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ABSTRACT

Vision-Based Odometry System for Localization of Aerial Vehicles

Connor J. Miholovich

The purpose of this report is to show the design, implementation, and testing of an online
Visual Odometry (VO) algorithm used for navigation and localization of an Unmanned Aerial
Vehicle (UAV). Aerospace navigation systems primarily rely on Global Positioning System (GPS)
and Inertial Navigation Systems (INS) for information on the aircraft's position and orientation.
However, aircraft operations in GPS-denied or degraded environments such as cities, forests, or
indoors are becoming more prominent with UAVs and classic navigation methods begin to fail in
GPS-denied environments. The report proposes a practical method for navigation in GPS-denied
environments to be incorporated on a multirotor UAV using low-cost generalized hardware. The
method is based on comparing the onboard camera data of a UAV to a pre-built map of the drone's
environment using satellite images. The VO navigation systems aim to reduce errors introduced
into the system through sensor bias and drift and rely solely on onboard data rather than
constellation data that may not be available in any environment. Simulation and testing of the
methodology aim to prove the performance of the navigation system and implement changes
needed to bridge the simulation to the real-world gap.
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Symbol Definition Units (SI)
W 3D point in world coordinate m
system
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1. Introduction

1.1 Motivation

Commercial aviation utilizes Global Positioning System (GPS) as one of the main sensors
responsible for localization and navigation. Depending on the degree of accuracy required, some
systems may elect to use Real-Time-Kinematics (RTK) GPS to increase localization accuracy to
the order of centimeters. [1] RTK GPS operates similarly to GPS where it receives a signal from
satellites, but also receives a signal from a stationary (on Earth) beacon that provides corrections
to the satellite's signal. However, GPS signal interruption from areas of low network coverage or
high interference (signal jamming, buildings, underground, canyons, etc.) limits aircraft navigation
capabilities. While most modern aircraft feature highly redundant systems, GPS corrects other
sensors which are more prone to drift in measurements over long flights. When GPS signals are
not present, human pilots use Visual Flight Rules (VFR) where sight is used to localize the aircraft
in the surrounding area. Some limitations to using VFR are altitude, visibility, and airspeed which
can all hinder a pilot's ability to observe, process, and react to surroundings accordingly. For
remote-controlled aerial vehicles pilots may rely on onboard cameras or visual line-of-sight for
navigation when GPS signals are not reliable or present. In robotics applications global localization
is the ability of a robot to know its position and orientation in an environment without knowledge
of its original state and orientation. Simultaneous Localization And Mapping (SLAM) is a method
used by autonomous vehicles to localize, map, and track the environment around them. After a
robot has built a map of the environment around it and localized itself, SLAM can be applied to
collision avoidance and path planning tasks. [2] Operating aerial vehicles in GPS-denied
environments proposes difficulties for guidance and navigation problems, specifically with respect
to path planning and localization which is the problem this project focuses on solving.

1.2 Literature Review

In recent years, advancements in camera technologies and compute platforms have spurred
significant research in vision-based navigation systems within aerospace and robotics fields.
Vision-based systems excel in localization and mapping regions in GPS-denied environments,
leveraging data of varying resolutions. In robotics, Visual Odometry (VO) is a critical process for
determining the motion of a stereo or monocular camera through video input. VO operates by
comparing and tracking features between video frames, subsequently using these tracked features
to form paths at the video rate. [3] Consequently, VO algorithms are instrumental in determining
a robot's relative position and orientation. Camera models handle the transformation of the 3-
dimensional (3D) real-world reference frame and the 2-dimensional (2D) pixel frame. The camera
model plays a crucial role in undoing distortion on raw images and correcting imperfections in the
camera sensors. For computer vision purposes Real World, Camera, and Image reference frames
are related to one another and are critical in the 3D to 2D transformations.

The Earth-centered, Earth-fixed (ECEF) frame is a global reference frame with its origin
in the center of the Earth with three orthogonal axes fixed to the Earth. In the ECEF reference



frame as shown in Figure 1.1 the e, axis points towards the North Pole, the e, axis points through
the intersection of the IERS Reference Meridian (IRM) and equator, the e,, axis is 90 degrees to
the e,axis. Within the ECEF frame, two primary coordinate systems define a system position:
cartesian and geodetic. Cartesian coordinates reference an object's position relative to the Earth
with e, e,, and e, axes. Geodetic coordinates reference an object's position relative to Earth with
longitude, latitude, and altitude. A local reference frame that can be fixed to a vehicle's body frame
is the North-East-Down (NED) reference frame which is a common convention for aerospace. The
n, axis points toward the North Pole, the n,, axis pointing East, and the n, axis points to the center
of the ECEF reference frame.

Figure 1.1: ECEF and NED reference frames.

The camera reference frame is defined as principle at C, and three orthogonal axes
Cx, Cy, and c¢;. A point in the world reference frame is defined about W and three orthogonal
axes wy, wy, and w, with units in meters. The body frame is defined with a center at B, and three
orthogonal axes by, by, and b, with units in meters. The North-East-Down (NED) frame, is
common in aerospace applications, and is defined with at center at N, and three orthogonal axes



ny,ny, and n, with units in meters. The ECEF frame is defined with center at E, and three
orthogonal axes ey, e,, and e,.[4]

Figure 1.2: NED, Body, Camera, and Point Reference frame.

From Figure 1.2 the position vector for a point about the world frame can be defined as:

EopW =X, e, +Y,e,+7Z,e, (1.1)

The unit vector for a point about the camera frame can be defined as:
CopW = X.cp + Y0y + Zec, (1.2)

The 3D coordinates of a point (W) in the world coordinate system are defined as
Xw,Yw,and Z, and they represent the scalar position of our point. Camera models are
fundamental to vision-based navigation systems, as the 3D world is projected onto a 2D image
plane. The most common camera model used in understanding the 3D to 2D projection is the
pinhole camera model. Figure 1.2 shows the relationship between the 3D and 2D coordinates of a
point in the world. Equation 1.2 shows the mathematical relationship between image coordinates



and real-world coordinates. [4] Camera intrinsic parameters are defined as focal length (fx, fy)
and optical centers (c,, ¢, ) which are different than the camera reference frame.

Xw
Yw
Zw

=05 5 <l &9

In practice, camera lenses introduce distortion based on their shape, causing straight lines
in the real world to appear curved in images. Predominant distortions include barrel-like and
cushion-like distortions (Figure 1.3). Camera calibration processes measure and correct these
distortions, using patterns of known dimensions. Radial distortion, caused by the lens shape, and
tangential distortion, due to assembly imperfections, are the two main types of distortion. [4]

Mormal Imsage Barrel-like Distorfiomn Cushion—like [hsbriion
Figure 1.3: Camera distortions on an image. [4]

Using extrinsic parameters, rotation (R), and translation (t), a point in the world coordinate
system can be transformed into the camera coordinate system, as shown in Equation 1.2. Extrinsic

parameters ¢RW and €t" are found through the camera calibration process. [4]

Xc
Ye
Zc

Xw
Yw
Zw

1 Tiz T2 tx
Where CRW = (121 T2 T3 |and ¢t =|(t, | [4]
31 T3z 133 t,

The foundational paper on Visual Odometry presented to IEEE in 2004 outlined methods
for estimating camera motion: feature extraction, feature matching, and robust estimation. The
original method compares a ground truth Inertial Navigation System (INS) and GPS to the visual
odometry system mounted on a ground robot. The results were that the visual odometry system



accurately reproduced trajectory over hundreds of meters traversed with varying lighting
conditions using only stereo cameras. [3] In more recent works, additional sensors such as Inertial
Measurement Units (IMU) are integrated for additional information regarding the camera's pose
(orientation?) or correction to the trajectory. The extension of the work is Visual Inertial Odometry
(VI10) which leverages the strength of camera and IMU sensors to provide more robustness to VO
systems. VO features limitations from lighting conditions, feature sparsity, and scale ambiguity.
V10 systems use the IMU to provide resilience to lighting change during visual tracking, provide
inertial data for fast movements, and aid in scale estimation by providing data for acceleration and
rotation of the system. While VIO offers improvements over VO through the correction provided
through inertial data, the visual pipeline is similar between the two systems. However, depending
on the specific scenario or system requirements, VO may be more suited for the use case despite
the improved performance of VIO.

Feature extraction involves identifying distinctive points or landmarks in the video frames
that can be robustly tracked over time. In computer vision, features are pieces of information about
an image's content. Common features are points, edges, or objects, and are represented by pixel
coordinates of an image as defined by x and y points of a pixel’s location in an image. These
features serve as the basis for computing the camera's motion and generating a spatial map of the
environment. Common methods for feature extraction include corner detectors (e.g., Harris corner
detector, Shi-Tomasi corner detector) and blob detectors (e.g., Scale-Invariant Feature Transform
- SIFT, Speeded Up Robust Features - SURF). [5] A component of feature extraction is rotation-
invariant features, which are features that can still be detected even if the image is rotated. Harris
corner detection is an example of a rotation-invariant feature extraction method. Another
component of feature extraction is scale-invariant features which do not change as an image is
scaled up or down. [6]

Feature matching is the process where a computer matches corresponding features between
frames. During feature matching the coordinates of pixels may shift between image frames, but
the relative distance between points in a feature remains similar. This process ensures that the same
physical point in the environment is consistently tracked across different viewpoints and lighting
conditions. Matching techniques often employ descriptors (e.g., SIFT descriptors, ORB
descriptors) to establish correspondence between features, optimizing robustness and accuracy. [5]

Motion estimation computes the relative movement of the camera between frames based
on the matched feature points. Various algorithms, such as optical flow methods, iterative closest
point (ICP) algorithms, or direct methods like Lucas-Kanade, estimate the camera's translation and
rotation parameters. [3] These parameters are crucial for updating the camera's position and
orientation in real time. Motion estimation can be used to calculate a pose estimation of the camera
where the camera’s position and orientation are computed over time.

In aerospace applications, the environments being tested are usually dynamic and adverse
conditions (varied lighting, low features, etc.). These dynamic environments often induce motion
blur, lens glare, and noise into camera data, causing many VO algorithms to be unable to track
features. A method using offline 3D reconstructed environment maps and comparing images from
an aerial vehicle found the most success in feature tracking through edge alignment. [7] While the
algorithm found success with feature alignment in indoor environments where the lighting



conditions were near constant, the feature alignment failed because of lighting variations between
frames in outdoor environments.

NASA'’s Terrain Relative Navigation (TRN) takes onboard images from a vehicle
descending and compares the images to a map generated before flight to extract the spacecraft's
altitude and attitude with respect to the map. The pre-generated map was built from a satellite
orbiting Mars taking photos of the landing site's surface before the mission. TRN has successfully
demonstrated the fusion of IMU, Light Detecting And Ranging (LiDAR), and camera sensors for
visual odometry in the Mars 2020 mission by landing in the Jezero Crater. [8] The TRN system
expands past a navigation system and additionally provides the spacecraft with collision avoidance
systems and elevation mapping systems. The success of the Mars 2020 mission demonstrates that
using an onboard map with some inherent errors can be performed online during a mission with
robustness to imperfections in the system.

A similar approach to the NASA TRN is the AGL-Net approach which compares satellite
imagery to a map generated by LIDAR point clouds. AGL-Net provides a solution to two
problems: comparing image data to LIiDAR data and comparing scale discrepancies between
satellite and ground view data. AGL-Net first takes an initial pass of feature matching between the
satellite images and the LiDAR data and then uses a Convolutional Neural Network (CNN) to
learn scale-invariant features for tracking. CNNs learn hierarchical features from raw input images,
which is crucial for understanding and interpreting complex visual patterns. This ability to learn
multi-level features, ranging from simple edges to complex textures and objects, makes CNNs
highly effective for tasks like object recognition, detection, and segmentation. CNNs use
convolutional layers to apply filters across the image which enables the neural network to detect
features whether they are scale-invariant, rotation-invariant, or if the location of the feature shifts.
A novel result of the AGL-Net during testing was the elimination of the need to pre-process the
satellite imagery maps ahead of time. Eliminating the pre-processing was achieved through a CNN
allowing the algorithm to operate fully online. The result is substantial for aerospace applications,
particularly for real-time testing where the system can handle dynamic environments. [9] While
the application of a CNN increases the robustness of the system to environmental conditions the
amount of data required, and computational complexity may not be viable to small aerial vehicle
applications or in real time if the network is not trained for the scenario.

To avoid the scaling issues between satellite and aerial frames, researchers use a
combination of aerial and ground vehicles to perform feature matching due to the smaller distance
between the reference frames. Researchers at the Autonomous Systems Lab in Zurich found that
many VO algorithms used for localization experience drift from ground truth over longer
trajectories. [10] Researchers resolved this approach by using VIO to help reduce sensor drift. The
experimental setup uses an aerial drone and a differential drive rover which map and attempt to
localize themselves in a local environment. Researchers found that raw VIO still experienced drift
from ground truth and corrected this error using localization against previously built maps. Using
the hybrid VIO and map-localized system, the aerial vehicle and ground rover localized
themselves, allowing the drone to land on the rover. The results show success in the drone and the
rover locating each other despite different viewpoints of the same environment. While results
demonstrate the ability to localize separate vehicles in a local environment, the results also show
sensitivity to misalignment of the local and reference maps to the global alignment.

A similar approach from the Robotics and Perception Group (University of Zurich) focuses
on globally localizing and tracking the pose of an aerial vehicle in low-altitude, GPS-denied



environments. The approach uses an air-ground image-matching algorithm that compares images
from the aerial vehicle to images on the ground vehicle in a three-dimensional city model.
Correction to trajectory drift of the system occurs when the aerial vehicle and ground vehicle
images match with sufficient margin. The system is tested on a 2-kilometer trajectory of the drone
and demonstrates global localization and position tracking using a single onboard camera on the
drone. [11] Researchers found that brute-force visual-search algorithms were required to
compensate for illumination, lens distortion, viewpoint deviations, and over-season vegetation
variation. The algorithm was successful at globally localizing the drone within the pre-built model
of the environment and used uncertainty estimations to compensate for the model. Results of the
algorithm'’s performance show that the vision-based approach outperforms satellite-based GPS at
low altitudes and in a city environment, but the system requires high levels of computational
complexity. Researchers suggest using cloud-based computing as a viable alternative for the
computation complexity of the algorithm but demonstrate a viable alternative to GPS localization
for urban environments. [11]

Previous research focused on using prebuilt environment maps with various viewpoints to
perform localization. While these methods are useful in off-line work, prebuilt maps impose
restrictions on an online system that may exceed the bounds of the previously built maps.
Researchers from the Autonomous Systems Lab in Zurich propose a Visual Simultaneous
Localization And Mapping algorithm (VSLAM) using a singular monocular camera mounted to
an aerial vehicle. Simultaneous Localization and Mapping is a method that uses onboard sensors
to build a map of the environment surrounding a robot and localize the robot with respect to the
map. The VSLAM algorithm tracks the pose of the camera and simultaneously builds a map of the
surrounding area. Results of the approach show that the aerial vehicle can navigate through
unexplored environments without the aid of GPS or beacons. The system also shows stability
against scale and orientation drift within the map that was built from the VSLAM algorithm and
is resilient to wind or similar external disturbances. Limitations to the approach feature sparse
environments which cause the vehicle to disable localization and the algorithm’s ability to only
localize locally not globally. The online approach demonstrated no time drift and accuracy up to
2-4 cm (about 1.57 in) using the vision-based system. [12]

Researchers at the University of Turku (Finland) approach propose a Global Navigation
Satellite System (GNSS) free, vision-based approach to navigation for non-urban environments.
Many of the GNSS/GPS vision-based methods mentioned above focus on low-altitude and urban
environments, but struggle in feature-sparse environments. Researchers demonstrated a non-
traditional VO algorithm that is optimized for long-range, high-altitude UAV flights. [13] The
method again uses a map generated before flight and uploaded to the drone for online use. The
uploaded map features multiple labeled latitude and longitude coordinates that aid the drone in its
navigation across the trajectory. The algorithm uses the following features to localize itself:
segmenting geo-referenced satellite images, feature matching (UAV to satellite images), rotation
adjustment, and perspective adjustment. The paper presents significant advancements in UAV
localization by accounting for perspective and rotation misalignments between the UAV and
satellite frames which improves feature matching.

In conclusion, navigating through GPS-denied environments in aerospace applications
commonly involves using a pre-developed map and performing online feature matching. Common
failure modes for these methods include variations in lighting conditions, feature sparsity, and
perspective distortions from different reference frames. Research indicates that there is no single



method suitable for all flight operations; some methods are more successful at low altitudes, while
others perform better at high altitudes. Overall, current research shows that there are several viable
approaches for using visual odometry as a navigation method in GPS-denied environments for
aerial vehicles.

1.3 Project Proposal

The goal of this project is to design and implement a VO algorithm capable of navigating
an Unmanned Aerial Vehicle (UAV) without GPS data. The VO algorithm results will be
compared against GPS as ground truth data to evaluate the approach'’s accuracy. From the above
literature review, the main problem to be solved by the VO algorithm will be dynamic scaling and
lighting conditions that cause many VO algorithms to fail or be limited to use indoors. The project
will be split into two parts. The first part will be an evaluation of the VO algorithm in simulation
to verify the approach methodology. The second will be the implementation of a low-cost
multirotor to evaluate the simulation-to-real-world gap. The simulation will feature ideal scenarios
for lighting, camera distortion, and overall system noise. The low-cost drone can be seen in Figure
3.0 which will serve as the real-world hardware the algorithm will be tested on. The algorithm will
use a pre-generated map of an environment composed of satellite images and be responsible for
localizing itself within the environment using a single monocular camera.

A * -

Figure 1.4: Tarot FY690S Hexacopter. [14]
1.4 Methodology

The proposed methodology is to use a downward-facing camera and IMU sensor mounted
to a drone to calculate the relative pose of the camera with respect to the drone and world-centered
frame. Before flight, a map of satellite images will be stitched together from a set of user-defined
waypoints. Then in flight, rotate the camera images of the drone to the world-centered frame to
compare the images from the drone to satellite images of the prebuilt map. The next steps will be
feature extraction, feature matching, and motion estimation. Feature extraction will be responsible



for finding distinguishable features from the onboard camera. Feature matching will then compare
the onboard camera data to the prebuilt satellite image map. Then motion estimation will be
calculated to determine the relative motion of the drone/camera. The above methodology would
provide a visual odometry algorithm that is fully self-reliant and does not require any GPS
correction for waypoint-based navigation. Some of the main resources used would be OpenCV for
handling the computer vision calibrations and image transformations, Tensorflow and Keras for
the Machine Learning/Deep Learning algorithms, and Google Maps for the satellite imagery. The
drone will use a PID (Proportional, Integral, Derivative) controller for its velocity and position
controllers. PID controllers were selected for their ease of implementation, tuning, and lower
computational complexity (when compared to other modern control techniques).



2. Computer Vision

2.1 Pinhole Camera Models

Continuing the camera model discussed in Chapter 1, a 3D point X is projected through the
camera's optical center onto an image plane and produces image point p. Figure 2.1 shows the
perspective projection (a), catadioptric projection (b), and spherical model (c) with image points.
Chapter 2 will focus on using the perspective projection model for all of the calculations.

Figure 2.1: Camera projection model for perspective projection for a point in the real world.

The coordinates of X can be defined as [X,,Y.,Z.]", p is [px, py,p.]"and the physical

distance between the imaging plane and the camera plane is f (focal length). Using the classical
camera model an image will be inverted from projection as signified by the negative sign:

Z. X, Y. 2.1)

Modern cameras do not invert the image so the formula can be rewritten as:
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X Y, 2.2)

Xe
Px = fZ_C (2:3)
p, = foe (24)

Camera sensors convert light from real-world objects into electrical signals which can be
reconstructed into image pixels. The pixel plane is defined as o — u — v, if the pixel plane is fixed
on the physical imaging frame, then the pixel coordinates of p can be defined as: [u, v]T Then
using the intrinsic camera parameters, the pixel coordinates can be calculated as:

X, (2.5)
u=fy 7 + ¢y
Cc

Y
V= fyZ— + Cy (26)

Where camera intrinsic parameters are defined as focal length (fy.f,) and optical centers
(cx, ¢y) which can be calculated from the camera calibration process. [4]

2.2 Camera Calibration

A limitation to the pinhole camera model is the distortions caused by projecting the 3D world
onto a 2D plane when a camera lens is used. The two main distortion categories are barrel-like
distortion and cushion-like distortion. In barrel distortion, the radius of pixels decreases as the
optical axis distance increases. Cushion-like distortion is when the radius of the pixels increases
as the optical axis decreases. The shape of the lens introduces radial distortion while the assembly
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and geometry of the camera introduce tangential distortion. Tangential distortion is predominately
caused by the sensor plane not being perfectly parallel to the lens. Radial distortion can be
represented as:

Xgistortea = X(1 + k17'2 + k2T4 + k37‘6) [16] (2.7)

Vaistortea = Y(1 + k17'2 + k21’4 + k37‘6) [16] (2.8)

Where r is the distance from the image center. Tangential distortion can be represented as:

Xdistorted — X + [Zplxy + Pz(rz + sz)] [16] (29)

Ydistorted = Y + [pl (rz + 2}’2) + szxy] [16] (2-10)

The process of camera calibration aims to solve the five unknown distortion coefficients:
(kq, k3, k3,p1,p2). A common calibration method uses corner detection with a chessboard with
known lengths of each of the sides of the marks and a known number of marks on the board as
seen in Figure 2.1. Additionally, intrinsic parameters of the camera need to be solved for such as
focal length (£, f, ) and optical centers (c,, ¢, ). An example of distortion before calibration shown

in Figure 2.2 shows the radial bowing of the checkerboard past the red lines (the red lines represent
ground truth). [5]

Figure 2.2: Chessboard for calibration. [16]
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Figure 2.3: Chessboard with distortion against ground truth (red lines). [16]
2.3 Fundamental Matrix

The fundamental matrix F is a 3x3 matrix that relates corresponding points between two images
taken from different viewpoints. It encapsulates the intrinsic and extrinsic parameters of the
camera system as saved using camera calibration. Given a point p, in the first image and a point
p,, in the second image, the fundamental matrix satisfies the equation given in Equation 2.11.

Where p; = (x1,v1,1) and p, = (x5, y,, 1). The fundamental matrix can be decomposed in the
camera’s intrinsic parameters (K) and the extrinsic parameters of rotation (R) and translation (t).

F=K;T[CtW] CRWK ! [4] (2.12)

Where:

ZW 0 _XW (213)

N O _XW YW
tk = [
Yy Xy O

Given a set of corresponding points, the fundamental matrix can be estimated. Once F is
obtained constraints for matching points between two images are provided. [4]

2.4 Essential Matrix

The geometric relationship between two images using a calibrated monocular camera can be
described with the essential matrix E. E contains the camera’s motion parameters for some
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unknown scaling factor (in 2-D to 2-D maotion). The essential matrix can be defined by equation
2.15, where ¢ RY is the rotation matrix.

Both rotation and translation of the camera can be directly extracted from E, extracting the
rotation and translation of the camera serve as the foundation of motion estimation for visual
odometry. 2-D to 2-D motion-based estimation is founded on the epipolar constraint between two
images which defines the line on which a feature lies between image frames where p and p’ are
normalized coordinates of corresponding points between two images. The epipolar constraint can
be formulated by:

D TEp = 0 [4] (2.15)

In stereo vision, epipolar geometry is used to describe the geometric relationship between two
images from different perspectives. Using a monocular camera, epipolar geometry can be used to
calculate the position and rotation between image frames. The point where the optical axis of the
first and second camera pose intersects along the image plane is the epipole. The epipolar line is
the projection of a 3D point onto the image plane of each camera pose. By leveraging the geometric
relationships between the epipole, epipolar line, and fundamental matrix, pose estimation between
image frames can be achieved through feature matching. The epipolar constraint between two
images is a point on the one image must lie on the epipolar line of the second image which is
derived from the essential matrix. Figure 2.3 shows the epipolar constraint between two images.

[41[15]

Figure 2.4: Epipolar constraint between two images. [15]
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2.5 Image Filtering

Image filtering plays a crucial role in enhancing the visual data present in an image. Image
filtering uses a variety of techniques such as adding or removing noise from an image to manipulate
the pixel values. Image filtering is commonly used to either enhance edges and either extract or
remove features from an image. The process involves applying a kernel over an image to produce
a filtered output. Common filters are Gaussian filters, median filters (noise reduction), and Sobel
filters (edge detection). Equation 2.17 shows the Gaussian function which can be used to add or
remove noise and Equation 2.18 shows the operation for a median filter. [4]

1 _x2+ 2
G(ry) = 5—ge 20 [4] (2.16)
I'(x,y) = median{I(i, )} [4] (2.17)

The process of applying a Sobel filter uses a calculation of the gradient of the image intensity.
The Sobel operator uses two 3x3 kernels for detecting horizontal (G,) and vertical edges (G, ):

1 0 1

Go=|-2 0 2] (2.18)
1 2 1
1 -2 -1

G,=0 o 0] (2.29)
1 2 1

Then the gradient magnitude is computed in Equation 2.21:

G= [G2+G} (2.20)

Then the direction of the gradient can be computed in Equation 2.22:

15



G
0= arctan(G—y) (2.21)

P

2.6 Feature Matching

In the early 2000’s researchers predominately relied on corners, edges, and blocks for feature
detection. While corners and edges are more distinguishable than just pixels across multiple
images, these features are still subject to difficulties, when the camera is in motion. Corners’ and
edges’ appearance change when a camera rotates and tracking the same points becomes rather
difficult. Figure 2.5 depicts representative places in an image such as corners, edges, and blocks
of pixels. Common features used in modern feature matching algorithms are Scale-Invariant
Feature Transform (SIFT), Speeded-Up Robust Features (SURF), and ORB (Oriented FAST and
Rotated Brief). Researchers evaluate SIFT, SUFR, and ORB based on the following criteria:
repeatability, distinctiveness, efficiency, and locality. The combination of the previously
mentioned criteria allows for features to be found in multiple images with different scales,
locations, and even expressions (color or size due to lighting conditions). [4]

Corners

Edges

o N\
AN

Figure 2.5: Corners, edges, and blocks represented as unique features in an image. [4]

A feature point is composed of key points and descriptors. The key points refer to the 2D
position of a feature in an image. Some key points contain other information like orientation and
size. The descriptor is a vector describing the pixels around the key point. If two feature descriptors
are relatively close in the vector space, then they are considered the same feature. The choice to
use one of the above three methods comes to computation power and real-time performance. SIFT
and SURF require longer calculation times but usually provide more robust features to be detected
during varied lighting conditions, rotation, and translation. ORB and SIFT can be used for real-
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time feature extraction by using FAST detection for key points which makes the feature extraction
process practical for real-time SLAM and navigation applications.

ORB features are comprised of ORB key points and ORB descriptors. Extraction of ORB
features requires a FAST corner point extraction which finds the corner point in the image. Then
the BRIEF descriptor is generated which describes the surrounding area of the feature points
described in the previous step. The FAST corner point extraction mainly detects changes in the
local grayscale. FAST functions by comparing how bright pixels are from neighboring pixels, and
if the change is large then the point is likely a corner. The following steps are taken to extract a
FAST point which can be visualized in Figure 2.6:

« Select a pixel p in the image, assume brightness as 1,,

+ Set a threshold T for filtering

* Take pixel p and select 16 pixels with a radius of 3 pixels surrounding point p

« If consecutive N points are greater than I,, + T or less than I, — T, then the central point
is a feature point (common N values are 9,11, and 12)

* Iterate through each of the above steps for every pixel in an image

Figure 2.6: FAST key points on an image from some radius p. [16]

Common descriptions in FAST corner points are scale and rotation which aid in the detection
of points between consecutive images, these become known as Oriented FAST key points. After
extracting the Oriented FAST key point the binary descriptor BRIEF is calculated. A BRIEF
descriptor is represented as a 0 or a 1. BRIEF is 1 when a second pixel in a pair (p, q) is greater
than the first, otherwise, the descriptor is repressed as 0. Using the directional information provided
from the FAST feature point orientation becomes encoded in the BRIEF descriptor. Feature
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matching compares the descriptors from different images to find pairs of matching features.
Feature matching relied predominantly on Euclidean distance for SIFT and SURF, and Hamming
distance for ORB. Equation 2.23 shows the calculation of Euclidean distance in 2-D and Equation
2.24 shows the calculation of Hamming distance. [4]

d= ’ig(xi — ¥i)? (2.22)

d(a,b) = 3 (a; ® by) (2.23)

i=1

2.7 Homography

Using the epipolar constraint alongside the fundamental matrix and essential matrix, the
homography matrix H describes the relationship between planes. When feature points lie along the
same plane, the homography matrix can be used to estimate motion. This method of motion
estimation is particularly common in top-view cameras for robotics applications. The homography
matrix captures the transformation between points on a common plane across consecutive images.
Using the homography matrix, essential matrix, and fundamental matrix points between
consecutive images with changing camera poses, the motion estimation can be extracted by
aligning all the images on the same plane. Considering a pair of matched feature points p, and p,
in images I; and I,, assume all these points lie on a plane P. The plane equation is derived in
Equation 2.25 and rearranged to Equation 2.26. [4]

n'P+d=0 (2.24)
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Then using the equation relating a matched point to the camera intrinsics and the plane in Equations
2.27 and 2.28 we can then derive the homography matrix in Equation 2.29. [4]

d
p, =~ K(°RYP + t,(— ﬁ) [4] (2.26)
p2 = K(“R" — %)p [4] (2.27)
H=K(°RY — %)Kﬂ [4] (2.28)

The transformation between p; and p, can then be expressed in Equation 2.30 and then
expanded to the form in Equation 2.31.[4]

b, = Hp, [4] (2.29)

Uy hy hy h3\
(vz):<h4 e h)() [4] (2:30)
1 h, hg he/ \1

To estimate the homography matrix at least four pairs of matched points are required. This
method is known as Direct Linear Transform (DLT), sometimes referred to as the Direct Method,
which treats H as a vector and solves a series of linear equations. After obtaining the estimation
for H the matrix can be decomposed into solutions for R and t. Any inconsistencies require
additional constraints to be added or information regarding the camera's state to correct the
solution. The series of linear equations to solve for H can be seen in Equation 2.32. [4]
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(ul V1 1 0 0 0 —UuUquU, _Uluz) h4, — (uz) [4] (231)
0 0 0 ul Ul 1 _ul UZ _Ul Uz UZ

hs

Once the homography matrix is decomposed the Direct Method has been solved for the rotation
and translation of the camera between frames giving a motion estimation. Typically, the Direct
Method will suffer from error accumulation over long durations if left uncorrected or if sparse
features are present. [4] To develop a vision-based odometry system for aerial applications visual
odometry will be used to extract and track the heading of the aircraft over time. Elements such as
feature extraction will be used for feature tracking in developing the navigation functionalities of
the algorithm. [4]
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3. Computer Vision-Based Navigation

3.1 Extracting Rotation and Translation

After solving the homography matrix H, the matrix can be decomposed into solutions for
R and t. [4] The decomposition process typically involves singular value decomposition (SVD)
and can be represented as:

tknT

-1 [4] (3.1)
d K

H =~ K(“RW —

After solving H for R and t the rotation and translation of the aerial vehicle can be tracked
locally. Once we have the rotation matrix R, we can convert it to rotation quaternions which is
another way to represent rotations about three axes. Another common alternative to quaternions is
Euler angles and is often seen in aerospace applications to describe the orientation of an aircraft.
However, in instances where the pitch angle is +90° or —90° the functions representing roll and
yaw become undefined inducing a “gimbal lock™ where there is no unique solution. To avoid this
problem, guaternion representations of rotation prevent any such instance from being unable to
compute a unique solution. Equations 3.1 - 3.4 represent the calculations of the magnitude of each
of the quaternion components.

14719 +15 +133 (3.2)
|qol = 4
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_ |14y — 1 —Tss (3.2)
lq1] = 4

_[1—=ryg 1y — s (3.3

lgz| = 4
1—Ty3 —1pp +7133 (3.4)

las| = 4

After computing the magnitude find the largest value of q,, q1, 92, q3. [18] Then compute
the remaining components following the bellow conditions:
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* If q, if the largest:

* If q, if the largest:

* If q, if the largest:

* If q5 if the largest:

_ I3z — I3
q1 —4%

_ i3 —TI3q
q:2 —4%

_ 1 — T2
13 4qo

_ I3 — I3
do —4q1

_ i =Ty
12 4q

_ i3 —TI3;
qds —4q1

_ i —T3q
o 4q,

_ i =Ty
d1 —4q2

_ T3 =TIy
ds —4q2
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fo1 7 M2 (3.14)

4q3
g = T13 — 731 (3.15)
1 4q3
T23 =732

The rotation quaternion can then be represented as g = [9o0 91 92 q3]" and tracked
over time. A similar example in aerospace is dead reckoning. Dead reckoning uses onboard sensors
to measure the rates of change of the aircraft, and then by integrating, the aircraft’s rotation and
translation can be calculated over time. Dead reckoning and visual odometry are both methods to
track a vehicle’s position without celestial measurements (GPS, GNSS, etc). However, these
methods suffer from accuracy over time due to sensor errors and often require corrections
depending on accuracy needs. The local tracking using visual odometry is an example of SLAM
for our vehicle where we are independent of any prior state data. [18]

3.2 Satellite Image Map Preparation

To provide the vehicle with a global reference, a set of stitched satellite images will be
used to generate a 2D map of the terrain. The satellite image will provide a set of known reference
points along the trajectory that can be compared against the drone’s onboard camera for feature
matching. The feature matching allows the drone to localize itself within the reference map. Some
important assumptions that play a role in generating and utilizing the map are as follows:

* Neglecting Earth’s rotation

* Neglecting the curvature of the Earth

* Short flight time (less than 1 hour)

* The desired flight path is known ahead of time

These assumptions enable the use of the stitched satellite image map without the need to
compensate for rotating reference frames and the obliqueness of the Earth. In particular, the known
flight path assumption plays a crucial role. By knowing the flight path in advance, a pre-
downloaded map can be generated using GPS coordinates and then provided to the algorithm. The
map can then be used for real-time operations to provide a global reference to the vehicle. The
limitation to the predetermined path assumption is if the vehicle deviates a large amount from the
original flight path, the algorithm may not have information about the given location of the vehicle.

The OpenCV library has a built-in stitching function that takes a list of images then
performs feature matching to overlay the images onto one another then crops the overlaid portion
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of the images. The flowchart seen in Figure 3.1 shows the steps taken by the OpenCV stitcher class
to overlay and crop the images.

Final pano

Figure 3.1: Image Stitching pipeline flowchart using OpenCV Stitcher Class [17].

De-rotate and flatten all satellite images to a stitched map. Combine satellite images with
GPS coordinates on the stitched map. Additionally, reference stitched maps as storage. Figure 3.2
shows a set of sample images from Google Earth in the “layers” view that will be stitched together
using OpenCV. Figure 3.3 shows the set of sample images stitched together.

Figure 3.2: Sample images to be stitched together.
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Figure 3.3: Final output of stitched images from Figure 3.2.

3.3 Visual Waypoint Integration

Given the assumptions specified in Section 3.2, a global map of the flight path is known.
Using the map, a set of waypoints can be provided to the algorithm and compared to the onboard
camera stream. Visual waypoints are defined as distinctive features or landmarks on the preloaded
map. A waypoint used for matching will consist of some number of feature descriptors and the 2D
position of the waypoint in the map.
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In traditional GPS-waypoint-based navigation, the position of the vehicle is calculated
using the process of ranging. Ranging determines the position and velocity of a receiver (the GPS
sensor) and measures the distance from several radio sources. To calculate the position of some
receivers using ranging, the following assumptions must be made:

* A receiver is on Earth and can receive some number of N radio signals from satellites

« The coordinates of the position of the satellite p,, are known

* The precise time instances t; for each of the broadcasted signals are known, where i is the
number of the satellite

* The precise time instances t, of the received signal are known

* The distance r; from the receiver to each of the satellites can be calculated

ro=clt, — t) (3.18)

Where ¢ is the speed of light in vacuum ¢ = 2.998x108m/s. Then given that the position
of the satellite (p,) is known the position of the receiver (p,) can be calculated using Equation
3.19.

1pr = pill = [P, = P + (s, = Py + (s, = P’ (3.19)

The process of navigating through a set of waypoints W requires a comparison between the
features in the map and the features in the onboard camera. The feature comparison will require
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that some number of features between the stored (map) and observed features are matched. A
tolerance around the waypoint location will be required, otherwise the problem will not be
bounded. Therefore, a tolerance of radius R will be applied to the features around the waypoint
such that the number of features in the region of interest is N. Then if the number of matched
features from the feature matching is equal to N it can be determined that the vehicle has arrived
at the waypoint. The algorithm will then iterate through the series of waypoints until it has reached
its goal.

3.4 Environmental Factors

Visual odometry systems often face challenges in real-world scenarios due to dynamic
objects in the environment and varying lighting conditions. Factors such as moving objects,
dynamic lighting conditions, and induced vibrations can cause large enough variations between
frames to disrupt feature extraction, feature matching, and motion estimations. While hardware
such as vibration dampers and onboard lighting may aid in reducing variation between image
frames, software estimates may be more capable of handling large variations. Feature descriptors
such as BREIF and SIFT are non-intensity based which provides some robustness to lighting
variations. Another option may be to use thermal cameras that can operate outside of boundaries
that visible band cameras are limited by.

Aside from lighting challenges, scene dynamics such as featureless environments or
dynamic objects can interrupt VO system measurements. Low feature environments make it
difficult to detect and track features causing homography between image frames to fail or lose its
accuracy. Additionally, rapidly changing features such as moving objects, large deviations in the
camera’s motion, and scale can cause difficulty in feature tracking. These environmental factors
can cause interruptions in tracking and cause either a large drift in the accuracy of the
measurements or the algorithm to fail.

3.5 Kalman Filter Integration

For correcting our trajectory estimation from section 3.1 applying an Extended Kalman
Filter (EKF) will be used for local and global estimation. Due to the non-linear aspects of visual
odometry (measurement model and coordinate transformations), an EKF will be required to handle
the non-linearities rather than a traditional Kalman Filter (KF). The EKF is more flexible than the
KF as it can handle both linear and non-linear systems. The EKF is extended from the original KF
using a first-order Taylor series expansion. The expansion limits the EKF by making the function
locally linear using a first-order expansion for the approximation, the accuracy of predictions made
by the EKF degrades after the first order. For our EKF we have a State VVector x which is comprised
of our translation t and rotation R. [19]

= [CCtVVVV T (3.20)
R

The first step in the EKF is the process model or prediction step:
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S . 3.21
X = f(Xk—1, Ug—1) + W1 (3:21)

Where f() is the state transition function, w is the noise in the system, X, is the state
estimate, and uy is the input. Then the measurement function is calculated which relates the state
to the expected measurement.

Zx = h(;(lz) + vy (322)

Where h() is the non-linear measurement function. The next step in EKF is to compute the
Jacobians of f() and h() at each step.

o (3.23)

0X 'Xk—1,Uk—1

Fx

oh 3.24)
Hy = — | @.
K axlx;

Now that the Jacobians for f() and h() are solved the predictions can be calculated:

i = (-1 Ur) (3.25)
Pe = FiPuciFy + Qus (3.26)
Then the Kalman gain, and predictions can be updated.
Kic = P HE (P HYT + Ri) ™ (3:27)
Xi = X + Kz — h(xi) (3.28)
P = (1 — KBy (3:29)
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After the predictions are updated, the algorithm repeats for the next estimation. [19]

3.6 Extended Kalman Filter Error Correction

Section 3.5 highlights the steps taken by and EKF algorithm, the above steps provide
corrections that improve the overall navigation accuracy, by improving the estimations of position
and rotation provided by the VO system. The following steps are taken to initialize and apply
corrections to the algorithm’s measurements using the EKF:

 Set the initial state estimate based on the VO measurement and initialize the covariance
matrix with uncertainties
« Compute the filtered state estimation using the EKF at each step

» Compute the difference between the EKF state estimate (x) and the raw VO state estimate
» Compute the corrected visual odometry estimate with the weighing factor applied to the
EKF estimate

(3.30)

i corrected _ i ’ .
Xk = Xk + A(Xvo — Xk)

A is used as a scaling factor which can be used to adjust confidence in the visual odometry
estimate. The above steps improve the accuracy of the system by applying a filtered estimate to
the existing odometry measurements. If the above corrections are not sufficient for performance,
then tuning the process noise covariance and measurement noise covariance would improve the
characteristics of the system. The filtered estimate aims to remove noise that was observed by the
sensors during measurement processes. The EKF also can use the previous time step estimates to
provide an estimate during interruptions in visual tracking/measurements. To further improve the
measurements and estimates made by the algorithm additional sensor data can be used for sensor
fusion to provide further corrections to the system. [19]
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4. Convolutional Neural Network

4.1 Introductions to Convolutional Neural Networks

Convolutional neural networks (CNN) have led to progress in image classification and feature
detection in machine vision. CNNs are neural networks that leverage the unique properties of
convolution for image and video processing tasks. CNN applications across many industries,
including medicine, banking, manufacturing, insurance, transportation, and social media. CNNs
fall under a category of Machine Learning (ML) known as Supervised Learning, other common
ML methods are Unsupervised Learning and Reinforcement learning. The use of the word “deep”
coupled with one of the ML methods implies the use of neural networks to perform calculations.
[20]

e Supervised Learning: a model trained on a labeled dataset, where each input has a
corresponding target output label. The supervised learning model then learns to map inputs
to outputs by minimizing the error between the prediction (output of the model) and the
target output.

e Unsupervised Learning: a model trained on a dataset without any labeling and learning
underlying patterns or structures.

e Reinforcement Learning: an agent interacts with an environment and receives feedback on
the actions taken. The feedback can be either a reward or penalty dictating how good an
action was. The agent aims to maximize the cumulative reward (feedback) over time.

4.2 CNN Architecture

AlexNet and ResNet are influential architectures for CNNs that have contributed to image
recognition tasks. [20][21] While specific architectures will vary from task to task the order of
operations for CNNs will broadly remain the same. Specific deviations include layer sizing, layer
depths, activation functions, preprocessing, normalization, and network outputs. Factors that
influence architecture are specific tasks, datasets, computational resources, and training time. In
general, the following layers are required and shown in Figure 4.1:

e Input Layer
Convolutional Layer
Activation Function
Pooling Layer
Flatten Layer
Fully Connected Layer
Output Layer

[20]
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Figure 4.1: Sample CNN Architecture from the AlexNet paper for image classification tasks.
[20]

4.3 Input Layer

The input layer is where information is provided to the model, where the number of equal to
the number of features in the data being fed into the layer. In the case of the image, the number of
neurons would be equal to the number of pixels. A critical constraint for a CNN is that the data
must be passed in a grid format. Typically, an input is represented as a 3D tensor with dimensions:

e Height

e Width

e Channels
Where the height and width are represented as pixels and the channel is either represented as RGB
or grayscale.

Height: 4 Pixels

1 .

Width: 4 Pixels

Figure 4.2: Input representation of a 4x4 image with RGB channels can be represented as a
4x4x3 tensor.
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Depending on the dataset, if the data is preprocessed then the data may just be passed through,
otherwise normalization and augmentation techniques may be applied. Normalization scales the
pixel values to be within a set range such that the model can converge faster during training. For
normalizing an image in range [0,1] the following equation can be used:

=2 (4.1)
o

Where v; is the original pixel value, [ is the average pixel value across the image, o is the standard
deviation of the pixel values. Augmentation can also be done to increase the diversity in training
data which may include:

e Rotation

e Cropping

e Translating

e Flipping (horizontal or vertical)
Augmentation and preprocessing steps help ensure that the input dimensions of the data are
consistent across the whole dataset and that the data is organized for the following convolutional
layers. Depending on the neural network's architecture predefined filters or feature detection
algorithms may be applied to the data before passing for convolutional operations in subsequent
layers.

4.4 Convolutional Layer

The convolutional layer is the core of what makes CNN ideal for images. It performs the
following operations:

e Receiving an input tensor (image or feature map from a previous layer)

e Apply a set of learnable filters (also known as kernels) to the input

e Computes the convolution operation for each position of the kernel

e Produces a feature map from the kernels

The convolutional layer is a connection to a local region of the previous layer where weights are
shared across spatial positions. The convolutional layer starts by applying a collection of kernels
(or filters) W, to the input tensor of the image. Each kernel extracts a specific feature such as an
edge, corner, texture, or pattern. The kernels are typically applied to partial regions (e.g. 3x3 or
5x5) of the image rather than the whole image. During the application of the kernels, a convolution
operation is performed which involves sliding the filter across the input tensor and computing the
weights for each section of the input tensor. For each position (i, j) of the input tensor the output
feature map Y is calculated using the equation as found in Equation 4.2. The convolution process
results in a feature map that represents the presence of features from the applied kernels.

33



Kp—1Ky—1

Y(i,j, k) = Z Z X@i-S+mj-S+n:) Weimmn:)+ b
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(4.2)

Where K;, and K,, are the width and height of the kernel, S is the stride, and by, is the bias of the
kernel. The stride refers to the number of pixels the kernel shifts after each application. A stride of
1 means the kernel moves one pixel at a time, whereas a stride of 2 means the kernel skips every
other pixel. For kernels that lie on the edges of an image padding is used to control the spatial
dimensions of the output. Figure 4.3 shows the application of a 3x3 kernel when applied at the
edge of an image. [22]
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Figure 4.3: Application of a 3x3 filter to an image with no padding.
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Figure 4.4: Application of a 2x2 filter to an image with padding of 1.
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4.5 Activation Functions

Some architectures leave out the activation function where the process does not learn weights
or parameters and is assumed that activation immediately follows a convolutional layer. Each of
the activation functions are applied elementwise so the input and output dimensions are the same.
Activation functions introduce non-linearities to the model, enabling the model to learn more
complex patterns. Functions such as sigmoid, tanh, ReLU, and Leaky-ReL.U are commonly seen
activation functions in research papers. [20][21][23]

e Sigmoid [23]:

__ 43
)= 7o #3)
e Tanh [23]:
_ (e*—e™) (4.4)
= (e*+e™™)
e Rectified Linear Unit [23]:
f(x) = max(0,x) (4.5)
e Leaky ReLU [23]:
f(x) = max(ocx x, x), x= constant (4.6)

The AlexNet paper uses ReLU as an activation function for its hidden layers due to it being simpler
and more efficient than the sigmoid activation function by avoiding exponential terms.
Additionally, ReLU ensures that during backpropagation the gradient does not approach near zero
in the positive interval, making training the model more efficient by avoiding exponential
calculations. [23]

4.6 Pooling Layer

The pooling layer of a CNN is responsible for downsizing the spatial size of a feature. The
process of pooling is used to decrease the required computational power and extract dominant
features while training the model. Additionally, applying pooling to the input allows features to be
both rotationally and translationally invariant. The two predominate types of pooling are max
pooling and average pooling. Max pooling selects the pixels with the maximum value to add to
the output array. [20][23]
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Figure 4.5: Max pooling on a 2x2 image.

Average pooling calculates the average value within the receptive field to add to the output array.

Figure 4.6: Average pooling on a 2x2 image.

Pooling operations are typically applied with a stride equal to their window size to avoid
overlapping. [24]

4.7 Fully Connected Layer

The fully connected layer in a CNN architecture is used after convolutional and pooling layers
for the final classification of the neural networks. The fully connected layer is connected to every
neuron in the previous layer where each connection has its own weight. [20]

9 =o0,(Wx; + b) (4.7)

Where:

e 7y is the output prediction

e W is the weight matrix

e x; isthe input
b is the bias vector

e o, isthe activation function
Fully connected layers take the features extracted from the kernels applied in the convolutional
layers and learn features on a global scale. The Fully connected layers combine high-level features
from the feature maps and patterns to make final predictions. The output layer is the final layer of
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the network which produces the network's predictions. The structure of the output is task-specific,
common tasks for CNNs are:

e Classification: typically uses SoftMax activation function and uses one neuron per class

e Regression: typically uses a linear activation function and uses one neuron

e Object Detection: typically produces a set of coordinates and class probabilities
The output layer is the layer in which the error of the network’s predictions is calculated. Specific
loss functions for the output layer are chosen depending on the structure of the output layer (e.g.
classification, regression, etc). [25]

4.8 Forward Propagation

Forward Propagation is the first step in training a neural network where the data if passed
through the entire network generates a prediction. In a feedforward neural network, the data only
moves through the network in one direction: from input to output. As the data passes through the
network each neuron in the hidden layers calculates the weighted sum to its inputs and applies an
activation function before passing the data to the next layer. After the convolutional and pooling
layers are completed the final feature maps are flattened to a 1D vector before being passed to the
fully connected layers. The process of summing the weights and applying activation functions is
repeated until the output layer is reached, which then returns the predicted value. The predicted
value is then compared to the expected output value and the difference provides the error in the
network position. The most common equation for calculating the error/loss in a CNN is cross-
entropy loss for classification as seen in Equation 4.8. [23][26]

N M
L= —Z yijlog (pi;) (4.8)
i=1

l Jj=1

4.9 Backpropagation

Before training the neural network, the weights and biases are initialized randomly for each
neuron, then the training adjusts the weights and biases to create more accurate predictions.
Randomly initializing the weights and biases allows the network to learn different features during
training. The process of updating the weights and biases based on the error in the network'’s
predictions is known as backpropagation, which occurs after forward propagation. Once receiving
the error from the forward propagation step the error is used to calculate the gradient of error for
each weight and bias. Backpropagation involves the following steps:

e Compute the loss between the network predictions and labeled values

e Calculate the gradient of the loss with respect to the weights and biases

e Update the weights and biases of the network using an optimization algorithm (e.g.

Stochastic Gradient Descent, Batch Gradient Descent, etc) to minimize loss
The backpropagation step involves a learning rate (o) which is responsible for scaling the step so
the gradient can adjust the weights of the network. In practice, it is common to experiment with
different learning rates to find a balance between stability and convergence speed during training.
[23] After calculating the loss as seen in Section 4.8 the next step in backpropagation is calculating
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the gradient of the loss with respect to each parameter in the network. Equation 4.9 shows the error

attributed to the output and hidden layers. Equations 4.10 and 4.11 show the gradient descent steps
for the network where the weights are getting updated. [23][26]

8 = D Wudf (hy) (49)
AWU’ = a5]hxi (410)
Aqu = a6outputxi (4.11)

Where 5; is the error for each output unit K, &,,.,,. is the output error, x; us the input unit values,
and w;; is the weights between the hidden and input layers. After these values are calculated we
can then use it to update the weights in the model and improve our results during training using

gradient descent. Additional steps such as normalization and regularization can be taken to further
improve the performance of the model being trained.
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5. Experimental Setup and Validation

5.1 System Design

The navigation system implements a distributed architecture designed to ensure safety,
reliability, and real-time performance. The experiment aims to implement the navigation algorithm
developed in paper on real-world hardware and validate using simulation and flight test data. The
direct outcome of the experiments will be to test the accuracy and performance of the feature
matching, position estimation, and trajectory tracking of the navigation algorithm. The separation
of flight control, vision-processing, and ground control provides redundancy and fault isolation by
a distributed architecture. The navigation system consists of several distinct subsystems that
control the vehicle and process sensor inputs in real time. To increase the safety of operation the
drones, flight controls, and data handling are processed on different computers, and commands are
sent between the connected devices. The computer platform controlling the drone is a Holybro
pix32 Flight Controller (FC) which handles autopilot hardware and fuses all the drone hardware
onto a singular device. The Holybro Pix32 flight controller operates using PX4 v1.13.3 firmware,
providing essential flight control capabilities through a real-time operating system (NuttX). The
firmware manages critical flight operations including:

e Controls flight modes and transitions

e Handles multiple sensor inputs and calibration

e Implements control loops for stability

e Monitors system health and manages failsafe responses
The computer platform responsible for receiving and processing the camera data is a Raspberry Pi
RP4. The RP4 and FC are connected to a Ground Control Station (GCS) which allows the camera
stream from the RP4 to send navigation commands to the FC. [27][28]
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Figure 5.1: Simplified architecture between the drone subsystems.
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The GCS communicates with the FC using the messaging protocol MAVLink which follows
a publish-subscribe design pattern to send commands and receive data from the flight data.
MAVLink is responsible for handling communication and detecting communication errors (packet
drops, corruption, and packet authentication). The navigation system is integrated with MAVSDK
which is a collection of libraries that interface with MAVLink that enable tasks such as computer
vision, obstacle avoidance, and route planning. In the scope of the project MAVSDK handles
processing the images received from the camera, the output of the visual odometry system, and
transforming the output to commands that control the drone. [27] [28]

5.2 Hardware Setup

Table 5.1 shows the hardware used in the experimental setup and if it is used in Hardware-In-
The-Loop (HITL) simulation or Flight Hardware (FH). Please note that specific wiring harnessing
and mounting hardware (bolts, washers, nuts) are not included in the hardware list as are general
use hardware and not custom manufactured components.

Table 5.1: Hardware list used in flight hardware and HITL testing.

Unit Name Definition Use Case
Holybro Pix32 Flight Controller Hardware HITL and FH
Tarot EY690S Quadcopterhi;rra:jr\rllvea ?end mounting FH

Brushless DC Motor Multirotor propulsion actuator FH

40A ESC Motor speed controller FH

1255 12.5 Carbon Fiber Propellor (CW and CCW) FH
4400MAH LiPo LiPo Battery FH

1080p LogiTech Camera USB Connected Camera FH

RP4 Raspberry FF’)iI é&g?%e;rd compute FH

FrSky Taranis QX7 Radio RC Controller HITL and FH
FrSky X8R Radio Receiver HITL and FH
Holybro SIK V3 Telemetry Radio HITL and FH
3D Printed Enclosure Housing fo:)r?bsozrgir:rir;uigd FH

The USB camera interface runs at a frame rate of 30 HZ, image compression format of MJPEG,
and autoexposure for varied lighting conditions. The camera driver gains CPU priority on the RP4
hardware for real-time scheduling of vision tasks. Where vision processing tasks can be
computationally expensive, the payload and drone will use two isolated wiring harnesses. The
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payload and drone will use two batteries to ensure that each of the components receives adequate
power during flight operations.

The physical mounting of the camera and onboard computer is a 3D-printed enclosure that
positions the camera 90 degrees downward, so it is perpendicular to the ground. The 3D printed
enclosure does not feature any vibration dampening and the components are hard mounted to the
enclosure using bolts and nuts. The 3D-printed enclosure is then bolted onto mounting harnesses
which use rubber dampers to mate with the Tarot multirotor frame. The rubber dampers reduce the
induced vibration from the motors but have no gimbal or other anti-vibration electronics to smooth
the camera stream. The FC is soft mounted to the multirotor frame using gel dampers that reduce
the vibrations from the motors while keeping the IMU nearly in line with the drone's CoG.
Typically, the IMU is required to be fixed with a semi-rigid structure to the same reference frame
as the drone such that the measurements taken are representative of the drone’s actual position and
orientation (as opposed to being mounted to a gimbal).

5.3 Simulation Environment and Considerations

Gazebo, AirSim, and JIMAVSIM were all simulations considered for testing due to containing
interfaces with PX4 autopilot and HITL capabilities [29]. Originally, the simulators were also
considered for testing the navigation system by using the camera model built into the simulators.
However, the rendering rate of the simulators and overall reconstruction quality from the simulator
were inadequate for the visual odometry algorithms written for the navigation system. The primary
issue was missing pixels or dropped pixels which caused issues with the feature extraction and
matching algorithms. The missing and dropped pixels created a high deviation between the frames,
causing the algorithm to produce a high rate of false positive results. Correcting the pixel issues
would either require a better rendering engine or a camera model in the simulator. Both solutions
are out of the scope of the project and overall, are not critical to ensuring safe operation or mission
success during flight testing. The simulator evaluation was then based on the simulator’s ability to
mimic real-world communications, firmware, and interfaces as closely as possible. Gazebo
features a high-fidelity physics simulation and detailed environment modeling, but has camera
rendering limitations and requires a high computational overhead. AirSim features information-
dense APIs, detailed physics engines, and customizable sensor simulations, but suffers from frame
rate issues, complex configuration, and high computational overhead. JMAVSIM features
lightweight computational requirements, direct PX4 and MAVLink interfaces, and quick
rendering, but suffers from low-fidelity camera models, simple physics engines, and limited sensor
customization. With the advantages and limitations of each simulator considered, IMAVSIM was
chosen for HITL testing due to its direct interface with PX4 autopilot and quick rendering, at the
cost of image fidelity and physics simulation.

To test communications for safe flights the GCS was programmed to fly a set of waypoints
using velocity profiles (like the output of the navigation system) then the pilot will interrupt with
joystick input to the RC Radio. The expected outcome of the experiment is that the manual inputs
from the pilot will override the GCS commands and allow the pilot to regain control. The following
shows the software architecture for the HITL testing in the simulation environment:

JMAVSIM instance

PX4 SITL/HITL bridge
MAVLink router configuration
QGroundControl interface
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Then for the control systems:
e MAVSDK command generation
e RC input processing
e Failsafe monitoring
e State machine management

Figure 5.2 shows the JIMAVSIM Simulator running, and Figure 5.3 shows the QGroundControl
user interface with a waypoint mission loaded onto the vehicle.

JMAVSIm
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Figure 5.2: IMAVSIM Simulator connected to PX4 autopilot [30].
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Figure 5.3: QGroundControl user interface with waypoint mission loaded onto vehicle [31].

5.4 HITL Test Plan

Before testing the navigation system in flight, the system is tested in a simulated environment
to ensure that all communications are working correctly and minimize system errors. In practice
simulation testing will not weed out all problems as many communication issues arise because of
the testing environment and hardware limitations, however, simulation testing will serve as a
benchmark and ensure that the designed failsafe works as intended. An important test will be
ensuring that manual inputs override the autopilot commands. For example, if the autopilot
commands are sending the drone off-course manual inputs from the RC Radio must override
existing commands and allow the pilot to regain control over the drone. The simulator used in
testing is IMAVSIM which is a simple multirotor simulator that uses PX4 autopilot and MAVLink
to test takeoff, land, flight, and fail conditions for testing. JMAVSIM does not provide a camera
model with high enough fidelity to validate the visual odometry module, so the simulator is used
to validate control commands and fail conditions of the navigation module. JMAVSIM supports
both Software-In-The-Loop (SITL) and HITL for MAVLink connection testing on development
computers and PX4-specific firmware version on real hardware.
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Figure 5.4: SITL and HITL Simulation Environments

To validate that the proper failsafe is working as expected, the system is tested using
JMAVSIM, QGroundControl, pix32 FC, Telemetry Radio, RC Radio, and MAVSDK control
module for HITL. By sending the simulator and FC a simulated trajectory to fly using the
MAYVSDK control module designed for the navigation system, the HITL test checks to ensure all
the radio connections are established and can communicate with the GCS and autopilot with the
same hardware and firmware that will be used during flight testing. The HITL test will send
velocity commands to the drone using an MAVSDK module paired with the GCS, during the sent
command user input from the RC radio will be sent. The test will be considered passed if the user
input overrides the commands sent from the GCS, otherwise, the test will be considered failed and
flight logs will be reviewed to determine the communications between the submodules. The
following list shows the control hierarchy:

e RC Radio Manual Inputs (Highest Priority)

e Battery Critical Level

e Signal Loss

e Position Error Bounds

¢ Navigation System Inputs
In the control hierarchy, the RC Radio manual inputs are inputs from the pilot’s joystick
commands. The battery critical level is from the PX4 autopilot which monitors the drone’s battery
level. When the battery voltage is too low, the autopilot commands the drone to either land or
return to a specified location (waypoint) and then land. The signal loss control returns the drone to
the last known position when RX/TX communications are lost and can be programmed to either
hold altitude or land at the location. The position error bounds are set range limits that command
the drone to either hold altitude or return to an in-bound position. The position error bounds are
set before flight in QGroundControl to attempt to prevent the drone from flying to positions that
are out of range of communication signals, the bounds are hardware-specific, and estimates can be
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found in manufacturer datasheets. The last priority on the control hierarchy is the navigation
system developed in the paper as it is not developed with collision avoidance or position bounds,
S0 it needs other features to ensure that it is safely enabled. The GCS monitors both vehicle status
and sensor data, Table 5.2 shows the systems the GCS monitors. Performance metric will use flight
logs from the PX4 autopilot software to validate:

e Position tracking

e Attitude information

e Packet loss

e Link quality

e Command latency

e System Stability

Table 5.2: GCS system monitoring for vehicle status and sensor data.

Vehicle Status Sensor Data

Battery Voltage and Current Attitude and Heading
Motor Outputs (PWM) Position and Velocity
Flight Modes (manual, waypoint, VO-system) | Altitude

GPS Status RC Signal Strength

During testing with flight hardware, the HITL testing does not guarantee mission success, factors
such as signal obstruction, hardware degradation, and time synchronization will cause deviations
from the simulated environment and connections. Risk mitigation strategies will include preflight
checks, fail-safe verification, and system monitoring to ensure safe flight operations and mission
success. Starting with simple tests such as a takeoff and hover test will ensure that the drone is
operating as expected, and then boundary testing can be performed to assess the drone’s
capabilities. The following tests establish the drone’s communication performance and failsafe
reactions in a simulated environment.
Basic Controls Test:

e Arm Motors
Climb to set altitude
Hover for 30 seconds
Validate position hold
Land

e Disarm motors
Failsafe Verification Test:

e Armdrone
Climb to set altitude
Test return-to-home function
Move the drone to the desired position
Test position hold failsafe
Test land failsafe

e Disarm drone
Waypoint Failure Verification Test:
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Upload waypoint trajectory

Arm drone

Climb to set altitude

Move the drone to the desired position with waypoint control
Test manual command takeover

Resume waypoint trajectory

Force failsafe condition (turn off manual controller)
Automatically Return-to-Land

Disarm drone
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6. Results

For a set of 50 images taken at the test site, the feature extraction and matching algorithms
are tested to evaluate the performance of each algorithm. The performance metric is the total
number of features extracted, features matched, and the computation time using the following
feature extractors ORB, SIFT, and XFEAT. Figure 6.1 shows a sample image from the dataset
of the flying field where the navigation method was tested. Table 6.1 shows the results of the
feature extraction testing on the dataset. Table 6.2 shows the results of the feature matching on
the same dataset used in Table 6.2 against Figure 6.2 (constant) which is a Google Earth
Satellite View of the flying field (at approximately 100 meters scale).

Figure 6.1: Sample image taken from a test flight of flying field mid-waypoint trajectory at 61
meters AGL.

Table 6.1: Feature extraction time and keypoint comparison between methods on fixed dataset.

Feature Matching Method Average points per Image Processing Time (ms)
ORB 2959.88 104.053
SIFT 3000 178.338
XFEAT 3000 176.25
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% -
ield at approximately 100 meters AGL scale.

Table 6.2: Feature matching time and extraction comparison between methods on the fixed

dataset.
Feature Detection |Average Keypaints Aﬂﬁﬁgﬁgﬁi‘f " processing Time (m9
ORB 2959.88 9.24 155.16
SIFT 3000 65.36 510.414
XFEAT 3000 21.46 488.72

Feature matching using ORB, SIFT, and XFEAT feature detection methods show that ORB
processes the feature matching in the fastest time, but has the lowest number of detected and
matched keypoints per sample image. SIFT feature matching features the longest processing time
but produces the highest number of matched features with the sample dataset. Our results show
from features matching that for the best case results (SIFT features) roughly 2% of the detected
features are matched after performing outlier detection. Many of the rejected features that are
removed during outlier detection are in the grass or on non-painted sections of the runway.

The simulated environment for HITL testing allows for verification of system monitoring
and control authority of the drone by using the same flight firmware and communications as the
hardware. The results of the hover test show that all commands are received properly from the
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controller and the PX4 firmware can achieve 0.2-meter positional accuracy with GPS and track
yaw with a 2.0-degree accuracy. During the hover testing the results show drone can successfully
complete the maneuver without triggering any failsafe’s and there is now a benchmark for

system performance as shown in Figures 6.3 - 6.5.
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Figure 6.3: Altitude vs Time plot with GPS, barometer, and sensor fusion position for hover test.

0.4 }
~ Estimated
— Setpoint
—— Groundtruth
GPS (projected)
0.2 O Position Setpoints
0
=
£
-0.2
-0.4

-06 -0.4 -0.2 0 0.2 04 0.6
[m]
Figure 6.4: Position plot for hover test.
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Figure 6.5: Yaw vs Time plot for hover test.

The results of the waypoint test show that all commands are received properly from the
controller and the drone can fly a series of waypoints. The HITL simulation shows that the drone
can traverse similar distances to what is expected during the real-world flight testing without
triggering any of the failsafe conditions. This test ensures that during flight testing the expected
trajectory will not reach any out of bound conditions for the communications hardware and signal
will remain connected during flight operations. Results of the testing and transitions between flight

modes can be seen in Figures 6.6 - 6.8.
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Figure 6.6: Altitude vs Time plot with GPS, barometer, and sensor fusion for waypoint test.

50



—— Estimated
60

— Setpoint
=~ Groundtruth
_r_..—_-ee='==-'—'*""=';__ _‘I'II GPS (projected)
50 | \ Position Setpoints
| \
| |
| \
a0 1
{ |
J
|| - ____-;A-'—';'J
| — —
? 30 | el
|
|
20 ||
10 ||
|
|
0
40 -20 ¥] 20 40 B0
[m]
Figure 6.7: Position plot for waypoint test.
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Figure 6.8: Yaw vs Time for waypoint test.

The results of the manual takeover and Return to Land testing demonstrate the ability of
the drone to recover during hazardous scenarios. During the manual takeover the user can gain
control of the drone and interrupt its waypoint trajectory without delay. The result is a drop in
altitude and translation as the user inputs manual controls before stabilizing in hover. The results
can be seen in Figures 6.9 - 6.11 during the highlighted “Manual” stages of flight. The drone is
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then able to resume its waypoint trajectory during the second “Mission” stage of flight before the
signal is lost and the “Loiter” and “Return to Land” commands are sent to the drone. After the
signal is lost and the “Return to Land” command is engaged the drone returns to its home
position and safely lands at its takeoff altitude.
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Figure 6.9: Altitude vs Time for failure test.
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Figure 6.10: Position plot for failsafe test.
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Figure 6.11: Yaw vs Time for failsafe test.

The results of the visual-waypoint navigation show that the navigation algorithm can
estimate its global position to an average of 4.30-meter accuracy at an altitude of 25 meters with
a standard deviation of 2.16 meters. At an altitude of 50 meters the global position estimate
improves to an average of 2.81-meter accuracy with a standard deviation of 0.47 meters. The
results of the global estimation using visual waypoints can be seen in Table 6.3 and the true
position of the user specified visual waypoints can be seen in Figure 6.12.

Figure 6.12: Ideal trajet'ory produced fom user-defined waypoints.
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Figure 6.13: SIFT feature matching sample first waypoint between map and UAV camera stream
at 25 meters.
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Figure 6.15: SIFT feature matching the second waypoint between map and UAV camera tream
at 25 meters.
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Figure 6.17: SIFT feature matching of the third waypoint between map and UAV camera stream
at 25 meters.
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Figure 6.1: avigation algoritm position estimate and true state of the third waypoint.
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Table 6.3: Error in estimated vs true state of visual waypoints.

Waypoint| Altitude (m) X Positional (Er;;or Y Positional (Enr];or Euclidean Di?:ﬁ;lce
1 25 2.99 6.00 6.71
2 25 1.99 1.56 2.53
3 25 2.86 2.25 3.65
1 50 2.42 2.31 3.34
2 50 1.81 1.82 2.56
3 50 2.24 1.12 2.51

The VO algorithm can detect, track points, and provide state estimates in real-time.

Figure 6.19 shows the heading animation from the output rotation measurements from the

decomposed homography matrix converted to degrees for an intuitive display for users. Figure
6.20 shows the heading tracking over time for the commanded yaw, measured yaw (homography

matrix output), and the estimated yaw (EKF estimated output). Figure 6.20 shows that the

developed EKF can filter the measurement noise while maintaining accuracy to the commanded
yaw (ground truth). During sharp rotations the accuracy of the measurement begins to degrade
and gaps between the measured and commanded yaw begin to form and propagate.

Figure 6.19: Navigation algrithm running in real-time with heading tracking and trajectory
tracking with EKF.
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Figure 6.20: Plots of EKF corrections against commanded yaw and measured yaw during flight.
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7. Conclusion

The monocular VO navigation algorithm developed in this paper achieves a global position
accuracy of 4.30-meters without EKF corrections at an altitude of 25 meters and an accuracy of
2.81-meters at an altitude of 50 meters. The results at a 25-meter altitude show a higher standard
deviation and lower accuracy with respect to the 50-meter altitude. The higher altitude allows for
awider field of view from the lower altitude, allowing the feature matching to have more landscape
to compare against the satellite view of the preloaded map. Additionally, the higher altitude more
closely mimics the satellite’s view and resolution, allowing features to remain in frame of the
camera for a longer period between frames. The higher altitude allows for larger features to become
more prominent and for smaller features (such as grass patterns or shadows) to be filtered out as a
result of the resolution changing with altitude. Filtering out the smaller features increases the
algorithm's robustness against seasonal changes and lighting variations by providing a more
complete view of more distinct features (such as the runway). Testing the algorithm at higher
altitudes proves effective at increasing the accuracy of the global estimation by providing natural
filters and more closely representing the satellite view’s scale. Most satellite navigation
requirements for aircraft by the FAA are around 7.0-meter accuracy 95% anywhere on or near the
surface of the earth [32]. The results surpass the FAA’s satellite navigation requirement of 7.0-
meter accuracy (95% confidence) for aircraft near or on Earth’s surface. The algorithm
demonstrates the ability to use visual waypoints to localize itself but struggles to accurately track
its trajectory using VO. Trajectory tracking is an inherent issue with monocular visual odometry
due to scale ambiguity from the single camera. Common ways to resolve scale ambiguity in 3-
Dimennsions are Perspective-n-Point, integrating measurements from an IMU, or using stereo
vision. Implementing a hybrid solution is common industry practice for navigation and autonomy
needs.

The results of the navigation system highlight tradeoffs between hardware and performance.
For the feature extraction and matching algorithms, the XFEAT neural network developed by
Google features the largest number of detected features for the dataset and completes extraction
and matching faster than SIFT features. ORB features detect the least number of features with the
fastest detection and matching time which is the anticipated result from the literature review.
However, these results were achieved on a computer with a dedicated GPU and optimized drivers
for the hardware. Running the algorithms on the flight hardware (RP4) shows that the non-CNN
algorithms perform much faster and can consistently produce results. The flight hardware streams
the camera data at 30 FPS (like human optical perception rates), and the rate will serve as a
benchmark for visual processing operations. Running the XFEAT algorithm on the desired image
resolution and sizing resulted in degradation to the navigation algorithm FPS to less than 1 FPS
which does not allow for real-time use. Using ORB and SIFT algorithms degraded the navigation
algorithm to around 17 FPS on flight hardware. To support XFEAT for visual processing the image
dimensions or quality could be reduced to speed up processing time or a more powerful compute
platform could be used for flight hardware. Alternative hardware to GPUs could be Tensor
Processing Units (TPU) or Neural Processing Units (NPU) which greatly speed up computation
times for ML and DL tasks. However, the processing units or more powerful computer platforms
(such as the NVIDIA Orin series) will require larger voltage inputs, higher power draw, and larger
size which are all detrimental to the aircraft’s payload sizing and weight requirements. Therefore,
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due to cost, weight, and sizing for the flight hardware using SIFT features for feature detection
and matching was determined to be the most efficient path forward for the navigation algorithm.

The results of the feature matching experiment further validate the choice of using SIFT
features where SIFT features yield the highest average of matched features per image. It should be
noted that the test environment is sparse as the location is in the middle of a field with a runway.
The sample map from Google Earth was also recorded during a different season during testing
which caused issues in feature matching due to lighting and foliage coloring between seasons. The
runway provides some unique features with lettering, markings, and cracks in the asphalt, but the
grass areas provide no distinctly unique features. The grass often yields a high rate of false positive
detections, which, when performing outlier detection results in a reduced number of detected
features, as seen in Table 6.2. The feature sparse environment shows near worst-case scenario
testing and shows that the algorithm is robust to operating conditions. Due to FAA Part 107
regulations, the algorithm was not able to be tested in urban or suburban areas which would result
in more feature-dense environments (cars, houses, gardens, etc.). Testing using sample images
gathered from urban environments shows higher feature-matching averages, however, due to
testing restrictions, it was not used to develop the algorithm. Testing in urban environments would
also require some form of collision avoidance due to object density to ensure safe operations.

The simulator HITL testing shows that all communications work as intended and that the
control hierarchy is validated as defined in Section 5.0. The HITL testing shows that the user can
enter manual inputs and regain control of the aircraft during all phases of flight and that the return
to land features work as intended for the aircraft. The stock PX4 estimator shows some errors in
observing the yaw with roughly a 2.0-degree error over the flight test trajectories. The HITL
sensors were calibrated by PX4 documentation to ensure that the system would simulate the
hardware noise and bias of the sensors. Improved hardware and sensors could reduce the error in
the system, but for the sake of experiments the hardware and firmware have been characterized for
testing. Testing of the visual odometry algorithm will use the PX4 sensor fusion estimator as a
benchmark to compare against. During the manual takeover test switching from “Mission” to
“Manual” flight modes causes the drone to lose altitude while the user stabilizes the throttle to
regain altitude. The HITL testing shows realistic behavior of the altitude loss in GPS denied
environments using PX4 hardware due to position hold requiring a GPS lock.

While the VO algorithm faces challenges in positional trajectory tracking, the heading
performance when aided by an EKF demonstrates strong accuracy. The EKF maintains good
tracking of the measured states during the constant yaw commands and shows minimal drift during
steady-state periods. However, during rapid heading changes the measurement accuracy degrades
impacting the algorithm's performance which can be seen in Figure 6.20 with the estimated state
overshooting the measured state. To mitigate tracking errors, a viable solution would be to limit
the UAV’s yaw rate to create smaller angle changes in the drone’s maneuvers or perform additional
filter tuning to optimize performance. The adjustment improves estimation accuracy by aligning
the UAV’s behavior with the EKF’s small angle approximation. The EKF shows good smoothing,
settling time, and noise filtering while preserving the trend. Due to the sparsity of unique features
in the test site, the visual feature tracking is degraded during rotations which cause the
measurement discrepancies from the commanded states. To improve the feature tracking between
frames, investigating motion blur and lighting effects could help identify limitations in the system.
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Increasing the camera's frame rate, coupled with constraining the drone’s angular rates have the
potential to improve measurement accuracy through reducing motion blur and decreasing the
distance features move between frames. Implementing the constraint would improve the
performance of the system’s ability to track the heading during all flight maneuvers.

The work presented in the paper demonstrates the feasibility of using a monocular VO
algorithm for UAV navigation using low-cost hardware. The algorithm demonstrates the ability to
operate in GPS-denied environments using only camera data and a downloaded map. However,
further testing to evaluate edge cases, extreme environments, and hardware degradation to evaluate
reliability should be done to further characterize and evaluate the performance. Optimization of
the navigation algorithm could focus on hardware improvements and resolving scale ambiguity.
For example, testing hardware with a dedicated GPU and larger storage would allow for the
integration of CNNs into the algorithm and potentially produce more accurate or faster results. To
address the feature sparsity, custom-trained NNs could be developed to handle feature sparse
environments or seasonal changes to environments (currently limiting feature matching).
Additionally, incorporating inertial data through sensor fusion with IMU and camera data would
be the recommended approach to mitigate issues with scale ambiguity. A common method for
sensor fusion for visual and inertial data is Visual Inertial Odometry (V10) which compensates for
scale ambiguity by directly providing the system with inertial data. Adding multiple cameras to
enable stereo vision would be another method to resolve scale ambiguity. Using stereo vision
would directly allow for integration of collision avoidance algorithms, creating depth maps, and
enable 3D reconstruction capabilities. Extensions that would allow the algorithm to be
implemented in real-world applications would be to implement collision avoidance, develop
failure detection modes, and recovery systems (such as return to land using visual data rather than
GPS data). The above enhancements could improve the navigation algorithms’ performance and
increase their application scope for UAVS.
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Appendix A: Matlab Plotting Code

clc; close all; clear all;
Array=csvread('state_estimation.csv',1);
Array2=csvread('Untitled spreadsheet - state_estimation.csv',1);
time = Array(:,1);

measured_yaw = Array(:,7);

estimated yaw = Array(:,16);

commanded_yaw = Array2(:,20);

hold on;
plot(time,commanded_yaw, 'color', 'black','LineStyle’,"'--")
plot(time, measured yaw, 'LineStyle’','--")

plot(time,estimated yaw, 'LineStyle',"'--")

xlabel('Time (s)"')

xlim([0 150])

ylabel('Yaw (Degrees)')

title('Yaw Vs Time')

legend('Commanded Yaw', 'Measured Yaw', 'Estimated Yaw')
hold off;
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Appendix B: Code Access

https://github.com/cjmih/visual_waypoint_nav
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