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ABSTRACT
The Design of an Aerodynamic Control System for Launch Vehicles
Hieu G. Trinh

In recent years, the rise of space flights and rocket launches has skyrocketed as a
revolutionary movement. While the new space age is rapidly moving forward, advanced
technologies keep pushing into the future, and launch vehicles have barely changed in overall
design for decades despite being a pivotal part of any space launch. The majority of launch
vehicles acquire dynamic control authority from the rocket engines, gimbaled, and provide thrust
vectoring that allows boosters six degrees of freedom control capability. Most of the current
rocket engines are complicated and have heavy hydraulic control systems with limited actuator
angles This research aims to replace that with a control package that includes aerodynamic
control surfaces for the endo-atmospheric environment and RCS thrusters for exo-atmospheric
environment maneuverability and agile responses for the endo-atmospheric when needed.
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1. Introduction
1.1 Motivation

From the early dawn of mankind’s history, humans have always had the desire to voyage
and conquer the universe, reach the furthest testing all the boundaries of capabilities. Throughout
time, the greatest minds in each society have been collecting data, studying, and analyzing what
is far beyond the clouds. Despite all theories and efforts, it was only until the scientific
breakthroughs and engineering technological advancements; humankind was finally able to
achieve the earliest success during the space race of the Cold War between the world's two
superpowers at the time, the Soviets made Sputnik I — world first man-made satellite to orbit the
earth. The historical milestone created a ripple event from both nations leading to the first human
to be sent to the edge of space the U.S.S.R and safely returned, Yuri Gagarin in VVostok 1;
followed by a successful landing of mankind to the moon, Neil Armstrong from the United
States boarding Saturn V, the most powerful rocket booster ever flown by a human.

Fasting forward to go back to the modern day, the space age has certainly evolved from a
symbol of an armed race between two supernations that can only be designed and operated by
militaries and governments to a fruitful industry is a competing marking of privately owned
companies and while being operated by public government agencies. This opens many windows
of opportunities for all the brightest minds all over the globe, making space launches more
accessible with fewer constraints. The greatest example can be named American companies like
SpaceX and Blue Origin, civilian companies were founded for innovation and operate to push
the limit of imagination. In the vicinity of federal oversight and open market principles, the
burgeoning space age has unfolded and bloomed to the next level propelled by unrestricted
innovation and unprecedented engineering prowess. In turn, this has inspired many generations
of new engineers with the hope to see, work, and contribute to human progress in conquering
outer space. In the horizon of advancing new science, reducing the cost of design, manufacture,
and operation is also a key part of next-generation engineering. One way to do so is re-
engineering the launch vehicle, the costliest part of any space launch.

Figure 1-1 — SpaceX’s Falcon 9 rocket booster landed on a drone ship [1].

For many years, the space industry has revolved around gimbaled rocket boosters, where
the launch vehicle relies on the control authority of rocket engines. However, the process of



designing advanced engines for rocket boosters is a long and foremost, highly expensive process.
A more cost-efficient method can be implementing aerodynamic control surfaces to assist and
reduce to need of complex and expensive gimbaled rocket engines. Great examples can be
guided air-launched missiles such as the AIM-9X Sidewinder and the AIM-120 AMRAAM use
an aerodynamic maneuvering system instead of thrust vectors to maneuver at high accelerations
or stabilize trajectories at a lower cost and less complicated design.
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Figure 1-2 — L3 Harris/Aerojet Rocketdyne RS-25 rocket engine [2].

Figure 1-3 — U.S. Air Force and U.S. Navy AIM-9X Sidewinder missiles use vector-controlled
fins [3].

1.2 Literature Review

This section provides literature elaboration on the current state of in-used technologies,
addresses the concerns expressed previously, and the work-forward solution that can help solve
the problem.

The fundamental Newton's Second Law of Motion states that the force acting on an
object is equal to the mass of the object multiplied by its acceleration (F = ma). This law explains
how the velocity of an object changes when it is subjected to an external force. Essentially, it
shows that the greater the force applied to an object, the greater its acceleration, and that objects
with larger masses require more force to achieve the same acceleration as lighter objects. This
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fundamental principle is a cornerstone in the study of mechanics and helps explain the
understanding of the behavior of moving objects.

Classical control includes various methods of designing optimal control techniques such
as LQR control an d PID control. LQR control, or Linear Quadratic Regulator control, is an
advanced optimal control technique used in the design of dynamic systems to achieve the best
possible performance while minimizing a cost function. This cost function typically balances two
competing objectives: minimizing the error between the system's desired and actual state and
reducing the effort or energy required to control the system. LQR uses a state-space
representation of the system and solves for a control law that provides feedback by multiplying
the state vector by an optimal gain matrix. This results in a control input that drives the system
toward stability and optimal performance. LQR is particularly effective in systems where
precision and efficiency are critical, such as in aerospace, robotics, and modern control systems,
where it ensures smooth and robust performance even in the presence of disturbances or
uncertainties.

PID control, which stands for Proportional-Integral-Derivative control, is a widely used
feedback mechanism in control systems to maintain a desired output level by continuously
adjusting inputs. It works by calculating an error value as the difference between a desired
setpoint and the actual process variable, then applying a correction based on three terms:
proportional, integral, and derivative. The proportional term corrects the error based on its
current value, the integral term addresses the accumulation of past errors, and the derivative term
predicts future error trends. By tuning these three parameters, a PID controller can achieve
stable, precise, and responsive control over a system, making it invaluable in various applications
such as industrial automation, robotics, and process control.

There are many ways to dynamically control and stabilize airborne vehicles, from high-
lift devices like slats and flaps to provide additional stability, control and generate lift and low
altitude, to aerodynamic control surfaces like ailerons, elevators, and vertical stabilizers to
stabilize and control the dynamical state of the plant; and lastly to thrust vectoring and gimbaled
engines to provide additional control authority and maneuverability of vehicles. These different
methods are used comprehensively in different air platforms such as all three for advanced
fighter jets; high-lift devices and aerodynamics control surfaces for civilian aircraft. However,
when it comes to rocket boosters, the most popular method to be used is thrust vectoring through
gimbaled engines at the bottom of boosters to create control torque by redirecting the thrust
vector [11] and [12].
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Figure 1-4 — SpaceX’s Falcon 9 rocket booster and Merlin, gimbaled rocket engines [4].

A gimbaled rocket engine provides not only the lifting power but also the main
dynamical controller of the launch vehicle with thrust vector control capability. The subject of
review, the Falcon 9 rocket booster utilizes a Merlin rocket engine, gimbaled that can provide the
overall system with thrust vector control capability in six degrees of freedom (6-DOF). The
simulation model of the system can be built dynamically in MATLAB/Simulink including
propulsion, aerodynamics, environmental, weight, and thrust vector control [4]. To begin, it is
essential to start with a mathematical model representing the dynamic model of the booster to
validate the correct behaviors of the system.

The Falcon 9’s mathematical model consists of the modeling of subsystems such as
environment, controller, equation of motion, rocket, and result and display subsystems model in
Simulink. Firstly, the equations of motion can be used to represent all six degrees of freedom of
the overall system [4].

Fy

Y =" —-—wXx¥ (1.2)
by b
SI1=[Mp—oXIo—1d ] (1.2)
In which,

Vi : Velocity (translational) vector on the body axes.
w : Rotational rate vector (angular velocity).
Fp : Forces vector, acting on the body axes.
M, : Moments vector, acting on the body axes.
m : Mass.
| : Moment of Inertia tensor.

Elaborating the equation of motion further, angular velocity can be expressed by Euler
angles such as roll, pitch, and yaw rates for a state-space form conversion and rotating matrix for
better implementation into Simulink modeling.

Additional characteristics of the rocket booster are also required for better modeling of
the system, such as operation envelope and first-stage fuel mass flow rate, 273.3 kg/s with 165.6s
of burning time and second-stage mass flow rate, 273.3 kg/s and a total burn time of 392.5s [5].
Being the gimbaled rocket system, the control system consists of a thrust vector control model



and the launch vehicle’s attitude control system with thrust ignition and jettison schedules [4].
The model has been simplified with only longitudinal plane control, where there are only
translational motions in the X and Z axes, which provide moments of pitch and roll while the
yawing moment remains zero [10].

Since the dynamic state of the launch vehicle is non-linear coupled with time-varying
variables such as aerodynamic and inertial, linearization is a must to apply linear control
techniques [11]. Hence the presence of gain scheduling, and controller gains of different
linearized models at different phases of flight [13]. Control techniques such as Proportional-
Integrative-Derivative (PID) or pole placement are quite popular in real-world applications and
well recognized as seen in [4], [11], [12], and [14]. PID controller with its popularity also has
many downsides in the robustness of the model uncertainty and external disturbances rejection
[11]. However, a better degree of robustness and a (sub-)optimal trajectory tracking solution can
be ensured using optimal controllers in the linear domain such as the Linear Quadratic Regulator
(LQR) [11]. With its robustness, LQR can be used to address the attitude control problem or state
estimation and control [11], [15] and [16]

Furthermore, a more complex booster clustered launched vehicle with an additional
motor configured in a clustered booster system such as SpaceX’s Falcon Heavy or NASA’s
Space Launch System (SLS) operates similarly with a different dynamic model. The clustered
booster system dynamical model can be simplified into a simulation model of multi-beam with
the following assumptions [6]:

- Connection points between core and side boosters are rigid connections.

- No elastic deformation occurs at the connection point of the booster.

- Elastic deformation of core and boosters is small and negligible.

- Torsional deformation can be ignored.

- The inertia force caused by the rotation of the earth can be ignored.

- The change of the center of mass has no correlation with the elastic deformation.

Figure 1-5 — Multi-beam model of clustered booster launch system [6].

It can be easily overlooked that a rocket booster and its internal liquid fuel have a strong
coupled relationship with each other, where changes in the dynamic of the booster would cause
its liquid fuel to become dynamic; which further causes more vibration that would be picked up
by the sensor as the overall model of the system being updated, which in turn provides
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compensation to the system and furthermore changes the dynamical state of the liquid fuel and
the cycle repeats. Beyond, while in motion, the dynamic state of the system costs liquid
propellants to become dynamic, together coupled as a spring-mass system or a combined spring-
damper-mass system [6], [7] and [8].

Removing the gimbaled nozzle of the engine limits the ability to provide attitude control
authority. At lower altitudes with much denser air, any Aerodynamic Maneuvering System
(AMS) such as fins, or control surfaces can sufficiently control. However, the higher the booster
travels, the more insufficient AMS becomes, with the extension to the exo-atmospheric
environment. Therefore, an attitude determination control system (ADCS) often complements
the AMS with quick and short pulses that provide attitude control capabilities. Examples include
the Russian K-300P Bastion-P missile and the American Patriot missile both use an attitude
control system to adjust the initial heading angle and proper flight attitude. The two missile
systems use multiple fast, single-pulse solid rocket motors for proper attitude control within a
short period of time. On the other hand, spacecraft and satellites also use the method with a slight
difference in using liquid fuel with mini thrusters instead of single-pulse solid rocket engines for
various reasons such as controllability. Therefore, it would be comprehensive to review the
differences in the design of an ADCS to see the pros and cons of solid rocket engines or liquid
propellants.

Figure 1-6 — The Russian K-300P Bastion P missile is launched vertically, and an attitude control
system is used to adjust the heading angle [23].



Figure 1-7 — The American Lockheed Martin Patriot PAC-3 missile engages an attitude control
system to adjust the heading angle after launch [24].

Besides using RCS for exo-atmospheric conditions, there is another method to be utilized
for active control, which is more popular within spacecraft and satellites, the reaction wheels.
The reaction wheel’s highly reactive nature in addition to the ability to output continuous
feedback control makes this method very effective for the operational envelopes of spacecraft.
Reaction wheels would create torques internally within the spacecraft, offering the ability to
control the attitude contributions such as roll, pitch, and yaw via momentum from reaction
wheels.

Table 1-1 — Reaction Control System (RCS) and Attitude Control Thrusters [20]

Company Model Isp (s) Thrustrange | Mass (kg)
(N)
Marotta CGMT N/A 0.1-10N 0.60

Aerojet Rocketdyne | MR-401 184 — 180 0.07-0.09 0.60

Aerojet Rocketdyne | MR-103G | 224 — 202 0.19-1.13 0.33

Aerojet Rocketdyne | MR-103J 229 — 219 0.19-1.13 0.37

Aerojet Rocketdyne | MR-111G | 229 — 219 1.8-49 0.37

Aerojet Rocketdyne | MR-106L | 235 — 228 4-10 0.59




Aerojet Rocketdyne | MR-107T | 225 — 222 54 — 125 1.01
Aerojet Rocketdyne | MR-107S | 236 — 225 85 — 360 1.01
Aerojet Rocketdyne | MR-107U | 229 — 223 182 — 307 1.38
Aerojet Rocketdyne | MR-107V | 229 — 223 67 — 220 1.01
Aerojet Rocketdyne | MR-104H | 237 — 22 201 —554.2 2.40
Aerojet Rocketdyne | MR-104] 223 — 215 440 - 614 6.44
Aerojet Rocketdyne | MR-80B 225 — 200 313630 168

Spacecraft attitude determination and control systems are critical for the accurate
orientation of satellites and other space vehicles. The latest progress in attitude determination has
benefited from advances in computer methods and sensor technology. The accuracy of attitude
estimates has been considerably enhanced by combining sophisticated filtering techniques like
Extended Kalman Filters (EKF) with high-precision star trackers. The research demonstrates
how these integrated systems improve attitude determination resilience, particularly in low Earth
orbit (LEO) conditions where conventional techniques are unable to withstand increasing
perturbations [17].

1.3  Project Proposal

The objective of this project is to study and develop a less complicated, cost-effective
control system for launch vehicles to avoid the complexity of thrust vector control of gimbaled
rocket engines using a control package that includes an aerodynamic control system (ACS) using
control surfaces for endo-atmospheric control authority and a reaction control system (RCS)
using small thruster for endo and exo-atmospheric control capability. This system utilizes the
existing technologies that eliminate complicated rocket motors that can have actuator limits, low
maneuverability, and heavy hydraulic systems. This would provide an alternative option to
designing a control package for launch vehicles while providing an opportunity to develop a
more powerful engine with longer burn time from the weight reduced by heavy actuators.

1.4 Methodology

To reach the established proposal, a performance analysis of an existing gimbaled launch
vehicle will need to be done. Then, the study of current component space-grade components is
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needed to build a simulation model of proposing a control package for launch vehicles before
performing design, tune, and performance analysis to justify the proposed method. The process
can be broken into parts:

Part I: Model, simulate, and analyze the performance of an existing gimbaled rocket booster.

- Select a current in-used launch vehicle with a gimbaled engine control package.

- Create assumptions and develop a nonlinear model from equations of motion and
dynamics of the system.

- Linearize the model at different operating environments and constraints.

- Develop a model to be used in MATLAB and Simulink for six degrees of freedom
simulation.

- Tune and review the performance of the baseline model.

Part Il: Provide a trade study on the components, characteristics and performance to the
proposed package.
- Perform trade study on RCS thrusters and ACS control surfaces.

- Select components for the new proposed control package based on performance, cost,
and weight.

Part I11: Create the model for the new control package of the system.

- Develop a dynamic model of the new system from the nonlinear equations.

- Linearize the simulation model with similar operating envelopes with the current, in-
used model.

- In MATLAB and Simulink, develop a simulation model.

- Tune to match the performance of the baseline model.

- Perform final analysis on two systems, new and baseline judging on cost,
performance ...

- Conclusion and plan for future research.



2. Simple Inverted Pendulum

The inverted pendulum problem in Aerospace Engineering is one of the most
recognizable problems in designing control systems, a classical challenge where the fundamental
goal is to stabilize a pendulum that is connected to a dynamic platform, such as an airframe or
spacecraft, in an upright position similar to a rocket booster. In this system, the pendulum would
naturally want to return to its stable equilibrium position, which is at the angle of 270° or
vertically downward position, while being actively controlled to stay in its unstable equilibrium
position of 90° or upright and remain balanced despite the external and internal disturbances. The
inverter pendulum problem is critical in the design of control systems for various aerospace
applications, such as spacecraft attitude control or landing gear stabilization. Due to the nature of
aerospace environments being always dynamic, the control systems must be designed to
dynamically compensate for changing forces or torques applied onto the pendulum at any
location to counteract the motion of the pendulum returning to its stable equilibrium position.
This problem exemplifies the complex dynamics and real-time control challenges faced in
Aerospace Engineering, where maintaining stability in an inherently unstable system is crucial
for mission success. Therefore, it’s best to analyze and design simpler control systems from a
simpler model with much fewer external disturbances. There will be two different pendulum
models, one with control torque authorities coming from the base, much similar to a gimbal
rocket booster, with thrust vector control to direct force for attitude determination ability. On the
other hand, the next model will be based on a rocket booster with no gimballed rocket engine,
which is replaced with mini thrusters placed forward into the booster that can provide similar
attitude control authority.

The problem of designing a control system for a rocket booster can be simplified into a
model of a simple inverted pendulum, where the control authority provided to keep the
pendulum is the pivot point, which outputs attitude control just like what a gimbaled rocket can
do for a rocket booster. The thrust vector control ability will provide the direct torque at the base
of the rocket booster, or in this case, an inverted pendulum.

......... ... .’. n

N e

Figure 2-1 — Simplified inverted pendulum.

To begin with the problem, preliminary parameters such as assumptions are needed to
avoid any possible ambiguity while proceeding forward. Since a simple inverted pendulum,
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assuming a constant point mass of m [kg] placed on top of the pendulum. The pendulum rod that
connected the point mass to the base is massless and has a constant length of L [m] within a
frictionless environment (no friction between rod and base). The problem is considered a planar
pendulum problem with a constant gravity environment, excluding air friction, drag, or
resistance.

Next, analyzing the dynamic state of the system is required by deriving the governing
equation of motion for the given inverted pendulum system. Since there is a torque T [Nm]
applied to the pendulum rod at the base to provide attitude control authority, a force F [N] is
applied at the origin, distance L away from mass m while under the influence of gravity with
gravitational acceleration g [m/s?] as follows:

Ty =No (1)® x Fy (2.1)

And,
NoyQo =g (2.2)

Hence continuing the Golden Rule of vector differentiation as:

Alx =B%x+ 16 BExx 2.3)
dt dt

Applying the Golden Rule in (2.3) into (2.2) to acquire the acceleration factor of the
equation of motion as:

N d
ovQ =N _ NopQo
dt

N — -
N — orQo = Q J— NorQo + N @ Qx NoprQo
dt dt

d | da . .
N Tore=0Q (L +(079 x (L9
dt dt 7 z r

d d . . .
N Tore=0 (-L9 +(679 x (L9
dt dt r z r

d .
NopQo = Q—Noreo = 16 (2.4)

Following the rule of vector differentiation of (2.3) applied to (2.4), the acceleration
component can be found as:

NogQo = N __ Nop, Qo
d d at .
N NoyQ=0Q (LOY+Nwx(LHY
dt dt °? 0

11



d . :
N NoyQ=LGg¢ (079 x (LEg
g z ]

dt
NogQo = LOg — LG ¥g (2.5)
In addition, at any angle 8, the point mass would constantly be under the influence of

gravitation force while encountering tension force against the weight of the mass and the applied
force as the input from the torque motor at the base. In which, the forces are as follows:

F@=Fr(-q) + mgcos6(q) +F4(g) +mgsind(-ge) (2.6)

Thus,
F?=(mgcos —Fr)g + (F4—mgsinf)g (2.7)

Therefore, apply Newton’s 2™ Law of Motion to (2.8) as:
F? = mNoqQo (2.8)
In"g, the centripetal forces and centripetal acceleration as:
mgcos6 — Fr = — mL6? (2.9)
And the governing equation of motion in"g:
F, —mgsing = mL8 (2.10)
Additional analysis of (2.10) for:
(L) - gsinH =46
mL 4 L
.. g ] 1
0 +ZSln9 = (W)FA L
.. g 1
0 + 1 sinb = (—)Ta (2.11)
mL
Hence if assign 6 to x1, 6 to x2 and T to u, where X1 0
y ) =)

the control input vector, thus the nonlinear pendulum dynamical system linearized with small
angle approximation as:

is the state vector, and vector u is

sinx = x (2.12)

Hence, the system can be represented as:

12



¢ My (2.13)
Xy = —_Xl +— mLZ

And the open-loop Ilnearlzed state-space system of the simple inverted pendulum about
its unstable equilibrium pomt[ ] = [n] Is:
0

X2
xl 0 1 x 0
L ) =12 ol 1+ [ L] (2.14)
mL2

Meanwhile, state and output equations can be expressed as:

x =Ax + Bu
- 2.15
{y=Cx+Du ( )

Where A is the state matrix, BOis t{1e input naatrix, C is the output matrix and D is the

feedforward matrix. Therefore, A=j§_ ], B=[_1],C
L mlL2

output is the attitude angle 6, and no feedforward matrix. From (2.13), the transfer function of

the open-loop system can be done via Lagrange transform on both sides of the equal sign as:

=[1 0] since the only interested

1

L) = L[~ s u(s)]

LUr

520(s) = ‘29(5) + _u(s)

L mL2
0 m_2
= (216)
L

First, the closed-loop model is designed using an LQR controller with controller gain K,
state matrix A, input matrix B, and controller matrices Q, and R. Since there is only one input of
keeping the pendulum put right at & = 0° and 2 state attitude angle and angle rate; R and Q are
the diagonals of 1x1 and 2x2 matrices. A closed-loop simulation model can be created using an
LQR controller to reject external disturbances as follows:
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E

Theta

Figure 2-2 — Closed-loop Simulink model of simple inverted pendulum with controller LQR for
external disturbance rejection.

As the system shown in Figure 2-2, it can be seen in Figure 2-3 that due to a high-cost
function J, where J is:

] = fooo(xTQx + uTRu)dt (2.17)

The response of the system is fairly quick with the cost of Q and R.

1 2 4 5 7 8 10

Figure 2-3 — Attitude angle ¢ in response to disturbance using the LQR controller
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Figure 2-4 — Closed-loop Simulink model of simple inverted pendulum with PID controller for
external disturbance.
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Figure 2-6 — Attitude angle ¢ in response to disturbance using the LQR controller

Due to the blend of PID, it can be seen that even with low P value, the system still
overshoots the reference signal by quite a margin. However, with the blend of 1 and D controller
gain, it can be seen that the system is trying to correct steady-state error while quickly damp out
the oscillation.
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3. Inverted Pendulum on Rolling Cart

In the same process as for the simple inverted pendulum model, the inverted pendulum
on the cart has a similar setup with the exception of having a controllable cart that can move in a
2-dimensional plane and acts as a torque motor to provide attitude control to allow the pendulum
to stay upright instead of a fixed base pendulum with a torque motor at base. This simulation
model offers higher levels of fidelity than the previous one. For this system, the control input is a
force modeling thrust vectoring that moves the cart horizontally allowing the outputs of
the angular position of the pendulum, modeling pitch/yaw angle and horizontal position of the
cart modeling 3 degrees of freedom of the rocket.

R R ORSOOR

Figure 3-1 The inverted pendulum on a cart

In the same fashion, in order to analyze the simulation model and turn its control systems,
assumptions must be made to allow the simulation model to operate within the intended
boundaries. Despite being a higher level of fidelity model than the simple inverted pendulum,
this is still a quite simplified model, with both moving parts in the cart and the inverted are
uniform point mass objects including a point mass sphere of mass m [kg] placing on top of a
massless pendulum rod, with length L [m] that stands on a mass cart M [kg] which can move
horizontally . At the same time, all objects are bound within a frictionless environment, with no
friction between the pendulum rod and the cart, between the wheels and the cart’s mainframe, or
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the wheels with the surface. The problem is also considered a planar pendulum problem with a
constant gravity environment, excluding air friction, drag, or resistance.

Next, analyzing the dynamic state of the system is required by deriving the governing
equations of motion for the given inverted pendulum system. The attitude position of the
pendulum @ is controlled by providing an applied force F [N] onto the cart on the horizontal plan
x [m] while under the influence of gravity with gravitational acceleration g [m/s?].

Beginning with the cart, analyzing the free-body diagram of the cart for the combination
of forces, the equation of motion is as follows:

FT + F“CR+F;+F“Cg=Ma (3.1)

Where WR is the reaction force from the pendulum onto the cart, ?’TA is the applied force
onto the cart to assist attitude control for the pendulum, Fy is the normal force of the ground

onto the cartand F'Y, is the gravitational force applied to the cart while x is the
acceleration of the cart. However, only forces in the x-direction would have a meaningful
impact on the cart’s acceleration. In addition, to make it easier moving forward, the

reaction ' will be written as FC, and F¢, when broken down into components for the x-axis

and the y-axis, hence, (3.1) is rewritten to isolate the forces in the x-plane of the system as
follows:

T+ C=Ma (3.2)
Or as,

F¢4 + FC, = MX (3.3)
Where x represents the acceleration the cart would experience under the combined

forces in the x-direction. Next, the second element of the system, summing up the net forces
applying to the inverted pendulum as follows:

Noticing in (3.2) and (3.4), the cart and the pendulum would be experiencing different
accelerations, a and ‘ap. Now in a similar fashion, isolating the y-direction and x-direction
forces as follows:
FP), — FPy = myp (3.5

And,

FP, = mxp (3.6)
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Where 75"PR is the reaction force of the cart onto the pendulum. Similarto , §, WR will
also be broken down into F?, while referring to the x component of the reaction force from
the cart onto the pendulum F?,, while referencing the y component of the reaction force. Now
to unify (3.5) and (3.6), the acceleration the pendulum would experience can be addressed in an
equation of the cart’s acceleration as follows:

X, = x + Lsin® (3.7)

Taking the derivative of (3.7) with respect to time:

Xp =X+ LOcosO (3.8)

To achieve the pendulum’s acceleration, take the derivative of (3.8) with respect to time
as follows:

xp =%+ LOcosf — LO? sind (3.9)
In a similar fashion, y,, can be derived as:
Yp = Lcos6 (3.10)
Taking the derivative of (3.10) with respect to time:
yp = —LOsin6 (3.11)

To achieve the pendulum’s acceleration, take the derivative of (3.8) with respect to time
as follows:

yp = —L@sin + L62 cos (3.12)
Now substitute (3.9) and into (3.6) for:
FP, = m% + mLOcos® — mL6? sind (3.13)
According to Newton’s third law of motion, when two objects interact, they apply forces
of equal magnitude and opposite directions to each other. Hence, the reaction forces of the cart
and the pendulum onto each other are equal:
FP, = —FC, (3.14)

Combining (3.11) and (3.3) results in the first equation of motion for the overall system
of an inverted pendulum on a cart as follows:

F¢y —mxX —mL6fcosO + mL6? sinf = M%
F¢y = MX + mx + mLfcos6 — mL6O? sind
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FC4 = (M + m)X + mL(6cos6 — 62 sind) (3.15)

Due to this being non-linearized, the dynamical system can be linearized with small angle
approximation in (2.15) with the assumption that controlled angle 8 would only stay in a small
neighborhood of around Q° as that is the goal of the system, is to keep the pendulum vertically
upright at an angle of 90°.

cosx = 1 (3.16)
And,
62 ~ 0 (3.17)

Hence if assign F¢4 to u as the control input vector, and the first 3 stages of the state

0

vector is [g]. Thus, the nonlinear pendulum dynamical system linearized with small angle
X

approximation as:

(M +m)x +mL6 =u (3.18)
Let’s take a look at the forces applied on the pendulum in the y-direction from (3.5) as

the pendulum is under the influence of the reaction force from the cart and the gravitational force
and substitute the y-direction acceleration acquired from (3.12) as follows:

FP), — FPy = m(—L0Osind + L62 cos6)
FP, —mg = m(—Lfsinf + L62 cos6) (3.19)
As specified before, FP, and FP,, are the horizontal and vertical components of the

reaction applied on the pendulum from the rolling cart. Therefore, they can be derived as the
function of the reaction force as follows:

FPi = FPpsind (3.20)
With the magnitude of:

FP, = |F Pg|sing (3.21)
And,

FP,j = FP zcosf (3.22)
Magnitude of:
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FP, = |F Pg|cosf (3.23)

Now, substitute F?, acquired from (3.21) into (3.11), and FP,, acquired from (3.23) into
(3.13) to get:

|ﬁR|sin9 =m# + mLOcosd — mLO? sind (3.22)
And,
|AI~:7’R| cosf —mg = m(—L6Osinb — L62 cos6) (3.23)
Now, multiply cos8 to (3.22) and siné to (3.23) for the next step:

|F}’R|sin9c059 = mxXcos6 + mLb(cos0)? — mLO? sinfBcos6 (3.24)

And,
|ﬁR| cosfsinf —mgsinf = —mL6? cosOsinf — mLO(sinf)?2 (3.25)

Subtract (3.25) from (3.24) for the left-hand side:
|F;’R| sinfcosO — |ﬁR | cosOsin@ + mgsinf
mgsin (3.26)
The right-hand side of the equation is:
mxcos@ + mLO(cosB)? — mLO? sinfcost + mLOZ cosOsind + mLA(sinf)?

mxcos@ + mL@ (3.27)

Therefore, as the result of combining the left-hand side and the right-hand side of the
equation as follows:

mgsinf = mxcos0 + mL (3.28)

Similarly, linearized (3.28) in the same process with (2.13), (3.16), and (3.17) as in (3.18)
to result:

mgl = mx + mL@ (3.29)
Or,

go =% +L6 (3.30)
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Now, with (3.30), the second governing equation of motion for the system is introduced.
However, it must be pointed out that, (3.30) is only qualified as the second governing equation
for the system due to the fact that this simulation model uses a uniform point mass sphere placed
on top of a massless inverted pendulum. Hence all the mass is not uniformly distributed but is
concentrated in the top end of the pendulum. Therefore, it is possible to ignore the moment of
inertia that then would possibly exist on a uniformly distributed pendulum rod rotating about it
fixed point at the lower end of the rod. A scenario where the pendulum is a uniformly distributed
rod would also be derived below to show the comparison between two different condition setups
for the differences.

Now the overall system can be represented as:

(M +m)x +mLf =u

¢ g0 =x +1L0

(3.31)

However, (3.31) contains two equations that are coupled together. Therefore, it would be
necessary to further decouple them, and now return to (3.29), before simplifying mass m [kg] out

of the equation to achieve (3.30), by isolating mL# in (3.18) and (3.29) for:

mLO =u— (M + m)x
mLf = mx —mgfo

({ (3.32)

Therefore, (3.32) would result in the first decoupled governing equation of motion for the
system as:

u—(M+m)x = mx —mg6
Mx = u —mg0 (3.33)

In a similar fashion to (3.33), to decouple (3.18), isolating the term x in (3.30) to create a
similar equation as:

X=1L16—go (3.34)

Now substituting (3.34) into (3.18) to acquire the other decoupled governing equation of
motion of the system as follows:

(M +m)(LE — g6) + mLb =u

mL = (M +m)gb —u (3.35)
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Hence, the simulation model of the system with the second order, linearized and
decoupled is as follows:

{ MxX=-mgb+u

(3.36)
mLO = M+m g6 —u
Isolating X and & for:
i=""0+"u (3.37)
{ M M .
g = (M+m)gg _iu
mL mL

Let x be x1, x¥ be x; or xq, then X would be x,, and 6 be x3, 0 be x4 or x3, then 8
X1 X

X2 X . . .
would be %, Where [Xg] = [g] is the state vector, and vector u is the control input vector.

X4 0
Therefore, the open-loop linearized state-space system of the inverted pendulum about its
unstable equilibrium point is:

%1 0100 0
JEZ ﬂ le 1
[1= 00 7 0 [+ m (3.38)
X3 0 0 0 1 X3 0
¥ (m+M)g X4 1
00— 9 [ ]
Meanwhile, state and output equations can be expressed as:

y=Cx +Du

Where A is the state matrix, B is the input matrix, C is the output matrix and D is the

—mg )
feedforward matrix. Therefore, A = 00 =% o ,B= ™M C=[0 0 1 0],since
0 0 0. 1 0
(m+M)g 0 1
[0 0 — ] [T ]

the only interested output is the attitude angle y = 6, and no feedforward matrix. From (3.37), the
transfer function of the open-loop system can be done via the Lagrange transform on both sides
of the equal sign as:

MM L s
mL mL

L) =L[
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s20(s) = (M +m)g 6(s) — iu(s)
nkL

mL

) _ T (3.40)
u(s) SZ—M '

mL

Checking the controllability of the system with the controllability matrix Co can be
defined as:

Co=[B AB A2B .. A(-DB] (3.41)

Where A is still the state matrix while B is still the input matrix, and “n” is the number of
states, in this particular system, n is 4. Therefore, the controllability matrix can be achieved from

(3.41) as follows:

Co=[B AB A?B A3B] (3.41)
Calculating the components of the controllability matrix, AB:
0 1 0 0 0 —mg
i TS
ap= 00 -~ 0 m _; 0, (3.42)
0 0 0 1 0 0
(m+M)g 0. — 1
[0 mlL |- 0
Calculating A2B:
01 0 0 2 0 0
-9 1 9
ap= 00 7~ 0 Moo_ ML (3.43)
0 0 0 1 0 0
0 (m+M)g 1 —(m+M)g
[ mL S e B o
Calculating A3B:
01 0 o0 3 0 9
g 1 ML
8B = 0 0 = 0 i 0 (3.44)
0 0 0 1 0 —(m+M)g
(m+M)g 0 1 m
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o ™ o <L
M ML
L0 2 o
Co = M ML (3.45)
—(m+M)g
0 0 (mL)?
1.0 —(m+M)g
[ m (mL)? ]

Now, to determine whether the system is fully controllable or not via taking the Rank of
the controllability matrix, resulting in:

Rank(Co) = 4 (3.46)

The system is fully controllable as it is full rank. In addition, this can also be determined
by observing the presence of input control vector u in both governing equations of motion of the
system.

To simulate the model, parameters need to be assigned for the cart’s mass. M = 3 [kg],
the mass of the sphere located on top of the inverted pendulum, m = 1 [kg], the length of the
massless inverted pendulum, L = 1 [m], while gravitational acceleration is g = 9.81 [kg/s?]. For

X
initializing the system with the initial conditions of x = [XC}] = X _ [ 9 ], where the cart
i x; Lel Too1
X4 [4] 0

would start at the origin, with no velocity, while the pendulum is set to be slightly off-set to the
equilibrium of 0-degree angle and has no angular velocity.

Now, with the initial position given as the starting state of the system, the desired state of
X1 X 1
= 1*271= % = [, where the final position is an arbitrary location
the system can be [xg] (o] [0]’ p y
X4 (4] 0

away from the origin, in this case, is 1, while not translational and angular velocity residue is
wanted and the inverted pendulum to stay fully upward at an angle 6 = 0.
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Figure 3-2 The system's Closed-Loop Response with 84 = 0.1

1.2

States

0 500 1000 1500 2000 2500 3000
Time [s]

Figure 3-3 The system's Closed-Loop Response with 84 = -0.1

Notice that the time step in the simulation is at 0.001, hence the simulation time reflected
in the result is taking almost 3000 steps or 30 seconds to reach the reference or desired states of
the system. It is worth noticing that despite having a relatively small R-value for the cost
function J, the emphasis is placed heavily on the error of x3 and x4, which in this case are 8 and

6 from matrix Q (see Appendix A), where R would be the cost to the input from the hardware
while Q is the “cost” accounting for the system’s states and how each state is weighted. The cost
function of a Linear Quadratic Regulator can be calculated as:
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] = fooo(xTQx + uTRu)dt (3.47)

Via data analysis, it can be seen that in case 1 64 = 0.1, Figure 3-2, the cart accelerates
quickly in the positive direction to cause an impulse to the pendulum via reaction force between
the cart and the inverted pendulum which causes the cart to massively overshoot its desired
steady-state position. On the other hand, where 64 = -0.1, like in Figure 3-3, the system started
moving left in the negative direction initially, which is the wrong direction as the reference
position is X = 1. This behavior is seen by the system only caused by the initial position of the
pendulum, which reflects that the overall system is a non-minimum phase. This is similar to
putting a thermostat into a hot cup of water, the reading would go down for a quick moment
before going up.

However, in many cases, there would be disturbances and noise within the system due to
multiple factors such as the lack of sensors to measure many states or any possible noisy sensor
measurements. Now, these factors can be mitigated via filtering, a prime example can be the
Kalman filter, the most important and popular state estimator of uncertain information of a
dynamical system based on the knowledge of any possible disturbances, after developing a
working Kalman filter with a Linear Quadratic Regulator for better control of an unstable
inverted pendulum on a cart.

Firstly, in order to acknowledge any states of the system, there must be sensors, and the
system must be observable. To check whether the system is fully observable, an observable
matrix can be calculated as:

C
CA
Ob= CA? (3.48)
[cA®-D]
0 1 0 O
g
Where A is still the state matrix, , A= 0 . OO TO 10 while C is still the output
0 0 mtMg 0
[ mL ]

matrix, C=[0 0 1 0], and “n” is the number of states, in this particular system, n is 4.
Therefore, the controllability matrix can be achieved from (3.48) as follows:

ca
=[]

CA?

CA3

Ob (3.49)

Calculating the components of the observability matrix, CA:
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9
CA=[0 0 1 0] 00 7 0 —10 0 0 1] (3.50)
00 0 1
0 0 m+tMg 0
[ mL ]

Calculating A2B:

caz=[0 0 10 00 7 O —[0 o Mg 0] (3.51)
0 0 O mL
0 0 mtMg 0
[ mL ]
Calculating A3B:
0O 1 0 0 3
- M)
cas=[0 0 10 00 5 0 =p o0 ™ (3:52)
0 0 0 1 mL
0 0 mtMg 0
[ mL ]
0 01 O
0 0 0 1
ob= 0o o MM (3.53)
mL
(m+M)g
[0 0 0 |

Now, to determine whether the system is fully controllable or not via taking the Rank of
the observability matrix, resulting in:

Rank(0b) = 2 (3.54)

The system does not have full rank; therefore, it is not fully observable. Which is the case
due to
However, if matrix C=[1 0 0 0] instead, the rank of the observability matrix, Rank(Ob)
would be 4, the system would be fully observable as it is full rank. This is the case due to sensor
placement, where if the sensor is used to measure xs, the pendulum’s angular position, the
system is not fully observable, while if the sensor is used to measure x1, the position of the cart,
the system is deemed to be full rank; however, due to x1 does not appear explicitly in the
equations of motion of the dynamical system, it is not possible to observe all other states of the
system via Xu.
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This work is not related to previous work, but more of an expansive addition to the model
depending on the design of the problem.

However, if the pendulum has a uniform mass in addition to the sphere, (3.29) is not
particularly the wanted equation of motion since it introduces another state of the pendulum that
is still coupled to two existing states and missing another state for the cart. Hence, it is deemed

not useful for further analysis. Therefore, to acquire the wanted equation of motion, the analysis
of the sum of forces applied to the x-axis of the pendulum’s frame:

FPycosO — FPysinf + mgsind = m(L6) (3.55)
Unlike the simple inverted pendulum model in Chapter 2, the pendulum in the pendulum
on arolling cart simulation model would experience the additional acceleration term as the result
of the externally applied force onto the cart of X. Hence the additional term to (3.30) results in:
FPycos — FPysin + mgsind = m(LO + xcos6) (3.56)
Now applying Newton’s second law of rotation to the pendulum:
a4 T, =16 (3.57)
The pivot would be at the center of mass of the rod instead of at the base of the pendulum
where it is connected to the cart to provide a meaningful torque to control its attitude. Hence, the
torque due to gravitational force is zero while the torque from reaction force against the cart
would be an axial force applied at the base with direction toward the center of mass, resulting in

the torque having 2 components, following (2.1) to have:

FPyLcos® — FP)Lsing = —I0

FCicos§ —F ,Sinf = % (3.58)
To process forward, combine (3.31) and (3.33) to result in:

—mgLsing = —16 — mL(LE + Xcos6)

imLcos6 = mgLsin6 — (I + mL2)d (3.59)

Linearizing (3.34) in a similar fashion done previously for the second equation of motion
of the system as follows:

imL = mglLO — (I + mL?)@ (3.60)
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4. Hardware selection

In order to create a simulation model for the proposed solution, there must be
requirements for vehicle design. Therefore, this section would serve the purpose of selecting
hardware for the simulation model at the low level of control system engineering rather than for
the overall design and the system engineering approach. Hence, selected hardware would be only
weighted based on mass, length, and max performance to create a more realistic simulation
model. Based on a typical Falcon 9 launch, based on SpaceX’s overview data of a Falcon 9 can

be as
Table 4-1 — SpaceX’s Falcon 9 specs and payload capacity [18]
Height (with Diameter | Mass (without | Payload to Payload to Payload to
fairing) (m) (m) payload) (kg) | LEO (kg) GTO (kg) Mars (kg)
70 3.7 549,054 22,800 8,300 4,020
Table 4-2 — Available rocket engines [18], [19]
Company Engine Burn time Mass (kg) Thrust at Thrust in
(Vacuum) (s) sea level vacuum (kN)
(kN)
SpaceX Merlin 1D | 397 (vacuum) | 1760 kg 845 981
162 (sea level)
Blue Origin BE-3PM 141 NA 490 770
Blue Origin BE-3U N/A N/A N/A 712
Blue Origin BE-7 N/A N/A N/A 44.5
Aerojet Rocketdyne | RS-25 480 3,177 1852 2278
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Table 4-3 — Reaction Control System (RCS) and Attitude Control Thrusters [20]

Company Model Isp (s) Thrustrange | Mass (kg)
(N)
Marotta CGMT N/A 0.1-10N 0.60
Aerojet Rocketdyne | MR-401 184 — 180 0.07 - 0.09 0.60
Aerojet Rocketdyne | MR-103G | 224 — 202 0.19-1.13 0.33
Aerojet Rocketdyne | MR-103J 229 — 219 0.19-1.13 0.37
Aerojet Rocketdyne [ MR-111G | 229 — 219 1.8-49 0.37
Aerojet Rocketdyne | MR-106L | 235 — 228 4-10 0.59
Aerojet Rocketdyne | MR-107T | 225-—222 54 — 125 1.01
Aerojet Rocketdyne | MR-107S | 236 — 225 85 — 360 1.01
Aerojet Rocketdyne | MR-107U | 229 — 223 182 — 307 1.38
Aerojet Rocketdyne | MR-107V | 229 — 223 67 — 220 1.01
Aerojet Rocketdyne | MR-104H | 237 —22 201 —-554.2 2.40
Aerojet Rocketdyne | MR-104J 223 — 215 440 - 614 6.44
Aerojet Rocketdyne | MR-80B 225 — 200 313630 168
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Table 4-4 — Commercially available reaction wheels and specs [25].

Company Model Momentum | Mass (kQg) Volume Max
(Nms) (mm) Torque

(Nm)

Blue Canyon RWP015 0.015 0.130 42 x42x19 | 0.004

Technologies

Blue Canyon RWPO050 0.050 0.24 58 x 58 x 25 | 0.007

Technologies

Blue Canyon RWP100 0.10 0.33 70x70x25 |0.007

Technologies

Blue Canyon RWP500 0.50 0.75 110 x 110 x 0.025

Technologies 38

Blue Canyon RW1 1.0 0.95 110 x 110 x 0.07

Technologies 54

Blue Canyon RW4 4.0 3.2 170 x 170 X 0.25

Technologies 70

Blue Canyon RW8 8.0 4.4 190 x 190 x 0.25

Technologies 90

Blue Canyon CMG8 8 13 220x220x300 | 8

Technologies

Blue Canyon CMG12 12 18 240x430x380 | 12

Technologies

Blue Canyon DCE N/A 0.16 3.937x3.937x | N/A

Technologies 0.5 (in)

AAC Clyde IADCS400 | 0.06 1.15t0 1.7 954x959x |2

Space 67.3
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Table 4-5 — Commercially available Attitude Control Systems [25].

Company Model Momentum | Mass (kg) Volume
Capacity (mm)
(mNms)

Blue Canyon XACT-15 15 0.885 10x10x5

Technologies (0.5V)

Blue Canyon XACT-50 50 1.23 10x10x7.54

Technologies (0.75U)

Blue Canyon XACT-100 100 1.813 10x10x5

Technologies (0.5U)

Blue Canyon FLEXCORE | 500-8000 N/A 12.1x11.4x4.9

Technologies

Now, let’s use a typical Falcon 9 flight to carry a payload that carries Starlink satellites

that weigh approximately 800 kg, with about 25 satellites within the rocket’s fairing. Now the
simulation model will be. Where the rocket will have two stages, each with its own tanks,

Table 4-6 — SpaceX’s Falcon 9 specs and payload capacity [18]

Height (with | Diameter (m) | First-stage Second-stage | 25 Starlink | Total mass
fairing) (m) (kg) (kg) V2 (kg) (kg)
70 3.7 445,052 120322 18,400 583,774
Table 4-7 — SpaceX’s Falcon 9 specs and payload capacity [18]
First-stage | First-stage Second-stage | Second-stage Engine mass
engines propellant mass engines propellant mass flow rate (kg/s)
(kg) (kg)
9 395,700 1 92,670 266.89 —301.13
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5. Modeling of an In-flight Rocket Booster

Now that the hardware selection with requirements is completed, let’s start modeling the
system. The first need-to-know equation should be the Tsiolkovsky rocket equation or ideal
rocket equation that calculates the change in the rocket’s velocity, which can be formulated from
an equivalent velocity and the change in the rocket’s mass as follows:

In ("9 (5.1)

mg

Av=v In("™ =g
e

I
1nf 0 P

SPACEX
FALCON 9

Figure 5-1 — SpaceX’s Falcon 9 rocket booster and Merlin, gimbaled rocket engines [4].

Similar to Chapter 2 and Chapter 3, in order to begin modeling the rocket. Firstly, drag
would be applied to the body of the rocket, in addition to gravitational force and thrust force. The
effect of Coriolis force also exists and applies directly on the rocket airframe.

The goal of the simulation will be to design an attitude control system for attitude
(pitch/yaw) angle 8 = 90° of a multi-state Falcon-style rocket booster. Analyzing the dynamical
state of the system is required by deriving the governing equations of motion for the given rocket
booster. The attitude position of the rocket 6 can be controlled by the thrust force Fr with either
a max 5° gimbal angle for the first-stage engines and 15° angle for the second-stage engine.
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Figure 5-2 Simulation model for the rocket

Firstly, let’s take a look at the de-rolled body frame of the rocket with the Newton
2" Jaw as follows, as up and to the right are positive axes:

Fr+Fp+Fy=Ma (5.2)
Or,
Fr=Fp+ Mgcos6 +Ma (5.3)

The booster thrust can be calculated differently as an equation of pressure, velocity, and
mass flow rate:

Fr =mive + (Pe — Pa)le (5.4)
Where ni1 is the mass flow rate of the first stage, p. is exit pressure and p, is ambient
pressure of the environment, while A, is the exit area of the nozzle. Therefore, by substituting Fr
from (5.3) into (5.4) would result in:
MV, + (pe — P)Ae = Fp+ Mgcosd +Ma (5.5)

Drag force applied on the rocket airframe can also be calculated as an equation of air
density, drag coefficient, current velocity, and total surface area as:

Fp= %/Y 2CHA (5.6)
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Therefore, (5.5) becomes:

m7v+@p —p)lA = _1pV2C A+ Mgcos6+Ma (5.7)
1l e e a e 2 D

However, it is worth noticing that mass M of the entire rocket is the sum of both stages'
mass whereas before the separation of the first stage, the mass m1 of the booster changes over
time. Therefore, (5.7) can be rewritten as:

(m +m)a=F — 1pVZC A—(m +m )gcosf (5.8)
1 2 T 3 D 1 2

d((ni()+ma)v(t)) _ F (t) - l_pv(t)zC A— (m (t) + m )gcosf (5.9
it T 5 D 1 2

v(t) dm @) 4 (m (t) +m )d(v(t)) =F (t) — 1pv(t)ZC A—(m (t) +m )gcosd (5.10)
dt 1 2 T T > D 1 2

As thrust is defined in (5.4), however, with an ideal thrust equation, building a model
based on the idea of flight conditions can be defined as:

Fr = mlve (511)

Or can be rewritten to match with the format of (5.8), (5.9), and (5.10) a derivative of
time as follows:

E, = dm () (5.12)
dt e

Now the ideal thrust equation, substitute the thrust force from (5.12) into (5.10) to
achieve:

v(t) dm®) | (m (t) +m )d(v(t)) = dm®),, _ 1_pv(t)2C A— (m (t) + m )gcosO (5.13)
dt 1 2 d dt e 2 D 1 2

Notice, since this is before the separation of the first stage, the engine of the second stage
is not yet burning, therefore ma is still a constant.

Simplifying (5.13) as follows:
d(w() _ d(my(D) (w(t) —

(m@+m) v)+ 1_pv(t)2C A+ (m (t) +m )gcosd =0 (5.14)
1 2 e 2 D 1 2

d dt

(5.14) results in an equation of Riccati different equation. In order to solve this, the
Differential Transform Method or DTM needed to be mentioned and used.

DTM uses Taylor’s series expansive, which has been utilized to solve nonlinear systems

or any system that contains oscillation. The Differential Transform Method is fit for solving
nonlinear ordinary equations without the need for discretizing.
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Table 5-1 — Deferential Transform Method [22]

Original Function Transformed Function
x(t) = af (x) £ Bg(t) X(k) = aF(k) + pG(k)
X(0) = dmf(t) X() = (k + m)!F(k +m)
dtm k!
x(t) = fOg(®) §
X(k)=2XFW)Gk-1D
1=0
x(t) = tm Xk) = (k—m) = {1' i k=m
Oif k #m
x(6) = e(V) X() = —
k!
x(t) = sin (wt + ) X(k) = w_ksin (k_” +a)
k! 2
x(t) = sin (wt + ) X(k) = w_kcos (k_” +a)
k! 2

Applying the Differential Transform Method into (5.14) with the initial conditional of at
t = 0, the rocket booster would then have close to zero velocity and m1 would be dry mass of the
booster combined with the propellant’s mass of the first stage for:

(m(t) + mp)V(k) — M(k)(—v,) + (m1(t) + my)gcosf = 0 (5.15)
(m@®) +my)k+DV(k+1)—(k+ 1Mk + 1)(—v,) + (m(t) + my)gcosd =0 (5.16)
Next, analyzing the dynamic state of the system is required by deriving the governing
equations of motion for the given inverted pendulum system. The attitude position of the
pendulum @ is controlled by providing an applied force F [N] onto the cart on the horizontal plan

x [m] while under the influence of gravity with gravitational acceleration g [m/s?].

Beginning with the cart, analyzing the free-body diagram of the cart for the combination
of forces, the equation of motion is as follows:
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Fp+Fr+E=Ma (5.17)

Where ?’TR is the reaction force from the pendulum onto the cart, AFTA is the applied force
onto the booster to assist attitude control for the pendulum, Fy is the normal force of the

ground onto the booster and Ft, is the gravitational force applied to the booster while x is
the acceleration of the booster. However, only forces in the x-direction would have a
meaningful impact on the booster’s acceleration. In addition, to make it easier moving

forward, the reaction F ¥ will be written as F¢, and F¢,, when broken down into components

for the x-axis and the y-axis, hence, (3.1) is rewritten to isolate the forces in the x-plane of
the system as follows:

U O

%4 f=Ma (5.18)
Or as,

F¢y + FC, = MX (5.19)
Where x represents the acceleration the booster would experience under the

combined forces in the x-direction. Next, the second element of the system, summing up the
net forces applying to the inverted pendulum as follows:

FPp+ F? = mdp (5.20)
Noticing in (3.2) and (3.4), the booster and the pendulum would be experiencing different
accelerations, a and ‘ap. Now in a similar fashion, isolating the y-direction and x-direction
forces as follows:
FP), — FPy = myp (5.21)
And,

FP, = mxp (5.22)
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Where 75"PR is the reaction force of the booster onto the pendulum. Similarto . ?’TR
will also be broken down into F?, while referring to the x component of the reaction force
from the booster onto the pendulum F?,, while referencing the y component of the reaction
force. Now to unify (3.5) and (3.6), the acceleration the pendulum would experience can be
addressed in an equation of the booster’s acceleration as follows:

X, = x + Lsin® (5.23)

Taking the derivative of (3.7) with respect to time:

Xp =X+ LOcosH (5.24)

To achieve the pendulum’s acceleration, take the derivative of (3.8) with respect to time
as follows:

xp =%+ LOcosf — LO? sind (5.25)
In a similar fashion, y,, can be derived as:
Yp = Lcos6 (5.26)
Taking the derivative of (3.10) with respect to time:
yp = —LOsin6 (5.27)

To achieve the pendulum’s acceleration, take the derivative of (3.8) with respect to time
as follows:

yi = —LBsin6 + LO? cos (5.28)
Now substitute (3.9) and into (3.6) for:
FP, = m% + mLOcos® — mL6? sind (5.29)
According to Newton’s third law of motion, when two objects interact, they apply forces
of equal magnitude and opposite directions to each other. Hence, the reaction forces of the
booster and the pendulum onto each other are equal:
FP, = —FC, (5.30)

Combining (3.11) and (3.3) results in the first equation of motion for the overall system
of an inverted pendulum on a booster as follows:

F¢y —mxX —mL6fcosO + mL6? sinf = M%
F¢y = MX + mx + mLfcos6 — mL6O? sind
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FC4 = (M + m)X + mL(6cos6 — 62 sind) (5.31)

Due to this being non-linearized, the dynamical system can be linearized with small angle
approximation in (2.15) with the assumption that controlled angle 8 would only stay in a small
neighborhood of around Q° as that is the goal of the system, is to keep the pendulum vertically
upright at an angle of 90°.

cosx = 1 (5.32)
And,
62 ~0 (5.33)

Hence if assign F¢4 to u as the control input vector, and the first 3 stages of the state

0

vector is [g]. Thus, the nonlinear pendulum dynamical system linearized with small angle
X

approximation as:

(M +m)x +mL6 =u (5.34)
Let’s take a look at the forces applied on the pendulum in the y-direction from (3.5) as

the pendulum is under the influence of the reaction force from the booster and the gravitational
force and substitute the y-direction acceleration acquired from (3.12) as follows:

FP), — FPy = m(—L0Osind + L62 cos6)
FP, —mg = m(—Lfsinf + L62 cos6) (5.35)
As specified before, FP, and FP,, are the horizontal and vertical components of the

reaction applied on the pendulum from the rolling booster. Therefore, they can be derived as the
function of the reaction force as follows:

FPi = FPpsind (5.36)
With the magnitude of:

FP, = |F Pg|sing (5.37)
And,

FPj = FP rC0SO (5.38)
Magnitude of:
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FP, = |F Pg|cosf (5.39)

Now, substitute F?, acquired from (3.21) into (3.11), and F?,, acquired from (3.23) into
(3.13) to get:

|ﬁR|sin9 =m# + mLOcosd — mLO? sind (5.40)
And,
|AI~:7’R| cosf —mg = m(—L6Osinb — L62 cos6) (5.41)
Now, multiply cos8 to (3.22) and siné to (3.23) for the next step:

|F}’R|sin9c059 = mxXcos6 + mLb(cos0)? — mLO? sinfBcos6 (5.42)

And,
|ﬁR| cosfsinf —mgsinf = —mL6? cosOsinf — mLO(sinf)?2 (5.43)

Subtract (3.25) from (3.24) for the left-hand side:
|F;’R| sinfcosO — |ﬁR | cosOsin@ + mgsinf
mgsing (5.44)
The right-hand side of the equation is:
mxcos@ + mLO(cosB)? — mLO? sinfcost + mLOZ cosOsind + mLA(sinf)?

mxcos@ + mL@ (5.45)

Therefore, as the result of combining the left-hand side and the right-hand side of the
equation as follows:

mgsinf = mxcos0 + mL (5.46)

Similarly, linearized (3.28) in the same process with (2.13), (3.16), and (3.17) as in (3.18)
to result:

mgl = mx + mL@ (5.47)
Or,

go =% +18 (5.48)
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Now, with (3.30), the second governing equation of motion for the system is introduced.
However, it must be pointed out that, (3.30) is only qualified as the second governing equation
for the system due to the fact that this simulation model uses a uniform point mass sphere placed
on top of a massless inverted pendulum. Hence all the mass is not uniformly distributed but is
concentrated in the top end of the pendulum. Therefore, it is possible to ignore the moment of
inertia that then would possibly exist on a uniformly distributed pendulum rod rotating about it
fixed point at the lower end of the rod. A scenario where the pendulum is a uniformly distributed
rod would also be derived below to show the comparison between two different condition setups
for the differences.

Now the overall system can be represented as:

(M +m)x +mLf =u

¢ g0 =x +1L0

(5.49)

However, (3.31) contains two equations that are coupled together. Therefore, it would be
necessary to further decouple them, and now return to (3.29), before simplifying mass m [kg] out

of the equation to achieve (3.30), by isolating mL# in (3.18) and (3.29) for:

mLO =u— (M + m)x
mLf = mx —mgfo

({ (5.50)

Therefore, (3.32) would result in the first decoupled governing equation of motion for the
system as:

u—(M+m)x = mx —mg6
Mx = u —mg0 (5.51)

In a similar fashion to (3.33), to decouple (3.18), isolating the term x in (3.30) to create a
similar equation as:

X=1L16—go (5.52)

Now substituting (3.34) into (3.18) to acquire the other decoupled governing equation of
motion of the system as follows:

(M +m)(LE — g6) + mLb =u

mL = (M +m)gb —u (5.53)
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Hence, the simulation model of the system with the second order, linearized and
decoupled is as follows:

{ MxX=-mgb+u

(5.54)
mLO = M+m g6 —u
Isolating X and & for:
i=""0+"u (5.55)
{ M M .
g = (M+m)gg _iu
mL mL

Let x be x1, x¥ be x; or xq, then X would be x,, and 6 be x3, 0 be x4 or x3, then 8
X1 X

X2 X . . .
would be %, Where [Xg] = [g] is the state vector, and vector u is the control input vector.

X4 0
Therefore, the open-loop linearized state-space system of the inverted pendulum about its
unstable equilibrium point is:

% 0100 X 0
.7&2 ﬂ le 1
[1= 00 7 0[]+ ™ wu (5.56)
X3 0 0 0 1 X3 0
% (m+M)g X4 1
0 w0l -
Meanwhile, state and output equations can be expressed as:
{x =Ax + Bu (5.57)

y=Cx +Du

Where A is the state matrix, B is the input matrix, C is the output matrix and D is the

—mg )
feedforward matrix. Therefore, A = 00 =% o ,B= ™M C=[0 0 1 0],since
0 0 0. 1 0
(m+M)g 0 1
[0 0 — ] [T ]

the only interested output is the attitude angle y = 6, and no feedforward matrix. From (5.55), the
transfer function of the open-loop system can be done via the Lagrange transform on both sides
of the equal sign as:

MM L s
mL mL

L) =L[
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s20(s) = (M +m)g 6(s) — iu(s)
nkL

mL

) _ T (5.58)
u(s) SZ—M '

mL

Checking the controllability of the system with the controllability matrix Co can be
defined as:

Co=[B AB A2B .. A(-DB] (5.59)

Where A is still the state matrix while B is still the input matrix, and “n” is the number of
states, in this particular system, n is 4. Therefore, the controllability matrix can be achieved from

(3.41) as follows:

Co=[B AB A?B A%B] (5.60)
Calculating the components of the controllability matrix, AB:
0 1 0 0 0 —mg
-9 1 -
ap= 00 -~ 0 m _; 0, (5.61)
0 0 0 1 0 0
(m+M)g 0. — 1
[0 mlL |- 0
Calculating A2B:
01 0 0 2 0 0
-9 1 9
ap= 00 7~ 0 Moo_ ML (5.62)
0 0 0 1 0 0
0 (m+M)g 1 —(m+M)g
[ mL S e B o
Calculating A3B:
01 0 o0 3 0 9
g 1 ML
ap= 00 7~ 0 " 0 (5.63)
0 0 0 1 0 —(m+M)g
(m+M)g 0 1 m
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1
Co = M ML (5.64)

Now, to determine whether the system is fully controllable or not via taking the Rank of
the controllability matrix, resulting in:

Rank(Co) = 4 (5.65)

The system is fully controllable as it is full rank. In addition, this can also be determined
by observing the presence of input control vector u in both governing equations of motion of the
system.

To simulate the model, parameters need to be assigned for the booster’s mass. M =3
[kg], the mass of the sphere located on top of the inverted pendulum, m = 1 [kg], the length of
the massless inverted pendulum, L = 1 [m], while gravitational acceleration is g = 9.81 [kg/s?].

X
For initializing the system with the initial conditions of x = [XC}] = X _ [ 9 ], where the
i x;  Lel Too1
X4 (7] 0

booster would start at the origin, with no velocity, while the pendulum is set to be slightly off-set
to the equilibrium of 0-degree angle and has no angular velocity.

Now, with the initial position given as the starting state of the system, the desired state of
X1 X 1
= 1*271= % = [, where the final position is an arbitrary location
the system can be [xg] (o] [0]’ p y

X4 (4] 0
away from the origin, in this case, is 1, while not translational and angular velocity residue is
wanted and the inverted pendulum to stay fully upward at an angle 6 = 0.
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Figure 5-4 Simulation model of the booster
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6. Conclusion and Path Forward

This project provided great experience with the successful implementation designing of
attitude control along with the creation of a mathematical model for various dynamic systems.
The project has demonstrated the effectiveness of the designed system in meeting the project’s
objectives. Through meticulous planning, rigorous testing, and iterative refinements, we
achieved reliable performance, operational efficiency, and compliance with the specified
requirements. The system has been validated to function consistently under expected operating
conditions, ensuring enhanced reliability and control. However, throughout the project, various
assumptions had to be made, which is a good engineering tool, but assumptions also significantly
remove the complexity of the problems.

The path forward from here is to design a better control system for the rocket booster with
higher fidelity and fewer assumptions. Implementing better tools of control like the Kalman filter
is a great way to improve the knowledge in the subject. For a better simulation model, it can be
good to look into better and more dynamic environment block, gain scheduling with table look-
up for different flight conditions.
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clear all

close all

clc

% Parameters

m=1;

L =1;

g = 9.81;

A=[0 1;
g/L 0I;

B = [0;
1/(m*LA2)];

c = [1 0];

D = 0;

Q = diag([2000 221);

R = 0.22;

K = 1gr(A,B,Q,R);

open_system('Tqrmodel"');
sim('Tgrmodel.s1x"');

o r £ 3

[0 10 0;

00 (-(m*g)/Mm) O;
000 1;
00 ((m+m)*g)/(m*L) O];

[0; (i/m); 0; (-1/(m*L))];

Tambda = eig(A)
rank(ctrb(A,B))

Appendix A

MATLAB Code
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Tambda =

6.2642
-6.2642

ans =

clear all, close all, clc
= 2;

= 58

3;

= 9.81;

= 0; % No drags

o r £ =
]

A=1[0100;
00 (-(m*g)/m) O;
000 1;
0 0 ((m+m)*g)/(m*L) 01;

B = [0; (1/M); 0; (-1/(m*L))];

Q=1[1000;
010 0;
0 0 10 0;
0 0 0 1000];
R = .005;

K = 1qr(A,B,Q,R);

ts = 0:.01:30;

xi [0; 0; 0.1; 0];

xf = [1; 0; 0; 0O];

u=@(x)-K*(x - xf);

[t,x] = ode45(@(t,x) pendoncart(x,m,M,L,g,d,u(x)),ts,x0);

function dx = pendoncart(x,m,M,L,qg,d,u)
SX sin(x(3));
[@% cos(x(3));
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D = m*(LA2)* (M+m* (1-CxA2));

dx(1,D) = x(2);
dx(2,1) = (1/D)*(-mA2*LA2%g*Cx*SX + mM*LA2*(m*L*x(4)A2%Sx - d*x(2))) + m*L*L*(1/D)*u;
dx(3,1) = x(4);
dx(4,1) = (1/D)*((m+M)*m*g*L*Sx - m*L*Cx* (m*L*Xx(4)A2*Sx - d*x(2))) - m*L*Cx*(1/D)*u;
1 = function m = fen{ml,m2,m3,selector)
2 m = 8;
3 if selector(l) == 1
4 m=m+ ml;
5 end
& if selector(2) == 1
7 m=m+ m2;
8 end
9 if selector(3) == 1
18 m=m+ m3;
11 = end
12
13
14
1 function out = fon(flag, emptytank,a,b)
2 if flag »>= 1 && emptytank ==
3 out = &;
4 else
5 out = b;
B end

a

— Pressure T
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E =

{95 [ T

function g = fen(r)
3.556004415=14;
-(nu/norm{r)~3).*(r

b
S
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=N

flag

N ”* out,

o fen

State controller

flag
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b fen

State controller!

flag

N ”* out,

L—»o  fon

State controller2

Switch
i
) '
M_dot stage fuel bumt k
Burn off
207
Fuel_mass

Z2N

Stage_mass

)

Current mass

not empty

empty

55

D

Empty tank

Ve



=

]

o

[0 00

260 .-"!"I’::‘\' l_:
Kx’ I_lp.—u

-—b-.-l :_ W Ref —r
BF'III[S] A —

Theata
: niraller (200F

Refarence
La LB 4 g
fen
7 Gravity
X_ecef

‘ =1 Matrix
@ p Multiply

Moments_body_frame

‘ ® Matrix
Multiply

Yy

% function g = fen{rho,v)
g = (1/2)*rho*dot{v,v);
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