to show all properties 

 

 

Saturn =  

 

  Line with properties: 

 

              Color: [1 0 1] 

          LineStyle: 'none' 

          LineWidth: 0.5000 

             Marker: '.' 

         MarkerSize: 5 

    MarkerFaceColor: 'none' 

              XData: 1.4197e+09 
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              YData: 187520000 

              ZData: 0 

 

  Use GET to show all properties 
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Titan_sysX = (a_Saturn + a_Titan)*cos(Tt); 

Titan_sysY = (a_Saturn + a_Titan)*sin(Tt); 

Titan_sysZ = 0*tan(Tt); 

 

figure('Name','Saturn-Titan System','NumberTitle','off') 
Saturn_sys = plot(x0,y0,'.m','MarkerSize',75) % Saturn coordinates 
hold on 
grid on 
Titan_sys = plot(a_Titan,y0,'.b','Markersize',35); % Titan coordinates 
axis([-Radius, +Radius, -Radius, +Radius]); % make sure the axis is fixed; 
 
for n = 1:100; 
    set(Titan_sys, 'XData', Titan_sysX(n), 'YData', Titan_sysY(n)); % Update Titan 
position 
    drawnow %// refresh figure 
end 

Saturn_sys =  

 

  Line with properties: 

 

              Color: [1 0 1] 

          LineStyle: 'none' 

          LineWidth: 0.5000 

             Marker: '.' 

         MarkerSize: 75 

    MarkerFaceColor: 'none' 

              XData: 0 

              YData: 0 

              ZData: [1×0 double] 

 

  Use GET to show all properties 
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Transposing 

tp_EarthX = transpose(EarthX); 

tp_EarthY = transpose(EarthY); 

Earth_Coordinates = [tp_EarthX tp_EarthY]; 

 

tp_MarsX = transpose(MarsX); 

tp_MarsY = transpose(MarsY); 

Mars_Coordinates = [tp_MarsX tp_MarsY]; 

 

tp_JupiterX = transpose(JupiterX); 

tp_JupiterY = transpose(JupiterY); 

Jupiter_Coordinates = [tp_JupiterX tp_JupiterY]; 
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tp_SaturnX = transpose(SaturnX); 

tp_SaturnY = transpose(SaturnY); 

Saturn_Coordinates = [tp_SaturnX tp_SaturnY]; 

%syms QX QY; 
%fimplicit3(1.34364042*(10)*QX^2+2.6714264*(10)*QX*QY+1.33754593*(10)*QY^2+0*QZ^2==1); 
%QX = @(qt) 1.34364042*cos(qt)^2 - 2.6714264*cos(qt)*sin(qt); 
%QY = @(qt) 1.33754593*sin(qt)^2 + 2.6714264*cos(qt)*sin(qt); 
%QZ = @(qt) 0 
%fplot3(QX,QY,QZ) 
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