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ABSTRACT 

 

Vision-Based Odometry System for Localization of Aerial Vehicles 

Connor J. Miholovich 

 

The purpose of this report is to show the design, implementation, and testing of an online 

Visual Odometry (VO) algorithm used for navigation and localization of an Unmanned Aerial 

Vehicle (UAV). Aerospace navigation systems primarily rely on Global Positioning System (GPS) 

and Inertial Navigation Systems (INS) for information on the aircraft's position and orientation. 

However, aircraft operations in GPS-denied or degraded environments such as cities, forests, or 

indoors are becoming more prominent with UAVs and classic navigation methods begin to fail in 

GPS-denied environments. The report proposes a practical method for navigation in GPS-denied 

environments to be incorporated on a multirotor UAV using low-cost generalized hardware. The 

method is based on comparing the onboard camera data of a UAV to a pre-built map of the drone's 

environment using satellite images. The VO navigation systems aim to reduce errors introduced 

into the system through sensor bias and drift and rely solely on onboard data rather than 

constellation data that may not be available in any environment. Simulation and testing of the 

methodology aim to prove the performance of the navigation system and implement changes 

needed to bridge the simulation to the real-world gap.  
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Symbol  Definition Units (SI) 

W 
3D point in world coordinate 

system 
m 

P’ Projected 2D point on image plane pixels 

u, v Pixel coordinates Pixels 

f Focal length m  

fx, fy Focal lengths in x and y directions pixels 

cx, cy Optical center coordinates Pixels 

R Rotation matrix Dimensionless 

t  Translation Vector m 

K Camera intrinsic matrix Dimensionless 

F Fundamental matrix Dimensionless 

E Essential matrix Dimensionless 

H Homography matrix Dimensionless 

n The normal vector of a plane Dimensionless 

d  Distance to a plane m 

G Gaussian Function Dimensionless 

σ Standard Deviation Varies 

Gx, Gy 
Sobel operators for x and y 

directions 
Dimensionless 

Θ Gradient direction Radians 

Ip Pixel brightness Dimensionless 

T 
Threshold for FAST feature 

detection 
Dimensionless 

q0, q1, q2, q3 Quaternion components Dimensionless 

x  State Vector  Varies 

z  Measurement Vector Varies 

w  Process Noise Varies 
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v  Measurement Noise Varies 

P Covariance Matrix Varies 

Q Process Noise Covariance Matrix Varies 

K  Kalman Gain Dimensionless 

Λ Weighing factor in EKF estimate Dimensionless 

C Speed of Light vacuum m/s 

L Loss Function Dimensionless 

Y Feature Map Pixels 

𝑘ℎ Kernel Height Pixels 

𝑘𝑤 Kernel Width Pixels 

W Weight matrix Dimensionless 

B Bias Vector Dimensionless 

S Stride  Pixels 

𝑊𝑘 Kernel  Dimensionless 

I Pixel Intensity Dimensionless 

σ Standard Deviation Varies 

µ Average Value Varies 

𝑣𝑖 Original Pixel Value Dimensionless 

𝜎𝑎 Activation Function Dimensionless 

𝛿𝑘
𝑜 Hidden Layer Error Dimensionless 

𝛿𝑜𝑢𝑡𝑝𝑢𝑡 Output Layer Error Dimensionless 

𝑥𝑖 Input Unit Dimensionless 

𝑤𝑖𝑗 Hidden and Input Layer Weights Dimensionless 
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1. Introduction 
 

 

1.1 Motivation 

Commercial aviation utilizes Global Positioning System (GPS) as one of the main sensors 

responsible for localization and navigation. Depending on the degree of accuracy required, some 

systems may elect to use Real-Time-Kinematics (RTK) GPS to increase localization accuracy to 

the order of centimeters. [1] RTK GPS operates similarly to GPS where it receives a signal from 

satellites, but also receives a signal from a stationary (on Earth) beacon that provides corrections 

to the satellite's signal. However, GPS signal interruption from areas of low network coverage or 

high interference (signal jamming, buildings, underground, canyons, etc.) limits aircraft navigation 

capabilities. While most modern aircraft feature highly redundant systems, GPS corrects other 

sensors which are more prone to drift in measurements over long flights.  When GPS signals are 

not present, human pilots use Visual Flight Rules (VFR) where sight is used to localize the aircraft 

in the surrounding area. Some limitations to using VFR are altitude, visibility, and airspeed which 

can all hinder a pilot's ability to observe, process, and react to surroundings accordingly.  For 

remote-controlled aerial vehicles pilots may rely on onboard cameras or visual line-of-sight for 

navigation when GPS signals are not reliable or present. In robotics applications global localization 

is the ability of a robot to know its position and orientation in an environment without knowledge 

of its original state and orientation. Simultaneous Localization And Mapping (SLAM) is a method 

used by autonomous vehicles to localize, map, and track the environment around them. After a 

robot has built a map of the environment around it and localized itself, SLAM can be applied to 

collision avoidance and path planning tasks. [2] Operating aerial vehicles in GPS-denied 

environments proposes difficulties for guidance and navigation problems, specifically with respect 

to path planning and localization which is the problem this project focuses on solving. 

1.2 Literature Review 

In recent years, advancements in camera technologies and compute platforms have spurred 

significant research in vision-based navigation systems within aerospace and robotics fields. 

Vision-based systems excel in localization and mapping regions in GPS-denied environments, 

leveraging data of varying resolutions. In robotics, Visual Odometry (VO) is a critical process for 

determining the motion of a stereo or monocular camera through video input. VO operates by 

comparing and tracking features between video frames, subsequently using these tracked features 

to form paths at the video rate. [3] Consequently, VO algorithms are instrumental in determining 

a robot's relative position and orientation. Camera models handle the transformation of the 3-

dimensional (3D) real-world reference frame and the 2-dimensional (2D) pixel frame. The camera 

model plays a crucial role in undoing distortion on raw images and correcting imperfections in the 

camera sensors. For computer vision purposes Real World, Camera, and Image reference frames 

are related to one another and are critical in the 3D to 2D transformations. 

The Earth-centered, Earth-fixed (ECEF) frame is a global reference frame with its origin 

in the center of the Earth with three orthogonal axes fixed to the Earth. In the ECEF reference 
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frame as shown in Figure 1.1 the 𝒆𝒛 axis points towards the North Pole, the 𝒆𝒙 axis points through 

the intersection of the IERS Reference Meridian (IRM) and equator, the 𝒆𝒚 axis is 90 degrees to 

the 𝒆𝒙axis. Within the ECEF frame, two primary coordinate systems define a system position: 

cartesian and geodetic. Cartesian coordinates reference an object's position relative to the Earth 

with 𝒆𝒙, 𝒆𝒚, and 𝒆𝒛 axes. Geodetic coordinates reference an object's position relative to Earth with 

longitude, latitude, and altitude. A local reference frame that can be fixed to a vehicle's body frame 

is the North-East-Down (NED) reference frame which is a common convention for aerospace. The 

𝒏𝒙 axis points toward the North Pole, the 𝒏𝒚 axis pointing East, and the 𝒏𝒛 axis points to the center 

of the ECEF reference frame.  

 

Figure 1.1: ECEF and NED reference frames. 

The camera reference frame is defined as principle at 𝑪𝒐 and three orthogonal axes 

𝒄𝒙, 𝒄𝒚, and 𝒄𝒛. A point in the world reference frame is defined about 𝑾𝟎 and three orthogonal 

axes 𝒘𝒙,𝒘𝒚, and 𝒘𝒛 with units in meters. The body frame is defined with a center at 𝑩𝒐 and three 

orthogonal axes 𝒃𝒙, 𝒃𝒚, and 𝒃𝒛 with units in meters. The North-East-Down (NED) frame, is 

common in aerospace applications, and is defined with at center at 𝑵𝒐 and three orthogonal axes 
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𝒏𝒙, 𝒏𝒚, and 𝒏𝒛 with units in meters. The ECEF frame is defined with center at 𝑬𝟎 and three 

orthogonal axes 𝒆𝒙, 𝒆𝒚, and 𝒆𝒛.[4] 

 

 

Figure 1.2: NED, Body, Camera, and Point Reference frame. 

    From Figure 1.2 the position vector for a point about the world frame can be defined as: 

 𝑬𝟎𝑷 𝑾 = 𝑋𝑤𝒆𝒙 + 𝑌𝑤𝒆𝒚 + 𝑍𝑤𝒆𝒛 
(1.1) 

 

The unit vector for a point about the camera frame can be defined as: 

 𝑪𝟎𝑷 𝑾 = 𝑋𝑐𝒄𝒙 + 𝑌𝑐𝒄𝒚 + 𝑍𝑐𝒄𝒛 
(1.2) 

The 3D coordinates of a point (W) in the world coordinate system are defined as 

𝑋𝑤, 𝑌𝑤, and 𝑍𝑤 and they represent the scalar position of our point. Camera models are 

fundamental to vision-based navigation systems, as the 3D world is projected onto a 2D image 

plane. The most common camera model used in understanding the 3D to 2D projection is the 

pinhole camera model. Figure 1.2 shows the relationship between the 3D and 2D coordinates of a 

point in the world. Equation 1.2 shows the mathematical relationship between image coordinates 
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and real-world coordinates. [4] Camera intrinsic parameters are defined as focal length ൫𝑓𝑥 , 𝑓𝑦൯ 

and optical centers ൫𝑐𝑥, 𝑐𝑦൯ which are different than the camera reference frame. 

[
𝑢
𝑣
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦

] [

𝑋𝑊
𝑌𝑊
𝑍𝑊

] (1.3) 

 

In practice, camera lenses introduce distortion based on their shape, causing straight lines 

in the real world to appear curved in images. Predominant distortions include barrel-like and 

cushion-like distortions (Figure 1.3). Camera calibration processes measure and correct these 

distortions, using patterns of known dimensions. Radial distortion, caused by the lens shape, and 

tangential distortion, due to assembly imperfections, are the two main types of distortion. [4] 

 

Figure 1.3: Camera distortions on an image. [4] 

Using extrinsic parameters, rotation (R), and translation (t), a point in the world coordinate 

system can be transformed into the camera coordinate system, as shown in Equation 1.2. Extrinsic 

parameters  𝐶𝑅𝑊 and  𝐶𝑡𝑊 are found through the camera calibration process. [4] 

[

𝑋𝐶
𝑌𝐶
𝑍𝐶

] =  𝑪𝑅𝑊 [
𝑋𝑊
𝑌𝑊
𝑍𝑊

] +  𝑪𝑡𝑊 (1.4) 

 

Where  𝐶𝑅𝑊 = ൭

𝑟11 𝑟12 𝑟12
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

൱ and  𝐶𝑡𝑊 = ൭

𝑡𝑥
𝑡𝑦
𝑡𝑧

൱ [4] 

The foundational paper on Visual Odometry presented to IEEE in 2004 outlined methods 

for estimating camera motion: feature extraction, feature matching, and robust estimation. The 

original method compares a ground truth Inertial Navigation System (INS) and GPS to the visual 

odometry system mounted on a ground robot. The results were that the visual odometry system 
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accurately reproduced trajectory over hundreds of meters traversed with varying lighting 

conditions using only stereo cameras. [3] In more recent works, additional sensors such as Inertial 

Measurement Units (IMU) are integrated for additional information regarding the camera's pose 

(orientation?) or correction to the trajectory.  The extension of the work is Visual Inertial Odometry 

(VIO) which leverages the strength of camera and IMU sensors to provide more robustness to VO 

systems. VO features limitations from lighting conditions, feature sparsity, and scale ambiguity. 

VIO systems use the IMU to provide resilience to lighting change during visual tracking, provide 

inertial data for fast movements, and aid in scale estimation by providing data for acceleration and 

rotation of the system. While VIO offers improvements over VO through the correction provided 

through inertial data, the visual pipeline is similar between the two systems. However, depending 

on the specific scenario or system requirements, VO may be more suited for the use case despite 

the improved performance of VIO.  

Feature extraction involves identifying distinctive points or landmarks in the video frames 

that can be robustly tracked over time. In computer vision, features are pieces of information about 

an image's content. Common features are points, edges, or objects, and are represented by pixel 

coordinates of an image as defined by x and y points of a pixel’s location in an image. These 

features serve as the basis for computing the camera's motion and generating a spatial map of the 

environment. Common methods for feature extraction include corner detectors (e.g., Harris corner 

detector, Shi-Tomasi corner detector) and blob detectors (e.g., Scale-Invariant Feature Transform 

- SIFT, Speeded Up Robust Features - SURF). [5] A component of feature extraction is rotation-

invariant features, which are features that can still be detected even if the image is rotated. Harris 

corner detection is an example of a rotation-invariant feature extraction method. Another 

component of feature extraction is scale-invariant features which do not change as an image is 

scaled up or down. [6]  

Feature matching is the process where a computer matches corresponding features between 

frames. During feature matching the coordinates of pixels may shift between image frames, but 

the relative distance between points in a feature remains similar. This process ensures that the same 

physical point in the environment is consistently tracked across different viewpoints and lighting 

conditions. Matching techniques often employ descriptors (e.g., SIFT descriptors, ORB 

descriptors) to establish correspondence between features, optimizing robustness and accuracy. [5] 

Motion estimation computes the relative movement of the camera between frames based 

on the matched feature points. Various algorithms, such as optical flow methods, iterative closest 

point (ICP) algorithms, or direct methods like Lucas-Kanade, estimate the camera's translation and 

rotation parameters. [3] These parameters are crucial for updating the camera's position and 

orientation in real time. Motion estimation can be used to calculate a pose estimation of the camera 

where the camera's position and orientation are computed over time.  

In aerospace applications, the environments being tested are usually dynamic and adverse 

conditions (varied lighting, low features, etc.). These dynamic environments often induce motion 

blur, lens glare, and noise into camera data, causing many VO algorithms to be unable to track 

features. A method using offline 3D reconstructed environment maps and comparing images from 

an aerial vehicle found the most success in feature tracking through edge alignment. [7] While the 

algorithm found success with feature alignment in indoor environments where the lighting 
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conditions were near constant, the feature alignment failed because of lighting variations between 

frames in outdoor environments.  

NASA’s Terrain Relative Navigation (TRN) takes onboard images from a vehicle 

descending and compares the images to a map generated before flight to extract the spacecraft's 

altitude and attitude with respect to the map. The pre-generated map was built from a satellite 

orbiting Mars taking photos of the landing site's surface before the mission. TRN has successfully 

demonstrated the fusion of IMU, Light Detecting And Ranging (LiDAR), and camera sensors for 

visual odometry in the Mars 2020 mission by landing in the Jezero Crater. [8] The TRN system 

expands past a navigation system and additionally provides the spacecraft with collision avoidance 

systems and elevation mapping systems. The success of the Mars 2020 mission demonstrates that 

using an onboard map with some inherent errors can be performed online during a mission with 

robustness to imperfections in the system.  

A similar approach to the NASA TRN is the AGL-Net approach which compares satellite 

imagery to a map generated by LiDAR point clouds. AGL-Net provides a solution to two 

problems: comparing image data to LiDAR data and comparing scale discrepancies between 

satellite and ground view data. AGL-Net first takes an initial pass of feature matching between the 

satellite images and the LiDAR data and then uses a Convolutional Neural Network (CNN) to 

learn scale-invariant features for tracking. CNNs learn hierarchical features from raw input images, 

which is crucial for understanding and interpreting complex visual patterns. This ability to learn 

multi-level features, ranging from simple edges to complex textures and objects, makes CNNs 

highly effective for tasks like object recognition, detection, and segmentation. CNNs use 

convolutional layers to apply filters across the image which enables the neural network to detect 

features whether they are scale-invariant, rotation-invariant, or if the location of the feature shifts. 

A novel result of the AGL-Net during testing was the elimination of the need to pre-process the 

satellite imagery maps ahead of time. Eliminating the pre-processing was achieved through a CNN 

allowing the algorithm to operate fully online. The result is substantial for aerospace applications, 

particularly for real-time testing where the system can handle dynamic environments. [9] While 

the application of a CNN increases the robustness of the system to environmental conditions the 

amount of data required, and computational complexity may not be viable to small aerial vehicle 

applications or in real time if the network is not trained for the scenario.  

To avoid the scaling issues between satellite and aerial frames, researchers use a 

combination of aerial and ground vehicles to perform feature matching due to the smaller distance 

between the reference frames. Researchers at the Autonomous Systems Lab in Zurich found that 

many VO algorithms used for localization experience drift from ground truth over longer 

trajectories. [10] Researchers resolved this approach by using VIO to help reduce sensor drift. The 

experimental setup uses an aerial drone and a differential drive rover which map and attempt to 

localize themselves in a local environment. Researchers found that raw VIO still experienced drift 

from ground truth and corrected this error using localization against previously built maps. Using 

the hybrid VIO and map-localized system, the aerial vehicle and ground rover localized 

themselves, allowing the drone to land on the rover. The results show success in the drone and the 

rover locating each other despite different viewpoints of the same environment. While results 

demonstrate the ability to localize separate vehicles in a local environment, the results also show 

sensitivity to misalignment of the local and reference maps to the global alignment.  

A similar approach from the Robotics and Perception Group (University of Zurich) focuses 

on globally localizing and tracking the pose of an aerial vehicle in low-altitude, GPS-denied 
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environments. The approach uses an air-ground image-matching algorithm that compares images 

from the aerial vehicle to images on the ground vehicle in a three-dimensional city model. 

Correction to trajectory drift of the system occurs when the aerial vehicle and ground vehicle 

images match with sufficient margin. The system is tested on a 2-kilometer trajectory of the drone 

and demonstrates global localization and position tracking using a single onboard camera on the 

drone. [11] Researchers found that brute-force visual-search algorithms were required to 

compensate for illumination, lens distortion, viewpoint deviations, and over-season vegetation 

variation. The algorithm was successful at globally localizing the drone within the pre-built model 

of the environment and used uncertainty estimations to compensate for the model. Results of the 

algorithm's performance show that the vision-based approach outperforms satellite-based GPS at 

low altitudes and in a city environment, but the system requires high levels of computational 

complexity. Researchers suggest using cloud-based computing as a viable alternative for the 

computation complexity of the algorithm but demonstrate a viable alternative to GPS localization 

for urban environments. [11] 

Previous research focused on using prebuilt environment maps with various viewpoints to 

perform localization. While these methods are useful in off-line work, prebuilt maps impose 

restrictions on an online system that may exceed the bounds of the previously built maps. 

Researchers from the Autonomous Systems Lab in Zurich propose a Visual Simultaneous 

Localization And Mapping algorithm (VSLAM) using a singular monocular camera mounted to 

an aerial vehicle. Simultaneous Localization and Mapping is a method that uses onboard sensors 

to build a map of the environment surrounding a robot and localize the robot with respect to the 

map. The VSLAM algorithm tracks the pose of the camera and simultaneously builds a map of the 

surrounding area. Results of the approach show that the aerial vehicle can navigate through 

unexplored environments without the aid of GPS or beacons.  The system also shows stability 

against scale and orientation drift within the map that was built from the VSLAM algorithm and 

is resilient to wind or similar external disturbances. Limitations to the approach feature sparse 

environments which cause the vehicle to disable localization and the algorithm’s ability to only 

localize locally not globally. The online approach demonstrated no time drift and accuracy up to 

2-4 cm (about 1.57 in) using the vision-based system.  [12] 

Researchers at the University of Turku (Finland) approach propose a Global Navigation 

Satellite System (GNSS) free, vision-based approach to navigation for non-urban environments. 

Many of the GNSS/GPS vision-based methods mentioned above focus on low-altitude and urban 

environments, but struggle in feature-sparse environments. Researchers demonstrated a non-

traditional VO algorithm that is optimized for long-range, high-altitude UAV flights. [13] The 

method again uses a map generated before flight and uploaded to the drone for online use. The 

uploaded map features multiple labeled latitude and longitude coordinates that aid the drone in its 

navigation across the trajectory. The algorithm uses the following features to localize itself: 

segmenting geo-referenced satellite images, feature matching (UAV to satellite images), rotation 

adjustment, and perspective adjustment. The paper presents significant advancements in UAV 

localization by accounting for perspective and rotation misalignments between the UAV and 

satellite frames which improves feature matching. 

In conclusion, navigating through GPS-denied environments in aerospace applications 

commonly involves using a pre-developed map and performing online feature matching. Common 

failure modes for these methods include variations in lighting conditions, feature sparsity, and 

perspective distortions from different reference frames. Research indicates that there is no single 
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method suitable for all flight operations; some methods are more successful at low altitudes, while 

others perform better at high altitudes. Overall, current research shows that there are several viable 

approaches for using visual odometry as a navigation method in GPS-denied environments for 

aerial vehicles. 

1.3 Project Proposal 

The goal of this project is to design and implement a VO algorithm capable of navigating 

an Unmanned Aerial Vehicle (UAV) without GPS data. The VO algorithm results will be 

compared against GPS as ground truth data to evaluate the approach's accuracy. From the above 

literature review, the main problem to be solved by the VO algorithm will be dynamic scaling and 

lighting conditions that cause many VO algorithms to fail or be limited to use indoors. The project 

will be split into two parts. The first part will be an evaluation of the VO algorithm in simulation 

to verify the approach methodology. The second will be the implementation of a low-cost 

multirotor to evaluate the simulation-to-real-world gap. The simulation will feature ideal scenarios 

for lighting, camera distortion, and overall system noise. The low-cost drone can be seen in Figure 

3.0 which will serve as the real-world hardware the algorithm will be tested on. The algorithm will 

use a pre-generated map of an environment composed of satellite images and be responsible for 

localizing itself within the environment using a single monocular camera. 

 

Figure 1.4: Tarot FY690S Hexacopter. [14] 

1.4 Methodology 

The proposed methodology is to use a downward-facing camera and IMU sensor mounted 

to a drone to calculate the relative pose of the camera with respect to the drone and world-centered 

frame. Before flight, a map of satellite images will be stitched together from a set of user-defined 

waypoints. Then in flight, rotate the camera images of the drone to the world-centered frame to 

compare the images from the drone to satellite images of the prebuilt map. The next steps will be 

feature extraction, feature matching, and motion estimation. Feature extraction will be responsible 
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for finding distinguishable features from the onboard camera. Feature matching will then compare 

the onboard camera data to the prebuilt satellite image map. Then motion estimation will be 

calculated to determine the relative motion of the drone/camera. The above methodology would 

provide a visual odometry algorithm that is fully self-reliant and does not require any GPS 

correction for waypoint-based navigation. Some of the main resources used would be OpenCV for 

handling the computer vision calibrations and image transformations, Tensorflow and Keras for 

the Machine Learning/Deep Learning algorithms, and Google Maps for the satellite imagery. The 

drone will use a PID (Proportional, Integral, Derivative) controller for its velocity and position 

controllers. PID controllers were selected for their ease of implementation, tuning, and lower 

computational complexity (when compared to other modern control techniques).  
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2. Computer Vision 
 

2.1 Pinhole Camera Models 

Continuing the camera model discussed in Chapter 1, a 3D point X is projected through the 

camera's optical center onto an image plane and produces image point p. Figure 2.1 shows the 

perspective projection (a), catadioptric projection (b), and spherical model (c) with image points. 

Chapter 2 will focus on using the perspective projection model for all of the calculations. 

 

 

 

 

Figure 2.1: Camera projection model for perspective projection for a point in the real world. 

 

The coordinates of X can be defined as [𝑋𝑐, 𝑌𝑐, 𝑍𝑐]
𝑇, p is [𝑝𝑥, 𝑝𝑦, 𝑝𝑧]

𝑇and the physical 

distance between the imaging plane and the camera plane is f (focal length). Using the classical 

camera model an image will be inverted from projection as signified by the negative sign: 

𝑍𝑐
𝑓
= −

𝑋𝑐
𝑝𝑥
= −

𝑌𝑐
𝑝𝑦

 (2.1) 

Modern cameras do not invert the image so the formula can be rewritten as:     
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𝑍𝑐
𝑓
=
𝑋𝑐
𝑝𝑥
=
𝑌𝑐
𝑝𝑦

 (2.2) 

    The projected coordinates on the image plane can be calculated as: 

 

𝑝𝑥 = 𝑓
𝑋𝑐
𝑍𝑐

 (2.3) 

𝑝𝑦 = 𝑓
𝑌𝑐
𝑍𝑐

 (2.4) 

  

    Camera sensors convert light from real-world objects into electrical signals which can be 

reconstructed into image pixels.  The pixel plane is defined as 𝑜 − 𝑢 − 𝑣, if the pixel plane is fixed 

on the physical imaging frame, then the pixel coordinates of 𝑝 can be defined as: [𝑢, 𝑣]𝑇 Then 

using the intrinsic camera parameters, the pixel coordinates can be calculated as: 

 

 

𝑢 = 𝑓𝑥
𝑋𝑐
𝑍𝑐
+ 𝑐𝑥 

(2.5) 

𝑣 = 𝑓𝑦
𝑌𝑐
𝑍𝑐
+ 𝑐𝑦 (2.6) 

 

Where camera intrinsic parameters are defined as focal length (𝑓𝑥,𝑓𝑦) and optical centers 

(𝑐𝑥, 𝑐𝑦) which can be calculated from the camera calibration process. [4] 

 

2.2 Camera Calibration 

A limitation to the pinhole camera model is the distortions caused by projecting the 3D world 

onto a 2D plane when a camera lens is used. The two main distortion categories are barrel-like 

distortion and cushion-like distortion. In barrel distortion, the radius of pixels decreases as the 

optical axis distance increases. Cushion-like distortion is when the radius of the pixels increases 

as the optical axis decreases. The shape of the lens introduces radial distortion while the assembly 
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and geometry of the camera introduce tangential distortion. Tangential distortion is predominately 

caused by the sensor plane not being perfectly parallel to the lens. Radial distortion can be 

represented as: 

 

𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) [16] (2.7) 

 

𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟
2 + 𝑘2𝑟

4 + 𝑘3𝑟
6) [16] (2.8) 

 

 

    Where r is the distance from the image center. Tangential distortion can be represented as:  

𝑥𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟
2 + 2𝑥2)] [16] (2.9) 

 

𝑦𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑 = 𝑦 + [𝑝1(𝑟
2 + 2𝑦2) + 2𝑝2𝑥𝑦] 

[16] (2.10) 

 

     

    The process of camera calibration aims to solve the five unknown distortion coefficients: 

(𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2). A common calibration method uses corner detection with a chessboard with 

known lengths of each of the sides of the marks and a known number of marks on the board as 

seen in Figure 2.1. Additionally, intrinsic parameters of the camera need to be solved for such as 

focal length ൫𝑓𝑥, 𝑓𝑦൯ and optical centers ൫𝑐𝑥, 𝑐𝑦൯. An example of distortion before calibration shown 

in Figure 2.2 shows the radial bowing of the checkerboard past the red lines (the red lines represent 

ground truth). [5] 
 

 

Figure 2.2: Chessboard for calibration. [16] 
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Figure 2.3: Chessboard with distortion against ground truth (red lines). [16] 

2.3 Fundamental Matrix 

    The fundamental matrix F is a 3x3 matrix that relates corresponding points between two images 

taken from different viewpoints. It encapsulates the intrinsic and extrinsic parameters of the 

camera system as saved using camera calibration. Given a point 𝑝1 in the first image and a point 

𝑝2 in the second image, the fundamental matrix satisfies the equation given in Equation 2.11. 

𝑝2
𝑇𝐹𝑝1 = 0 [4] (2.11) 

 

    Where 𝑝1 = (𝑥1, 𝑦1, 1) and 𝑝2 = (𝑥2, 𝑦2, 1). The fundamental matrix can be decomposed in the 

camera’s intrinsic parameters (K) and the extrinsic parameters of rotation (R) and translation (t). 

𝐹 = 𝐾2
−𝑇[ 𝐶𝑡𝑊] 𝐶𝑅𝑊𝐾1

−1 [4] (2.12) 

Where:  

  

𝑡𝑘
̂
= [

0 −𝑋𝑊 𝑌𝑊
𝑍𝑊 0 −𝑋𝑊
−𝑌𝑊 𝑋𝑊 0

] (2.13) 

    Given a set of corresponding points, the fundamental matrix can be estimated. Once F is 

obtained constraints for matching points between two images are provided. [4] 

2.4 Essential Matrix 

    The geometric relationship between two images using a calibrated monocular camera can be 

described with the essential matrix E. E contains the camera’s motion parameters for some 
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unknown scaling factor (in 2-D to 2-D motion). The essential matrix can be defined by equation 

2.15, where 𝐶𝑅𝑊 is the rotation matrix.  

𝐸𝑘 ≃ 𝑡𝑘
̂
 𝐶𝑅𝑊 

[4] (2.14) 

 

    Both rotation and translation of the camera can be directly extracted from E, extracting the 

rotation and translation of the camera serve as the foundation of motion estimation for visual 

odometry. 2-D to 2-D motion-based estimation is founded on the epipolar constraint between two 

images which defines the line on which a feature lies between image frames where p and p’ are 

normalized coordinates of corresponding points between two images. The epipolar constraint can 

be formulated by: 

𝑝′𝑇𝐸𝑝 = 0 [4] (2.15) 

 

    In stereo vision, epipolar geometry is used to describe the geometric relationship between two 

images from different perspectives. Using a monocular camera, epipolar geometry can be used to 

calculate the position and rotation between image frames. The point where the optical axis of the 

first and second camera pose intersects along the image plane is the epipole. The epipolar line is 

the projection of a 3D point onto the image plane of each camera pose. By leveraging the geometric 

relationships between the epipole, epipolar line, and fundamental matrix, pose estimation between 

image frames can be achieved through feature matching. The epipolar constraint between two 

images is a point on the one image must lie on the epipolar line of the second image which is 

derived from the essential matrix. Figure 2.3 shows the epipolar constraint between two images. 

[4][15] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Epipolar constraint between two images. [15] 

 

𝑪𝟎𝒌−𝟏 

𝑪𝟎𝒌  
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2.5 Image Filtering 

Image filtering plays a crucial role in enhancing the visual data present in an image. Image 

filtering uses a variety of techniques such as adding or removing noise from an image to manipulate 

the pixel values. Image filtering is commonly used to either enhance edges and either extract or 

remove features from an image. The process involves applying a kernel over an image to produce 

a filtered output. Common filters are Gaussian filters, median filters (noise reduction), and Sobel 

filters (edge detection). Equation 2.17 shows the Gaussian function which can be used to add or 

remove noise and Equation 2.18 shows the operation for a median filter. [4] 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2  
[4] (2.16) 

 

𝐼′(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐼(𝑖, 𝑗)} [4] (2.17) 

 

    The process of applying a Sobel filter uses a calculation of the gradient of the image intensity. 

The Sobel operator uses two 3x3 kernels for detecting horizontal (𝐺𝑥) and vertical edges (𝐺𝑦): 

𝐺𝑥 = [
−1 0 1
−2 0 2
−1 2 1

] (2.18) 

 

𝐺𝑦 = [
−1 −2 −1
0 0 0
1 2 1

] (2.29) 

 

    Then the gradient magnitude is computed in Equation 2.21: 

𝐺 = √𝐺𝑥2 + 𝐺𝑦2 (2.20) 

 

    Then the direction of the gradient can be computed in Equation 2.22: 
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𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(
𝐺𝑦

𝐺𝑥
) (2.21) 

 

2.6 Feature Matching 

    In the early 2000’s researchers predominately relied on corners, edges, and blocks for feature 

detection. While corners and edges are more distinguishable than just pixels across multiple 

images, these features are still subject to difficulties, when the camera is in motion. Corners’ and 

edges’ appearance change when a camera rotates and tracking the same points becomes rather 

difficult. Figure 2.5 depicts representative places in an image such as corners, edges, and blocks 

of pixels. Common features used in modern feature matching algorithms are Scale-Invariant 

Feature Transform (SIFT), Speeded-Up Robust Features (SURF), and ORB (Oriented FAST and 

Rotated Brief). Researchers evaluate SIFT, SUFR, and ORB based on the following criteria: 

repeatability, distinctiveness, efficiency, and locality. The combination of the previously 

mentioned criteria allows for features to be found in multiple images with different scales, 

locations, and even expressions (color or size due to lighting conditions). [4] 

 

Figure 2.5: Corners, edges, and blocks represented as unique features in an image. [4] 

 

    A feature point is composed of key points and descriptors. The key points refer to the 2D 

position of a feature in an image. Some key points contain other information like orientation and 

size. The descriptor is a vector describing the pixels around the key point. If two feature descriptors 

are relatively close in the vector space, then they are considered the same feature. The choice to 

use one of the above three methods comes to computation power and real-time performance. SIFT 

and SURF require longer calculation times but usually provide more robust features to be detected 

during varied lighting conditions, rotation, and translation. ORB and SIFT can be used for real-
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time feature extraction by using FAST detection for key points which makes the feature extraction 

process practical for real-time SLAM and navigation applications. 

 

    ORB features are comprised of ORB key points and ORB descriptors. Extraction of ORB 

features requires a FAST corner point extraction which finds the corner point in the image. Then 

the BRIEF descriptor is generated which describes the surrounding area of the feature points 

described in the previous step. The FAST corner point extraction mainly detects changes in the 

local grayscale. FAST functions by comparing how bright pixels are from neighboring pixels, and 

if the change is large then the point is likely a corner. The following steps are taken to extract a 

FAST point which can be visualized in Figure 2.6: 

 

• Select a pixel p in the image, assume brightness as 𝐼𝑝 

• Set a threshold T for filtering 

• Take pixel p and select 16 pixels with a radius of 3 pixels surrounding point p  

• If consecutive N points are greater than 𝐼𝑝 + 𝑇 or less than 𝐼𝑝 − 𝑇, then the central point 

is a feature point (common N values are 9,11, and 12) 

• Iterate through each of the above steps for every pixel in an image  

Figure 2.6: FAST key points on an image from some radius p. [16] 

 

 

    Common descriptions in FAST corner points are scale and rotation which aid in the detection 

of points between consecutive images, these become known as Oriented FAST key points. After 

extracting the Oriented FAST key point the binary descriptor BRIEF is calculated. A BRIEF 

descriptor is represented as a 0 or a 1. BRIEF is 1 when a second pixel in a pair (p, q) is greater 

than the first, otherwise, the descriptor is repressed as 0. Using the directional information provided 

from the FAST feature point orientation becomes encoded in the BRIEF descriptor. Feature 
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matching compares the descriptors from different images to find pairs of matching features. 

Feature matching relied predominantly on Euclidean distance for SIFT and SURF, and Hamming 

distance for ORB. Equation 2.23 shows the calculation of Euclidean distance in 2-D and Equation 

2.24 shows the calculation of Hamming distance. [4] 

𝑑 = √ ∑
𝑖=1

𝑛

(𝑥𝑖 − 𝑦𝑖)2 (2.22) 

 

𝑑(𝑎, 𝑏) = ∑
𝑖=1

𝑛

(𝑎𝑖⊕𝑏𝑖) 
(2.23) 

 

2.7 Homography 

    Using the epipolar constraint alongside the fundamental matrix and essential matrix, the 

homography matrix H describes the relationship between planes. When feature points lie along the 

same plane, the homography matrix can be used to estimate motion. This method of motion 

estimation is particularly common in top-view cameras for robotics applications. The homography 

matrix captures the transformation between points on a common plane across consecutive images. 

Using the homography matrix, essential matrix, and fundamental matrix points between 

consecutive images with changing camera poses, the motion estimation can be extracted by 

aligning all the images on the same plane. Considering a pair of matched feature points 𝑝1 and 𝑝2 

in images 𝐼1 and 𝐼2, assume all these points lie on a plane P. The plane equation is derived in 

Equation 2.25 and rearranged to Equation 2.26. [4] 

𝑛𝑇𝑃 + 𝑑 = 0 (2.24) 

 

𝑛𝑇𝑃 = −𝑑 (2.25) 
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Then using the equation relating a matched point to the camera intrinsics and the plane in Equations 

2.27 and 2.28 we can then derive the homography matrix in Equation 2.29. [4] 

𝑝2 ≃ 𝐾( 
𝐶𝑅𝑊𝑃 + 𝑡𝑘(−

𝑑

𝑛𝑇𝑃
) [4] (2.26) 

 

 

𝑝2 ≃ 𝐾( 
𝐶𝑅𝑊 −

𝑡𝑘𝑛
𝑇

𝑑
)𝑃 

[4] (2.27) 

 

𝐻 ≃ 𝐾( 𝐶𝑅𝑊 −
𝑡𝑘𝑛

𝑇

𝑑
)𝐾−1 

[4] (2.28) 

 

 

 

The transformation between 𝑝1 and 𝑝2 can then be expressed in Equation 2.30 and then 

expanded to the form in Equation 2.31.[4] 

𝑝2 ≃ 𝐻𝑝1 
[4] (2.29) 

 

(
𝑢2
𝑣2
1
) ≃ ൭

ℎ1 ℎ2 ℎ3
ℎ4 ℎ5 ℎ6
ℎ7 ℎ8 ℎ9

൱(
𝑢1
𝑣1
1
)  [4] (2.30) 

 

To estimate the homography matrix at least four pairs of matched points are required. This 

method is known as Direct Linear Transform (DLT), sometimes referred to as the Direct Method, 

which treats H as a vector and solves a series of linear equations. After obtaining the estimation 

for H the matrix can be decomposed into solutions for R and t.  Any inconsistencies require 

additional constraints to be added or information regarding the camera's state to correct the 

solution. The series of linear equations to solve for H can be seen in Equation 2.32. [4] 
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(
𝑢1 𝑣1 1 0 0 0 −𝑢1𝑢2 −𝑣1𝑢2
0 0 0 𝑢1 𝑣1 1 −𝑢1𝑣2 −𝑣1𝑣2

)

(

 
 
 
 
 
 

ℎ1
ℎ2
ℎ3
ℎ4
ℎ5
ℎ6
ℎ7
ℎ8)

 
 
 
 
 
 

= (
𝑢2
𝑣2
) [4] (2.31) 

   

Once the homography matrix is decomposed the Direct Method has been solved for the rotation 

and translation of the camera between frames giving a motion estimation. Typically, the Direct 

Method will suffer from error accumulation over long durations if left uncorrected or if sparse 

features are present. [4] To develop a vision-based odometry system for aerial applications visual 

odometry will be used to extract and track the heading of the aircraft over time. Elements such as 

feature extraction will be used for feature tracking in developing the navigation functionalities of 

the algorithm. [4]  
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3. Computer Vision-Based Navigation 
 

3.1 Extracting Rotation and Translation 

 After solving the homography matrix H, the matrix can be decomposed into solutions for 

R and t. [4] The decomposition process typically involves singular value decomposition (SVD) 

and can be represented as: 

H ≃ K( CRW −
tkn

T

d
)K−1 

[4] (3.1) 

 

 

 After solving H for R and t the rotation and translation of the aerial vehicle can be tracked 

locally. Once we have the rotation matrix R, we can convert it to rotation quaternions which is 

another way to represent rotations about three axes. Another common alternative to quaternions is 

Euler angles and is often seen in aerospace applications to describe the orientation of an aircraft. 

However, in instances where the pitch angle is +90° or −90° the functions representing roll and 

yaw become undefined inducing a “gimbal lock” where there is no unique solution. To avoid this 

problem, quaternion representations of rotation prevent any such instance from being unable to 

compute a unique solution. Equations 3.1 - 3.4 represent the calculations of the magnitude of each 

of the quaternion components.  

 

|q0| = √
1 + r11 + r22 + r33

4
 

(3.2) 
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|q1| = √
1 + r11 − r22 − r33

4
 

(3.2) 

 

|q2| = √
1 − r11 + r22 − r33

4
 

(3.3) 

 

|q3| = √
1 − r11 − r22 + r33

4
 

(3.4) 

 

 

 

 After computing the magnitude find the largest value of q0, q1, q2, q3. [18] Then compute 

the remaining components following the bellow conditions: 
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• If q0 if the largest: 

q1 =
r32 − r23
4q0

 (3.5) 

q2 =
r13 − r31
4q0

 (3.6) 

q3 =
r21 − r12
4q0

 (3.7) 

 

• If q1 if the largest: 

q0 =
r32 − r23
4q1

 (3.8) 

q2 =
r12 − r21
4q1

 (3.9) 

q3 =
r13 − r31
4q1

 (3.10) 

 

• If q2 if the largest: 

q0 =
r12 − r31
4q2

 (3.11) 

q1 =
r12 − r21
4q2

 (3.12) 

q3 =
r23 − r32
4q2

 (3.13) 

 

• If q3 if the largest: 
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q0 =
r21 − r12
4q3

 (3.14) 

𝑞
1
=
𝑟13 − 𝑟31

4𝑞
3

 (3.15) 

𝑞
3
=
𝑟23 − 𝑟32

4𝑞
3

 (3.16) 

 

 

 The rotation quaternion can then be represented as 𝑞 = [𝑞0 𝑞1 𝑞2 𝑞3]𝑇 and tracked 

over time. A similar example in aerospace is dead reckoning. Dead reckoning uses onboard sensors 

to measure the rates of change of the aircraft, and then by integrating, the aircraft’s rotation and 

translation can be calculated over time.  Dead reckoning and visual odometry are both methods to 

track a vehicle’s position without celestial measurements (GPS, GNSS, etc). However, these 

methods suffer from accuracy over time due to sensor errors and often require corrections 

depending on accuracy needs. The local tracking using visual odometry is an example of SLAM 

for our vehicle where we are independent of any prior state data. [18] 
 

3.2 Satellite Image Map Preparation 

 To provide the vehicle with a global reference, a set of stitched satellite images will be 

used to generate a 2D map of the terrain. The satellite image will provide a set of known reference 

points along the trajectory that can be compared against the drone’s onboard camera for feature 

matching. The feature matching allows the drone to localize itself within the reference map. Some 

important assumptions that play a role in generating and utilizing the map are as follows:  

• Neglecting Earth’s rotation 

• Neglecting the curvature of the Earth 

• Short flight time (less than 1 hour) 

• The desired flight path is known ahead of time 

 

 These assumptions enable the use of the stitched satellite image map without the need to 

compensate for rotating reference frames and the obliqueness of the Earth. In particular, the known 

flight path assumption plays a crucial role. By knowing the flight path in advance, a pre-

downloaded map can be generated using GPS coordinates and then provided to the algorithm. The 

map can then be used for real-time operations to provide a global reference to the vehicle. The 

limitation to the predetermined path assumption is if the vehicle deviates a large amount from the 

original flight path, the algorithm may not have information about the given location of the vehicle.  

 

 The OpenCV library has a built-in stitching function that takes a list of images then 

performs feature matching to overlay the images onto one another then crops the overlaid portion 
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of the images. The flowchart seen in Figure 3.1 shows the steps taken by the OpenCV stitcher class 

to overlay and crop the images.  

 

Figure 3.1: Image Stitching pipeline flowchart using OpenCV Stitcher Class [17]. 

 

 De-rotate and flatten all satellite images to a stitched map. Combine satellite images with 

GPS coordinates on the stitched map. Additionally, reference stitched maps as storage. Figure 3.2 

shows a set of sample images from Google Earth in the “layers” view that will be stitched together 

using OpenCV. Figure 3.3 shows the set of sample images stitched together.  
 

Figure 3.2: Sample images to be stitched together. 
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Figure 3.3: Final output of stitched images from Figure 3.2. 

 

 

3.3 Visual Waypoint Integration 

 Given the assumptions specified in Section 3.2, a global map of the flight path is known. 

Using the map, a set of waypoints can be provided to the algorithm and compared to the onboard 

camera stream. Visual waypoints are defined as distinctive features or landmarks on the preloaded 

map. A waypoint used for matching will consist of some number of feature descriptors and the 2D 

position of the waypoint in the map. 
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Figure 3.4: Visual waypoint with features and waypoint coordinates. 

 

 In traditional GPS-waypoint-based navigation, the position of the vehicle is calculated 

using the process of ranging. Ranging determines the position and velocity of a receiver (the GPS 

sensor) and measures the distance from several radio sources. To calculate the position of some 

receivers using ranging, the following assumptions must be made:  

• A receiver is on Earth and can receive some number of N radio signals from satellites 

• The coordinates of the position of the satellite 𝑝𝑁 are known 

• The precise time instances 𝑡𝑖 for each of the broadcasted signals are known, where i is the 

number of the satellite 

• The precise time instances 𝑡𝑟 of the received signal are known  

• The distance 𝑟𝑖 from the receiver to each of the satellites can be calculated 

 

𝑟𝑖 = 𝑐(𝑡𝑟 − 𝑡𝑖) 
(3.18) 

 

 Where c is the speed of light in vacuum 𝑐 = 2.998𝑥108𝑚/𝑠. Then given that the position 

of the satellite (𝑝𝑖) is known the position of the receiver (𝑝𝑟) can be calculated using Equation 

3.19. 

 ||𝑝𝑟 − 𝑝𝑖|| = √(𝑝𝑥𝑟 − 𝑝𝑥𝑖)
2 + (𝑝𝑦𝑟 − 𝑝𝑦𝑖)

2 + (𝑝𝑧𝑟 − 𝑝𝑧𝑖)
2 (3.19) 

 

 The process of navigating through a set of waypoints W requires a comparison between the 

features in the map and the features in the onboard camera. The feature comparison will require 
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that some number of features between the stored (map) and observed features are matched. A 

tolerance around the waypoint location will be required, otherwise the problem will not be 

bounded. Therefore, a tolerance of radius R will be applied to the features around the waypoint 

such that the number of features in the region of interest is N. Then if the number of matched 

features from the feature matching is equal to N it can be determined that the vehicle has arrived 

at the waypoint. The algorithm will then iterate through the series of waypoints until it has reached 

its goal.  

3.4 Environmental Factors 

 Visual odometry systems often face challenges in real-world scenarios due to dynamic 

objects in the environment and varying lighting conditions. Factors such as moving objects, 

dynamic lighting conditions, and induced vibrations can cause large enough variations between 

frames to disrupt feature extraction, feature matching, and motion estimations. While hardware 

such as vibration dampers and onboard lighting may aid in reducing variation between image 

frames, software estimates may be more capable of handling large variations. Feature descriptors 

such as BREIF and SIFT are non-intensity based which provides some robustness to lighting 

variations. Another option may be to use thermal cameras that can operate outside of boundaries 

that visible band cameras are limited by.  

 

 Aside from lighting challenges, scene dynamics such as featureless environments or 

dynamic objects can interrupt VO system measurements. Low feature environments make it 

difficult to detect and track features causing homography between image frames to fail or lose its 

accuracy. Additionally, rapidly changing features such as moving objects, large deviations in the 

camera’s motion, and scale can cause difficulty in feature tracking. These environmental factors 

can cause interruptions in tracking and cause either a large drift in the accuracy of the 

measurements or the algorithm to fail. 
 

 

3.5 Kalman Filter Integration 

 For correcting our trajectory estimation from section 3.1 applying an Extended Kalman 

Filter (EKF) will be used for local and global estimation. Due to the non-linear aspects of visual 

odometry (measurement model and coordinate transformations), an EKF will be required to handle 

the non-linearities rather than a traditional Kalman Filter (KF). The EKF is more flexible than the 

KF as it can handle both linear and non-linear systems. The EKF is extended from the original KF 

using a first-order Taylor series expansion. The expansion limits the EKF by making the function 

locally linear using a first-order expansion for the approximation, the accuracy of predictions made 

by the EKF degrades after the first order. For our EKF we have a State Vector x which is comprised 

of our translation t and rotation R. [19] 

x = [  
CtW

 CRW
]
T

 
(3.20) 

 

 The first step in the EKF is the process model or prediction step:  
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x
̂

k
− = f(x

̂

k−1, uk−1) + wk−1 
(3.21) 

 

 Where f() is the state transition function, w is the noise in the system, xොk is the state 

estimate, and uk is the input. Then the measurement function is calculated which relates the state 

to the expected measurement.  

zk = h(x
̂

k
−) + vk 

(3.22) 

 

 Where h() is the non-linear measurement function. The next step in EKF is to compute the 

Jacobians of f() and h() at each step.  

Fk =
∂f

∂x
|
x
̂
k−1,uk−1

 
(3.23) 

 

Hk =
∂h

∂x
|
x
̂

k
− (3.24) 

 

 Now that the Jacobians for f() and h() are solved the predictions can be calculated: 

x
̂

k
− = f(x

̂

k−1, uk−1) 
(3.25) 

 

Pk
− = FkPk−1Fk

⊤ + Qk−1 (3.26) 

 

Then the Kalman gain, and predictions can be updated. 

Kk = Pk
−Hk

⊤(HkPk
−Hk

⊤ + Rk)
−1 (3.27) 

 

x
̂

k = x
̂

k
− + Kk(zk − h(x

̂

k
−)) 

(3.28) 

 

Pk = (I − KkHk)Pk
− (3.29) 

 



30 
 

After the predictions are updated, the algorithm repeats for the next estimation. [19] 

 

3.6 Extended Kalman Filter Error Correction 

 Section 3.5 highlights the steps taken by and EKF algorithm, the above steps provide 

corrections that improve the overall navigation accuracy, by improving the estimations of position 

and rotation provided by the VO system. The following steps are taken to initialize and apply 

corrections to the algorithm’s measurements using the EKF:  

 

• Set the initial state estimate based on the VO measurement and initialize the covariance 

matrix with uncertainties 

• Compute the filtered state estimation using the EKF at each step 

• Compute the difference between the EKF state estimate (xk) and the raw VO state estimate 

• Compute the corrected visual odometry estimate with the weighing factor applied to the 

EKF estimate 

x
̂

k
corrected = x

̂

k + λ(xVO
̂
− xk

̂
) 

(3.30) 

 

 

 λ is used as a scaling factor which can be used to adjust confidence in the visual odometry 

estimate. The above steps improve the accuracy of the system by applying a filtered estimate to 

the existing odometry measurements. If the above corrections are not sufficient for performance, 

then tuning the process noise covariance and measurement noise covariance would improve the 

characteristics of the system. The filtered estimate aims to remove noise that was observed by the 

sensors during measurement processes. The EKF also can use the previous time step estimates to 

provide an estimate during interruptions in visual tracking/measurements. To further improve the 

measurements and estimates made by the algorithm additional sensor data can be used for sensor 

fusion to provide further corrections to the system. [19] 
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4. Convolutional Neural Network 
 

4.1 Introductions to Convolutional Neural Networks 

Convolutional neural networks (CNN) have led to progress in image classification and feature 

detection in machine vision. CNNs are neural networks that leverage the unique properties of 

convolution for image and video processing tasks. CNN applications across many industries, 

including medicine, banking, manufacturing, insurance, transportation, and social media. CNNs 

fall under a category of Machine Learning (ML) known as Supervised Learning, other common 

ML methods are Unsupervised Learning and Reinforcement learning. The use of the word “deep” 

coupled with one of the ML methods implies the use of neural networks to perform calculations. 

[20] 

• Supervised Learning: a model trained on a labeled dataset, where each input has a 

corresponding target output label. The supervised learning model then learns to map inputs 

to outputs by minimizing the error between the prediction (output of the model) and the 

target output.  

• Unsupervised Learning: a model trained on a dataset without any labeling and learning 

underlying patterns or structures.  

• Reinforcement Learning: an agent interacts with an environment and receives feedback on 

the actions taken. The feedback can be either a reward or penalty dictating how good an 

action was. The agent aims to maximize the cumulative reward (feedback) over time.  
 

4.2 CNN Architecture 

AlexNet and ResNet are influential architectures for CNNs that have contributed to image 

recognition tasks. [20][21] While specific architectures will vary from task to task the order of 

operations for CNNs will broadly remain the same. Specific deviations include layer sizing, layer 

depths, activation functions, preprocessing, normalization, and network outputs. Factors that 

influence architecture are specific tasks, datasets, computational resources, and training time. In 

general, the following layers are required and shown in Figure 4.1:  

• Input Layer 

• Convolutional Layer 

• Activation Function 

• Pooling Layer 

• Flatten Layer 

• Fully Connected Layer 

• Output Layer 

[20] 
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Figure 4.1: Sample CNN Architecture from the AlexNet paper for image classification tasks. 

[20] 

 

4.3 Input Layer 

The input layer is where information is provided to the model, where the number of equal to 

the number of features in the data being fed into the layer. In the case of the image, the number of 

neurons would be equal to the number of pixels. A critical constraint for a CNN is that the data 

must be passed in a grid format. Typically, an input is represented as a 3D tensor with dimensions: 

• Height 

• Width  

• Channels 

Where the height and width are represented as pixels and the channel is either represented as RGB 

or grayscale.  

 
Figure 4.2: Input representation of a 4x4 image with RGB channels can be represented as a 

4x4x3 tensor. 
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Depending on the dataset, if the data is preprocessed then the data may just be passed through, 

otherwise normalization and augmentation techniques may be applied. Normalization scales the 

pixel values to be within a set range such that the model can converge faster during training. For 

normalizing an image in range [0,1] the following equation can be used: 

𝐼 =
𝑣𝑖 − 𝜇

𝜎
 (4.1) 

 

Where 𝑣𝑖  is the original pixel value, µ is the average pixel value across the image, σ is the standard 

deviation of the pixel values. Augmentation can also be done to increase the diversity in training 

data which may include: 

• Rotation 

• Cropping 

• Translating  

• Flipping (horizontal or vertical) 

Augmentation and preprocessing steps help ensure that the input dimensions of the data are 

consistent across the whole dataset and that the data is organized for the following convolutional 

layers. Depending on the neural network's architecture predefined filters or feature detection 

algorithms may be applied to the data before passing for convolutional operations in subsequent 

layers.  

4.4 Convolutional Layer 

The convolutional layer is the core of what makes CNN ideal for images. It performs the 

following operations:  

• Receiving an input tensor (image or feature map from a previous layer) 

• Apply a set of learnable filters (also known as kernels) to the input 

• Computes the convolution operation for each position of the kernel 

• Produces a feature map from the kernels 

 

The convolutional layer is a connection to a local region of the previous layer where weights are 

shared across spatial positions. The convolutional layer starts by applying a collection of kernels 

(or filters) 𝑾𝑘 to the input tensor of the image. Each kernel extracts a specific feature such as an 

edge, corner, texture, or pattern. The kernels are typically applied to partial regions (e.g. 3x3 or 

5x5) of the image rather than the whole image. During the application of the kernels, a convolution 

operation is performed which involves sliding the filter across the input tensor and computing the 

weights for each section of the input tensor. For each position (i, j) of the input tensor the output 

feature map Y is calculated using the equation as found in Equation 4.2. The convolution process 

results in a feature map that represents the presence of features from the applied kernels.  
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𝑌(𝑖, 𝑗, 𝑘) = ∑ ∑ 𝑋(𝑖 ∙ 𝑆 + 𝑚, 𝑗 ∙ 𝑆 + 𝑛, : ) ∙ 𝑊𝑘(𝑚, 𝑛, : ) + 𝑏𝑘

𝐾𝑤−1

𝑛=0

𝐾ℎ−1

𝑚=0

 
(4.2) 

Where 𝐾ℎ and 𝐾𝑤 are the width and height of the kernel, S is the stride, and 𝑏𝑘 is the bias of the 

kernel. The stride refers to the number of pixels the kernel shifts after each application. A stride of 

1 means the kernel moves one pixel at a time, whereas a stride of 2 means the kernel skips every 

other pixel. For kernels that lie on the edges of an image padding is used to control the spatial 

dimensions of the output. Figure 4.3 shows the application of a 3x3 kernel when applied at the 

edge of an image. [22] 

 
Figure 4.3: Application of a 3x3 filter to an image with no padding. 

 

 

 
Figure 4.4: Application of a 2x2 filter to an image with padding of 1. 
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4.5 Activation Functions 

Some architectures leave out the activation function where the process does not learn weights 

or parameters and is assumed that activation immediately follows a convolutional layer. Each of 

the activation functions are applied elementwise so the input and output dimensions are the same. 

Activation functions introduce non-linearities to the model, enabling the model to learn more 

complex patterns. Functions such as sigmoid, tanh, ReLU, and Leaky-ReLU are commonly seen 

activation functions in research papers. [20][21][23] 

• Sigmoid [23]: 

𝑓(𝑥) =
1

(1 + 𝑒−𝑥)
 (4.3) 

• Tanh [23]: 

𝑓(𝑥) =
(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)
 (4.4) 

• Rectified Linear Unit [23]: 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (4.5) 

  

• Leaky ReLU [23]: 

𝑓(𝑥) = 𝑚𝑎𝑥(∝∗ 𝑥, 𝑥), ∝= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (4.6) 

 

The AlexNet paper uses ReLU as an activation function for its hidden layers due to it being simpler 

and more efficient than the sigmoid activation function by avoiding exponential terms. 

Additionally, ReLU ensures that during backpropagation the gradient does not approach near zero 

in the positive interval, making training the model more efficient by avoiding exponential 

calculations. [23] 

4.6 Pooling Layer 

The pooling layer of a CNN is responsible for downsizing the spatial size of a feature. The 

process of pooling is used to decrease the required computational power and extract dominant 

features while training the model. Additionally, applying pooling to the input allows features to be 

both rotationally and translationally invariant. The two predominate types of pooling are max 

pooling and average pooling. Max pooling selects the pixels with the maximum value to add to 

the output array. [20][23] 
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Figure 4.5: Max pooling on a 2x2 image. 

 

Average pooling calculates the average value within the receptive field to add to the output array.  

 

 
Figure 4.6: Average pooling on a 2x2 image. 

 

Pooling operations are typically applied with a stride equal to their window size to avoid 

overlapping. [24] 
 

4.7 Fully Connected Layer 

The fully connected layer in a CNN architecture is used after convolutional and pooling layers 

for the final classification of the neural networks. The fully connected layer is connected to every 

neuron in the previous layer where each connection has its own weight. [20] 

𝑦ො = 𝜎𝑎(𝑊𝑥𝑖  +  𝑏) 
(4.7) 

Where: 

• 𝑦ො is the output prediction 

• W is the weight matrix 

• 𝑥𝑖 is the input  

• b is the bias vector 

• 𝜎𝑎 is the activation function 

Fully connected layers take the features extracted from the kernels applied in the convolutional 

layers and learn features on a global scale. The Fully connected layers combine high-level features 

from the feature maps and patterns to make final predictions. The output layer is the final layer of 
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the network which produces the network's predictions. The structure of the output is task-specific, 

common tasks for CNNs are: 

• Classification: typically uses SoftMax activation function and uses one neuron per class 

• Regression: typically uses a linear activation function and uses one neuron 

• Object Detection: typically produces a set of coordinates and class probabilities 

The output layer is the layer in which the error of the network’s predictions is calculated. Specific 

loss functions for the output layer are chosen depending on the structure of the output layer (e.g. 

classification, regression, etc). [25] 

4.8 Forward Propagation 

Forward Propagation is the first step in training a neural network where the data if passed 

through the entire network generates a prediction. In a feedforward neural network, the data only 

moves through the network in one direction: from input to output. As the data passes through the 

network each neuron in the hidden layers calculates the weighted sum to its inputs and applies an 

activation function before passing the data to the next layer. After the convolutional and pooling 

layers are completed the final feature maps are flattened to a 1D vector before being passed to the 

fully connected layers. The process of summing the weights and applying activation functions is 

repeated until the output layer is reached, which then returns the predicted value. The predicted 

value is then compared to the expected output value and the difference provides the error in the 

network position. The most common equation for calculating the error/loss in a CNN is cross-

entropy loss for classification as seen in Equation 4.8. [23][26] 

𝐿 = −∑∑𝑦𝑖𝑗log (𝑝𝑖𝑗)

𝑀

𝑗=1

𝑁

𝑖=1

 (4.8) 

 

4.9 Backpropagation  

Before training the neural network, the weights and biases are initialized randomly for each 

neuron, then the training adjusts the weights and biases to create more accurate predictions. 

Randomly initializing the weights and biases allows the network to learn different features during 

training. The process of updating the weights and biases based on the error in the network's 

predictions is known as backpropagation, which occurs after forward propagation. Once receiving 

the error from the forward propagation step the error is used to calculate the gradient of error for 

each weight and bias. Backpropagation involves the following steps:  

• Compute the loss between the network predictions and labeled values 

• Calculate the gradient of the loss with respect to the weights and biases 

• Update the weights and biases of the network using an optimization algorithm (e.g. 

Stochastic Gradient Descent, Batch Gradient Descent, etc) to minimize loss 

The backpropagation step involves a learning rate (α) which is responsible for scaling the step so 

the gradient can adjust the weights of the network. In practice, it is common to experiment with 

different learning rates to find a balance between stability and convergence speed during training. 

[23] After calculating the loss as seen in Section 4.8 the next step in backpropagation is calculating 
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the gradient of the loss with respect to each parameter in the network. Equation 4.9 shows the error 

attributed to the output and hidden layers. Equations 4.10 and 4.11 show the gradient descent steps 

for the network where the weights are getting updated. [23][26] 

𝛿𝑗
ℎ =∑𝑊𝑗𝑘𝛿𝑘

𝑜𝑓′(ℎ𝑗) 
(4.9) 

∆𝑤𝑖𝑗 = 𝛼𝛿𝑗
ℎ𝑥𝑖 

(4.10) 

∆𝑤𝑝𝑞 = 𝛼𝛿𝑜𝑢𝑡𝑝𝑢𝑡𝑥𝑖 
(4.11) 

 

 

Where 𝛿𝑘
𝑜 is the error for each output unit k, 𝛿𝑜𝑢𝑡𝑝𝑢𝑡 is the output error, 𝑥𝑖 us the input unit values, 

and 𝑤𝑖𝑗 is the weights between the hidden and input layers. After these values are calculated we 

can then use it to update the weights in the model and improve our results during training using 

gradient descent. Additional steps such as normalization and regularization can be taken to further 

improve the performance of the model being trained.  
 

 

 

 

 

 
 

   



39 
 

5. Experimental Setup and Validation 
 

5.1 System Design 

The navigation system implements a distributed architecture designed to ensure safety, 

reliability, and real-time performance. The experiment aims to implement the navigation algorithm 

developed in paper on real-world hardware and validate using simulation and flight test data. The 

direct outcome of the experiments will be to test the accuracy and performance of the feature 

matching, position estimation, and trajectory tracking of the navigation algorithm. The separation 

of flight control, vision-processing, and ground control provides redundancy and fault isolation by 

a distributed architecture. The navigation system consists of several distinct subsystems that 

control the vehicle and process sensor inputs in real time. To increase the safety of operation the 

drones, flight controls, and data handling are processed on different computers, and commands are 

sent between the connected devices. The computer platform controlling the drone is a Holybro 

pix32 Flight Controller (FC) which handles autopilot hardware and fuses all the drone hardware 

onto a singular device. The Holybro Pix32 flight controller operates using PX4 v1.13.3 firmware, 

providing essential flight control capabilities through a real-time operating system (NuttX). The 

firmware manages critical flight operations including: 

• Controls flight modes and transitions 

• Handles multiple sensor inputs and calibration 

• Implements control loops for stability 

• Monitors system health and manages failsafe responses 

The computer platform responsible for receiving and processing the camera data is a Raspberry Pi 

RP4. The RP4 and FC are connected to a Ground Control Station (GCS) which allows the camera 

stream from the RP4 to send navigation commands to the FC. [27][28] 

 
Figure 5.1: Simplified architecture between the drone subsystems. 
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The GCS communicates with the FC using the messaging protocol MAVLink which follows 

a publish-subscribe design pattern to send commands and receive data from the flight data. 

MAVLink is responsible for handling communication and detecting communication errors (packet 

drops, corruption, and packet authentication). The navigation system is integrated with MAVSDK 

which is a collection of libraries that interface with MAVLink that enable tasks such as computer 

vision, obstacle avoidance, and route planning. In the scope of the project MAVSDK handles 

processing the images received from the camera, the output of the visual odometry system, and 

transforming the output to commands that control the drone.  [27] [28] 

5.2 Hardware Setup 

Table 5.1 shows the hardware used in the experimental setup and if it is used in Hardware-In-

The-Loop (HITL) simulation or Flight Hardware (FH). Please note that specific wiring harnessing 

and mounting hardware (bolts, washers, nuts) are not included in the hardware list as are general 

use hardware and not custom manufactured components.  

 

Table 5.1: Hardware list used in flight hardware and HITL testing. 

Unit Name  Definition Use Case 

Holybro Pix32 Flight Controller Hardware HITL and FH 

Tarot FY690S  
Quadcopter frame and mounting 

hardware 
FH 

Brushless DC Motor Multirotor propulsion actuator FH 

40A ESC Motor speed controller FH 

1255 12.5 Carbon Fiber Propellor (CW and CCW) FH 

4400MAH LiPo LiPo Battery FH 

1080p LogiTech Camera USB Connected Camera FH 

RP4 
Raspberry Pi (onboard compute 

platform) 
FH 

FrSky Taranis QX7 Radio RC Controller HITL and FH 

FrSky X8R Radio Receiver  HITL and FH 

Holybro SiK V3 Telemetry Radio HITL and FH 

3D Printed Enclosure 
Housing for USB Camera and 

onboard compute 
FH 

 

The USB camera interface runs at a frame rate of 30 HZ, image compression format of MJPEG, 

and autoexposure for varied lighting conditions.  The camera driver gains CPU priority on the RP4 

hardware for real-time scheduling of vision tasks. Where vision processing tasks can be 

computationally expensive, the payload and drone will use two isolated wiring harnesses. The 
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payload and drone will use two batteries to ensure that each of the components receives adequate 

power during flight operations.  

The physical mounting of the camera and onboard computer is a 3D-printed enclosure that 

positions the camera 90 degrees downward, so it is perpendicular to the ground. The 3D printed 

enclosure does not feature any vibration dampening and the components are hard mounted to the 

enclosure using bolts and nuts. The 3D-printed enclosure is then bolted onto mounting harnesses 

which use rubber dampers to mate with the Tarot multirotor frame. The rubber dampers reduce the 

induced vibration from the motors but have no gimbal or other anti-vibration electronics to smooth 

the camera stream. The FC is soft mounted to the multirotor frame using gel dampers that reduce 

the vibrations from the motors while keeping the IMU nearly in line with the drone's CoG. 

Typically, the IMU is required to be fixed with a semi-rigid structure to the same reference frame 

as the drone such that the measurements taken are representative of the drone’s actual position and 

orientation (as opposed to being mounted to a gimbal).  

5.3 Simulation Environment and Considerations 

Gazebo, AirSim, and JMAVSIM were all simulations considered for testing due to containing 

interfaces with PX4 autopilot and HITL capabilities [29]. Originally, the simulators were also 

considered for testing the navigation system by using the camera model built into the simulators. 

However, the rendering rate of the simulators and overall reconstruction quality from the simulator 

were inadequate for the visual odometry algorithms written for the navigation system. The primary 

issue was missing pixels or dropped pixels which caused issues with the feature extraction and 

matching algorithms. The missing and dropped pixels created a high deviation between the frames, 

causing the algorithm to produce a high rate of false positive results. Correcting the pixel issues 

would either require a better rendering engine or a camera model in the simulator. Both solutions 

are out of the scope of the project and overall, are not critical to ensuring safe operation or mission 

success during flight testing. The simulator evaluation was then based on the simulator’s ability to 

mimic real-world communications, firmware, and interfaces as closely as possible. Gazebo 

features a high-fidelity physics simulation and detailed environment modeling, but has camera 

rendering limitations and requires a high computational overhead. AirSim features information-

dense APIs, detailed physics engines, and customizable sensor simulations, but suffers from frame 

rate issues, complex configuration, and high computational overhead. JMAVSIM features 

lightweight computational requirements, direct PX4 and MAVLink interfaces, and quick 

rendering, but suffers from low-fidelity camera models, simple physics engines, and limited sensor 

customization. With the advantages and limitations of each simulator considered, JMAVSIM was 

chosen for HITL testing due to its direct interface with PX4 autopilot and quick rendering, at the 

cost of image fidelity and physics simulation. 

 To test communications for safe flights the GCS was programmed to fly a set of waypoints 

using velocity profiles (like the output of the navigation system) then the pilot will interrupt with 

joystick input to the RC Radio. The expected outcome of the experiment is that the manual inputs 

from the pilot will override the GCS commands and allow the pilot to regain control. The following 

shows the software architecture for the HITL testing in the simulation environment: 

• JMAVSIM instance 

• PX4 SITL/HITL bridge 

• MAVLink router configuration 

• QGroundControl interface 
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Then for the control systems:  

• MAVSDK command generation 

• RC input processing 

• Failsafe monitoring 

• State machine management 

 

Figure 5.2 shows the JMAVSIM Simulator running, and Figure 5.3 shows the QGroundControl 

user interface with a waypoint mission loaded onto the vehicle. 

 

 
Figure 5.2: JMAVSIM Simulator connected to PX4 autopilot [30]. 
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Figure 5.3: QGroundControl user interface with waypoint mission loaded onto vehicle [31]. 

 

5.4 HITL Test Plan 

Before testing the navigation system in flight, the system is tested in a simulated environment 

to ensure that all communications are working correctly and minimize system errors. In practice 

simulation testing will not weed out all problems as many communication issues arise because of 

the testing environment and hardware limitations, however, simulation testing will serve as a 

benchmark and ensure that the designed failsafe works as intended. An important test will be 

ensuring that manual inputs override the autopilot commands. For example, if the autopilot 

commands are sending the drone off-course manual inputs from the RC Radio must override 

existing commands and allow the pilot to regain control over the drone. The simulator used in 

testing is JMAVSIM which is a simple multirotor simulator that uses PX4 autopilot and MAVLink 

to test takeoff, land, flight, and fail conditions for testing. JMAVSIM does not provide a camera 

model with high enough fidelity to validate the visual odometry module, so the simulator is used 

to validate control commands and fail conditions of the navigation module.  JMAVSIM supports 

both Software-In-The-Loop (SITL) and HITL for MAVLink connection testing on development 

computers and PX4-specific firmware version on real hardware. 
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Figure 5.4: SITL and HITL Simulation Environments 

 

To validate that the proper failsafe is working as expected, the system is tested using 

JMAVSIM, QGroundControl, pix32 FC, Telemetry Radio, RC Radio, and MAVSDK control 

module for HITL. By sending the simulator and FC a simulated trajectory to fly using the 

MAVSDK control module designed for the navigation system, the HITL test checks to ensure all 

the radio connections are established and can communicate with the GCS and autopilot with the 

same hardware and firmware that will be used during flight testing. The HITL test will send 

velocity commands to the drone using an MAVSDK module paired with the GCS, during the sent 

command user input from the RC radio will be sent. The test will be considered passed if the user 

input overrides the commands sent from the GCS, otherwise, the test will be considered failed and 

flight logs will be reviewed to determine the communications between the submodules. The 

following list shows the control hierarchy: 

• RC Radio Manual Inputs (Highest Priority) 

• Battery Critical Level 

• Signal Loss 

• Position Error Bounds 

• Navigation System Inputs 

In the control hierarchy, the RC Radio manual inputs are inputs from the pilot’s joystick 

commands. The battery critical level is from the PX4 autopilot which monitors the drone’s battery 

level. When the battery voltage is too low, the autopilot commands the drone to either land or 

return to a specified location (waypoint) and then land. The signal loss control returns the drone to 

the last known position when RX/TX communications are lost and can be programmed to either 

hold altitude or land at the location. The position error bounds are set range limits that command 

the drone to either hold altitude or return to an in-bound position. The position error bounds are 

set before flight in QGroundControl to attempt to prevent the drone from flying to positions that 

are out of range of communication signals, the bounds are hardware-specific, and estimates can be 
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found in manufacturer datasheets. The last priority on the control hierarchy is the navigation 

system developed in the paper as it is not developed with collision avoidance or position bounds, 

so it needs other features to ensure that it is safely enabled. The GCS monitors both vehicle status 

and sensor data, Table 5.2 shows the systems the GCS monitors. Performance metric will use flight 

logs from the PX4 autopilot software to validate: 

• Position tracking 

• Attitude information 

• Packet loss 

• Link quality  

• Command latency 

• System Stability 

 

Table 5.2: GCS system monitoring for vehicle status and sensor data. 

Vehicle Status Sensor Data 

Battery Voltage and Current Attitude and Heading 

Motor Outputs (PWM) Position and Velocity 

Flight Modes (manual, waypoint, VO-system) Altitude 

GPS Status RC Signal Strength 

 

During testing with flight hardware, the HITL testing does not guarantee mission success, factors 

such as signal obstruction, hardware degradation, and time synchronization will cause deviations 

from the simulated environment and connections. Risk mitigation strategies will include preflight 

checks, fail-safe verification, and system monitoring to ensure safe flight operations and mission 

success. Starting with simple tests such as a takeoff and hover test will ensure that the drone is 

operating as expected, and then boundary testing can be performed to assess the drone’s 

capabilities. The following tests establish the drone’s communication performance and failsafe 

reactions in a simulated environment.  

Basic Controls Test: 

• Arm Motors 

• Climb to set altitude 

• Hover for 30 seconds 

• Validate position hold 

• Land 

• Disarm motors 

Failsafe Verification Test: 

• Arm drone 

• Climb to set altitude 

• Test return-to-home function 

• Move the drone to the desired position 

• Test position hold failsafe 

• Test land failsafe 

• Disarm drone 

Waypoint Failure Verification Test: 
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• Upload waypoint trajectory 

• Arm drone 

• Climb to set altitude 

• Move the drone to the desired position with waypoint control 

• Test manual command takeover 

• Resume waypoint trajectory 

• Force failsafe condition (turn off manual controller)  

• Automatically Return-to-Land 

• Disarm drone 
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6. Results 
 

For a set of 50 images taken at the test site, the feature extraction and matching algorithms 

are tested to evaluate the performance of each algorithm. The performance metric is the total 

number of features extracted, features matched, and the computation time using the following 

feature extractors ORB, SIFT, and XFEAT. Figure 6.1 shows a sample image from the dataset 

of the flying field where the navigation method was tested. Table 6.1 shows the results of the 

feature extraction testing on the dataset. Table 6.2 shows the results of the feature matching on 

the same dataset used in Table 6.2 against Figure 6.2 (constant) which is a Google Earth 

Satellite View of the flying field (at approximately 100 meters scale).  

 

 
Figure 6.1: Sample image taken from a test flight of flying field mid-waypoint trajectory at 61 

meters AGL. 

 

Table 6.1: Feature extraction time and keypoint comparison between methods on fixed dataset. 

Feature Matching Method Average points per Image Processing Time (ms) 

ORB 2959.88 104.053 

SIFT 3000 178.338 

XFEAT 3000 176.25 
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Figure 6.2: Google Earth view of the flying field at approximately 100 meters AGL scale. 

 

Table 6.2: Feature matching time and extraction comparison between methods on the fixed 

dataset. 

Feature Detection 

Method 

Average Keypoints 

Per Image 

Average Matched 

Keypoints Per 

Image 

Processing Time (ms) 

ORB 2959.88 9.24 155.16 

SIFT 3000 65.36 510.414 

XFEAT 3000 21.46 488.72 

 

Feature matching using ORB, SIFT, and XFEAT feature detection methods show that ORB 

processes the feature matching in the fastest time, but has the lowest number of detected and 

matched keypoints per sample image. SIFT feature matching features the longest processing time 

but produces the highest number of matched features with the sample dataset. Our results show 

from features matching that for the best case results (SIFT features) roughly 2% of the detected 

features are matched after performing outlier detection. Many of the rejected features that are 

removed during outlier detection are in the grass or on non-painted sections of the runway.  

 

The simulated environment for HITL testing allows for verification of system monitoring 

and control authority of the drone by using the same flight firmware and communications as the 

hardware. The results of the hover test show that all commands are received properly from the 
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controller and the PX4 firmware can achieve 0.2-meter positional accuracy with GPS and track 

yaw with a 2.0-degree accuracy. During the hover testing the results show drone can successfully 

complete the maneuver without triggering any failsafe’s and there is now a benchmark for 

system performance as shown in Figures 6.3 - 6.5.  

 
Figure 6.3: Altitude vs Time plot with GPS, barometer, and sensor fusion position for hover test. 

 

 
Figure 6.4: Position plot for hover test. 
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Figure 6.5: Yaw vs Time plot for hover test. 

 

The results of the waypoint test show that all commands are received properly from the 

controller and the drone can fly a series of waypoints. The HITL simulation shows that the drone 

can traverse similar distances to what is expected during the real-world flight testing without 

triggering any of the failsafe conditions. This test ensures that during flight testing the expected 

trajectory will not reach any out of bound conditions for the communications hardware and signal 

will remain connected during flight operations. Results of the testing and transitions between flight 

modes can be seen in Figures 6.6 - 6.8.  

 

 
Figure 6.6: Altitude vs Time plot with GPS, barometer, and sensor fusion for waypoint test. 
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Figure 6.7: Position plot for waypoint test. 

 

 

 
Figure 6.8: Yaw vs Time for waypoint test. 

 

The results of the manual takeover and Return to Land testing demonstrate the ability of 

the drone to recover during hazardous scenarios. During the manual takeover the user can gain 

control of the drone and interrupt its waypoint trajectory without delay. The result is a drop in 

altitude and translation as the user inputs manual controls before stabilizing in hover. The results 

can be seen in Figures 6.9 - 6.11 during the highlighted “Manual” stages of flight. The drone is 
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then able to resume its waypoint trajectory during the second “Mission” stage of flight before the 

signal is lost and the “Loiter” and “Return to Land” commands are sent to the drone. After the 

signal is lost and the “Return to Land” command is engaged the drone returns to its home 

position and safely lands at its takeoff altitude.  

 
Figure 6.9: Altitude vs Time for failure test. 

 
Figure 6.10: Position plot for failsafe test. 
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Figure 6.11: Yaw vs Time for failsafe test. 

The results of the visual-waypoint navigation show that the navigation algorithm can 

estimate its global position to an average of 4.30-meter accuracy at an altitude of 25 meters with 

a standard deviation of 2.16 meters. At an altitude of 50 meters the global position estimate 

improves to an average of 2.81-meter accuracy with a standard deviation of 0.47 meters. The 

results of the global estimation using visual waypoints can be seen in Table 6.3 and the true 

position of the user specified visual waypoints can be seen in Figure 6.12.  

 
Figure 6.12: Ideal trajectory produced from user-defined waypoints. 
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Figure 6.13: SIFT feature matching sample first waypoint between map and UAV camera stream 

at 25 meters. 

 

 

 
Figure 6.14: Navigation algorithm position estimate and true state of the first waypoint. 



55 
 

 

 
Figure 6.15: SIFT feature matching the second waypoint between map and UAV camera stream 

at 25 meters. 

 
Figure 6.16: Navigation algorithm position estimate and true state of the second waypoint. 
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Figure 6.17: SIFT feature matching of the third waypoint between map and UAV camera stream 

at 25 meters. 

 

 

 
Figure 6.18: Navigation algorithm position estimate and true state of the third waypoint. 



57 
 

 

Table 6.3: Error in estimated vs true state of visual waypoints. 
 

Waypoint Altitude (m) 
X Positional Error 

(m) 

Y Positional Error 

(m) 

Euclidean Distance 

(m) 

1 25 2.99 6.00 6.71 

2 25 1.99 1.56 2.53 

3 25 2.86 2.25 3.65 

1 50 2.42 2.31 3.34 

2 50 1.81 1.82 2.56 

3 50 2.24 1.12 2.51 

 

The VO algorithm can detect, track points, and provide state estimates in real-time. 

Figure 6.19 shows the heading animation from the output rotation measurements from the 

decomposed homography matrix converted to degrees for an intuitive display for users. Figure 

6.20 shows the heading tracking over time for the commanded yaw, measured yaw (homography 

matrix output), and the estimated yaw (EKF estimated output). Figure 6.20 shows that the 

developed EKF can filter the measurement noise while maintaining accuracy to the commanded 

yaw (ground truth). During sharp rotations the accuracy of the measurement begins to degrade 

and gaps between the measured and commanded yaw begin to form and propagate.   

 

 
Figure 6.19: Navigation algorithm running in real-time with heading tracking and trajectory 

tracking with EKF. 
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Figure 6.20: Plots of EKF corrections against commanded yaw and measured yaw during flight. 
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7. Conclusion 

 

The monocular VO navigation algorithm developed in this paper achieves a global position 

accuracy of 4.30-meters without EKF corrections at an altitude of 25 meters and an accuracy of 

2.81-meters at an altitude of 50 meters. The results at a 25-meter altitude show a higher standard 

deviation and lower accuracy with respect to the 50-meter altitude. The higher altitude allows for 

a wider field of view from the lower altitude, allowing the feature matching to have more landscape 

to compare against the satellite view of the preloaded map. Additionally, the higher altitude more 

closely mimics the satellite’s view and resolution, allowing features to remain in frame of the 

camera for a longer period between frames. The higher altitude allows for larger features to become 

more prominent and for smaller features (such as grass patterns or shadows) to be filtered out as a 

result of the resolution changing with altitude. Filtering out the smaller features increases the 

algorithm's robustness against seasonal changes and lighting variations by providing a more 

complete view of more distinct features (such as the runway).  Testing the algorithm at higher 

altitudes proves effective at increasing the accuracy of the global estimation by providing natural 

filters and more closely representing the satellite view’s scale. Most satellite navigation 

requirements for aircraft by the FAA are around 7.0-meter accuracy 95% anywhere on or near the 

surface of the earth [32]. The results surpass the FAA’s satellite navigation requirement of 7.0-

meter accuracy (95% confidence) for aircraft near or on Earth’s surface. The algorithm 

demonstrates the ability to use visual waypoints to localize itself but struggles to accurately track 

its trajectory using VO.  Trajectory tracking is an inherent issue with monocular visual odometry 

due to scale ambiguity from the single camera. Common ways to resolve scale ambiguity in 3-

Dimennsions are Perspective-n-Point, integrating measurements from an IMU, or using stereo 

vision. Implementing a hybrid solution is common industry practice for navigation and autonomy 

needs. 

 

The results of the navigation system highlight tradeoffs between hardware and performance. 

For the feature extraction and matching algorithms, the XFEAT neural network developed by 

Google features the largest number of detected features for the dataset and completes extraction 

and matching faster than SIFT features. ORB features detect the least number of features with the 

fastest detection and matching time which is the anticipated result from the literature review. 

However, these results were achieved on a computer with a dedicated GPU and optimized drivers 

for the hardware. Running the algorithms on the flight hardware (RP4) shows that the non-CNN 

algorithms perform much faster and can consistently produce results. The flight hardware streams 

the camera data at 30 FPS (like human optical perception rates), and the rate will serve as a 

benchmark for visual processing operations.  Running the XFEAT algorithm on the desired image 

resolution and sizing resulted in degradation to the navigation algorithm FPS to less than 1 FPS 

which does not allow for real-time use. Using ORB and SIFT algorithms degraded the navigation 

algorithm to around 17 FPS on flight hardware. To support XFEAT for visual processing the image 

dimensions or quality could be reduced to speed up processing time or a more powerful compute 

platform could be used for flight hardware. Alternative hardware to GPUs could be Tensor 

Processing Units (TPU) or Neural Processing Units (NPU) which greatly speed up computation 

times for ML and DL tasks. However, the processing units or more powerful computer platforms 

(such as the NVIDIA Orin series) will require larger voltage inputs, higher power draw, and larger 

size which are all detrimental to the aircraft’s payload sizing and weight requirements. Therefore, 
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due to cost, weight, and sizing for the flight hardware using SIFT features for feature detection 

and matching was determined to be the most efficient path forward for the navigation algorithm. 

 

The results of the feature matching experiment further validate the choice of using SIFT 

features where SIFT features yield the highest average of matched features per image. It should be 

noted that the test environment is sparse as the location is in the middle of a field with a runway. 

The sample map from Google Earth was also recorded during a different season during testing 

which caused issues in feature matching due to lighting and foliage coloring between seasons. The 

runway provides some unique features with lettering, markings, and cracks in the asphalt, but the 

grass areas provide no distinctly unique features. The grass often yields a high rate of false positive 

detections, which, when performing outlier detection results in a reduced number of detected 

features, as seen in Table 6.2. The feature sparse environment shows near worst-case scenario 

testing and shows that the algorithm is robust to operating conditions. Due to FAA Part 107 

regulations, the algorithm was not able to be tested in urban or suburban areas which would result 

in more feature-dense environments (cars, houses, gardens, etc.). Testing using sample images 

gathered from urban environments shows higher feature-matching averages, however, due to 

testing restrictions, it was not used to develop the algorithm. Testing in urban environments would 

also require some form of collision avoidance due to object density to ensure safe operations.  

 

The simulator HITL testing shows that all communications work as intended and that the 

control hierarchy is validated as defined in Section 5.0. The HITL testing shows that the user can 

enter manual inputs and regain control of the aircraft during all phases of flight and that the return 

to land features work as intended for the aircraft. The stock PX4 estimator shows some errors in 

observing the yaw with roughly a 2.0-degree error over the flight test trajectories. The HITL 

sensors were calibrated by PX4 documentation to ensure that the system would simulate the 

hardware noise and bias of the sensors. Improved hardware and sensors could reduce the error in 

the system, but for the sake of experiments the hardware and firmware have been characterized for 

testing. Testing of the visual odometry algorithm will use the PX4 sensor fusion estimator as a 

benchmark to compare against. During the manual takeover test switching from “Mission” to 

“Manual” flight modes causes the drone to lose altitude while the user stabilizes the throttle to 

regain altitude. The HITL testing shows realistic behavior of the altitude loss in GPS denied 

environments using PX4 hardware due to position hold requiring a GPS lock.    

 

While the VO algorithm faces challenges in positional trajectory tracking, the heading 

performance when aided by an EKF demonstrates strong accuracy. The EKF maintains good 

tracking of the measured states during the constant yaw commands and shows minimal drift during 

steady-state periods. However, during rapid heading changes the measurement accuracy degrades 

impacting the algorithm's performance which can be seen in Figure 6.20 with the estimated state 

overshooting the measured state. To mitigate tracking errors, a viable solution would be to limit 

the UAV’s yaw rate to create smaller angle changes in the drone’s maneuvers or perform additional 

filter tuning to optimize performance. The adjustment improves estimation accuracy by aligning 

the UAV’s behavior with the EKF’s small angle approximation. The EKF shows good smoothing, 

settling time, and noise filtering while preserving the trend. Due to the sparsity of unique features 

in the test site, the visual feature tracking is degraded during rotations which cause the 

measurement discrepancies from the commanded states. To improve the feature tracking between 

frames, investigating motion blur and lighting effects could help identify limitations in the system. 



61 
 

Increasing the camera's frame rate, coupled with constraining the drone’s angular rates have the 

potential to improve measurement accuracy through reducing motion blur and decreasing the 

distance features move between frames. Implementing the constraint would improve the 

performance of the system’s ability to track the heading during all flight maneuvers.  

 

The work presented in the paper demonstrates the feasibility of using a monocular VO 

algorithm for UAV navigation using low-cost hardware. The algorithm demonstrates the ability to 

operate in GPS-denied environments using only camera data and a downloaded map. However, 

further testing to evaluate edge cases, extreme environments, and hardware degradation to evaluate 

reliability should be done to further characterize and evaluate the performance. Optimization of 

the navigation algorithm could focus on hardware improvements and resolving scale ambiguity. 

For example, testing hardware with a dedicated GPU and larger storage would allow for the 

integration of CNNs into the algorithm and potentially produce more accurate or faster results. To 

address the feature sparsity, custom-trained NNs could be developed to handle feature sparse 

environments or seasonal changes to environments (currently limiting feature matching).  

Additionally, incorporating inertial data through sensor fusion with IMU and camera data would 

be the recommended approach to mitigate issues with scale ambiguity. A common method for 

sensor fusion for visual and inertial data is Visual Inertial Odometry (VIO) which compensates for 

scale ambiguity by directly providing the system with inertial data. Adding multiple cameras to 

enable stereo vision would be another method to resolve scale ambiguity. Using stereo vision 

would directly allow for integration of collision avoidance algorithms, creating depth maps, and 

enable 3D reconstruction capabilities. Extensions that would allow the algorithm to be 

implemented in real-world applications would be to implement collision avoidance, develop 

failure detection modes, and recovery systems (such as return to land using visual data rather than 

GPS data). The above enhancements could improve the navigation algorithms’ performance and 

increase their application scope for UAVs. 
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Appendix A: Matlab Plotting Code 

clc; close all; clear all; 

Array=csvread('state_estimation.csv',1); 

Array2=csvread('Untitled spreadsheet - state_estimation.csv',1); 

time = Array(:,1); 

measured_yaw = Array(:,7); 

estimated_yaw = Array(:,16); 

commanded_yaw = Array2(:,20); 

 

 

hold on; 

plot(time,commanded_yaw,'color', 'black','LineStyle','--') 

plot(time, measured_yaw,'LineStyle','--') 

plot(time,estimated_yaw,'LineStyle','--') 

xlabel('Time (s)') 

xlim([0 150]) 

ylabel('Yaw (Degrees)') 

title('Yaw Vs Time') 

legend('Commanded Yaw','Measured Yaw', 'Estimated Yaw') 

hold off; 
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Appendix B: Code Access 

https://github.com/cjmih/visual_waypoint_nav 
 


