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ABSTRACT

A Study of the Most Efficient Earth-to-Titan Orbit Trajectory Using the N-Body Problem

Christian Ancheta

This paper explores the theory of sending a satellite to orbit Saturn’s moon, Titan, using the N-
body problem. The study examines what is the most efficient flight path to entire the Titan
atmosphere, and what makes that specific flight path efficient. The equations of relative motion
and related orbital mechanics equations are used to accomplish these objectives. The N-body
simulation is run in MATLAB and simulates the Solar System as the satellite makes its path.
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Nomenclature

= semi-major axis

= angular velocity

= eccentricity

= Universal Gravitational Constant
= angular momentum

= Mass

= Spacecraft

= radius

= Sphere of Influence

= velocity

= arrival velocity

= departure velocity

= excess velocity

= turn angle

= mass ratio

= angle of arrival velocity
= angle of departure velocity
= true anomaly

= Initial Phase Angle

= Final Phase Angle

= mean motion

= period

= Synodic Period
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1.0 Introduction
1.1 Motivation

The current problem is developing the most efficient flight path from Earth to orbit Titan
using N-body simulations. Titan is the largest of Saturn’s 82 moons. Titan is believed to have the
potential to sustain life, being a celestial body that possesses lakes and seas filled with visible
fluid. The distance between the Sun and Titan is approximately 1.4 billion km, meaning the
sunlight is not as present as on Earth [1]. Multiple missions prior, such as the Cassini spacecraft,
have provided a significant amount of information that allows for a reason for further study and
exploration on Titan.

There have been plenty of studies about the two-body problem, the three-body problem,
and the four body problem for transfer design. However, the question has not been asked if it is
possible to create an n-body simulation for an efficient flight path from Earth to Titan. This
paper will uncover the answer to this problem.

1.2 Literature Review
1.2.1 Stability of P-type orbits around stellar binaries: An extension to counter-rotating orbits

Chaelin Hong and Maurice H. P. M. van Putten explored the idea of counter-rotating
planetary orbits around stellar binaries. The motivation behind this concept is that an
understanding of circumbinary systems can be reached. In order to reach this understanding,
Hong and van Putten first discuss the initial conditions of P-type orbits. These conditions are the
positions of three bodies, which all have a coplanar configuration. Studying the dynamical
stability of this three-body problem, initial distance and angle can be found in order to answer if
the orbit is stable or unstable. The equations of motion are explored next in the two-body and
three-body problems. The importance of these referenced problems is to establish which
equations are to be used in order to accurately determine the stability of the orbits. Using an N-
body simulation in MATLAB, the results of the study show an increase in the upper critical orbit
(UCO) and the lower critical orbit (LCO), which are the orbital radius of the third object. Hong
and van Putten concluded that counter rotating orbits are more stable than corotation orbits. This
assessment is essential in uncovering the habitability based on the P-type orbit stability changes

[2].

1.2.2 Numerical multistep methods for the efficient solution of quantum mechanics and related
problems

Zacharias A. Anastassi and Theodore E. Simos present an in-depth study of linear
multistep methods and hybrid methods. The difference between linear multistep methods and
hybrid methods is that the main objective of the hybrid method is to retain the amount of steps in
the method while optimizing it, whereas linear multistep methods use additional approximations
to increase algebraic order. Both methods were tested on the Schrodinger equation, the N-body
problem, the inhomogeneous equation, the nonlinear equation, and the two-body problem that
uses various low eccentricities. These five systems of ordinary differential equations (ODE) were



tested to see if they have oscillatory solutions. Each ODE system had a chart that displayed the
efficiency for each method. The mathematical steps to each system were presented with the
theory behind each of the five systems of ODEs. Anastassi and Simos concluded that high order
of fitting provides efficient data for the Schrodinger equation integration. They also concluded
that the method for an oscillatory problem, such as the N-body problem, needs to have the key
aspect of a long interval of periodicity for integration. The third point the authors established was
that the high order fitted explicit symmetric method was the most efficient for the
inhomogeneous equation, nonlinear equation and the low eccentricity two-body problem [3].

1.2.3 Dynamics of the terrestrial planets from a large number of N-body simulations

Rebecca A. Fischer and Fred J. Ciesla examine the dynamic properties of the Solar
System. The incentive behind this research was to understand historical accretion ranges of the
planets under various dynamic circumstances. The second objective in this research was to
evaluate how applicable N-body simulations are in understanding the formation of Earth. In
order to accomplish this task, Fischer and Ciesla performed 100 N-body simulations of the planet
accretion. This is accomplished by calculating the gravitational interactions of celestial bodies
that evolve into a planetary formation. The orbital configurations that were tested were Jupiter
and Saturn with two different cases, The first is the Eccentric Jupiter and Saturn (EJS) case,
which are planets current orbits. The second is the Circular Jupiter and Saturn Case (CJS), where
both planets are given non-eccentric orbits. The N-body simulations resulted in accurate values
for the EJS configuration. Fischer and Ciesla concluded that the formation of Earth is correlated
with the late veneer mass and the timescale of Earth. This study helps promote a deeper
understanding and method development for N-body simulations [4].

1.2.4 Plasma environment at Titan’s orbit with Titan present and absent

Wei, Russell, Wellbrock, Doughert, and Coates performed a study on Titan’s plasma
environment when Titan is present and absent. The objective behind this study was to understand
the influence of the plasma environment on Titan. This was done by examining the magnetic
field measurements that were obtained from the Cassini magnetometer and the Cassini plasma
spectrometer. The authors concluded that Titan being present displays an effective impact on its
plasma environment [5].

1.2.5 An empirical model for the plasma environment along Titan’s orbit based on Cassini
plasma observations

Todd Smith and Abigail M. Rymer modeled the plasma environment along Titan’s orbit.
Titan was identified as having a dense atmosphere of nitrogen that Cassini observed while in
Saturn's atmosphere. Smith and Rymer provided evidence that Saturn’s magnetopause was
impacted by the location of Titan. The technique to detect ionization particles leaving Titan
depends on the surrounding plasma environment. There were four plasma categories formed
after the analysis of 54 Titan interactions. The categories are the plasma sheet, lobe-like,
magnetosheath, and bimodal plasma. Smith and Rymer created an empirical model based upon
Saturn local time that applies the probability of each category [6].



1.2.6 Titan aerogravity-assist maneuvers for Saturn/Enceladus missions

Ye Lu and Sarag J. Saikia developed a design method for a Saturn and Enceladus mission
using Titan aerogravity assist (AGA) maneuvers. AGA refers maneuvers where the spacecraft
uses a hyperbolic trajectory to enter and exit the atmosphere. This study can be broken down into
three sections: arrival, atmospheric flight, and post-orbit. When designing the trajectory, research
needs to be done on Titan. Titan’s orbit about Saturn is almost circular with near zero inclination
and axial tilt to Saturn. This allows for a spacecraft to interact with Titan at different points. The
AGA maneuver will have an impact on the excess velocity that is dependent on the direction of
the orbital velocity. The two missions have differences in the approach, however, Lu and Saikia
concluded that AGA is possible for both a Saturn mission and an Enceladus mission. The
promising aspect of this study is the foundation of mission design and trade analysis as another
method for interplanetary travel, instead of other methods such as gravity assists or moon tours

[7].
1.2.7 Reduction of Saturn Orbit Insertion Impulse using Deep-Space Low Thrust

Elena Fantino, Roberto Flores, Jesus Pelaez, and Virginia Raposo-Pulido establish a
system to reduce the hyperbolic excess velocity to Saturn using electric propulsion. The motive
behind this study is that understanding planets such as Jupiter and Saturn can potentially lead to
understanding how the Solar System was formed. The missions dedicated to these planets require
a substantial amount of propellant, thus, finding the most efficient flight path while searching for
alternative propulsion systems would reduce costs greatly. The trajectory that was designed is an
Earth to Saturn path that involves a gravity assist at Jupiter. The strategy to reduce excess speed
from Jupiter to Saturn is a low-thrust (LT) transfer. The mission requirements for this study
involved the transfer time from Earth to Jupiter to be within a three year time frame and the post
gravity assist thrust should not last more than four years. The authors obtained results that would
have the lowest propellant budget and had a total mission time of 13 years. The assumption of
the spacecraft had a mass of 1000 kg. This design presents possible trajectories for interplanetary
travel and introduces an inexpensive strategy to go to Saturn [8].

1.2.8 The spatial Hill four-body problem [—An exploration of basic invariant sets

In Jaime Burgos-Garcia, Abimael Bengochea, and Luis Franco-Perez’s study of the
spatial Hill four-body problem, the authors examine the basic invariant sets. Since the spatial Hill
three-body problem is insufficient in modeling dynamics of specific celestial bodies, the
objective behind this research is to build upon the three-body problem. This paper introduces the
restricted four-body problem (R4BP), where three points with gravitational forces come into
contact with a massless particle. The equations of motions involved have the assumption that the
three points move in circular orbits and have a constant angular velocity. The invariant sets are
examined and were computed numerically, reaching a possibility that polar orbits bifurcate. The
authors developed the study of the four-body problem that has an emphasis on equilibrium points
and symmetric periodic orbits. The symmetric periodic orbits were numerically solved with
boundary value problems. The Jacobi constant was found to have multiple bifurcations at various
values for mass. It was determined that this study needs further development to reach a more
comprehensive understanding [9].



1.2.9 Comparisons between the circular restricted three-body and bi-circular four body problems
for transfers between the two smaller primaries

Allan Kardec de Almeida Junior and Antonio Fernando Bertachini de Almeida Prado
discuss the distinctions between the circular restricted three body problem (CR3BP) and the bi-
circular four body problem (4BP) and develop a method that measures those differences. One
major factor of this study is the inclusion of the Sun in the equations of motion. The four systems
that were looked at were the Sun-Earth-Moon system, the Sun-Mars-Phobos system, the Sun-
Saturn-Titan system, and the Sun-Ida-Dactyl system. The orbit transfer for all four systems
involves a bi-impulsive maneuver, where two impulses are initiated, the first is at the main
celestial mass, and the second is at a certain point in the orbit of the corresponding moon. The
authors concluded that the shorter the distance of the spacecraft from the Earth-moon barycenter,
the magnitude of the perturbation is lower. The Sun-Ida-Dactyl system had the fewest
distinctions between the CR3BP and the 4BP, while the Sun-Mars-Phobos system had the most
differences. The analysis drawn from these results is that the higher the cumulative mass of the
celestial bodies, the more differences are found [10].

1.2.10 Orbital dynamics in the planar Saturn-Titan system

In Euaggelos E. Zotos’ paper “Orbital dynamics in the planar Saturn-Titan system”,
Zotos explores the orbital dynamics of varying bodies in orbit about the Saturn and Titan system.
The research involves understanding how escaping orbits is not a concept that has been
thoroughly studied. The model used for this project was the planar circular restricted three-body
problem (PCRTBP). This involves two primaries with circular orbits and a particle that interacts
with the primaries on the same plane. The variable that is changing in this study is the Jacobi
constant. The first conclusion Zotos drew is that Jacobi constants with high values correlate with
collisional orbits. Jacobi constants with low values correlate to orbits escaping. The second
conclusion drawn is that an increasing Jacobi constant means an increasing collisional time,
while a decreasing Jacobi constant lowers the average escape time. The results and conclusions
presented further advances the current information about the Saturn-Titan system and its
corresponding orbital dynamics [11].

1.2.11 Generalizing the restricted three-body problem. The Bianular and Tricircular coherent
problems

In Gabern and Jorba’s paper “Generalizing the restricted three-body problem. The
Bianular and Tricircular coherent problems”, the authors create two models with the Sun, Jupiter,
Saturn and Uranus and have a particle interact with the gravitational forces. The reason behind
this study is that the restricted three-body problem is not as accurate as it does not include
specific conditions. The first dynamic model is the Sun-Jupiter-Saturn system. The second model
is the Sun-Jupiter-Saturn-Uranus system. The N-planetary problem is examined and is defined as
a planar problem N bodies revolve around the main body in orbit. Simulations were run for the
N-body problem for the motion of an asteroid in the models. Quasi-periodic solutions have been
found for both the Sun-Jupiter-Saturn system and the Sun-Jupiter-Saturn-Uranus system. Gabern
and Jorba state that the models created still resemble the restricted three-body problem too



closely, and cannot be considered as an alternative. The models are to be viewed as an
optimization and simplification of certain aspects of the three-body problem [12].

1.2.12 Reflections on the Hohmann transfer

In Meile, Ciarcia, and Mathwig’s paper “Reflections on the Hohmann Transfer”, the
authors complete an in-depth study of the Hohmann transfer maneuver. There are important
properties that are required to understand the transfer in itself. The first assumption made is that
the orbits are circular and coplanar. The second assumption made is that there is a singular
gravitational force. The third assumption is that the departure and arrival of the spacecraft are
assumed to have circular motions. The final assumption is that the velocity impulses are
tangential and exclusively for the terminal points. The velocity impulses accelerate for an
ascending Hohmann transfer, whereas the descending transfer the impulses are braking. The
inclination is affected for an ascending transfer as well, where it is positive everywhere except
the endpoints, where it does not exist. An optimization of the Hohmann transfer was also proven,
where the assumption is based upon having non-tangential velocity impulses at departure and
arrival. The authors concluded that there is a maximum point on the inclination path. It was also
determined that for the Hohmann transfer, the spacecraft velocity and the local circular velocity
are the same at departure, mid-radius, and arrival [13].

1.2.13 Summary of References

The references discussed involve topics such as plasma on Titan, four-body problems, N-
body problems, and trajectory planning. Each topic was specifically chosen to broaden the
understanding and provide the mission objective direction. An understanding of the two-body,
three-body and four-body problems are essential to understanding the N-body problem. The
research provided mentions how accurate the N-body problem works and how accurate it can be.

1.3 Project Proposal

The objective of this study is to develop an efficient orbital transfer from Earth to orbit
Titan using N-body simulations. The report will go in-depth on two main topics. The first is to
design and calculate the ideal flight path from Earth to Titan’s sphere of influence. The second is
to apply this design using N-body simulations. These simulations will include major elements of
the solar system in order to accurately predict a flight path. To execute the N-body problem, the
simulations will be run in MATLAB.

1.4 Methodology

The process of launching a spacecraft from Earth is a careful and meticulous process that
requires an agenda. This project will be organized in three main segments. The first segment will
be the research phase, where the historical data is collected and utilized to have a further
understanding of this project. The second segment will consist of trajectory designs and
calculations of the celestial bodies involved. The design phase will determine the most efficient
method to send a spacecraft to orbit Titan. The third segment, which is predicted to be the most
time-consuming, will handle the n-body simulations of the intended celestial bodies. These N-
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body simulations will be run in MATLAB and incorporate specific characteristics to accurately
portray the flight path.

2.0 Trajectory Planning

2.1 Measures of Merit

To achieve the objective of the mission of finding the most efficient Earth to Titan
trajectory, the exact method requires calculations and planning. The efficiency of the mission is
dependent on how many maneuvers the flight would have and how much time the spacecraft
takes to get to Titan’s orbit.

2.2 Methods

There will be nine paths that will be closely examined for this study, as shown in Fig. 3.1.
These nine paths were chosen based on inspiration from the Cassini-Huygens mission.

Earth — >  Titan
Earth — > Saturn ——  Titan
Earth — Venus — > Saturn —  Titan

Earth — Mars — Saturn —  Titan

Earth — > Jupiter — > Saturn — >  Titan

Earth — Venus — > Mars — > Saturn ——  Titan

Earth —— Venus —— > Jupiter ——— > Saturn —— >  Titan
Earth ——— Mars ——— > Jupiter — > Saturn — >  Titan

Earth — Venus ——»  Mars

Jupiter —— > Saturn — > Titan

Figure 2.1 Trajectory paths
2.3 Time Frame

The ideal frame for the study is for Saturn and Earth to be at a true anomaly of 180
degrees, which would allow for simpler calculations. Another factor for this frame would be for
Saturn and Earth to be within a closer distance of each other for a more fuel-efficient orbit.

2.4 Assumptions

In order to design a trajectory that can be understood, there will be assumptions made.
The first is to assume all the planetary orbits are circular. The second assumption is that
inclination will be the same, meaning the orbital bodies all lie on the same Z-plane. The third
assumption will be assuming that the flight path for each transfer is 180 degrees.



3.0 Astrodynamics
3.1 Orbital Mechanics

3.1.1 Basics of Orbital Mechanics
The study of orbital mechanics focuses on problems concerning spacecraft motions. The
solutions resolving these issues deal with specific equations of motion that involve Newton’s

laws of motion and gravitation. Newton’s law of gravitation describes the force of gravity as two
bodies with a distance between the two, written as

(3.1)

3.1.2 Orbital Parameters
The mass of the sun is represented as
Mg, = 1989 x 103° kg

The Universal Gravitational Constant is

km3
G = 6.67x1072°

kgs?
Table 3.1 Mass of each planet
Planet M (kg)
Venus 4.87 x 10%*
Earth 5.97 x 10%*
Mars 6.42 x 1023
Jupiter 1.898 x 1027
Saturn 5.683 x 102°
Table 3.2 Radius of planets
Planet r (km)
Venus 108.2 x 10°
Earth 149.6 x 10°
Mars 228.0 x 10°
Jupiter 778.5 x 10°
Saturn 143.2 x 107




3.2 Relative Motion Equations

There are required parameters to calculate prior to making the calculations for the trajectory to
Titan. These are determined by the equations of relative motion.

GM
sun,planet — sun (3.2)
Tplanet

Table 3.3 Circular orbital velocity

Planet Velocity w/ respect to the Sun v (km/s)
suanenus 35.016

sunq,Earth 29.7793

sung,Mars 24.122

sunv]upiter 13.0542

sunvSaturn 9.6252

1
PAGPE = > (rpa + 7pp) (3.3)

Equation (3.2) represents the circular orbital velocity of the given planet that is relative to the
sun. Equation (3.3) is a method to calculate the semi-major axis, which is the mean distance
between one celestial body and another body.

3.3 Sphere of Influence

M 2/5

_ planet

Tsor = Toranee (—22) (34)
sun

Table 3.4 Sphere of influence

Planet SOI (km)

Venus 616289.732
Earth 924415.913
Mars 577424.152
Jupiter 48208452.07
Saturn 54743849.22

The Sphere of Influence (SOI) is critical to understand the distance required for the spacecraft to
leave the planet’s gravitational influence, which is calculated with Eq. (3.4).



4.0 Interplanetary Transfer

4.1 Introduction to Hohmann Transfers

The Hohmann transfer was developed in 1925 by Wolfgang Hohmann. In order to be fuel
efficient, this method was developed for transferring one spacecraft from one circular orbit to
another circular orbit. The Hohmann transfer is critical to understand in order to grasp the
concept of an interplanetary flyby. The beginning of a transfer is the same process for the
interplanetary flyby. The objective of the beginning steps is to obtain the arrival velocity of the

spacecraft with respect to the sun, 4" 2.

Planet A

Planet B

_Sy Sun

Figure 4.1 Sun reference frame

Fig. (4.1) displays the Sun reference frame, where Planet A is where the spacecraft departs and
Planet B is where the spacecraft approaches. Sun reference frame is defined as Sx, Sy, and S.

4.2 Interplanetary Transfer Approach

In order to fully understand the mission, the process of interplanetary flybys can be
broken into three phases: departure, transit, and arrival. Fig. (4.2) shows the reference frame for
an Earth to Saturn transfer.



Saturn

_Sy Sun

Figure 4.2 Earth to Saturn diagram
4.2.1 Transit Phase

The transit phase begins when the spacecraft exits the SOI of the planet it departs from. In this
specific example, the transit phase will begin once the spacecraft leaves Earth’s SOI. The
objective of the transit phase is to find the hyperbolic excess speed, ve.

Saturn

sunl,Samm

Sun

sunvg
Figure 4.3 Earth to Saturn velocity visual

The first step in this stage is to find the circular orbit speeds of both planets using Eq. (3.2), in
this case, Earth and Saturn. According to Table 3.3, the circular orbit velocities are:

sun

vEarth = 29779 km/s Sy

sunpSaturn . — 9 885 km/s Sy
The next step of the transit phase is to calculate the velocity of the spacecraft departing Earth,
suny, @
v,;.

10
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suny@ = (W/GMSun)< /i - ﬁ) Sy

Using Eq. (3.3) to solve for EarthgSaturn

Earth ,Saturn —
a - E (rEarth + rSaturn)

1
FarthgSaturn =  (149.6 x 10° + 143.2x 107)

Earth,Saturn — 7908 x 108 km

Substituting the values into Eq. (3.2),

suny @ =364233.8535x<\/ 2 )sy

149.6 x 106  7.908 x 108

suny@ = 4 40.073 km/s Sy

Voo, 18 the velocity of the spacecraft departing Earth with respect to the Sun.

sunvg — sunyplanet planetvg
planetvg — sunvg — sunyplanet

planety, @ _
v, Voo,

4.1)

(4.2)

(4.3)

(4.4)

Using Eq. (4.2) — (4.4), the v,,_can be solved with the values of the circular orbital velocity of

Earth and the spacecraft velocity departing Earth.

sunvg — sunyEarth Earthvc(l?
Earthvg — sunvg — sunyEarth

Earthy? = 40,073 km/s Sy — 29.779 km/s Sy

Earth

v¢ = 10.294 km/s Sy

Earthy,Q _
Vg = Vo,

Voo, = 10.294 km/s Sy

11



The next step of the transit phase is to calculate the velocity of the spacecraft approaching

Saturn, suny @

a:

sun

SRe}

= (m) < % - PA;PB) Sy (*3)
Sunvc? = (V GMsun) <\/r : - EarthaISaturn) Sy

V,

Saturn

Substituting the values into Eq. (3.2),

suny@ = 364233.8535 x <\/ -

2 1
Sy
143.2x 107  7.908 x 108

suny@ = — 4,186 km/s Sy

a

Vo, 18 the velocity of the spacecraft approaching Saturn with respect to the Sun.

sunvg — sungplanet planetvg (4.6)

planetvg — sunvg — sunyplanet (4.7)

planety? = vy, (4.8)

a

Using Eq. (4.6) — (4.8), the v,,_can be solved with the values of the circular orbital velocity and
the spacecraft velocity approaching Saturn.

sunvg — sunySaturn | Saturnvg
Saturnvg — sunvg — sunySaturn
Saturny@ — 4186 km/s Sy — (—9.6252 km/s) Sy

SaturnyQ — 54388 km/s Sy

a

SaturnyQ _— Vo

a a

Ve, = 54388 km/s Sy

4.2.2 Rendezvous Phase
Once the spacecraft enters the orbit of the approaching planet, the spacecraft will either

rendezvous or perform a flyby. In order to do this, the flyby hyperbola needs to be defined with a
given altitude, which would allow eccentricity, ey, to be solved for.

12



e = 1+ 2% (4.9)
h = GMplanet '

Eq. (4.9) is used to find the eccentricity of the flyby hyperbola. The radius will have a range of
values to understand the relationship between the radius and the eccentricity. The eccentricity is
critical in solving for the turn angle, §, which affects the departure angle, ¢,. Eq. (4.10)
represents the angle between the departure velocity and the arrival velocity with respect to the
Sun reference frame. Eq. (4.11) is the angle between the departure velocity and the arrival
velocity of the target planet.

§ = 2sin~1 (i) (4.10)

bg = ¢ + 6 (4.11)

After arriving at the planet, the spacecraft will make a flyby at a calculated departure angle.
Similar to Eq. (4.6) and (4.7), finding the departure velocity of the flyby can be solved with Eq.
(4.12) - (4.15).

sunvgf — sunyplanet planetvgf (4.12)
planetvgf — planetvgf — sunyplanet (4.13)
planetvgf = Vo, (4.14)
Voou, = Voo ,COS§Sy — Ve ,COS5 Sx (4.15)

Eq. (4.16) is the change in velocity between the spacecraft departure velocity and the spacecraft
arrival velocity with respect to the sun.

Av = sunyd — suny? (4.16)

a
The final steps are to calculate specific values of the flyby departure trajectory. The first is
angular momentum, h,, where v is the velocity tangent to the ellipse. The velocity that is tangent
to the ellipse in the scenario would be in the Sy direction.

h, = TplanetVo 4.17)

The second value to calculate would be the magnitude of the velocity, v,, which is crucial for the
energy equation, Eq. (4.19).

13



sun

v, = [l (4.18)

v% = GMgyy <# - i) (4.19)

Tplanet Q2

Eq. (4.20) represents the eccentricity of the flyby hyperbola upon departure. Eq. (4.21) is the
orbit equation which can be manipulated into Eq. (4.22) to find the angle between the transfer
ellipse and the perihelion.

h3
e, = 4.2
2 azGMgyn ( 0)
h3
T = 4,
planet GMgyn(1+e; cos 03) ( 21)
hZ — 7 1anetGM
cosf, = Lo (4.22)

T'planetGMsunez

Flyby Trajectory

Veog s

Figure 4.4 Saturn flyby trajectory

Fig. (4.4) shows the purpose of the calculations, to manipulate the flyby trajectory by having an
ideal approaching velocity, which is critical in designing the next flyby departure velocity.

4.3 Rendezvous Opportunities
For an interplanetary transfer to succeed, the timing of the launch needs to be correct. This

process involves determining how long it will take for the spacecraft to arrive and when it should
leave based on the position of the planets.

14



Saturn at
departure

Earth at
arrival

Earth at
departure

Saturn at
arrival

Figure 4.5 Earth to Saturn rendezvous

4.3.1 Initial Phase
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Saturn at
departure

Earth at
departure

Figure 4.6 Earth to Saturn departure

Oinitiar 18 the required angle for the planets to have between each other to have an arrival at the

line of apses.

Oinitiat = T — Natqy

(4.23)

n, and n, are the mean motions of the planets, in this case, n; and n, are Earth and Saturn,

respectively.

Table 4.1 Orbital period of planets

Planet Orbital Period (Tpignet)
Venus 225.0

Earth 365.256

Mars 687.0

Jupiter 4333.0

Saturn 10759.0

16




21

Npianet = Triamet (4.24)
ane
21
Ngarth =
TEarth
21

MEarth = 3c956

Ngartn = -0172 rad/day

Using Eq. (4.24) and Table 4.1, the mean motions of Earth can be found to be .0172 rad/day and
Saturn can be found to be 5.8399 x 10 rad/day. The next step to solve Eq. (4.23) would be to
solve for the synodic period, which is given by:

_m [(Ri+Ry\3/?
t12 - m( 2 ) (425)

R1 and R> represent the radius of the planets. Plugging in the values for an Earth and Saturn
synodic period, ti2 is 2.2200 x 10° days. Substituting n, and t» into Eq. (4.23),

Oimitiar = ™ — (5.8399 x 10~* rad/day)(2.2200 x 103 day)
ginitial = 1w — 1.2965rad
Oinitiaw = 1.8541rad or 105.7175°

This means that the angle between Earth and Saturn would need to be 1.8541 rad or 105.7175°
upon departure.

4.3.2 Final Phase

When the spacecraft arrives at the desired planet, there will be a new phase angle between the
departure planet and the arrival planet, 85,4

Ofinat = ™ — Nqtyy (4.26)

17



Earth at
arrival

-
eﬁnal / i
/

Saturn at
arrival

Figure 4.7 Earth to Saturn arrival

Using Eq. (4.26) and Eq. (4.25), 8f;,q; can be found after the spacecraft departs Earth.
Ofinas = m — (0.0172)(2.2200 x 10° day)

Ofinat = ™ — 38.184

Ofinat = —35.042rad or — 2007.8°

This is the angle when between Earth and Saturn when the spacecraft arrives at Saturn.
5.0 Saturn to Titan

5.1 Characteristics of Titan

Table 5.1 Titan properties

Mass 1.345 x 10?3 kg

18



Perigee 1186680 km
Apogee 1257060 km
Radius 1221870 km
radius 2575.4 km
SOI 43306.04056 km

Saturn

Figure 5.1 Saturn and Titan reference frame
Moditying the Eq. (3.2),

Saturny,Titan — GMsaturn
TTitan

Saturny,Titan — (6.67 x 10729)(5.683 x 10%6)
1221870

Saturn,,Titan

% = 5.569795 km/s

pTitan — 2GMrTitan
e radius

19
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pTitan — 2(6.67 x 10720)(1.345 x 1023)
¢ 2575.4

plitan = 2 6394 km/s

The circular orbital velocity of Titan is 5.5698 km/s. The escape velocity of Titan is 2.6394 km/s.

Using Eq. (3.3), the semi-major axis of the transfer orbit can be found. For this example,
arbitrary values of 10000 km for a;p;tq; and 1257000 for afing; -

A |
Tal = 5 (afinal + ainitial)

A |
fal = (1257000 + 10000)
fal = 633500 km

2 1
Qi 1@

SaturnVoQo . (\/m )

Ainitial

1
10000 633500

Saturny? = (v37905610) j

SaturnyQ = 86725 km/s

®d

Av = Saturan — Saturng,Titan

®q

Av = 86.725 — 5.5698

Av = 81.1555 km/s

’ 2 1
v = (\/ GMSaturn) m - f_a‘

2 1
Saturn,,Q  _ -
Ve, = (V37905610) j1257000 633500
Saturnvga = .6899 km/s

20



2 1

Saturnvgtr (m) Z_Z

r a

1
1257000 1257000

Oty

Saturny, 2 (v/37905610) j

S“t“mvgtr = 5.491 km/s velocity of transfer orbit
— Q Q
AV = Saturnvoo” _ Saturnvooa

Av = 5491 — .6899

Av = 48015 km/s

Now that this orbit is inserted into Titan’s SOI, the velocity must not exceed Titan’s escape
velocity, which is 2.6394 km/s. Seeing how the insertion orbit exceeds the escape velocity, the

spacecraft needs a burn to slow down the spacecraft. In this example, the spacecraft will orbit
Titan at an arbitrary altitude of 20000.

) ’2 1
Tltanonoa (\/m) ; — E

) 1
Titan,,@  _— (./ _
Voo = (VB97115) jzoooo 20000
Tifanvga = .6697 km/s
Titanvg — TitanySaturn 4 SaturnyQ (5.3)
Titanvg — _ SaturnyTitan Saturnvg (5.4)

The circular orbit velocity of Titan with respect to Saturn was solved using Eq. (5.1), which is
5.5698 km/s . The arrival velocity of the spacecraft with respect to Saturn departing from Earth
was solved using Eq. (4.8) and calculated to be 5.699 km/s.

Titany@ = _55698 + 5.699

a

Titany@ = (1292

a
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Saturn

Figure 5.2 Saturn and Titan transfer

5.2 Three-Body Problem

The three-body problem is a situation where three bodies of similar mass are within a relative
distance between one another. Each body is affected by the gravitational influence of the
other two bodies. If one of the masses is significantly smaller than the other two masses that
it could be considered negligible, then the problem would turn into a restricted three body
problem. The spacecraft arriving to Titan from Saturn would be a perfect example of this

problem.

22



Figure 5.3 Three-body problem

F.
CA

Figure 5.4 Three-body problem forces

As shown in Fig. 3.2, the only forces are the ones acting on the planets are the forces that
have mutual gravitation. The forces Fap and Fga are equal and opposite.
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Figure 5.5 Three-body problem force of masses

The equations of motion of particle A are:

Fy =N=Npd (5.5)
_ _ mp(rg—ra) _ Mmc(r¢—ra)

Fp = Fga+Fcp = Gmy [ T— ro—ral? ] (5.6)

ry = r*=r4a, = rycosf,n, + r,ysinf,n, (5.7)

a, =Na*=(",cos0, — 2r',0,sin0, — 1,0",sin0, — 1,0'%,cos0,)n,

+ (", sin@y — 21’40, sin 0,4 — 1,0" 4cos 0,4 — 1,0'%,sinB, )N, (5.8)
1y = T2 [rgcos(@ — 04) — T4l + T [rccos(Bc — 04) — Tl + 140 (5.9)
AB AC
" G . G . 2711 4015
0", = %sm(eg -0, + %sm(ec -0, - % (5.10)
Tap = |ta — 15l = g — 74l (5.11)

Assume the three particles in the three-body problem were Saturn, Titan and a spacecraft, where
the spacecratft is in Titan’s SOI. Since Titan is in Saturn’s SOI, the spacecraft would be in both
Titan and Saturn’s SOI. Assuming the spacecraft’s mass is small in comparison to Titan and
Saturn, the spacecraft’s mass can be negligible. This would turn the three-body problem into the
restricted three body problem.
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Figure 5.6 Restricted three-body problem

BMI = _y b, (5.12)
BM2 — x b (5.13)
BiQ=xb, + yb, +zb,,where /x> +y2+22 = r (5.14)
MIQ = (x + x1)b, + yb, + zb, (5.15)
MAQ = (x — x,)b, + yb, +zb, (5.16)
Angular Velocity
w = 2_" (5.17)
= 2L ;32 (5.18)

T,
G(M1+My) 12

w = —VG(IVI;/’ZLMZ) (5.19)
T12
_Mlxl + szz = 0 - x1 = %xz (5.20)
1
T'12 = x2 + x1 (5'21)

Mq+M,
My

T = X3 +(Z_ix2) = ( )X, (5.22)
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Mq1+M,

r2 = ( M, )X1 (5.23)
Defining m; = YRy and m, = YRy , then

1 2 1 2
X, = M0y, (5.24)
X, = TqTy, (5.25)

Applying these steps to the Saturn and Titan system,

MI sMﬁ
Figure 5.7 Restricted Saturn-Titan problem
BrSaturn = _xlbx (526)
ByTitan — y (5.27)
B1®=xb, + yb, +zb, ,where Jx2 +y?+2z2 =71 (5.28)
SawngQ = (x 4 x,)by + yb, + zb, (5.29)
TanQ = (x — x,)by + yb, + zb, (5.30)
Angular Velocity
2
w== (5.31)
_ 21 3/2
t= \/G(MSaturn+MTitan) r12 (532)
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T = 21 (1221870 km)3/2

3
\/6.67 x 10720 %(5.683 x 1026 kg +1.345 x 1023 kg)

T = 1378206.637 s

_ JGM M)
w = 3/2
T12

3
\/6.67 x 1020 %(5.683 x 1026 kg +1.345 x 1023 kg)

w =
(1221870 km)3/2

@ = 4.5589583 x 107° rad/s

— _ Mritan
—MsaturnX1 + Mritgnx, = 0 - x; = Mo X2
Saturn

T‘12 = xz + x1
According to Eq. (3.24) and (3.25), x; = m,ry, and x, = my7y5.

. MS t MT'L'
Defining m; = ——**"*—andn, = ————— then:
Msaturn*+Mritan MsaturntMritan

5.683 x 10%° kg
5.683 x 1026 kg +1.345 x 1023 kg

m =

m, = 0.999763 kg

1.345 x 1023 kg
5.683 x 1026 kg +1.345 x 1023 kg

T, =

m, =2.3661x10"*kg

X1 = Tl

x; = (2.3661x 107* kg)(1221870 km)
x; = 289.1127

Xz = MqT12

x, = (0.999763 kg) (1221870 km)

x, = 1221580.887
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Deriving the EOM for the Saturn and Titan, the position vectors can be rewritten as:

MIRQ = (x + m,ri2)by + yby +zb,

M@= (x — myr)by + yby, +zb,

The particle EOM can be seen in Eq. (5.39).
YF = mSa?

The forces considered are the gravitational forces of Saturn and Titan.

GMim GM,m _ S.Q
2 7 2 U, = m-a
GM;m GM,m
- Uy, — Uy
7,.12 1 T.ZZ 2

= m{(x" — 20y — 0?x)by + ("' + 20X — w?y)b, + (z")b,}

. M1i.Q _ (x+m,ri2)by + yby +2zb,
ur1 - |M1rQ| - "
. Mz,.Q _ (x—mr12)by + yby +2zb,
urz - |Mer| - -
GM1 GMZ
- T‘3 {(x+7'[27'12)bx + yby +Zb - r23 {(.x - 7T1T12)bx + yby +sz}
1

={(x" - 20y — w¥)b, + (V' + 20x' — w?y)b, + (z')b,}

After simplifying, this leaves the scalar equations for the Saturn-Titan system.

(bx)x" = 20y" — 0 = =22 +mry) — S G — M)
(by) (/" + 20% — w?y) = (=55 - 22

(bz) 2" = (—GT—’}“ - Gr—“zjz

6.0 Results

6.1 Calculations

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

The calculations from Tables (6.1) to (6.8) were calculated with MATLAB simulations.
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Table 6.1 Velocity of spacecraft on arrival to planet w/ respect to the Sun calculations

Planet A Planet B Result (km/s)
Earth Venus -37.7230
Earth Mars -21.4723
Earth Jupiter -7.4120
Earth Saturn -4.1864
Venus Mars -19.3527
Venus Jupiter -6.4490
Venus Saturn -3.6079
Mars Jupiter -8.7867
Mars Saturn -5.0447

Jupiter Saturn -8.0781

Table 6.2 Velocity of spacecraft on arrival to planet w/ respect t

o planet “B” calculations

Planet A Planet B Result (km/s)
Earth Venus -2.7070
Earth Mars 2.6497
Earth Jupiter 5.6422
Earth Saturn 5.4388
Venus Mars 4.7692
Venus Jupiter 6.6052
Venus Saturn 6.0173
Mars Jupiter 4.2675
Mars Saturn 4.5805
Jupiter Saturn 1.5471

Table 6.3 Time of flight from planet “A” to planet “B”

Planet A Planet B Result (s)
Earth Venus 1.2623 x 107
Earth Mars 2.2375x 107
Earth Jupiter 8.6222 x 107
Earth Saturn 1.9181 x 10®
Venus Mars 1.8798 x 107
Venus Jupiter 8.0517 x 107
Venus Saturn 1.8433 x 10®
Mars Jupiter 9.7374 x 107
Mars Saturn 2.0625 x 10®
Jupiter Saturn 3.1693 x 10®

Table 6.4 Time of flight of designated path
Path Result (s) Result (days)
1 1.9181 x 10® 2.200x 10°
2 1.9695 x 10® 2.2795 x 103
3 2.3767 x 10® 2.7508 x 103
4 4.1007 x 10® 4.7462 x 103
5 4.4572 x 10® 5.1588 x 103
6 2.2862 x 10® 2.6461 x 103
7 4.3668 x 10° 5.0541x 103
8 4.0315x 10% 4.6661 x 103
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Table 6.5 Synodic period

Planets Time (days)
Earth relative to Venus 585.9471
Mars relative to Venus 334.5779
Jupiter relative to Venus 237.3211
Saturn relative to Venus 229.8059
Mars relative to Earth 779.9085
Jupiter relative to Earth 398.8734
Saturn relative to Earth 378.0918
Jupiter relative to Mars 816.4200
Saturn relative to Mars 733.8595
Saturn relative to Jupiter 7.2569 x 103
Table 6.6 Mean motions
Planet Velocity (rad/day)
Venus 0.0279
Earth 0.0172
Mars 0.0091
Jupiter 0.0014
Saturn 5.8399 x 10
Table 6.7 Phase angles
Planets Initial Phase Angle (degrees) Final Phase Angle (degrees)
Venus to Earth 36.0073 -53.7519
Venus to Mars 65.9873 -168.1187
Venus to Jupiter 102.5878 -1.3111x 10°
Venus to Saturn 108.6150 -3.2335x 10°
Earth to Mars 44.2923 -75.2489
Earth to Jupiter 97.1034 -803.5765
Earth to Saturn 105.7175 -2.0081 x 10°
Mars to Jupiter 86.3808 -410.5780
Mars to Saturn 100.1263 -1.0709 x 10°
Jupiter to Saturn 57.2625 -124.7055
Table 6.8 Wait time
Planets Time (days)
Venus to Earth -1.0025 x 10*
Venus to Mars -1.7905 x 10*
Venus to Jupiter -9.9040 x 10*
Venus to Saturn -2.3653x 10°
Earth to Mars -1.8681 x 10*
Earth to Jupiter -1.0203 x 10°
Earth to Saturn 224167 x 10°
Mars to Jupiter -1.0670 x 10°
Mars to Saturn -2.5015x 10°
Jupiter to Saturn -2.8806 x 10°

6.2 Flyby Hyperbola Calculations
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Venus to Mars, Rp vs e
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Figure 6.1 Venus to Mars, Rp vs. en
Fig. (6.1) displays the relationship between the radius and the eccentricity where the spacecraft
departs from Venus and approaches Mars. The values for R, are a percentage of the Mars Sphere
of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the Mars R,
increases, the eccentricity also increases.
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Figure 6.2 Venus to Jupiter, Rp vs. en



Fig. (6.2) shows the relationship between the radius and the eccentricity where the spacecraft
departs from Venus and approaches Jupiter. The values for R, are a percentage of the Jupiter
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This shows that as the
Jupiter R, increases, the eccentricity also increases.

Venus to Saturn, R_vs e
p h
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Figure 6.3 Venus to Saturn, R vs. en

Fig. (6.3) presents the relationship between the radius and the eccentricity where the spacecraft
departs from Venus and approaches Saturn. The values for R, are a percentage of the Saturn
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This represents that as the
Saturn R, increases, the eccentricity also increases.
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Earth to Mars, Rp vs e
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Figure 4.8 Earth to Mars, R, vs. en

Fig. (6.4) shows the relationship between the radius and the eccentricity where the spacecraft
departs from Earth and approaches Mars. The values for R;, are a percentage of the Mars Sphere
of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the Mars R,

increases, the eccentricity also increases.

Earth to Saturn,R_vs e
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Figure 6.5 Earth to Saturn, R vs. en



Fig. (6.5) displays the relationship between the radius and the eccentricity where the spacecraft
departs from Earth and approaches Saturn. The values for R;, are a percentage of the Saturn
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This shows that as the

Saturn R, increases, the eccentricity also increases.

Earth to Jupiter, R_vs e
p h
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Figure 6.6 Earth to Jupiter, Rp vs. en
Fig. (6.6) displays the relationship between the radius and the eccentricity where the spacecraft
departs from Earth and approaches Jupiter. The values for R are a percentage of the Jupiter

Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the
Jupiter R, increases, the eccentricity also increases.
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Mars to Jupiter, Rp vs e
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Figure 6.7 Mars to Jupiter, Rp vs. en

Fig. (6.7) shows the relationship between the radius and the eccentricity where the spacecraft
departs from Mars and approaches Jupiter. The values for R, are a percentage of the Jupiter
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This shows that as the

Jupiter R, increases, the eccentricity also increases.

Mars to Saturn, R_vs e
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Figure 6.8 Mars to Saturn, Ry vs. en
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Fig. (6.8) displays the relationship between the radius and the eccentricity where the spacecraft
departs from Mars and approaches Saturn. The values for R;, are a percentage of the Saturn
Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the
Saturn R, increases, the eccentricity also increases.
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Figure 6.9 Jupiter to Saturn, Ry vs. en
Fig. (6.9) displays the relationship between the radius and the eccentricity where the spacecraft
departs from Jupiter and approaches Saturn. The values for R are a percentage of the Saturn

Sphere of Influence (SOI) that ranges from 1% to 100% of the SOI. This indicates that as the
Saturn R, increases, the eccentricity also increases.
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Figure 6.10 Venus to Mars, en vs. ¢d

Fig. (6.10) displays the relationship between the eccentricity and the angle of the departure
velocity, where the spacecraft departs from Venus and approaches Mars. The values for ey are
the values calculated from the R, from Fig. (6.1). This indicates that as the Mars R, increases,
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.
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Figure 6.11 Venus to Jupiter, en vs. ¢d

Fig. (6.11) displays the relationship between the eccentricity and the angle of the departure
velocity, where the spacecraft departs from Venus and approaches Jupiter. The values for ey are
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the values calculated from the R, from Fig. (6.2). This shows that as the Jupiter R;, increases, the
eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.
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Figure 6.12 Venus to Saturn, en vs. ¢d

Fig. (6.12) displays the relationship between the eccentricity and the angle of the departure
velocity, where the spacecraft departs from Venus and approaches Saturn. The values for ey are
the values calculated from the R, from Fig. (6.3). This shows that as the Saturn R, increases, the
eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.
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Figure 6.13 Earth to Mars, en vs. ¢d
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Fig. (6.13) displays the relationship between the eccentricity and the angle of the departure
velocity, where the spacecraft departs from Earth and approaches Mars. The values for ey, are the
values calculated from the R, from Fig. (6.4). This represents that as the Mars R;, increases, the
eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.
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Figure 6.14 Earth to Jupiter, en vs. ¢d

Fig. (6.14) displays the relationship between the eccentricity and the angle of the departure
velocity, where the spacecraft departs from Earth and approaches Jupiter. The values for ey, are
the values calculated from the R, from Fig. (6.5). This shows that as the Jupiter R;, increases, the
eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.
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Fig. (6.15) displays the relationship between the eccentricity and the angle of the departure
velocity, where the spacecraft departs from Earth and approaches Saturn. The values for e, are
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the values calculated from the R, from Fig. (6.6). This indicates that as the Saturn R, increases,
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.
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Figure 6.16 Mars to Jupiter, en vs. ¢d
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Fig. (6.16) displays the relationship between the eccentricity and the angle of the departure
velocity, where the spacecraft departs from Mars and approaches Jupiter. The values for e, are
the values calculated from the R, from Fig. (6.7). This indicates that as the Jupiter R, increases,
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.

Mars to Saturn, e, vs qsd
320 I T T | T T

300 N

280

2601

240 i

dq (degrees)

2201 .

2001

180 : :
1

Figure 6.17 Mars to Saturn, en vs. ¢d

Fig. (6.17) displays the relationship between the eccentricity and the angle of the departure
velocity, where the spacecraft departs from Mars and approaches Saturn. The values for ey, are
the values calculated from the R, from Fig. (6.8). This indicates that as the Saturn R, increases,
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.
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Figure 6.18 Jupiter to Saturn, en vs. ¢d

Fig. (6.18) displays the relationship between the eccentricity and the angle of the departure
velocity, where the spacecraft departs from Jupiter and approaches Saturn. The values for ey, are
the values calculated from the R, from Fig. (6.9). This indicates that as the Saturn R, increases,
the eccentricity increases, which in turn reflects a decrease in the angle of the departure velocity.

6.3 Rendezvous




Figure 6.19 Position of planets upon departure
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Figure 6.20 Position of planets upon departure as two-dimensional

Fig. (6.19) and (6.20) display the results of where planets are to be positioned when there is an
ideal departure for an Earth to Saturn to Titan transfer. Since the most efficient method is to go
from Earth to Saturn, the initial phase angle that is required is 105.7 degrees.
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Fig. (6.21) and (6.22) display the results of where planets are to be positioned after the departure
from Earth and the spacecraft has arrived at Saturn to Titan. The final phase angle that is
required is -207.8 degrees.

7.0 Analysis

7.1 Flyby Analysis
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Figure 7.1 Various flyby analysis

In Fig. (6.1) — (6.9), the graphs display how the eccentricity increases as the radius
increases. The calculations were completed in MATLAB. The 1, used is a range of the SOI,
using one percent of the total SOI, to using 100% of the total SOI. In Fig. (6.10) — Fig. (6.18),
the graphs display how the angle of the departure velocity decreases as the eccentricity
decreases. The results of Fig. (6.1) — (6.18) can be analyzed and concluded in Fig. (6.19), which
shows how an increase in rp, would result in a decrease in eccentricity, which affects the
trajectory and angle of the flyby.

Understanding the angle of the flyby trajectory can be manipulated by the radius and
eccentricity is significant to the calculations. These results prove that an increase in eccentricity
results to a decrease in the departure angle. The departure angles must be ideal for the most
efficient flybys and rendezvous for Titan.
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7.2 Mission Analysis

The most cost-efficient method to get from Earth to Titan is to use a Hohmann transfer to Saturn.
This method would take longer, however, the wait time to launch to Saturn is calculated to be
306.96 days. The time to get from Earth to Saturn would be 2.2200 x 10° days, or 6.08 years. To
use an efficient flyby analysis to get from Earth to Jupiter to Saturn would be more than 100
years. Once at Saturn, the restricted three body problem for the Saturn-Titan system. The total
time this mission would take to get to Titan is seven years, with no gravity assistance.

7.3 Discussion

The mission design was guided by the assumptions, which led to an efficient and simple
trajectory. The Earth to Saturn to Titan path is the simplest and fastest, neglecting the wait time.
If the assumption that of the flight path was removed, the results would be different. This current
design uses equations of motion to calculate the velocities required in order to ensure a path
without any excessive burns.

8.0 Conclusion

The Earth to Titan mission design is an interest in acrospace for the purpose that Titan has
potential to host life. This evidence was provided by the Cassini mission. Previous studies have
shown that life is possible because of the atmospheric makeup. The method to calculate an
efficient path is the Hohmann transfer. Going step by step, the velocities were calculated through
MATLAB and the results would show that an increase in the altitude increases the eccentricity,
which would result in a gradual decrease in theta. The assumptions allowed for the design to
focus on the velocity that would be ideal and reduce any unnecessary burns, resulting in an Earth
to Saturn to Titan path.

Using the N-body simulations, an ideal path could be found using calculations for the
synodic period and phase angles. The MATLAB code ran 100 years of iterations, which resulted
in finding the most efficient path to be the Earth to Saturn Hohmann transfer. The total time
would take seven years for the spacecraft to get into Titan’s orbit. This path takes the least
amount of time to send a spacecraft to orbit Saturn and is the most cost efficient. The concept of
sending a spacecraft to Titan would advance the science in the aerospace industry.
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APPENDIX A. EARTH TO TITAN MATLAB CODE

close all;
clear all;
clc;

Initial Conditions
Julian Day (JD): 001 2023 UTC: 00:00:00

% Variables
G = (6.67 * 107(-20)); % (km"3)/(kgs"2)
Msun = 1.989 * (10730); % kg
year = 2*pi; % Every 2*pi is equal to one year
Years = 200*year;

Mass (kg)

Venus = 4.87 * (10724);

Earth = 5.97 * (10724);

| Mars = 6.42 * (10723);
Jupiter = 1.898 * (10727);

M Saturn = 5.683 * (10726);

=

M
M
M
M

mu = G*Msun;

muv = G*M Venus
mue = G*M Earth
mum = G*M Mars
muj = G*M Jupiter
mus = G*M Saturn

% radius of planet (km)

r Venus = 6051;

r FEarth = 6378.1;

r Mars = 3389.5;

r Jupiter = 69911;

r Saturn = 58232;

% semi-major axis (km)

a Venus = 108.2 *(10%6);
a Earth = 149.6 *(10%6);
a Mars = 228.0 *(1076);

a Jupiter = 778.5 *(1076);
a Saturn = 143.2 *(10"7);

muv =

3.2483e+05

muc =

398199

mum =

4.2821e+04
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muj =

1.2660e+08

mus =

3.7906e+07

Calculations

% Escape Velocity

Esc
Esc
Esc

)

SVV
SVE
SVM
SVJ
SVS

[)

EAV
EAM
EAJ
EAS
VAM
VAJ
VAS
MAJ
MAS
JAS

Venus = sqrt ((2*G*M Venus)/r Venus);

Earth = sqgrt ((2*G*M Earth)/r Earth);

:Mars = sqgrt ((2*G*M Mars) /r Mars);
Esc_
Esc_

Jupiter = sqrt ((2*G*M Jupiter)/r Jupiter);
Saturn = sqgrt((2*G*M Saturn)/r Saturn);

% Circular Orbital Velocity of the planet with respect to the Sun

= -sgrt(mu/a_Venus) ;

= -sgrt(mu/a_Earth);
-sqgrt (mu/a Mars) ;
-sqgrt (mu/a_Jupiter);
= -sqrt (mu/a_Saturn);

% semi-major axis between planets

= (a_Earth + a Venus) *.5;

= (a_Earth + a Mars) *.5;
= (a_Earth + a Jupiter)*.5;
= (a_Earth + a Saturn)*.5;
= (a_Venus + a Mars)*.5;
= (a_Venus + a Jupiter)*.5;
= (a_Venus + a Saturn)*.5;

(a_Mars + a Jupiter)*.5;
(a_Mars + a Saturn) *.5;
= (a_Jupiter + a Saturn)*.5;

(km/sec)

% Velocity of Spacecraft on departure of Planet w/ respect to the Sun

vd EAV = sqgrt (m
vd EAM = sqgrt (m
vd EAJ = sqgrt (m
vd EAS = sqgrt (m
vd VAM = sqgrt
vd VAJ = sqgrt
vd VAS = sqgrt (m
vd MAJ = sqgrt (m
vd MAS = sqgrt (m
vd JAS = sqgrt(m

% Velocity of Spacecraft on arrival to Planet w/ respect to the Sun

u) *sqgrt ((2/a_Earth) - (1/EAV))
sqgrt ((2/a_Earth) - (1/EAM)
sqgrt ((2/a_Earth) - (1/EAJ)

u) * ( ( )
u) * ( ( )
u) *sqgrt ((2/a_Earth) - (1/EAS));

mu) *sqgrt ((2/a_Venus) - (1/VAM)) ;

mu) *sqgrt ((2/a_Venus) - (1/VAJ)) ;
u) *sqrt ((2/a_Venus) - (1/VAS))
u) *sqrt ((2/a Mars) - (1/MAJ)) ;
u) *sqrt ((2/a_Mars) - (1/MAS)) ;
u) * (

sqgrt ((2/a_Jupiter)-(1/JAS))

’

(m
(
(
(
(
(
(
(
(
(

v_EAV = -sqgrt(mu) *sqgrt ((2/a Venus) - (1/EAV))
v_EAM = -sqgrt(mu) *sqrt((2/a Mars)-(1/EAM)) ;
v_EAJ = -sqgrt(mu) *sqgrt ((2/a Jupiter)-(1/EAJ))
v_EAS = -sqgrt(mu) *sqrt((2/a_Saturn)-(1/EAS));
v_VAM = -sqgrt(mu) *sqrt((2/a Mars)-(1/VAM)) ;
v_VAJ = -sqgrt(mu) *sqrt ((2/a Jupiter)-(1/VAJ))
v_VAS = -sqgrt(mu) *sqrt ((2/a_Saturn)-(1/VAS));
v_MAJ = -sqgrt(mu) *sqrt ((2/a Jupiter)-(1/MAJ));
v_MAS = -sqgrt(mu) *sqrt((2/a_Saturn)-(1/MAS));
v_JAS = -sgrt(mu) *sqrt((2/a_ Saturn)-(1/JAS));
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Velocity of Spacecraft on arrival to Planet w/respect to the Planet

% +/- dependent on Sun coordinate system
v iEV = v EAV - SVV;

v_iEM = v_EAM - SVM;

v iEJ = v EAJ - SVJ;

v_iES = v_EAS - SVS;

v iVM = v VAM - SVM;

v_ivJ = v _VAJ - SVJ;

v iVS = v VAS - SVS;

v_iMJ = v_MAJ - SVJ;

v_iMS = v _MAS - SVS;

v_iJS = v_JAS - SVS;

SOI Radius (km)

% Sphere of Influence (SOI)

VSOI = 616289.732;

ESOI = 924415.913;

MSOI = 577424.152;

JSOI = 48208452.07;

SSOI = 54743849.22;

% Time of Flight (seconds)

tof VE = (pi/sqrt (mu))* (EAV) " (3/2);
tof VM = (pi/sqrt (mu))* (VAM) " (3/2);
tof VJ = (pi/sqrt (mu))* (VAJ)" (3/2);
tof VS = (pi/sqrt (mu))* (VAS)" (3/2);
tof EM = (pi/sqrt (mu))* (EAM) " (3/2);
tof EJ = (pi/sqrt (mu))* (EAJ) " (3/2);
tof ES = (pi/sqrt (mu))* (EAS) " (3/2);
tof MJ = (pi/sqrt (mu))* (MAJ) " (3/2);
tof MS = (pi/sqrt (mu))* (MAS)" (3/2);
tof JS = (pi/sqrt (mu))* (JAS)" (3/2);

)

% Convert Time of Flight to days

dof VE = tof VE/86400;
dof VM = tof VM/86400;
dof VJ = tof VJ/86400;
dof VS = tof VS/86400;
dof EM = tof EM/86400;
dof EJ = tof EJ/86400;
dof ES = tof ES/86400;
dof MJ = tof MJ/86400;
dof MS = tof MS/86400;
dof JS = tof JS/86400;
% Flight Paths

sEarth to Saturn

fp ES = tof ES;

$Earth to Venus to Saturn

fp EVS tof VE + tof VS;

SEarth to Venus to Mars to Saturn

fp EVMS tof VE + tof VM + tof MS;

%Earth to Venus to Jupfter to Saturn

fp EVJS tof VE + tof VJ + tof JS;

%Earth to Venus to Mars to JupiEer to Saturn
fp EVMJS tof VE + tof VM + tof MJ + tof JS;
$Earth to Mars to Saturn B -
fp EMS tof EM + tof MS;

%Earth to Mars to Jupzter to Saturn
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fp EMJS = tof EM + tof MJ + tof JS;
$Earth to Jupiter to Saturn
fp EJS = tof EJ + tof JS;

$Flight Paths conversion to days (1 day = 86400 s)
$Earth to Saturn

dfp ES = fp ES/86400;

$Earth to Venus to Saturn

dfp EVS = fp EVS/86400;

SEarth to Venus to Mars to Saturn

dfp EVMS = fp EVMS/86400;

%Earth to Venus to Jupiter to Saturn

dfp EVJS = fp EVJS/86400;

%Earth to Venus to Mars to Jupiter to Saturn
dfp EVMJS = fp EVMJS/86400;

%Earth to Mars to Saturn

dfp EMS = fp EMS/86400;

%Earth to Mars to Jupiter to Saturn

dfp EMJS = fp EMJS/86400;

SEarth to Jupzter to Saturn

dfp EJS = fp EJS/86400;

Rp

%$this is the radius of the planet plus the altitude
$the altitude is a range of the planet's SOI

dx = .01; Sstep

%Venus

hv = (.01*VSOI) :dx*VSOI: (1.0*VSOI);
vrp = r Venus + hv;

$Earth

he = (.01*ESOI) :dx*ESOI: (1.0*ESOI) ;
erp = r Earth + he;

$Mars

hm = (.01*MSOI) :dx*MSOI: (1.0*MSOI) ;
mrp = r Mars + hm;

$Jupiter

hj = (.01*JSOI) :dx*JSOI: (1.0*JSOI);
jrp = r Jupiter + hj;

$Saturn

hs = (.01*SSOI) :dx*SSOI: (1.0*SS0OI);

srp = r Saturn + hs;

The Eccentricity of the flyby hyperbola
% Venus to Mars

VMeh = 1 + ((mrp*(v_iVM)"2)/(G*M Mars)) ;
% Venus to Jupiter

VJeh = 1 + ((jrp*(v_iVJ)"2)/(G*M Jupiter));
% Venus to Saturn

VSeh = 1 + ((srp*(v_iVS)AZ)/(G*M_Saturn));

% Earth to Mars

EMeh = 1 + ((mrp*(v_iEM)"2)/(G*M Mars));

% Earth to Jupiter

EJeh = 1 + ((jrp*(v_iEJ)"2)/(G*M Jupiter));
% Earth to Saturn

ESeh = 1 + ((srp*(v_iES)AZ)/(G*M_Saturn));

% Mars to Jupiter
MJeh = 1 + ((jrp*(v_iMJ)"2)/(G*M Jupiter));
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)

% Mars to Saturn
MSeh = 1 + ((srp*(v_iMS)AZ)/(G*M_Saturn));

% Jupiter to Saturn
JSeh = 1 + ((srp*(v_iJS)AZ)/(G*M_Saturn));

figure('Name', 'R p vs e h', 'NumberTitle', 'off'),
t = tiledlayout (3, 3)

nexttile

plot (mrp, VMeh, 'm'")

title('Venus to Mars, R p vs e h')

xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'"), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (jrp, VJeh, 'm'")

title('Venus to Jupiter, R p vs e h')
xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'"), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (srp, VSeh, 'm'")

title('Venus to Saturn, R p vs e h')
xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (mrp, EMeh)

title('Earth to Mars, R p vs e h')
xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (jrp, EJeh, 'b')

title('Earth to Jupiter, R p vs e h')
xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (srp, ESeh, 'b')

title('Earth to Saturn, R p vs e h')
xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on
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nexttile

plot (jrp, MJeh, 'r')

title('Mars to Jupiter, R p vs e h')
xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'"), 'linewidth', 2)
set (gca, 'fontsize', 8)
grid on

nexttile

plot (srp, MSeh, 'r')

title('Mars to Saturn, R p vs e h')
xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)
grid on

nexttile

plot (srp, JSeh,'c--")

title('Jupiter to Saturn, R p vs e h')
xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)
grid on

t

TiledChartLayout with properties:

TileArrangement: 'fixed'

GridSize: [3 3]

Padding: 'loose'

TileSpacing: 'loose'

Use GET to show all properties
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one = 1;

phi a = 18

[)
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phi a =

180

VMphi d = phi a + VMdelta;

[)

% Venus to Jupiter

VJIphi d = phi a + VJdelta;
% Venus to Saturn

VSphi d = phi a + VSdelta;
% Earth to Mars

EMphi d = phi a + EMdelta;
% Earth to Jugiter

EJphi d = phi a + EJdelta;
% Earth to Saturn

ESphi d = phi a + ESdelta;
% Mars to Jupzter

MJphi d = phi a + MJdelta;
% Mars to Saturn

MSphi d = phi a + MSdelta;

% Jupiter to Saturn
JSphi d = phi _a + JSdelta;

Eccentricity vs Delta Phi plot

figure('Name','e h vs. \phi d', 'NumberTitle', 'off'),
t = tiledlayout (3, 3)

nexttile

plot (VMeh,VMphi d, 'm")

title('Venus to Mars, e h vs \phi d')

xlabel('e h'")

ylabel ('\phi d (degrees)"')

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (VJeh,VvJphi d, 'm")

title('Venus to Jupiter, e h vs \phi d')
xlabel('e h'")

ylabel ('\phi d (degrees)"')

set (findall (gcf, '"type', '1line'"), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (VSeh,VSphi d, 'm")

title ('Venus to Saturn, e h vs \phi d')
xlabel('e h'")

ylabel ('\phi d (degrees)"')

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on
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nexttile

plot (EMeh,EMphi d, 'b")

title ('Earth to Mars, e h vs \phi d')
xlabel('e h'")

ylabel ('\phi d (degrees)"')

set (findall (gcf, "type', '1line'"), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile
plot (EJeh,EJphi d, 'b")
title('Earth to Jupiter, e h vs \phi d')
xlabel('e h'")
ylabel ('\phi d (degrees)"')
set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)
grid on

nexttile

plot (ESeh,ESphi d, 'b")

title ('Earth to Saturn, e h vs \phi d'")
xlabel('e h'")

ylabel ('\phi d (degrees)"')

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (MJeh,MJphi d, 'r")

title ('Mars to Jupiter, e h vs \phi d'")
xlabel('e h'")

ylabel ('\phi d (degrees)"')

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (MJeh,MJphi d,'r")

title('Mars to Saturn, e h vs \phi d')
xlabel('e h'")

ylabel ('"\phi d (degrees)"')

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

nexttile

plot (MSeh,MSphi d, 'c—-")

title ('Jupiter to Saturn, e h vs \phi d')
xlabel('e h'")

ylabel ('\phi d (degrees)"')

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

t =

TiledChartLayout with properties:
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TileArrangement: 'fixed'
GridSize: [3 3]
Padding: 'loose'

TileSpacing: 'loose'

Use GET to show all properties
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Delta Velocity
% Venus to Mars
vd iVM = [sin(VMdelta); cos(VMdelta)].*v_ iVM; %V _INF * COS (DELTA) SY -
V_INF*SIN (DELTA) SX
vdvM = [0; SVM] - vd iVM; $%Flyby Departure Velocity of the Spacecraft w/respect to the
Sun
VMgradvel = vdvM - [0; v_VAM]; % Flyby Departure Velocity - Flyby Arrival Velocity
w/respect to the Sun (Change in Vel.)
VMgradvelfin = sqgrt (sum(VMgradvel.”2)); $magnitude of the change in velocity (km/sec)
VMvsubinf = vdVM(2,:); %$Isolate second row (SY)
h VM = a Mars * VMvsubinf; %specific angular momentum
vdvVMtwo = sqgrt (sum(vdVM.”"2)); S%S$magnitude of departure velocity

a VM = - (((vdvMtwo."2)/mu) - (2/a Mars));
newaVM = a VM." (-1);
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VMetwo = sqgrt(l-((h_VM."2)/(newaVM*mu))) ;

VMnumtheta = ((h_VM."*2)-a Mars*mu) ;
VMdentheta = (a_ Mars*mu*VMetwo) ;
VMnewtheta = acosd(VMnumtheta/VMdentheta) ;

)

% Venus to Jupiter

vd iVJ = [sin(VJdelta); cos(VJdelta)].*v iVJ;
vdvJd = [0; sVJ] - vd iVJ;
VJgradvel = vdvJd - [0; v _VAJ];

VJgradvelfin = sqgrt (sum(VJgradvel.”2));
VJvsubinf = vdvJd(2,:);

h VJ = a Jupiter * VJvsubinf;

vdvJdtwo = sqgrt (sum(vdvJ.”"2));

a VJ = - (((vdvJtwo.”2)/mu) - (2/a_Jupiter));
newaVJd a vJ.”(-1);

VJetwo = sqrt(l-((h VJ.”2)/(newavVJ*mu))) ;
VJnumtheta = ((h_VJ.”"2)-a Jupiter*mu);
VJdentheta = (a_Jupiter*mu*VJetwo) ;
VJnewtheta = acosd(VJnumtheta/VJdentheta) ;

% Venus to Saturn

vd iVS = [sin(VSdelta); cos(VSdelta)].*v iVs;
vdvs = [0; SVS] - vd iVSs;
VSgradvel = vdvs - [0; v _VAS];

VSgradvelfin = sqgrt (sum(VSgradvel.”2));
VSvsubinf = vdvS(2,:);

h VS = a Saturn * VSvsubinf;

vdvVStwo = sqgrt (sum(vdvSsS.”"2));

a VS = - (((vdvStwo.”"2)/mu) - (2/a Saturn));
newaVsS = a VS.” (-1);

VSetwo = sqrt (l1-((h VS.”2)/(newavS*mu))) ;
VSnumtheta = ((h _VS.”2)-a Saturn*mu);
VSdentheta = (a_Saturn*mu*VSetwo) ;
VSnewtheta = acosd(VSnumtheta/VSdentheta) ;

% Earth to Mars

vd iEM = [sin(EMdelta); cos(EMdelta)].*v iEM;
vdEM = [0; SVM] - vd iEM;
EMgradvel = vdEM - [0; v_EAM];

EMgradvelfin = sqgrt (sum(EMgradvel.”2));
EMvsubinf = vdEM(2, :);

h EM = a Mars * EMvsubinf;

vdEMtwo = sqgrt (sum(vdEM."2));

a EM = - (((vdEMtwo.”2)/mu) - (2/a Mars));
newakEM = a EM.” (-1);

EMetwo = sqgrt(l-((h_EM."2)/(newaEM*mu))) ;
EMnumtheta = ((h _EM."2)-a Mars*mu) ;
EMdentheta = (a Mars*mu*EMetwo) ;
EMnewtheta = acosd(EMnumtheta/EMdentheta) ;

[)

% Earth to Jupiter

vd iEJ = [sin(EJdelta); cos(EJdelta)].*v iEJ;
vdEJ = [0; sSVJ] - vd iEJ;
EJgradvel = vdEJ - [0; v_EAJ];

EJgradvelfin = sqgrt (sum(EJgradvel.”2));
EJvsubinf = vdEJ (2, :);

h EJ = a Jupiter * EJvsubinf;

vdEJtwo = sqgrt (sum(vdEJ."2));

a EJ = - (((vdEJtwo."2)/mu) - (2/a_Jupiter));
newakJ = a EJ.” (-1);

EJetwo = sqrt(l-((h_EJ.”2)/(newaEJ*mu)));
EJnumtheta = ((h EJ."2)-a Jupiter*mu);
EJdentheta = (a_Jupiter*mu*EJetwo) ;
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EJnewtheta = acosd(EJnumtheta/EJdentheta) ;

% Earth to Saturn

vd iES = [sin(ESdelta); cos(ESdelta)].*v iES;
vdES = [0; SVS] - vd iES;
ESgradvel = vdES - [0; v_EAS];

ESgradvelfin = sqgrt (sum(ESgradvel.”2));
ESvsubinf = vdES (2, :);

h ES = a Saturn * ESvsubinf;

vdEStwo = sqgrt (sum(vdES."2));

a ES = - (((vdEStwo.”"2)/mu) - (2/a Saturn));
newakES = a ES.” (-1);

ESetwo = sqgrt(l-((h_ES.”2)/(newaES*mu)));

ESnumtheta = ((h _ES."2)-a Saturn*mu);
ESdentheta = (a_Saturn*mu*ESetwo) ;
ESnewtheta = acosd(ESnumtheta/ESdentheta);

)

% Mars to Jupiter

vd iMJ = [sin(MJdelta); cos(MJdelta)].*v iMJ;
vaMJ = [0; sVJ] - vd iMJ;
MJgradvel = vdMJ - [0; v _MAJ];

MJgradvelfin = sqgrt (sum(MJgradvel.”2));
MJvsubinf = vdMJ (2, :);

h MJ = a Jupiter * MJvsubinf;

vdMJtwo = sqgrt (sum(vdMJ."2));

a MJ = - (((vdMJtwo.”2)/mu) - (2/a_Jupiter));
newaMJ = a MJ.” (-1);

MJetwo = sqrt(l-((h MJ."2)/(newaMJ*mu))) ;
MJnumtheta = ((h MJ.”"2)-a Jupiter*mu);
MJdentheta = (a_Jupiter*mu*MJetwo) ;
MJnewtheta = acosd(MJnumtheta/MJdentheta) ;

[)

% Mars to Saturn

vd iMS = [sin(MSdelta); cos(MSdelta)].*v iMS;
vdMs = [0; SVS] - vd iMS;
MSgradvel = vdMsS - [0; v _MAS];

MSgradvelfin = sqgrt (sum(MSgradvel.”2));
MSvsubinf = vdMS (2, :);

h MS = a Saturn * MSvsubinf;

vdMStwo = sqgrt (sum(vdMS."2));

a MS = - (((vdMStwo.”"2)/mu) - (2/a Saturn));
newaMS = a MS.” (-1);

MSetwo = sqrt (l1-((h MS.”"2)/(newaMS*mu))) ;
MSnumtheta = ((h MS.”2)-a Saturn*mu);
MSdentheta = (a_Saturn*mu*MSetwo) ;
MSnewtheta = acosd(MSnumtheta/MSdentheta) ;

[)

% Jupiter to Saturn

vd 1JS = [sin(JSdelta); cos(JSdelta)].*v_iJs;
vdJds = [0; svS] - vd iJs;
JSgradvel = vdJs - [0; v _JAS];

JSgradvelfin = sqgrt (sum(JSgradvel.”2));
JSvsubinf = vdJdS(2,:);

h JS = a Saturn * JSvsubinf;

vdJStwo = norm(vdJs) ;

a JS = - (((vdJStwo.”"2)/mu) - (2/a Saturn));
newaJS = a _JS.” (-1);

JSetwo = sqgrt(l-((h_JS.”2)/(newadS*mu)));
JSnumtheta = ((h_JS.”"2)-a Saturn*mu);
JSdentheta = (a_Saturn*mu*JSetwo) ;
JSnewtheta = acosd(JSnumtheta/JSdentheta) ;
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% Titan

M Titan = 1.345 * (10723); % Mass of Titan (kg)
r Titan = 2575 % radius of Titan (km)

a Titan = 1221870 % semi-major axis of Titan (km)

mut = G*M Titan

% Barycenter
mass planet = M Saturn

mass moon = M Titan

pi one = mass planet/ (mass_planet+mass moon)
pi two = mass moon/ (mass moont+mass planet)

mr one = pi two*a Titan % mass ratio of planet
mr two = pi one*a Titan % mass ratio of moon

% Angular Velocity

av = (sqrt (G* (mass planet+mass moon)))/a Titan” (3/2)

r Titan =

2575

a Titan =

1221870

mut =

8.9711e+03

mass_planet =
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5.6830e+26

mass_moon =

1.3450e+23

pi one =

0.9998

pi two =

2.3661le-04

mr_one =

289.1125

mr_ two =

1.2216e+06
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Titan Calculations

% Circular Orbital Velocity of Titan with respect to Saturn (km/sec)
SVT = -sqrt((G*M Saturn)/a Titan);

% semi-major axis between Saturn & Titan
SAT = (a_Saturn + a Titan)*.5;

% Velocity of Spacecraft on arrival to Titan w/ respect to Saturn
v_SAT = -sqrt(G*M _Saturn) *sqgrt ((2/a_Titan)-(1/SAT));

oo

Velocity of Spacecraft on arrival to Titan w/respect to Saturn
+/- dependent on Saturn coordinate system
v_1iST = v_SAT + SVT;

oo

% Titan SOI (km)
TSOI = 43306.04056;

o©

R
ht = (.01*TSOI) :dx*TSOI: (1.0*TSOI);
trp = r Titan + ht;

o]

)

% Saturn to Titan
STeh = 1 + ((trp*(v_iST)"2)/(G*M Titan));

figure('Name', 'R p vs e h', 'NumberTitle', 'off'),
plot (trp, STeh, 'c'")

title('Saturn to Titan, R p vs e h')

xlabel ('R p (km) ")

ylabel ('e h'")

set (findall (gcf, "type', '1line'), 'linewidth', 2)
set (gca, 'fontsize', 8)

grid on

% Saturn to Titan delta
STdelta = 2*asind(one./STeh) ;
STphi d = phi _a + STdelta;

figure('Name','e h vs. \phi d', 'NumberTitle', 'off'),
plot (STeh,STphi d,'r")

title('Saturn to Titan, e h vs \phi d')
xlabel('e h')

ylabel ('\phi d (degrees)"')

set (findall (gcf, "type', '1line'), 'linewidth', 2)

set (gca, 'fontsize', 8)

grid on
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Synodic Period

Amount of days for specified planet to orbit the sun

V_days = 225.0 % Venus

E days = 365.256 % Earth

M days = 687.00 % Mars

J days = 4333.80 % Jupiter
S _days = 10759.00 % Saturn

% Earth Days Ratio

per V = (E days/V_days)
per M = (E days/M days)
per J = (E days/J days)
per S = (E days/S_days)
per T = 0.04357674

)

% Position of Titan
pos _Titan = a Saturn + a Titan

% Syndodic Period (days)

% Venus

T VE = (V_days*E days)/abs(V_days - E days);
T VM (V_days*M days)/abs (V_days - M days);
T VJ = (V_days*J _days)/abs(V_days - J_days);
T VS = (V_days*S_days)/abs (V_days - S_days);
% Earth

T EM = (E days*M days)/abs(E _days - M days);
T EJ (E_days*J days)/abs (E_days - J days);
T ES = (E_days*S_days)/abs(E_days - S_days);
% Mars

T MJ = (M days*J days)/abs (M days - J_days);
T MS = (M days*S_days)/abs (M days - S_days);
% Jupiter

T JS = (J_days*S_days)/abs(J_days - S_days);
% mean motions (rad/day)

n Venus = (2*pi)/V_days;

n Earth = (2*pi)/E days;

n Mars = (2*pi)/M days;

n Jupiter = (2*pi)/J days;

n Saturn = (2*pi)/S days;

% Initial Phase Angle (degrees)

% Venus

IPA VE (pi - (n Earth*dof VE))*(180/pi); %
IPA VM = (pi - (n Mars*dof VM))*(180/pi); %

IPA VJ = (pi - (n_Jupiter*dof VJ))* (180/pi);
IPA VS = (pi - (n_Saturn*dof VS))*(180/pi);

% Earth

IPA EM (pi - (n_Mars*dof EM))*(180/pi); %

IPA EJ = (pi - (n_Jupiter*dof EJ))* (180/pi);
IPA ES = (pi - (n_Saturn*dof ES))*(180/pi);

% Mars

IPA MJ = (pi - (n_Jupiter*dof MJ))* (180/pi);

°

o° o oo
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oe
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oe

o
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o
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o

°

64

Earth relative to Venus
Mars relative to Venus
Jupiter relative to Venus
Saturn relative to Venus

Mars relative to Earth
Jupiter relative to Earth
Saturn relative to Earth

Jupiter relative to Mars
Saturn relative to Mars

Saturn relative to Jupiter

Venus to Earth
Venus to Mars

Venus to Jupiter

% Venus to Saturn

Earth to Mars

Earth to Jupiter

% Earth to Saturn

Mars to Jupiter



IPA MS = (pi - (n_Saturn*dof MS))*(180/pi); % Mars to Saturn

% Jupiter
IPA JS = (pi - (n_Saturn*dof JS))*(180/pi); % Jupiter to Saturn

% Final Phase Angle

% Venus
FPA VE (pi - (n_Venus*dof VE))*(180/pi); % Venus to Earth
FPA VM = (pi - (n_Venus*dof VM))*(180/pi); % Venus to Mars
FPA VJ = (pi - (n_Venus*dof VJ))*(180/pi); % Venus to Jupiter
FPA VS = (pi - (n_Venus*dof VS))*(180/pi); % Venus to Saturn
% Earth
FPA EM = (pi - (n_Earth*dof EM))*(180/pi); % Earth to Mars
FPA EJ = (pi - (n_Earth*dof EJ))*(180/pi); % Earth to Jupiter
FPA ES = (pi - (n_Earth*dof ES))*(180/pi); % Earth to Saturn
% Mars
FPA MJ = (pi - (n_Mars*dof MJ))*(180/pi); % Mars to Jupiter
FPA MS = (pi - (n_Mars*dof MS))*(180/pi); % Mars to Saturn
% Jupiter
FPA JS = (pi - (n_Jupiter*dof JS))* (180/pi); % Jupiter to Saturn
% Wait time (assuming nl < n2) (days)
NN = 0
% Venus
twait VE = (-2*FPA VE - (2*pi*NN))/(n_Earth - n_Venus);
twait VM = (-2*FPA VM - (2*pi*NN))/(n_Mars - n_Venus) ;
twait VJ = (-2*FPA VJ - (2*pi*NN))/(n_Jupiter - n_Venus);
twait VS = (-2*FPA VS - (2*pi*NN))/(n_Saturn - n_Venus) ;
% Earth
twait EM = (-2*FPA EM - (2*pi*NN))/(n_Mars - n_Earth);
twait EJ = (-2*FPA EJ - (2*pi*NN))/(n_Jupiter - n_Earth);
twait ES = (-2*FPA ES - (2*pi*NN))/(n_Saturn - n_Earth);
% Jupiter
twait MJ = (-2*FPA MJ - (2*pi*NN))/(n_Jupiter - n Mars);
twait MS = (-2*FPA MS - (2*pi*NN))/(n_Saturn - n_Mars);
% Saturn
twait JS = (-2*FPA JS - (2*pi*NN))/(n_Saturn - n_Jupiter);
V_days =

225
E days =

365.2560
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M days =

687

J days =

4.3338e+03

S days =

10759

per V =

1.6234

per M =

0.5317
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per J =

0.0843

per S =

0.0339

per T =

0.0436

pos Titan =

1.4332e+09

NN =

Plotting the Solar System

Radius = a_Saturn + a Titan + 2*r Titan % Maximum graph dimensions
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% Assume Circular Orbits for each planet

Et = 0:pi/180:Years; % Earth time span(1.0149*pi) /180
EarthX = a Earth * cos(Et);

EarthY = a Earth * sin(Et);

EarthZz = O0*tan(Et);

vt = O:(per_V*pi)/l80:Years; % Venus time span
VenusX = a Venus * cos(Vt);

VenusY = a Venus *sin (Vt);

VenusZ = 0*tan (Vt);

Mt = O:(per_M*pi)/l80:Years; % Mars time span
MarsX = (a _Mars * cos (Mt));

MarsY = (a_Mars *sin(Mt));

MarsZ = O*tan (Mt) ;

Jt = O:(per_J*pi)/l80:Years; % Jupiter time span
JupiterX = a Jupiter * cos(Jt);

JupiterY = a Jupiter *sin(Jt);

Jupiterz O*tan (Jt) ;

St = O:(per_S*pi)/l80:Years; % Saturn time span
SaturnX = a Saturn * cos(St);

SaturnY = a Saturn * sin(St);

SaturnZz = O*tan(St);

Tt = -Years*pi: (2*pi)/180:Years; % Titan time span
TitanX = a Titan*cos (Tt);

TitanY = a Titan*sin(Tt);

TitanZ = O*tan(Tt);

% Satellite (Q)

$syms QX QY;

Sfimplicit (1.34364042* (10) *QX"2+2.6714264* (10) *QX*QY+1.33754593* (10) *QY"2==1) ;
gt = 0:(per S*pi)/180:Years;

QX = 1.34364042.*cos(gt) .2 - 2.6714264.*cos(gt) .*sin(qgt) ;
QY = 1.33754593.*sin(gt) .2 + 2.6714264.*cos(gt) .*sin(qgt) ;
QzZ =0

x0 = [0];

y0 = [0];

z0 = [0];

[)

% Plotting the planets initial position

figure ('Name', 'N-Body', 'NumberTitle', 'off")

Sun = plot3(x0, y0, z0, '.y', 'MarkerSize',30') % Sun coordinates

hold on

xlabel ('X")

ylabel ('Y")

zlabel ('Z")

grid on

%Venus = plot3(-108051715.7,-5662750.465,2z0,"'.m', '"MarkerSize',10) % Venus coordinates
Earth = plot3(x0,a Earth,z0, '.g', 'MarkerSize',10) ;% Earth coordinates

%Q = plot3(a_ Earth+r Earth,y0,z0,'.y', 'Markersize',5) % Starting Satellite coordinate
Mars = plot3(-59010742.28,-220231088.4,z0,'.r', 'MarkerSize',10) ;% Mars coordinates
Jupiter = plot3(a Jupiter/sqrt(2),a Jupiter/sqrt(2),z0,'.k', 'MarkerSize',45); %
Jupiter coordinates

Saturn = plot3((a_Saturn/2)*sqrt (3),-a Saturn/2,z0,'.m', 'MarkerSize',5) ;% Saturn
coordinates

Titan = plot3(a Titan+(a Saturn/2)*sqrt(3),a Titan+ (-
a_Saturn/Z),zO,'.b','Markersize',5); % Titan coordinates
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axis ([-Radius, +Radius, -Radius, +Radius, -Radius, +Radius]); % make sure the axis is
fixed;

for n = 9273:14426;

set (Earth, 'XData', EarthX(n), 'YData', EarthY(n), 'ZData', EarthZ(n)); %// update
Earth position

%set (Venus, 'XData', VenusX(n), 'YData', VenusY(n),'ZData', VenusZ(n)); % Update
Venus position

set (Mars, 'XData', MarsX(n), 'YData', MarsY(n), 'ZData', MarsZ(n)); % Update Mars
position

set (Jupiter, 'XData', JupiterX(n), '¥YData', JupiterY(n), 'ZData', JupiterZ(n)); %
Update Jupiter position

set (Saturn, 'XData', SaturnX(n), 'YData', Saturn¥Y(n), 'ZData', SaturnZ(n)); %
Update Saturn position

set (Titan, 'XData', TitanX(n) + SaturnX(n), 'YData', Titan¥(n)+
SaturnY (n), 'ZData', TitanZ(n) + SaturnZ(n)); % Update Titan position

drawnow %// refresh figure
end
% Plotting the planets Final position
figure ('Name', '"N-Body Final', 'NumberTitle', 'off"')
Sun = plot3(x0, y0, z0, '.y', 'MarkerSize',30') % Sun coordinates
hold on
xlabel ('X")
ylabel ('Y")
zlabel ('Z")
grid on
%Venus = plot3(-108051715.7,-5662750.465,2z0,"'.m', '"MarkerSize',10) % Venus coordinates
Earth = plot3(-1.4733e+08,-2.5978e+07,2z0, '.g',6 "MarkerSize',10) % Earth coordinates
%Q = fplot3(a Earth,y0,z0,'.b', 'Markersize',20) % Starting Satellite coordinate
Mars = plot3(-1.3515e+08,-1.8363e+08,z0,"'.r', '"MarkerSize',10) $ Mars coordinates
Jupiter = plot3(7.7404e+08,8.3225e+07,2z0,"'.k"', '"MarkerSize',45) $ Jupiter coordinates
Saturn = plot3(1.4197e+09,1.8752e+08,z0,"'.m', '"MarkerSize',5) % Saturn coordinates
Titan = plot3(a Titan+(1.4197e+09),a Titan+(1.8752e+08),z0,"'.b', 'Markersize',5); %
Titan coordinates
axis ([-Radius, +Radius, -Radius, +Radius, -Radius, +Radius]); % make sure the axis is
fixed;

for n = 14426:25185;

set (Earth, 'XData', EarthX(n), 'YData', EarthY(n), 'ZData', EarthZ(n)); %// update
Earth position

%$set (Q, 'XData', QX (n), 'YData', QY (n), 'ZData', QZ(n)); %// update Satellite
position

%set (Venus, 'XData', VenusX(n), 'YData', VenusY(n),'ZData', VenusZ(n)); % Update
Venus position

set (Mars, 'XData', MarsX(n), 'YData', MarsY(n), 'ZData', MarsZ(n)); % Update Mars
position

set (Jupiter, 'XData', JupiterX(n), '¥YData', JupiterY(n), 'ZData', JupiterZ(n)); %
Update Jupiter position

set (Saturn, 'XData', SaturnX(n), 'YData', Saturn¥Y(n), 'ZData', SaturnZ(n)); %
Update Saturn position

set (Titan, 'XData', TitanX(n) + SaturnX(n), 'YData', Titan¥(n)+
SaturnY (n), 'ZData', TitanZ(n) + SaturnZ(n)); % Update Titan position
drawnow %// refresh figure

end

Radius =
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1.4332e+09

Qz =

Sun =

Line with properties:

Color:

LineStyle:

LineWidth:

Marker:

MarkerSize:

MarkerFaceColor:

XData:

YData:

ZData:

[1 1 0]

'none'

0.5000

30

'none'

Use GET to show all properties

Sun =
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Line with properties:

Color:

LineStyle:

LineWidth:

Marker:

MarkerSize:

MarkerFaceColor:

XData:

YData:

ZData:

[1 1 0]

'none'

0.5000

30

'none'

Use GET to show all properties

Earth =

Line with properties:

Color:

LineStyle:

LineWidth:

Marker:

MarkerSize:

MarkerFaceColor:

[0 1 0]

'none'

0.5000

10

'none'

71



XData: -147330000

YData: -25978000

ZData: O

Use GET to show all properties

Mars =

Line with properties:

Color: [1 0 0]

LineStyle: 'none'

LineWidth: 0.5000

Marker: '.'

MarkerSize: 10

MarkerFaceColor: 'none'

XData: -135150000

YData: -183630000

ZData: O

Use GET to show all properties

Jupiter =
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Line with properties:

Color:

LineStyle:

LineWidth:

Marker:

MarkerSize:

MarkerFaceColor:

XData:

YData:

ZData:

[0 0 0]

'none'

0.5000

45

'none'

774040000

83225000

Use GET to show all properties

Saturn =

Line with properties:

Color:

LineStyle:

LineWidth:

Marker:

MarkerSize:

MarkerFaceColor:

XData:

[1 0 1]

'none'

0.5000

'none'

1.4197e+09
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YData: 187520000

ZData: O

Use GET to show all properties
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%102

><109
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Titan sysX = (a_Saturn + a Titan) *cos(Tt);
Titan sysY = (a_Saturn + a Titan) *sin(Tt);

Titan sysZ = 0*tan(Tt);

figure ('Name', 'Saturn-Titan System', 'NumberTitle','off')

Saturn sys = plot(x0,y0,'.m','MarkerSize',75) % Saturn coordinates

hold on

grid on

Titan sys = plot(a Titan,y0,'.b', 'Markersize',35); % Titan coordinates
axis ([-Radius, +Radius, -Radius, +Radius]); % make sure the axis is fixed;

for n = 1:100;

o)

set (Titan sys, 'XData', Titan sysX(n), 'YData', Titan sysY(n)); % Update Titan

position
drawnow %// refresh figure
end

Saturn sys =

Line with properties:

Color: [1 O 1]

LineStyle: 'none'

LineWidth: 0.5000

Marker: '.'

MarkerSize: 75

MarkerFaceColor: 'none'

XData: 0

YData: O

ZData: [1x0 double]

Use GET to show all properties
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Transposing
tp EarthX = transpose (EarthX) ;

tp EarthY = transpose (EarthY);

Earth Coordinates = [tp EarthX tp EarthY];
tp_MarsX = transpose (MarsX) ;

tp MarsY = transpose (MarsY) ;

Mars Coordinates = [tp MarsX tp MarsY];

tp_JupiterX = transpose (JupiterX) ;
tp_JupiterY = transpose (JupiterY);

Jupiter Coordinates = [tp JupiterX tp JupiterY];
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tp_SaturnX = transpose (SaturnX) ;
tp_SaturnY = transpose (SaturnY) ;
Saturn Coordinates = [tp SaturnX tp SaturnY];

$syms QX QY;
fimplicit3(1.34364042* (10)*QX"2+2.6714264* (10) *QX*QY+1.33754593* (10) *QY"2+0*Qz"2==1) ;

QX = @(gt) 1.34364042*cos(gt) "2 - 2.6714264*cos(gt) *sin(qgt) ;
%QY = @(gt) 1.33754593*sin(gt)”2 + 2.6714264*cos(gt) *sin(qt) ;
$QZ = Q@(gt) O

(

$fplot3 (QX,QY,Q7)
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