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ABSTRACT 

 

The Design of an Aerodynamic Control System for Launch Vehicles 

 

Hieu G. Trinh 

In recent years, the rise of space flights and rocket launches has skyrocketed as a 

revolutionary movement. While the new space age is rapidly moving forward, advanced 

technologies keep pushing into the future, and launch vehicles have barely changed in overall 

design for decades despite being a pivotal part of any space launch. The majority of launch 

vehicles acquire dynamic control authority from the rocket engines, gimbaled, and provide thrust 

vectoring that allows boosters six degrees of freedom control capability. Most of the current 

rocket engines are complicated and have heavy hydraulic control systems with limited actuator 

angles This research aims to replace that with a control package that includes aerodynamic 

control surfaces for the endo-atmospheric environment and RCS thrusters for exo-atmospheric 

environment maneuverability and agile responses for the endo-atmospheric when needed. 
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1. Introduction 

1.1 Motivation 

 
From the early dawn of mankind’s history, humans have always had the desire to voyage 

and conquer the universe, reach the furthest testing all the boundaries of capabilities. Throughout 

time, the greatest minds in each society have been collecting data, studying, and analyzing what 

is far beyond the clouds. Despite all theories and efforts, it was only until the scientific 

breakthroughs and engineering technological advancements; humankind was finally able to 

achieve the earliest success during the space race of the Cold War between the world's two 

superpowers at the time, the Soviets made Sputnik I – world first man-made satellite to orbit the 

earth. The historical milestone created a ripple event from both nations leading to the first human 

to be sent to the edge of space the U.S.S.R and safely returned, Yuri Gagarin in Vostok 1; 

followed by a successful landing of mankind to the moon, Neil Armstrong from the United 

States boarding Saturn V, the most powerful rocket booster ever flown by a human. 

 

Fasting forward to go back to the modern day, the space age has certainly evolved from a 

symbol of an armed race between two supernations that can only be designed and operated by 

militaries and governments to a fruitful industry is a competing marking of privately owned 

companies and while being operated by public government agencies. This opens many windows 

of opportunities for all the brightest minds all over the globe, making space launches more 

accessible with fewer constraints. The greatest example can be named American companies like 

SpaceX and Blue Origin, civilian companies were founded for innovation and operate to push 

the limit of imagination. In the vicinity of federal oversight and open market principles, the 

burgeoning space age has unfolded and bloomed to the next level propelled by unrestricted 

innovation and unprecedented engineering prowess. In turn, this has inspired many generations 

of new engineers with the hope to see, work, and contribute to human progress in conquering 

outer space. In the horizon of advancing new science, reducing the cost of design, manufacture, 

and operation is also a key part of next-generation engineering. One way to do so is re- 

engineering the launch vehicle, the costliest part of any space launch. 
 

Figure 1-1 – SpaceX’s Falcon 9 rocket booster landed on a drone ship [1]. 

For many years, the space industry has revolved around gimbaled rocket boosters, where 

the launch vehicle relies on the control authority of rocket engines. However, the process of 
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designing advanced engines for rocket boosters is a long and foremost, highly expensive process. 

A more cost-efficient method can be implementing aerodynamic control surfaces to assist and 

reduce to need of complex and expensive gimbaled rocket engines. Great examples can be 

guided air-launched missiles such as the AIM-9X Sidewinder and the AIM-120 AMRAAM use 

an aerodynamic maneuvering system instead of thrust vectors to maneuver at high accelerations 

or stabilize trajectories at a lower cost and less complicated design. 
 

Figure 1-2 – L3 Harris/Aerojet Rocketdyne RS-25 rocket engine [2]. 

 

Figure 1-3 – U.S. Air Force and U.S. Navy AIM-9X Sidewinder missiles use vector-controlled 

fins [3]. 

1.2 Literature Review 

 
This section provides literature elaboration on the current state of in-used technologies, 

addresses the concerns expressed previously, and the work-forward solution that can help solve 

the problem. 

 

The fundamental Newton's Second Law of Motion states that the force acting on an 

object is equal to the mass of the object multiplied by its acceleration (F = ma). This law explains 

how the velocity of an object changes when it is subjected to an external force. Essentially, it 

shows that the greater the force applied to an object, the greater its acceleration, and that objects 

with larger masses require more force to achieve the same acceleration as lighter objects. This 
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fundamental principle is a cornerstone in the study of mechanics and helps explain the 

understanding of the behavior of moving objects. 

 

Classical control includes various methods of designing optimal control techniques such 

as LQR control an d PID control. LQR control, or Linear Quadratic Regulator control, is an 

advanced optimal control technique used in the design of dynamic systems to achieve the best 

possible performance while minimizing a cost function. This cost function typically balances two 

competing objectives: minimizing the error between the system's desired and actual state and 

reducing the effort or energy required to control the system. LQR uses a state-space 

representation of the system and solves for a control law that provides feedback by multiplying 

the state vector by an optimal gain matrix. This results in a control input that drives the system 

toward stability and optimal performance. LQR is particularly effective in systems where 

precision and efficiency are critical, such as in aerospace, robotics, and modern control systems, 

where it ensures smooth and robust performance even in the presence of disturbances or 

uncertainties. 

 

PID control, which stands for Proportional-Integral-Derivative control, is a widely used 

feedback mechanism in control systems to maintain a desired output level by continuously 

adjusting inputs. It works by calculating an error value as the difference between a desired 

setpoint and the actual process variable, then applying a correction based on three terms: 

proportional, integral, and derivative. The proportional term corrects the error based on its 

current value, the integral term addresses the accumulation of past errors, and the derivative term 

predicts future error trends. By tuning these three parameters, a PID controller can achieve 

stable, precise, and responsive control over a system, making it invaluable in various applications 

such as industrial automation, robotics, and process control. 

There are many ways to dynamically control and stabilize airborne vehicles, from high- 

lift devices like slats and flaps to provide additional stability, control and generate lift and low 

altitude, to aerodynamic control surfaces like ailerons, elevators, and vertical stabilizers to 

stabilize and control the dynamical state of the plant; and lastly to thrust vectoring and gimbaled 

engines to provide additional control authority and maneuverability of vehicles. These different 

methods are used comprehensively in different air platforms such as all three for advanced 

fighter jets; high-lift devices and aerodynamics control surfaces for civilian aircraft. However, 

when it comes to rocket boosters, the most popular method to be used is thrust vectoring through 

gimbaled engines at the bottom of boosters to create control torque by redirecting the thrust 

vector [11] and [12]. 
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Figure 1-4 – SpaceX’s Falcon 9 rocket booster and Merlin, gimbaled rocket engines [4]. 

A gimbaled rocket engine provides not only the lifting power but also the main 

dynamical controller of the launch vehicle with thrust vector control capability. The subject of 

review, the Falcon 9 rocket booster utilizes a Merlin rocket engine, gimbaled that can provide the 

overall system with thrust vector control capability in six degrees of freedom (6-DOF). The 

simulation model of the system can be built dynamically in MATLAB/Simulink including 

propulsion, aerodynamics, environmental, weight, and thrust vector control [4]. To begin, it is 

essential to start with a mathematical model representing the dynamic model of the booster to 

validate the correct behaviors of the system. 

 

The Falcon 9’s mathematical model consists of the modeling of subsystems such as 

environment, controller, equation of motion, rocket, and result and display subsystems model in 

Simulink. Firstly, the equations of motion can be used to represent all six degrees of freedom of 

the overall system [4]. 
 

V̇  = 
Fb − ω × V (1.1) 

b m b 

ω̇ I−1 = [Mb − ω × Iω − Iω̇ ] (1.2) 

In which, 

Vb : Velocity (translational) vector on the body axes. 
ω : Rotational rate vector (angular velocity). 

Fb : Forces vector, acting on the body axes. 

Mb : Moments vector, acting on the body axes. 

m : Mass. 

I : Moment of Inertia tensor. 

Elaborating the equation of motion further, angular velocity can be expressed by Euler 

angles such as roll, pitch, and yaw rates for a state-space form conversion and rotating matrix for 

better implementation into Simulink modeling. 

 

Additional characteristics of the rocket booster are also required for better modeling of 

the system, such as operation envelope and first-stage fuel mass flow rate, 273.3 kg/s with 165.6s 

of burning time and second-stage mass flow rate, 273.3 kg/s and a total burn time of 392.5s [5]. 

Being the gimbaled rocket system, the control system consists of a thrust vector control model 



5  

and the launch vehicle’s attitude control system with thrust ignition and jettison schedules [4]. 

The model has been simplified with only longitudinal plane control, where there are only 

translational motions in the X and Z axes, which provide moments of pitch and roll while the 

yawing moment remains zero [10]. 

 

Since the dynamic state of the launch vehicle is non-linear coupled with time-varying 

variables such as aerodynamic and inertial, linearization is a must to apply linear control 

techniques [11]. Hence the presence of gain scheduling, and controller gains of different 

linearized models at different phases of flight [13]. Control techniques such as Proportional- 

Integrative-Derivative (PID) or pole placement are quite popular in real-world applications and 

well recognized as seen in [4], [11], [12], and [14]. PID controller with its popularity also has 

many downsides in the robustness of the model uncertainty and external disturbances rejection 

[11]. However, a better degree of robustness and a (sub-)optimal trajectory tracking solution can 

be ensured using optimal controllers in the linear domain such as the Linear Quadratic Regulator 

(LQR) [11]. With its robustness, LQR can be used to address the attitude control problem or state 

estimation and control [11], [15] and [16] 

 

Furthermore, a more complex booster clustered launched vehicle with an additional 

motor configured in a clustered booster system such as SpaceX’s Falcon Heavy or NASA’s 

Space Launch System (SLS) operates similarly with a different dynamic model. The clustered 

booster system dynamical model can be simplified into a simulation model of multi-beam with 

the following assumptions [6]: 

- Connection points between core and side boosters are rigid connections. 

- No elastic deformation occurs at the connection point of the booster. 

- Elastic deformation of core and boosters is small and negligible. 

- Torsional deformation can be ignored. 

- The inertia force caused by the rotation of the earth can be ignored. 

- The change of the center of mass has no correlation with the elastic deformation. 

 

Figure 1-5 – Multi-beam model of clustered booster launch system [6]. 

It can be easily overlooked that a rocket booster and its internal liquid fuel have a strong 

coupled relationship with each other, where changes in the dynamic of the booster would cause 

its liquid fuel to become dynamic; which further causes more vibration that would be picked up 

by the sensor as the overall model of the system being updated, which in turn provides 
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compensation to the system and furthermore changes the dynamical state of the liquid fuel and 

the cycle repeats. Beyond, while in motion, the dynamic state of the system costs liquid 

propellants to become dynamic, together coupled as a spring-mass system or a combined spring- 

damper-mass system [6], [7] and [8]. 

 

Removing the gimbaled nozzle of the engine limits the ability to provide attitude control 

authority. At lower altitudes with much denser air, any Aerodynamic Maneuvering System 

(AMS) such as fins, or control surfaces can sufficiently control. However, the higher the booster 

travels, the more insufficient AMS becomes, with the extension to the exo-atmospheric 

environment. Therefore, an attitude determination control system (ADCS) often complements 

the AMS with quick and short pulses that provide attitude control capabilities. Examples include 

the Russian K-300P Bastion-P missile and the American Patriot missile both use an attitude 

control system to adjust the initial heading angle and proper flight attitude. The two missile 

systems use multiple fast, single-pulse solid rocket motors for proper attitude control within a 

short period of time. On the other hand, spacecraft and satellites also use the method with a slight 

difference in using liquid fuel with mini thrusters instead of single-pulse solid rocket engines for 

various reasons such as controllability. Therefore, it would be comprehensive to review the 

differences in the design of an ADCS to see the pros and cons of solid rocket engines or liquid 

propellants. 
 

Figure 1-6 – The Russian K-300P Bastion P missile is launched vertically, and an attitude control 

system is used to adjust the heading angle [23]. 
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Figure 1-7 – The American Lockheed Martin Patriot PAC-3 missile engages an attitude control 

system to adjust the heading angle after launch [24]. 

Besides using RCS for exo-atmospheric conditions, there is another method to be utilized 

for active control, which is more popular within spacecraft and satellites, the reaction wheels. 

The reaction wheel’s highly reactive nature in addition to the ability to output continuous 

feedback control makes this method very effective for the operational envelopes of spacecraft. 

Reaction wheels would create torques internally within the spacecraft, offering the ability to 

control the attitude contributions such as roll, pitch, and yaw via momentum from reaction 

wheels. 

 

Table 1-1 – Reaction Control System (RCS) and Attitude Control Thrusters [20] 
 

Company Model Isp (s) Thrust range 

(N) 

Mass (kg) 

Marotta CGMT N/A 0.1 – 10 N 0.60 

Aerojet Rocketdyne MR-401 184 – 180 0.07 – 0.09 0.60 

Aerojet Rocketdyne MR-103G 224 – 202 0.19 – 1.13 0.33 

Aerojet Rocketdyne MR-103J 229 – 219 0.19 – 1.13 0.37 

Aerojet Rocketdyne MR-111G 229 – 219 1.8 – 4.9 0.37 

Aerojet Rocketdyne MR-106L 235 – 228 4 – 10 0.59 
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Aerojet Rocketdyne MR-107T 225 – 222 54 – 125 1.01 

Aerojet Rocketdyne MR-107S 236 – 225 85 – 360 1.01 

Aerojet Rocketdyne MR-107U 229 – 223 182 – 307 1.38 

Aerojet Rocketdyne MR-107V 229 – 223 67 – 220 1.01 

Aerojet Rocketdyne MR-104H 237 – 22 201 – 554.2 2.40 

Aerojet Rocketdyne MR-104J 223 – 215 440 – 614 6.44 

Aerojet Rocketdyne MR-80B 225 – 200 31 – 3630 168 

 

Spacecraft attitude determination and control systems are critical for the accurate 

orientation of satellites and other space vehicles. The latest progress in attitude determination has 

benefited from advances in computer methods and sensor technology. The accuracy of attitude 

estimates has been considerably enhanced by combining sophisticated filtering techniques like 

Extended Kalman Filters (EKF) with high-precision star trackers. The research demonstrates 

how these integrated systems improve attitude determination resilience, particularly in low Earth 

orbit (LEO) conditions where conventional techniques are unable to withstand increasing 

perturbations [17]. 

1.3 Project Proposal 

 
The objective of this project is to study and develop a less complicated, cost-effective 

control system for launch vehicles to avoid the complexity of thrust vector control of gimbaled 

rocket engines using a control package that includes an aerodynamic control system (ACS) using 

control surfaces for endo-atmospheric control authority and a reaction control system (RCS) 

using small thruster for endo and exo-atmospheric control capability. This system utilizes the 

existing technologies that eliminate complicated rocket motors that can have actuator limits, low 

maneuverability, and heavy hydraulic systems. This would provide an alternative option to 

designing a control package for launch vehicles while providing an opportunity to develop a 

more powerful engine with longer burn time from the weight reduced by heavy actuators. 

1.4 Methodology 

 
To reach the established proposal, a performance analysis of an existing gimbaled launch 

vehicle will need to be done. Then, the study of current component space-grade components is 
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needed to build a simulation model of proposing a control package for launch vehicles before 

performing design, tune, and performance analysis to justify the proposed method. The process 

can be broken into parts: 

 

Part I: Model, simulate, and analyze the performance of an existing gimbaled rocket booster. 

- Select a current in-used launch vehicle with a gimbaled engine control package. 

- Create assumptions and develop a nonlinear model from equations of motion and 

dynamics of the system. 

- Linearize the model at different operating environments and constraints. 

- Develop a model to be used in MATLAB and Simulink for six degrees of freedom 

simulation. 

- Tune and review the performance of the baseline model. 

Part II: Provide a trade study on the components, characteristics and performance to the 

proposed package. 

- Perform trade study on RCS thrusters and ACS control surfaces. 

- Select components for the new proposed control package based on performance, cost, 

and weight. 

Part III: Create the model for the new control package of the system. 

- Develop a dynamic model of the new system from the nonlinear equations. 

- Linearize the simulation model with similar operating envelopes with the current, in- 

used model. 

- In MATLAB and Simulink, develop a simulation model. 

- Tune to match the performance of the baseline model. 

- Perform final analysis on two systems, new and baseline judging on cost, 

performance … 

- Conclusion and plan for future research. 
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2. Simple Inverted Pendulum 

 
The inverted pendulum problem in Aerospace Engineering is one of the most 

recognizable problems in designing control systems, a classical challenge where the fundamental 

goal is to stabilize a pendulum that is connected to a dynamic platform, such as an airframe or 

spacecraft, in an upright position similar to a rocket booster. In this system, the pendulum would 

naturally want to return to its stable equilibrium position, which is at the angle of 270o or 

vertically downward position, while being actively controlled to stay in its unstable equilibrium 

position of 90o or upright and remain balanced despite the external and internal disturbances. The 

inverter pendulum problem is critical in the design of control systems for various aerospace 

applications, such as spacecraft attitude control or landing gear stabilization. Due to the nature of 

aerospace environments being always dynamic, the control systems must be designed to 

dynamically compensate for changing forces or torques applied onto the pendulum at any 

location to counteract the motion of the pendulum returning to its stable equilibrium position. 

This problem exemplifies the complex dynamics and real-time control challenges faced in 

Aerospace Engineering, where maintaining stability in an inherently unstable system is crucial 

for mission success. Therefore, it’s best to analyze and design simpler control systems from a 

simpler model with much fewer external disturbances. There will be two different pendulum 

models, one with control torque authorities coming from the base, much similar to a gimbal 

rocket booster, with thrust vector control to direct force for attitude determination ability. On the 

other hand, the next model will be based on a rocket booster with no gimballed rocket engine, 

which is replaced with mini thrusters placed forward into the booster that can provide similar 

attitude control authority. 

The problem of designing a control system for a rocket booster can be simplified into a 

model of a simple inverted pendulum, where the control authority provided to keep the 

pendulum is the pivot point, which outputs attitude control just like what a gimbaled rocket can 

do for a rocket booster. The thrust vector control ability will provide the direct torque at the base 

of the rocket booster, or in this case, an inverted pendulum. 
 

Figure 2-1 – Simplified inverted pendulum. 

To begin with the problem, preliminary parameters such as assumptions are needed to 

avoid any possible ambiguity while proceeding forward. Since a simple inverted pendulum, 
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assuming a constant point mass of m [kg] placed on top of the pendulum. The pendulum rod that 

connected the point mass to the base is massless and has a constant length of L [m] within a 

frictionless environment (no friction between rod and base). The problem is considered a planar 

pendulum problem with a constant gravity environment, excluding air friction, drag, or 

resistance. 

 

Next, analyzing the dynamic state of the system is required by deriving the governing 

equation of motion for the given inverted pendulum system. Since there is a torque τ [Nm] 

applied to the pendulum rod at the base to provide attitude control authority, a force F [N] is 

applied at the origin, distance L away from mass m while under the influence of gravity with 

gravitational acceleration g [m/s2] as follows: 

τ⃑⃑⃑ A⃑ =No (⃑r )Qo × ⃑F A (2.1) 
 

And,  
No 𝑟 Qo = L 𝑞̂𝑟 

 
(2.2) 

Hence continuing the Golden Rule of vector differentiation as: 

𝐴 
𝑑 

𝑥  = 𝐵 
𝑑 

𝑥 + 𝐴 𝜔⃑ B × 𝑥 (2.3) 
𝑑𝑡 𝑑𝑡 

Applying the Golden Rule in (2.3) into (2.2) to acquire the acceleration factor of the 

equation of motion as: 
 

No 𝑣 Qo = 𝑁 
𝑑

 
𝑑𝑡 

No 𝑟 Qo 

 

𝑑 
𝑁 

𝑑𝑡 

No 𝑟 Qo = 𝑄 
𝑑

 
𝑑𝑡 

No 𝑟 Qo + 𝑁 𝜔⃑ Q × No 𝑟 Qo 

𝑁 
𝑑 

No 𝑟 Qo = 𝑄 
𝑑 

(L 𝑞̂)  + (𝜃̇ 𝑞̂)  × (L 𝑞̂)  
 

𝑑𝑡 
 

𝑑𝑡 𝑟 𝑧 𝑟 

𝑁 
𝑑 

No 𝑟 Qo = 𝑄 
𝑑 

(−L 𝑞̂)  + (𝜃̇ 𝑞̂)  × (L 𝑞̂)  
 

𝑑𝑡 
 

𝑑𝑡 𝑟 𝑧 𝑟 

 

No 𝑣 Qo = 𝑄 
𝑑

 
𝑑𝑡 

No 𝑟 Qo = 𝐿 𝜃̇ 𝑞̂𝜃  (2.4) 

Following the rule of vector differentiation of (2.3) applied to (2.4), the acceleration 

component can be found as: 
 

No 𝑎 Qo = 𝑁 
𝑑

 
𝑑𝑡 

No 𝑣 Qo 

𝑁 
𝑑 

No 𝑣 Qo = 𝑄 
𝑑 

(𝐿𝜃̇ 𝑞̂) + 𝑁 𝜔⃑ Q × (𝐿𝜃̇ 𝑞̂) 
 

𝑑𝑡 
 

𝑑𝑡 𝜃 𝜃 
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𝑁 
𝑑 

No 𝑣 Qo = 𝐿𝜃̈ 𝑞̂ + (𝜃̇ 𝑞̂)  × (𝐿𝜃̇𝑞̂) 
 

𝑑𝑡 𝜃 

 

No 𝑎 Qo  = 𝐿𝜃̈ 𝑞̂𝜃  

𝑧 𝜃 

 

− 𝐿 𝜃̇ 2 𝑞̂𝑟  

 
(2.5) 

In addition, at any angle 𝜃, the point mass would constantly be under the influence of 

gravitation force while encountering tension force against the weight of the mass and the applied 

force as the input from the torque motor at the base. In which, the forces are as follows: 

 

𝐹 𝑄 = 𝐹𝑇 (−𝑞̂𝑟 ) + 𝑚𝑔𝑐𝑜𝑠𝜃(𝑞̂𝑟) + 𝐹𝐴 ( 𝑞̂𝜃 ) + 𝑚𝑔𝑠𝑖𝑛𝜃(−̂𝑞𝜃) (2.6) 
 

Thus,  

𝐹 𝑄 = (𝑚𝑔𝑐𝑜𝑠𝜃 − 𝐹𝑇 ) 𝑞̂𝑟  + (𝐹𝐴 − 𝑚𝑔𝑠𝑖𝑛𝜃) 𝑞̂𝜃  

 
(2.7) 

Therefore, apply Newton’s 2nd Law of Motion to (2.8) as: 

 

𝐹 𝑄 = 𝑚 𝑁o 𝑎 𝑄o (2.8) 

In 𝑞̂𝑟, the centripetal forces and centripetal acceleration as: 

𝑚𝑔𝑐𝑜𝑠𝜃 − 𝐹𝑇 = − 𝑚𝐿𝜃̇2 (2.9) 

And the governing equation of motion in 𝑞̂𝜃: 

𝐹𝐴 − 𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝐿𝜃̈ (2.10) 
 

Additional analysis of (2.10) for:  

 
 1  

( ) 

 

 

− 
𝑔 

𝑠𝑖𝑛𝜃 = 𝜃̈ 
 

𝑚𝐿 𝐴 𝐿 

̈ 𝑔 1 

𝜃 + 
𝐿 

𝑠𝑖𝑛𝜃 = (
𝑚𝐿2)𝐹𝐴 ∙ 𝐿 

 
̈ 𝑔 1 

𝜃 +  𝑠𝑖𝑛𝜃 = ( 𝐿 2)𝜏𝐴 (2.11) 

 
Hence if assign 𝜃 to x1, 𝜃̇ to x2 and 𝜏  to u, where 

 
𝑥1 

𝑚𝐿 
 

𝜃  is the state vector, and vector u is 
𝐴 [𝑥2

] = [ ̇] 
𝜃 

the control input vector, thus the nonlinear pendulum dynamical system linearized with small 

angle approximation as: 

𝑠𝑖𝑛𝑥 = 𝑥 (2.12) 

 

Hence, the system can be represented as: 
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𝑥 [ 

𝑥̇1 = 𝑥2 
{ 𝑔 1 (2.13) 

𝑥̇2 = − 
𝐿 

𝑥1 + 
𝑚𝐿2 𝑢 

And the open-loop linearized state-space system of the simple inverted pendulum about 

its unstable equilibrium point [
𝑥1

] =  
𝜋

] is: 
2 0 

 
𝑥̇1 

 

 
0 1 𝑥1 0 

[
𝑥̇ 

] = [𝑔 
2 𝐿 

0] [𝑥2 
] + [ 1 

 
 

𝑚𝐿2 

] 𝑢 (2.14) 

 

Meanwhile, state and output equations can be expressed as: 

 

{𝑥 ̇ = 𝐴𝑥 + 𝐵𝑢⃑  
𝑦 = 𝐶 𝑥 + 𝐷𝑢⃑  

 

 
(2.15) 

Where A is the state matrix, B is the input matrix, C is the output matrix and D is the 
0 1 0 

feedforward matrix. Therefore, A = [𝑔 
𝐿 

0], B = [ 1 
 

 

𝑚𝐿2 

], C = [1 0] since the only interested 

output is the attitude angle 𝜃, and no feedforward matrix. From (2.13), the transfer function of 

the open-loop system can be done via Lagrange transform on both sides of the equal sign as: 

̈ 𝑔 1 
ℒ(𝜃) = ℒ [

𝐿 
𝜃 + 

𝑚𝐿2 𝑢(𝑠)] 

𝑠2𝜃(𝑠) = 
𝑔 

𝜃(𝑠) +  
1  

𝑢(𝑠) 
𝐿 𝑚𝐿2 

 

𝜃(𝑠) 
=

 
𝑢(𝑠) 

1 
𝑚𝐿2 

𝑠2−
𝑔

 
𝐿 

 
(2.16) 

First, the closed-loop model is designed using an LQR controller with controller gain K, 

state matrix A, input matrix B, and controller matrices Q, and R. Since there is only one input of 

keeping the pendulum put right at 𝜃 = 0𝑜 and 2 state attitude angle and angle rate; R and Q are 

the diagonals of 1x1 and 2x2 matrices. A closed-loop simulation model can be created using an 

LQR controller to reject external disturbances as follows: 
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0 

 

 

Figure 2-2 – Closed-loop Simulink model of simple inverted pendulum with controller LQR for 

external disturbance rejection. 

As the system shown in Figure 2-2, it can be seen in Figure 2-3 that due to a high-cost 

function J, where J is: 
 

𝐽 = ∫
∞

(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (2.17) 

 

The response of the system is fairly quick with the cost of Q and R. 
 

 

 

Figure 2-3 – Attitude angle 𝜃 in response to disturbance using the LQR controller 
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Figure 2-4 – Closed-loop Simulink model of simple inverted pendulum with PID controller for 

external disturbance. 

 

Figure 2-5 – PID tuning specification 
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Figure 2-6 – Attitude angle 𝜃 in response to disturbance using the LQR controller 

Due to the blend of PID, it can be seen that even with low P value, the system still 

overshoots the reference signal by quite a margin. However, with the blend of I and D controller 

gain, it can be seen that the system is trying to correct steady-state error while quickly damp out 

the oscillation. 
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3. Inverted Pendulum on Rolling Cart 

 
In the same process as for the simple inverted pendulum model, the inverted pendulum 

on the cart has a similar setup with the exception of having a controllable cart that can move in a 

2-dimensional plane and acts as a torque motor to provide attitude control to allow the pendulum 

to stay upright instead of a fixed base pendulum with a torque motor at base. This simulation 

model offers higher levels of fidelity than the previous one. For this system, the control input is a 

force modeling thrust vectoring that moves the cart horizontally allowing the outputs of 

the angular position of the pendulum, modeling pitch/yaw angle and horizontal position of the 

cart modeling 3 degrees of freedom of the rocket. 
 

 

Figure 3-1 The inverted pendulum on a cart 

 

In the same fashion, in order to analyze the simulation model and turn its control systems, 

assumptions must be made to allow the simulation model to operate within the intended 

boundaries. Despite being a higher level of fidelity model than the simple inverted pendulum, 

this is still a quite simplified model, with both moving parts in the cart and the inverted are 

uniform point mass objects including a point mass sphere of mass m [kg] placing on top of a 

massless pendulum rod, with length L [m] that stands on a mass cart M [kg] which can move 

horizontally . At the same time, all objects are bound within a frictionless environment, with no 

friction between the pendulum rod and the cart, between the wheels and the cart’s mainframe, or 
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𝑅 𝐴 

𝐴 

the wheels with the surface. The problem is also considered a planar pendulum problem with a 

constant gravity environment, excluding air friction, drag, or resistance. 

 

Next, analyzing the dynamic state of the system is required by deriving the governing 

equations of motion for the given inverted pendulum system. The attitude position of the 

pendulum 𝜃 is controlled by providing an applied force F [N] onto the cart on the horizontal plan 

x [m] while under the influence of gravity with gravitational acceleration g [m/s2]. 

 

Beginning with the cart, analyzing the free-body diagram of the cart for the combination 

of forces, the equation of motion is as follows: 

𝐹⃑⃑⃑⃑⃑𝐶  + 𝐹⃑⃑⃑⃑⃑𝐶  + ⃑𝐹⃑⃑ + ⃑𝐹⃑⃑𝐶  = 𝑀 𝑎 (3.1) 
𝐴 𝑅 𝑁 𝑔 

Where ⃑𝐹⃑⃑𝐶  is the reaction force from the pendulum onto the cart, 𝐹⃑⃑⃑⃑⃑𝐶  is the applied force 

onto the cart to assist attitude control for the pendulum, 𝐹⃑⃑⃑𝑁
 is the normal force of the ground 

onto the cart and 𝐹⃑⃑⃑⃑⃑𝐶  is the gravitational force applied to the cart while 𝑥 ̈ is the 
acceleration of the cart. However, only forces in the x-direction would have a meaningful 
impact on the cart’s acceleration. In addition, to make it easier moving forward, the 

reaction 𝐹⃑⃑⃑⃑⃑𝐶 𝑅 will be written as F𝐶
𝑥 and F𝐶

𝑦 when broken down into components for the x-axis 

and the y-axis, hence, (3.1) is rewritten to isolate the forces in the x-plane of the system as 
follows: 

 

⃑⃑ ⃑⃑ 𝐶⃑  
𝐴 

⃑⃑ ⃑⃑ 𝐶⃑  
𝑅 = 𝑀 𝑎 (3.2) 

Or as, 
 

F𝐶
𝐴 + F𝐶

𝑥 = 𝑀𝑥̈ (3.3) 

Where 𝑥 ̈ represents the acceleration the cart would experience under the combined 
forces in the x-direction. Next, the second element of the system, summing up the net forces 

applying to the inverted pendulum as follows: 
 

𝐹⃑⃑⃑ 𝑃⃑ 
𝑅 + 𝐹⃑⃑⃑𝑃⃑  = 𝑚𝑎⃑⃑⃑ 𝑃̈⃑  (3.4) 

Noticing in (3.2) and (3.4), the cart and the pendulum would be experiencing different 

accelerations, 𝑎 and 𝑎⃑⃑⃑ 𝑃̈⃑ . Now in a similar fashion, isolating the y-direction and x-direction 
forces as follows: 

 

F𝑃
𝑦 − F𝑃

𝑔 = 𝑚𝑦𝑃̈ (3.5) 

And, 

 

F𝑃
𝑥 = 𝑚𝑥𝑃̈ (3.6) 

𝐹 𝐹 

𝑔 

+ 
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Where 𝐹⃑⃑⃑ 𝑃⃑  is the reaction force of the cart onto the pendulum. Similar to ⃑⃑ ⃑⃑ 𝐶⃑  
𝑅 , 𝐹⃑⃑⃑⃑⃑𝐶  will 

also be broken down into F𝑃
𝑥 while referring to the x component of the reaction force from 

the cart onto the pendulum F𝑃
𝑦 while referencing the y component of the reaction force. Now 

to unify (3.5) and (3.6), the acceleration the pendulum would experience can be addressed in an 
equation of the cart’s acceleration as follows: 

𝑥𝑝 = 𝑥 + 𝐿𝑠𝑖𝑛𝜃 (3.7) 

Taking the derivative of (3.7) with respect to time: 

𝑥𝑃̇ = 𝑥̇ + 𝐿𝜃̇𝑐𝑜𝑠𝜃 (3.8) 

To achieve the pendulum’s acceleration, take the derivative of (3.8) with respect to time 

as follows: 

𝑥𝑃̈ = 𝑥̈ + 𝐿𝜃̈𝑐𝑜𝑠𝜃 − 𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 (3.9) 

In a similar fashion, 𝑦𝑝 can be derived as: 

𝑦𝑝 = 𝐿𝑐𝑜𝑠𝜃 (3.10) 

Taking the derivative of (3.10) with respect to time: 

𝑦𝑃̇ = −𝐿𝜃̇𝑠𝑖𝑛𝜃 (3.11) 

To achieve the pendulum’s acceleration, take the derivative of (3.8) with respect to time 

as follows: 

𝑦𝑃̈ = −𝐿𝜃̈𝑠𝑖𝑛𝜃 + 𝐿𝜃2̇ 𝑐𝑜𝑠𝜃 (3.12) 

Now substitute (3.9) and into (3.6) for: 

F𝑃
𝑥 = 𝑚𝑥̈ + 𝑚𝐿𝜃̈𝑐𝑜𝑠𝜃 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 (3.13) 

According to Newton’s third law of motion, when two objects interact, they apply forces 

of equal magnitude and opposite directions to each other. Hence, the reaction forces of the cart 

and the pendulum onto each other are equal: 

 

F𝑃
𝑥 = −F𝐶

𝑥 (3.14) 

Combining (3.11) and (3.3) results in the first equation of motion for the overall system 

of an inverted pendulum on a cart as follows: 

F𝐶
𝐴 − 𝑚𝑥̈ − 𝑚𝐿𝜃̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 = 𝑀𝑥̈ 

F𝐶
𝐴 = 𝑀𝑥̈ + 𝑚𝑥̈ + 𝑚𝐿𝜃̈𝑐𝑜𝑠𝜃 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 

𝑅 𝐹 𝑅 
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𝑅 

𝑅 

𝑅 

F𝐶
𝐴 = (𝑀 + 𝑚)𝑥̈ + 𝑚𝐿(𝜃̈𝑐𝑜𝑠𝜃 − 𝜃2̇ 𝑠𝑖𝑛𝜃) (3.15) 

Due to this being non-linearized, the dynamical system can be linearized with small angle 

approximation in (2.15) with the assumption that controlled angle 𝜃 would only stay in a small 

neighborhood of around 0o as that is the goal of the system, is to keep the pendulum vertically 

upright at an angle of 90o. 

𝑐𝑜𝑠𝑥 ≈ 1 (3.16) 

 

And, 

𝜃2̇ ≈ 0 (3.17) 

 

Hence if assign F𝐶
𝐴 to u as the control input vector, and the first 3 stages of the state 

𝜃̇ 

vector is [𝜃̈]. Thus, the nonlinear pendulum dynamical system linearized with small angle 
𝑥̈ 

approximation as: 

(𝑀 + 𝑚)𝑥̈ + 𝑚𝐿𝜃̈ = 𝑢 (3.18) 

Let’s take a look at the forces applied on the pendulum in the y-direction from (3.5) as 

the pendulum is under the influence of the reaction force from the cart and the gravitational force 

and substitute the y-direction acceleration acquired from (3.12) as follows: 

F𝑃
𝑦 − F𝑃

𝑔 = 𝑚(−𝐿𝜃̈𝑠𝑖𝑛𝜃 + 𝐿𝜃2̇ 𝑐𝑜𝑠𝜃) 

F𝑃
𝑦 − 𝑚𝑔 = 𝑚(−𝐿𝜃̈𝑠𝑖𝑛𝜃 + 𝐿𝜃2̇ 𝑐𝑜𝑠𝜃) (3.19) 

As specified before, F𝑃
𝑥 and F𝑃

𝑦 are the horizontal and vertical components of the 

reaction applied on the pendulum from the rolling cart. Therefore, they can be derived as the 
function of the reaction force as follows: 

F𝑃
𝑥𝑖̂ = 𝐹⃑⃑⃑ 𝑃⃑  𝑠𝑖𝑛𝜃 (3.20) 

 

With the magnitude of: 

 

 

 

And, 

 

 

Magnitude of: 

 

 

F𝑃
𝑥 = |𝐹⃑⃑⃑ 𝑃⃑  |𝑠𝑖𝑛𝜃 (3.21) 

 

 

F𝑃
𝑦𝑗̂ ̂= 𝐹⃑⃑⃑ 𝑃⃑  𝑐𝑜𝑠𝜃 (3.22) 
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𝑅 

F𝑃
𝑦 = |𝐹⃑⃑⃑ 𝑃⃑ 

𝑅|𝑐𝑜𝑠𝜃 (3.23) 

Now, substitute F𝑃
𝑥 acquired from (3.21) into (3.11), and F𝑃

𝑦 acquired from (3.23) into 

(3.13) to get: 
 

 

 

And, 

|𝐹⃑⃑⃑ 𝑃⃑ 
𝑅|𝑠𝑖𝑛𝜃 = 𝑚𝑥̈ + 𝑚𝐿𝜃̈𝑐𝑜𝑠𝜃 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 (3.22) 

 

 

|𝐹⃑⃑⃑ 𝑃⃑ 
𝑅| 𝑐𝑜𝑠𝜃 − 𝑚𝑔 = 𝑚(−𝐿𝜃̈𝑠𝑖𝑛𝜃 − 𝐿𝜃2̇ 𝑐𝑜𝑠𝜃) (3.23) 

 

Now, multiply 𝑐𝑜𝑠𝜃 to (3.22) and 𝑠𝑖𝑛𝜃 to (3.23) for the next step: 

|𝐹⃑⃑⃑ 𝑃⃑ 
𝑅|𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 = 𝑚𝑥̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃̈(𝑐𝑜𝑠𝜃)2 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (3.24) 

And, 

|𝐹⃑⃑⃑ 𝑃⃑ 
𝑅| 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 − 𝑚𝑔𝑠𝑖𝑛𝜃 = −𝑚𝐿𝜃2̇ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 − 𝑚𝐿𝜃̈(𝑠𝑖𝑛𝜃)2 (3.25) 

 

Subtract (3.25) from (3.24) for the left-hand side: 

 

|𝐹⃑⃑⃑𝑃⃑ 
𝑅| 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 − |𝐹⃑⃑⃑𝑃⃑  | 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑠𝑖𝑛𝜃 

 
𝑚𝑔𝑠𝑖𝑛𝜃 (3.26) 

 

The right-hand side of the equation is: 

𝑚𝑥̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃̈(𝑐𝑜𝑠𝜃)2 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃2̇ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 𝑚𝐿𝜃̈(𝑠𝑖𝑛𝜃)2 

𝑚𝑥̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃̈ (3.27) 

 

Therefore, as the result of combining the left-hand side and the right-hand side of the 

equation as follows: 

𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝑥̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃̈ (3.28) 

 

Similarly, linearized (3.28) in the same process with (2.13), (3.16), and (3.17) as in (3.18) 

to result: 

𝑚𝑔𝜃 = 𝑚𝑥̈ + 𝑚𝐿𝜃̈ (3.29) 

 

Or, 

𝑔𝜃 = 𝑥̈ + 𝐿𝜃̈ (3.30) 
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Now, with (3.30), the second governing equation of motion for the system is introduced. 

However, it must be pointed out that, (3.30) is only qualified as the second governing equation 

for the system due to the fact that this simulation model uses a uniform point mass sphere placed 

on top of a massless inverted pendulum. Hence all the mass is not uniformly distributed but is 

concentrated in the top end of the pendulum. Therefore, it is possible to ignore the moment of 

inertia that then would possibly exist on a uniformly distributed pendulum rod rotating about it 

fixed point at the lower end of the rod. A scenario where the pendulum is a uniformly distributed 

rod would also be derived below to show the comparison between two different condition setups 

for the differences. 

 

Now the overall system can be represented as: 

 

{
(𝑀 + 𝑚)𝑥̈ + 𝑚𝐿𝜃̈ = 𝑢 

(3.31)
 

𝑔𝜃 = 𝑥̈ + 𝐿𝜃̈ 
 

However, (3.31) contains two equations that are coupled together. Therefore, it would be 
necessary to further decouple them, and now return to (3.29), before simplifying mass m [kg] out 

of the equation to achieve (3.30), by isolating 𝑚𝐿𝜃̈ in (3.18) and (3.29) for: 

 

{
𝑚𝐿𝜃̈ = 𝑢 − (𝑀 + 𝑚)𝑥̈ 

(3.32)
 

𝑚𝐿𝜃̈ = 𝑚𝑥̈ − 𝑚𝑔𝜃 
 

Therefore, (3.32) would result in the first decoupled governing equation of motion for the 

system as: 

𝑢 − (𝑀 + 𝑚)𝑥̈ = 𝑚𝑥̈ − 𝑚𝑔𝜃 

𝑀𝑥̈ = 𝑢 − 𝑚𝑔𝜃 (3.33) 

 

In a similar fashion to (3.33), to decouple (3.18), isolating the term 𝑥̈ in (3.30) to create a 

similar equation as: 

𝑥̈ = 𝐿𝜃̈ − 𝑔𝜃 (3.34) 

 

Now substituting (3.34) into (3.18) to acquire the other decoupled governing equation of 

motion of the system as follows: 

(𝑀 + 𝑚)(𝐿𝜃̈ − 𝑔𝜃) + 𝑚𝐿𝜃̈ = 𝑢 

𝑚𝐿𝜃̈ = (𝑀 + 𝑚)𝑔𝜃 − 𝑢 (3.35) 
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𝑥 

[ ] 

Hence, the simulation model of the system with the second order, linearized and 

decoupled is as follows: 

𝑀𝑥̈ = −𝑚𝑔𝜃 + 𝑢 { ̈ ( ) (3.36) 

 

Isolating 𝑥̈ and 𝜃̈ for: 

𝑚𝐿𝜃 =  𝑀 + 𝑚 𝑔𝜃 − 𝑢 

𝑥̈ = 
−𝑚𝑔 

𝜃 + 
1 

𝑢 
{ 𝑀 𝑀 (3.37) 

𝜃̈ = 
(𝑀+𝑚)𝑔 

𝜃 − 
1 

𝑢
 

𝑚𝐿 𝑚𝐿 

 
Let 𝑥 be 𝑥1, 𝑥̇ be 𝑥2 or 𝑥̇1, then 𝑥̈ would be 𝑥̇2, and 𝜃 be 𝑥3, 𝜃̇ be 𝑥4 or 𝑥̇3, then 𝜃̈ 

 
would be 𝑥̇ 

𝑥1 

, where [ 
𝑥2 ] = 

3 

𝑥4 

𝑥 
𝑥̇ 

[ 𝜃] 

𝜃̇ 

 
is the state vector, and vector u is the control input vector. 

Therefore, the open-loop linearized state-space system of the inverted pendulum about its 

unstable equilibrium point is: 
 

𝑥̇1 0 1 0 0 𝑥 0 

[ 
𝑥2̇] = 

−𝑚𝑔 

0 0 𝑀 
0 

1 1 

[ 
𝑥2 ] + 𝑀 𝑢 (3.38) 

𝑥̇3 0 0 0 1 𝑥3 0 
𝑥̇4 

(𝑚+𝑀)𝑔 

[ 0 0 
𝑚𝐿

 0]  
𝑥4 −  

1 

𝑚𝐿 
 

Meanwhile, state and output equations can be expressed as: 

 

{𝑥 ̇ = 𝐴𝑥 + 𝐵𝑢⃑  
𝑦 = 𝐶 𝑥 + 𝐷𝑢⃑  

 

 
(3.39) 

Where A is the state matrix, B is the input matrix, C is the output matrix and D is the 
0 1 0 0 0 

 
feedforward matrix. Therefore, A = 

−𝑚𝑔 

0 0 𝑀 0  
, B = 

1   
 

 

𝑀 , C = [0 0 1 0], since 
0 0 0 1 0 

(𝑚+𝑀)𝑔 
0

 1  
[ 0 0 

𝑚𝐿 ] [− 
𝑚𝐿] 

the only interested output is the attitude angle y = 𝜃, and no feedforward matrix. From (3.37), the 

transfer function of the open-loop system can be done via the Lagrange transform on both sides 

of the equal sign as: 

ℒ(𝜃̈) = ℒ [
(𝑀 + 𝑚)𝑔 

𝜃 −  
1 

𝑢(𝑠)] 
𝑚𝐿 𝑚𝐿 

4 
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] [ ] 

𝑠2𝜃(𝑠) = 
(𝑀 + 𝑚)𝑔 

𝜃(𝑠) −  
1

 𝑢(𝑠) 
 

 
𝜃(𝑠) 

 
 

𝑢(𝑠) 

𝑚𝐿 𝑚𝐿 

−
 1  

=  𝑚𝐿  

𝑠2−
(𝑀+𝑚)𝑔 

𝑚𝐿 

 

 
(3.40) 

Checking the controllability of the system with the controllability matrix Co can be 

defined as: 

𝐶𝑜 = [𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴(𝑛−1)𝐵] (3.41) 

Where A is still the state matrix while B is still the input matrix, and “n” is the number of 

states, in this particular system, n is 4. Therefore, the controllability matrix can be achieved from 

(3.41) as follows: 

𝐶𝑜 = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵] (3.41) 

Calculating the components of the controllability matrix, 𝐴𝐵: 
 

0 1 0 0 0 −𝑚𝑔 

 
𝐴𝐵 = 

−𝑚𝑔 

0 0 𝑀 
0 

1 
 

 

𝑀 = [ 

 
 

𝑀 
0 ] (3.42) 

0 0 0 1 0 0 
 

 
Calculating 𝐴2𝐵: 

(𝑚+𝑀)𝑔 

[ 0 0 
𝑚𝐿

 0 −  
1

 
𝑚𝐿 

0 1 0 0 2 0 0 

 
𝐴2𝐵 = 

−𝑚𝑔 

0 0 𝑀 
0 

1 
 

 

𝑀 = 
𝑔 

 
 

𝑀𝐿 
 

(3.43) 
0 0 0 1 

(𝑚+𝑀)𝑔 
0

  0 0 
1  −(𝑚+𝑀)𝑔  

[ 0 0 
𝑚𝐿 ] [− 

𝑚𝐿] [  (𝑚𝐿)2  ] 
 

Calculating 𝐴3𝐵: 

 
0 1 0 0 3 0 𝑔 

 
𝐴3𝐵 = 

−𝑚𝑔 

0 0 𝑀 
0 

1 
 

 

𝑀 = 
𝑀𝐿 

0 
 

(3.44) 
0 0 0 1 

(𝑚+𝑀)𝑔 
0

  
0 −(𝑚+𝑀)𝑔 

 

1 (𝑚𝐿)2 

[ 0 0 
𝑚𝐿 ] [− 

𝑚𝐿] [ 0 ] 

0 



25  

𝑥 

1 

0 
−𝑚𝑔 

𝑀 
0 

𝑔 

𝑀𝐿 

 
𝐶𝑜 = 

𝑔 
 0 0 

𝑀 𝑀𝐿 
 

(3.45) 

0 
−(𝑚+𝑀)𝑔 

(𝑚𝐿)2 

 
−  

1 −(𝑚+𝑀)𝑔   0 0 
 

[ 𝑚𝐿 (𝑚𝐿)2 ] 

Now, to determine whether the system is fully controllable or not via taking the Rank of 

the controllability matrix, resulting in: 

 

𝑅𝑎𝑛𝑘(𝐶𝑜) = 4 (3.46) 

The system is fully controllable as it is full rank. In addition, this can also be determined 

by observing the presence of input control vector u in both governing equations of motion of the 

system. 

To simulate the model, parameters need to be assigned for the cart’s mass. M = 3 [kg], 

the mass of the sphere located on top of the inverted pendulum, m = 1 [kg], the length of the 

massless inverted pendulum, L = 1 [m], while gravitational acceleration is g = 9.81 [kg/s2]. For 
𝑥1 

initializing the system with the initial conditions of 𝑥 = [ 
𝑥2 ] = 

𝑥 
𝑥̇ 

= [
 

0 0  ], where the cart 

𝑖 𝑥3 

𝑥4 

[ 𝜃] 

𝜃̇ 
0.01 

0 
would start at the origin, with no velocity, while the pendulum is set to be slightly off-set to the 

equilibrium of 0-degree angle and has no angular velocity. 

 
Now, with the initial position given as the starting state of the system, the desired state of 

 

the system can be 𝑥𝑓 

𝑥1 

= [ 
𝑥2 ] = 

3 

𝑥4 

𝑥 
𝑥̇ 

[ 𝜃] 

𝜃̇ 

1 

= [0], where the final position is an arbitrary location 
0 
0 

away from the origin, in this case, is 1, while not translational and angular velocity residue is 

wanted and the inverted pendulum to stay fully upward at an angle 𝜃 = 0. 

0 0 
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Figure 3-2 The system's Closed-Loop Response with 𝜃4 = 0.1 

 

 

Figure 3-3 The system's Closed-Loop Response with 𝜃4 = -0.1 

 

Notice that the time step in the simulation is at 0.001, hence the simulation time reflected 

in the result is taking almost 3000 steps or 30 seconds to reach the reference or desired states of 

the system. It is worth noticing that despite having a relatively small R-value for the cost 

function J, the emphasis is placed heavily on the error of 𝑥3 and 𝑥4, which in this case are 𝜃 and 

𝜃̇ from matrix Q (see Appendix A), where R would be the cost to the input from the hardware 

while Q is the “cost” accounting for the system’s states and how each state is weighted. The cost 

function of a Linear Quadratic Regulator can be calculated as: 
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0 
𝐽 = ∫

∞
(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡 (3.47) 

 

Via data analysis, it can be seen that in case 1 𝜃4 = 0.1, Figure 3-2, the cart accelerates 

quickly in the positive direction to cause an impulse to the pendulum via reaction force between 

the cart and the inverted pendulum which causes the cart to massively overshoot its desired 

steady-state position. On the other hand, where 𝜃4 = -0.1, like in Figure 3-3, the system started 

moving left in the negative direction initially, which is the wrong direction as the reference 

position is x = 1. This behavior is seen by the system only caused by the initial position of the 

pendulum, which reflects that the overall system is a non-minimum phase. This is similar to 

putting a thermostat into a hot cup of water, the reading would go down for a quick moment 

before going up. 

 

However, in many cases, there would be disturbances and noise within the system due to 

multiple factors such as the lack of sensors to measure many states or any possible noisy sensor 

measurements. Now, these factors can be mitigated via filtering, a prime example can be the 

Kalman filter, the most important and popular state estimator of uncertain information of a 

dynamical system based on the knowledge of any possible disturbances, after developing a 

working Kalman filter with a Linear Quadratic Regulator for better control of an unstable 

inverted pendulum on a cart. 

 

Firstly, in order to acknowledge any states of the system, there must be sensors, and the 

system must be observable. To check whether the system is fully observable, an observable 

matrix can be calculated as: 
 

 

 

𝑂𝑏 = 

𝐶 
𝐶𝐴 
𝐶𝐴2 

⋮ 

 

 
(3.48) 

[𝐶𝐴(𝑛−1)] 
 

0 1 0 0 
 

Where A is still the state matrix, , A = 

−𝑚𝑔 

0 0 𝑀 
0  while C is still the output 

0 0 0 1 
 (𝑚+𝑀)𝑔   0 0 0 
[ 𝑚𝐿 ] 

matrix, C = [0 0 1 0], and “n” is the number of states, in this particular system, n is 4. 

Therefore, the controllability matrix can be achieved from (3.48) as follows: 

𝐶 

𝑂𝑏 = [ 
𝐶𝐴 

] (3.49) 
𝐶𝐴2 
𝐶𝐴3 

Calculating the components of the observability matrix, 𝐶𝐴: 
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0 1 0 0 
 

𝐶𝐴 = [0 0 1 0] 

−𝑚𝑔 

0 0 𝑀 
0  = [0 0 0 1] (3.50) 

0 0 0 1 
 (𝑚+𝑀)𝑔   0 0 0 

 
Calculating 𝐴2𝐵: 

[ 𝑚𝐿 ] 
 
 
 

 

0 1 0 0 2 
 

𝐶𝐴2 = [0 0 1 0] 

−𝑚𝑔 

0 0 𝑀 
0  

= [0 0 
(𝑚+𝑀)𝑔 

 
0] (3.51) 

0 0 0 1 
 (𝑚+𝑀)𝑔   0 0 0 

 

𝑚𝐿 

 
Calculating 𝐴3𝐵: 

 

 

 
𝐶𝐴3 = [0 0 1 0] 

[ 𝑚𝐿 ] 
 
 
 

 

0 1 0 0 3 
−𝑚𝑔 

0 0 𝑀 
0 

 
 
 
 

 
= [0 0 0 

(𝑚+𝑀)𝑔
] (3.52) 

0 0 0 1 
 (𝑚+𝑀)𝑔   0 0 0 

 

𝑚𝐿 

[ 𝑚𝐿 ] 
 

 

 
𝑂𝑏 = 

    
 (𝑚+𝑀)𝑔   
0 0 0 

 
(3.53) 

𝑚𝐿 
  

[ 0 0 0 
(𝑚+𝑀)𝑔  

 
 

𝑚𝐿 ] 

Now, to determine whether the system is fully controllable or not via taking the Rank of 

the observability matrix, resulting in: 

 

𝑅𝑎𝑛𝑘(𝑂𝑏) = 2 (3.54) 

 

The system does not have full rank; therefore, it is not fully observable. Which is the case 

due to 

However, if matrix C = [1 0 0 0] instead, the rank of the observability matrix, Rank(Ob) 

would be 4, the system would be fully observable as it is full rank. This is the case due to sensor 

placement, where if the sensor is used to measure x3, the pendulum’s angular position, the 

system is not fully observable, while if the sensor is used to measure x1, the position of the cart, 
the system is deemed to be full rank; however, due to x1 does not appear explicitly in the 

equations of motion of the dynamical system, it is not possible to observe all other states of the 
system via x1. 

0 0 1 0 
0 0 0 1 
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This work is not related to previous work, but more of an expansive addition to the model 

depending on the design of the problem. 

 

However, if the pendulum has a uniform mass in addition to the sphere, (3.29) is not 

particularly the wanted equation of motion since it introduces another state of the pendulum that 

is still coupled to two existing states and missing another state for the cart. Hence, it is deemed 

not useful for further analysis. Therefore, to acquire the wanted equation of motion, the analysis 

of the sum of forces applied to the x-axis of the pendulum’s frame: 

F𝑃
𝑥𝑐𝑜𝑠𝜃 − F𝑃

𝑦𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚(𝐿𝜃̈) (3.55) 

Unlike the simple inverted pendulum model in Chapter 2, the pendulum in the pendulum 

on a rolling cart simulation model would experience the additional acceleration term as the result 

of the externally applied force onto the cart of 𝑥̈. Hence the additional term to (3.30) results in: 

F𝑃
𝑥𝑐𝑜𝑠𝜃 − F𝑃

𝑦𝑠𝑖𝑛 + 𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚(𝐿𝜃̈ + 𝑥̈𝑐𝑜𝑠𝜃) (3.56) 

Now applying Newton’s second law of rotation to the pendulum: 

⃑τ𝐶 
𝑅 + τ⃑⃑⃑g = 𝐼𝜃̈ (3.57) 

The pivot would be at the center of mass of the rod instead of at the base of the pendulum 

where it is connected to the cart to provide a meaningful torque to control its attitude. Hence, the 

torque due to gravitational force is zero while the torque from reaction force against the cart 

would be an axial force applied at the base with direction toward the center of mass, resulting in 

the torque having 2 components, following (2.1) to have: 

F𝑃
𝑥𝐿𝑐𝑜𝑠𝜃 − F𝑃

𝑦𝐿𝑠𝑖𝑛𝜃 = −𝐼𝜃̈ 
 

F𝐶 
𝑥𝑐𝑜𝑠𝜃 − F𝐶 𝑠𝑖𝑛 𝜃 = 

𝐼𝜃̈
 

𝐿 
(3.58) 

To process forward, combine (3.31) and (3.33) to result in: 

−𝑚𝑔𝐿𝑠𝑖𝑛𝜃 = −𝐼𝜃 ̈− 𝑚𝐿(𝐿𝜃̈ + 𝑥̈𝑐𝑜𝑠𝜃) 

𝑥̈𝑚𝐿𝑐𝑜𝑠𝜃 = 𝑚𝑔𝐿𝑠𝑖𝑛𝜃 − (𝐼 + 𝑚𝐿2)𝜃̈ (3.59) 

 

Linearizing (3.34) in a similar fashion done previously for the second equation of motion 

of the system as follows: 

𝑥̈𝑚𝐿 = 𝑚𝑔𝐿𝜃 − (𝐼 + 𝑚𝐿2)𝜃̈ (3.60) 

𝑦 
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4. Hardware selection 

 
In order to create a simulation model for the proposed solution, there must be 

requirements for vehicle design. Therefore, this section would serve the purpose of selecting 

hardware for the simulation model at the low level of control system engineering rather than for 

the overall design and the system engineering approach. Hence, selected hardware would be only 

weighted based on mass, length, and max performance to create a more realistic simulation 

model. Based on a typical Falcon 9 launch, based on SpaceX’s overview data of a Falcon 9 can 

be as 

Table 4-1 – SpaceX’s Falcon 9 specs and payload capacity [18] 
 

Height (with 

fairing) (m) 

Diameter 

(m) 

Mass (without 

payload) (kg) 

Payload to 

LEO (kg) 

Payload to 

GTO (kg) 

Payload to 

Mars (kg) 

70 3.7 549,054 22,800 8,300 4,020 

 

 

Table 4-2 – Available rocket engines [18], [19] 
 

Company Engine Burn time 

(Vacuum) (s) 

Mass (kg) Thrust at 

sea level 

(kN) 

Thrust in 

vacuum (kN) 

SpaceX Merlin 1D 397 (vacuum) 

162 (sea level) 

1760 kg 845 981 

Blue Origin BE-3PM 141 NA 490 770 

Blue Origin BE-3U N/A N/A N/A 712 

Blue Origin BE-7 N/A N/A N/A 44.5 

Aerojet Rocketdyne RS-25 480 3,177 1852 2278 
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Table 4-3 – Reaction Control System (RCS) and Attitude Control Thrusters [20] 
 

Company Model Isp (s) Thrust range 

(N) 

Mass (kg) 

Marotta CGMT N/A 0.1 – 10 N 0.60 

Aerojet Rocketdyne MR-401 184 – 180 0.07 – 0.09 0.60 

Aerojet Rocketdyne MR-103G 224 – 202 0.19 – 1.13 0.33 

Aerojet Rocketdyne MR-103J 229 – 219 0.19 – 1.13 0.37 

Aerojet Rocketdyne MR-111G 229 – 219 1.8 – 4.9 0.37 

Aerojet Rocketdyne MR-106L 235 – 228 4 – 10 0.59 

Aerojet Rocketdyne MR-107T 225 – 222 54 – 125 1.01 

Aerojet Rocketdyne MR-107S 236 – 225 85 – 360 1.01 

Aerojet Rocketdyne MR-107U 229 – 223 182 – 307 1.38 

Aerojet Rocketdyne MR-107V 229 – 223 67 – 220 1.01 

Aerojet Rocketdyne MR-104H 237 – 22 201 – 554.2 2.40 

Aerojet Rocketdyne MR-104J 223 – 215 440 – 614 6.44 

Aerojet Rocketdyne MR-80B 225 – 200 31 – 3630 168 
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Table 4-4 – Commercially available reaction wheels and specs [25]. 
 

Company Model Momentum 

(Nms) 

Mass (kg) Volume 

(mm) 

Max 

Torque 

(Nm) 

Blue Canyon 

Technologies 

RWP015 0.015 0.130 42 x 42 x 19 0.004 

Blue Canyon 

Technologies 

RWP050 0.050 0.24 58 x 58 x 25 0.007 

Blue Canyon 

Technologies 

RWP100 0.10 0.33 70 x 70 x 25 0.007 

Blue Canyon 

Technologies 

RWP500 0.50 0.75 110 x 110 x 

38 

0.025 

Blue Canyon 

Technologies 

RW1 1.0 0.95 110 x 110 x 

54 

0.07 

Blue Canyon 

Technologies 

RW4 4.0 3.2 170 x 170 x 

70 

0.25 

Blue Canyon 

Technologies 

RW8 8.0 4.4 190 x 190 x 

90 

0.25 

Blue Canyon 

Technologies 

CMG8 8 13 220x220x300 8 

Blue Canyon 

Technologies 

CMG12 12 18 240x430x380 12 

Blue Canyon 

Technologies 

DCE N/A 0.16 3.937x3.937x 

0.5 (in) 

N/A 

AAC Clyde 

Space 

iADCS400 0.06 1.15 to 1.7 95.4 x 95.9 x 

67.3 

2 
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Table 4-5 – Commercially available Attitude Control Systems [25]. 
 

Company Model Momentum 

Capacity 

(mNms) 

Mass (kg) Volume 

(mm) 

Blue Canyon 

Technologies 

XACT-15 15 0.885 10x10x5 

(0.5U) 

Blue Canyon 

Technologies 

XACT-50 50 1.23 10x10x7.54 

(0.75U) 

Blue Canyon 

Technologies 

XACT-100 100 1.813 10x10x5 

(0.5U) 

Blue Canyon 

Technologies 

FLEXCORE 500-8000 N/A 12.1x11.4x4.9 

 

Now, let’s use a typical Falcon 9 flight to carry a payload that carries Starlink satellites 

that weigh approximately 800 kg, with about 25 satellites within the rocket’s fairing. Now the 

simulation model will be. Where the rocket will have two stages, each with its own tanks, 

 

Table 4-6 – SpaceX’s Falcon 9 specs and payload capacity [18] 
 

Height (with 

fairing) (m) 

Diameter (m) First-stage 

(kg) 

Second-stage 

(kg) 

25 Starlink 

V2 (kg) 

Total mass 

(kg) 

70 3.7 445,052 120322 18,400 583,774 

 

Table 4-7 – SpaceX’s Falcon 9 specs and payload capacity [18] 
 

First-stage 

engines 

First-stage 

propellant mass 

(kg) 

Second-stage 

engines 

Second-stage 

propellant mass 

(kg) 

Engine mass 

flow rate (kg/s) 

9 395,700 1 92,670 266.89 – 301.13 
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5. Modeling of an In-flight Rocket Booster 

 
Now that the hardware selection with requirements is completed, let’s start modeling the 

system. The first need-to-know equation should be the Tsiolkovsky rocket equation or ideal 

rocket equation that calculates the change in the rocket’s velocity, which can be formulated from 

an equivalent velocity and the change in the rocket’s mass as follows: 

 
∆𝑣 = 𝑣  ln (

𝑚𝑒) = 𝑔 𝐼 ln (
𝑚𝑒) (5.1) 

𝑒 𝑚𝑓
 0 𝑠𝑝 𝑚𝑓 

 

 

 
Figure 5-1 – SpaceX’s Falcon 9 rocket booster and Merlin, gimbaled rocket engines [4]. 

Similar to Chapter 2 and Chapter 3, in order to begin modeling the rocket. Firstly, drag 

would be applied to the body of the rocket, in addition to gravitational force and thrust force. The 

effect of Coriolis force also exists and applies directly on the rocket airframe. 

 
The goal of the simulation will be to design an attitude control system for attitude 

(pitch/yaw) angle 𝜃 = 90° of a multi-state Falcon-style rocket booster. Analyzing the dynamical 
state of the system is required by deriving the governing equations of motion for the given rocket 
booster. The attitude position of the rocket 𝜃 can be controlled by the thrust force 𝐹𝑇 with either 

a max 5° gimbal angle for the first-stage engines and 15° angle for the second-stage engine. 
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Figure 5-2 Simulation model for the rocket 

Firstly, let’s take a look at the de-rolled body frame of the rocket with the Newton 

2nd law as follows, as up and to the right are positive axes: 

𝐹⃑⃑⃑𝑇⃑ + 𝐹⃑⃑⃑𝐷⃑ + 𝐹⃑⃑⃑𝑔 = 𝑀 𝑎 (5.2) 

 

Or, 

 

𝐹𝑇 = 𝐹𝐷 + 𝑀𝑔𝑐𝑜𝑠𝜃 + 𝑀 𝑎 (5.3) 

The booster thrust can be calculated differently as an equation of pressure, velocity, and 

mass flow rate: 

 

𝐹𝑇 = 𝑚̇1𝑣𝑒 + (𝑝𝑒 − 𝑝𝑎)𝐴𝑒 (5.4) 

Where 𝑚1̇ is the mass flow rate of the first stage, 𝑝𝑒 is exit pressure and 𝑝𝑎 is ambient 

pressure of the environment, while 𝐴𝑒 is the exit area of the nozzle. Therefore, by substituting 𝐹𝑇 

from (5.3) into (5.4) would result in: 

𝑚̇1𝑣𝑒 + (𝑝𝑒 − 𝑝𝑎)𝐴𝑒 =  𝐹𝐷 + 𝑀𝑔𝑐𝑜𝑠𝜃 + 𝑀 𝑎 (5.5) 

Drag force applied on the rocket airframe can also be calculated as an equation of air 

density, drag coefficient, current velocity, and total surface area as: 
 

𝐹𝐷 = 1 𝜌𝑉 
2 

2𝐶𝐷𝐴 (5.6) 
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Therefore, (5.5) becomes: 

𝑚̇ 𝑣⃑⃑  ⃑ + (𝑝 − 𝑝 )𝐴  =  
1 

𝜌𝑉2𝐶 𝐴 + 𝑀𝑔𝑐𝑜𝑠𝜃 + 𝑀 𝑎 (5.7) 
1 𝑒 𝑒 𝑎 𝑒 2 𝐷 

However, it is worth noticing that mass M of the entire rocket is the sum of both stages' 

mass whereas before the separation of the first stage, the mass m1 of the booster changes over 

time. Therefore, (5.7) can be rewritten as: 

(𝑚  + 𝑚 )𝑎 = 𝐹 − 
1 

𝜌𝑉2𝐶 𝐴 − (𝑚  + 𝑚 )𝑔𝑐𝑜𝑠𝜃 (5.8) 
1 2 𝑇 2 𝐷 1 2 

𝑑((𝑚1(𝑡)+𝑚2)𝑣(𝑡)) 
= 𝐹 (𝑡) − 

1 
𝜌𝑣(𝑡)2𝐶 𝐴 − (𝑚 (𝑡) + 𝑚 )𝑔𝑐𝑜𝑠𝜃 (5.9) 

𝑑𝑡 𝑇 2 𝐷 1 2 

𝑣(𝑡) 
𝑑(𝑚1(𝑡)) 

+ (𝑚 (𝑡) + 𝑚 ) 
𝑑(𝑣(𝑡)) 

= 𝐹 (𝑡) − 
1 

𝜌𝑣(𝑡)2𝐶 𝐴 − (𝑚 (𝑡) + 𝑚 )𝑔𝑐𝑜𝑠𝜃 (5.10) 
𝑑𝑡 1 2 𝑑𝑡 𝑇 2 𝐷 1 2 

As thrust is defined in (5.4), however, with an ideal thrust equation, building a model 

based on the idea of flight conditions can be defined as: 

 

𝐹𝑇 = 𝑚̇1𝑣𝑒 (5.11) 

Or can be rewritten to match with the format of (5.8), (5.9), and (5.10) a derivative of 

time as follows: 
 

𝐹  = 
𝑑(𝑚1(𝑡)) 

𝑣
 (5.12) 

𝑇 𝑑𝑡 𝑒 

Now the ideal thrust equation, substitute the thrust force from (5.12) into (5.10) to 

achieve: 

𝑣(𝑡) 
𝑑(𝑚1(𝑡)) 

+ (𝑚 (𝑡) + 𝑚 ) 
𝑑(𝑣(𝑡)) 

= 
𝑑(𝑚1(𝑡)) 

𝑣  − 
1 

𝜌𝑣(𝑡)2𝐶 𝐴 − (𝑚 (𝑡) + 𝑚 )𝑔𝑐𝑜𝑠𝜃 (5.13) 
𝑑𝑡 1 2 𝑑𝑡 𝑑𝑡 𝑒 2 𝐷 1 2 

Notice, since this is before the separation of the first stage, the engine of the second stage 

is not yet burning, therefore 𝑚2 is still a constant. 

 

Simplifying (5.13) as follows: 

 
(𝑚 (𝑡) + 𝑚 ) 

𝑑(𝑣(𝑡)) 
− 

𝑑(𝑚1(𝑡)) 
(𝑣(𝑡) − 𝑣 ) + 

1 
𝜌𝑣(𝑡)2𝐶 𝐴 + (𝑚 (𝑡) + 𝑚 )𝑔𝑐𝑜𝑠𝜃 = 0  (5.14) 

1 2 𝑑𝑡 
 

𝑑𝑡 𝑒 2 𝐷 1 2 

(5.14) results in an equation of Riccati different equation. In order to solve this, the 

Differential Transform Method or DTM needed to be mentioned and used. 

 

DTM uses Taylor’s series expansive, which has been utilized to solve nonlinear systems 

or any system that contains oscillation. The Differential Transform Method is fit for solving 

nonlinear ordinary equations without the need for discretizing. 
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Table 5-1 – Deferential Transform Method [22] 
 

Original Function Transformed Function 

𝑥(𝑡) = 𝛼𝑓(𝑥) ± 𝛽𝑔(𝑡) 𝑋(𝑘) = 𝛼𝐹(𝑘) ± 𝛽𝐺(𝑘) 

𝑑𝑚𝑓(𝑡) 
𝑥(𝑡) = 

𝑑𝑡𝑚 

(𝑘 + 𝑚)! 𝐹(𝑘 + 𝑚) 
𝑋(𝑘) = 

𝑘! 

𝑥(𝑡) = 𝑓(𝑡)𝑔(𝑡) 𝑘 

𝑋(𝑘) = ∑ 𝐹(𝑙)𝐺(𝑘 − 𝑙) 

𝑙=0 

𝑥(𝑡) = 𝑡𝑚 𝑋(𝑘) = 𝛿(𝑘 − 𝑚) = {
1, 𝑖𝑓 𝑘 = 𝑚

 
0 𝑖𝑓 𝑘 ≠ 𝑚 

𝑥(𝑡) = 𝑒(𝑡) 1 
𝑋(𝑘) = 

𝑘! 

𝑥(𝑡) = sin (𝜔𝑡 + 𝛼) 𝜔𝑘 𝑘𝜋 
𝑋(𝑘) = sin ( + 𝛼) 

𝑘! 2 

𝑥(𝑡) = sin (𝜔𝑡 + 𝛼) 𝜔𝑘 𝑘𝜋 
𝑋(𝑘) = cos ( + 𝛼) 

𝑘! 2 

 

Applying the Differential Transform Method into (5.14) with the initial conditional of at 

t = 0, the rocket booster would then have close to zero velocity and 𝑚1 would be dry mass of the 

booster combined with the propellant’s mass of the first stage for: 

(𝑚1(𝑡) + 𝑚2)𝑉(𝑘) − 𝑀(𝑘)(−𝑣𝑒) + (𝑚1(𝑡) + 𝑚2)𝑔𝑐𝑜𝑠𝜃 = 0 (5.15) 

(𝑚1(𝑡) + 𝑚2)(𝑘 + 1)𝑉(𝑘 + 1) − (𝑘 + 1)𝑀(𝑘 + 1)(−𝑣𝑒) + (𝑚1(𝑡) + 𝑚2)𝑔𝑐𝑜𝑠𝜃 = 0 (5.16) 

Next, analyzing the dynamic state of the system is required by deriving the governing 

equations of motion for the given inverted pendulum system. The attitude position of the 

pendulum 𝜃 is controlled by providing an applied force F [N] onto the cart on the horizontal plan 

x [m] while under the influence of gravity with gravitational acceleration g [m/s2]. 

 

Beginning with the cart, analyzing the free-body diagram of the cart for the combination 

of forces, the equation of motion is as follows: 
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𝑅 𝐴 

𝐴 

𝐹⃑⃑⃑𝐷⃑
 + ⃑𝐹𝑇⃑

 + 𝐹 𝑔 = 𝑀 𝑎 (5.17) 

Where ⃑𝐹⃑⃑𝐶  is the reaction force from the pendulum onto the cart, 𝐹⃑⃑⃑⃑⃑𝐶  is the applied force 

onto the booster to assist attitude control for the pendulum, 𝐹⃑⃑⃑𝑁
 is the normal force of the 

ground onto the booster and 𝐹⃑⃑⃑⃑⃑𝐶  is the gravitational force applied to the booster while 𝑥 ̈ is 
the acceleration of the booster. However, only forces in the x-direction would have a 
meaningful impact on the booster’s acceleration. In addition, to make it easier moving 

forward, the reaction 𝐹⃑⃑⃑⃑⃑𝐶 𝑅 will be written as F𝐶
𝑥 and F𝐶

𝑦 when broken down into components 

for the x-axis and the y-axis, hence, (3.1) is rewritten to isolate the forces in the x-plane of 
the system as follows: 

 

⃑⃑ ⃑⃑ 𝐶⃑  
𝐴 

⃑⃑ ⃑⃑ 𝐶⃑  
𝑅 = 𝑀 𝑎 (5.18) 

Or as, 
 

F𝐶
𝐴 + F𝐶

𝑥 = 𝑀𝑥̈ (5.19) 

Where 𝑥 ̈ represents the acceleration the booster would experience under the 
combined forces in the x-direction. Next, the second element of the system, summing up the 

net forces applying to the inverted pendulum as follows: 
 

𝐹⃑⃑⃑ 𝑃⃑ 
𝑅 + 𝐹⃑⃑⃑𝑃⃑  = 𝑚𝑎⃑⃑⃑ 𝑃̈⃑  (5.20) 

Noticing in (3.2) and (3.4), the booster and the pendulum would be experiencing different 

accelerations, 𝑎 and 𝑎⃑⃑⃑ 𝑃̈⃑ . Now in a similar fashion, isolating the y-direction and x-direction 
forces as follows: 

 

F𝑃
𝑦 − F𝑃

𝑔 = 𝑚𝑦𝑃̈ (5.21) 

And, 

 

F𝑃
𝑥 = 𝑚𝑥𝑃̈ (5.22) 

𝐹 𝐹 

𝑔 

+ 
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Where 𝐹⃑⃑⃑ 𝑃⃑  is the reaction force of the booster onto the pendulum. Similar to ⃑⃑ ⃑⃑ 𝐶⃑  
𝑅 , 𝐹⃑⃑⃑⃑⃑𝐶  

will also be broken down into F𝑃
𝑥 while referring to the x component of the reaction force 

from the booster onto the pendulum F𝑃
𝑦 while referencing the y component of the reaction 

force. Now to unify (3.5) and (3.6), the acceleration the pendulum would experience can be 
addressed in an equation of the booster’s acceleration as follows: 

𝑥𝑝 = 𝑥 + 𝐿𝑠𝑖𝑛𝜃 (5.23) 

Taking the derivative of (3.7) with respect to time: 

𝑥𝑃̇ = 𝑥̇ + 𝐿𝜃̇𝑐𝑜𝑠𝜃 (5.24) 

To achieve the pendulum’s acceleration, take the derivative of (3.8) with respect to time 

as follows: 

𝑥𝑃̈ = 𝑥̈ + 𝐿𝜃̈𝑐𝑜𝑠𝜃 − 𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 (5.25) 

In a similar fashion, 𝑦𝑝 can be derived as: 

𝑦𝑝 = 𝐿𝑐𝑜𝑠𝜃 (5.26) 

Taking the derivative of (3.10) with respect to time: 

𝑦𝑃̇ = −𝐿𝜃̇𝑠𝑖𝑛𝜃 (5.27) 

To achieve the pendulum’s acceleration, take the derivative of (3.8) with respect to time 

as follows: 

𝑦𝑃̈ = −𝐿𝜃̈𝑠𝑖𝑛𝜃 + 𝐿𝜃2̇ 𝑐𝑜𝑠𝜃 (5.28) 

Now substitute (3.9) and into (3.6) for: 

F𝑃
𝑥 = 𝑚𝑥̈ + 𝑚𝐿𝜃̈𝑐𝑜𝑠𝜃 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 (5.29) 

According to Newton’s third law of motion, when two objects interact, they apply forces 

of equal magnitude and opposite directions to each other. Hence, the reaction forces of the 

booster and the pendulum onto each other are equal: 

 

F𝑃
𝑥 = −F𝐶

𝑥 (5.30) 

Combining (3.11) and (3.3) results in the first equation of motion for the overall system 

of an inverted pendulum on a booster as follows: 

F𝐶
𝐴 − 𝑚𝑥̈ − 𝑚𝐿𝜃̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 = 𝑀𝑥̈ 

F𝐶
𝐴 = 𝑀𝑥̈ + 𝑚𝑥̈ + 𝑚𝐿𝜃̈𝑐𝑜𝑠𝜃 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 

𝑅 𝐹 𝑅 



40  

𝑅 

𝑅 

𝑅 

F𝐶
𝐴 = (𝑀 + 𝑚)𝑥̈ + 𝑚𝐿(𝜃̈𝑐𝑜𝑠𝜃 − 𝜃2̇ 𝑠𝑖𝑛𝜃) (5.31) 

Due to this being non-linearized, the dynamical system can be linearized with small angle 

approximation in (2.15) with the assumption that controlled angle 𝜃 would only stay in a small 

neighborhood of around 0o as that is the goal of the system, is to keep the pendulum vertically 

upright at an angle of 90o. 

𝑐𝑜𝑠𝑥 ≈ 1 (5.32) 

 

And, 

𝜃2̇ ≈ 0 (5.33) 

 

Hence if assign F𝐶
𝐴 to u as the control input vector, and the first 3 stages of the state 

𝜃̇ 

vector is [𝜃̈]. Thus, the nonlinear pendulum dynamical system linearized with small angle 
𝑥̈ 

approximation as: 

(𝑀 + 𝑚)𝑥̈ + 𝑚𝐿𝜃̈ = 𝑢 (5.34) 

Let’s take a look at the forces applied on the pendulum in the y-direction from (3.5) as 

the pendulum is under the influence of the reaction force from the booster and the gravitational 

force and substitute the y-direction acceleration acquired from (3.12) as follows: 

F𝑃
𝑦 − F𝑃

𝑔 = 𝑚(−𝐿𝜃̈𝑠𝑖𝑛𝜃 + 𝐿𝜃2̇ 𝑐𝑜𝑠𝜃) 

F𝑃
𝑦 − 𝑚𝑔 = 𝑚(−𝐿𝜃̈𝑠𝑖𝑛𝜃 + 𝐿𝜃2̇ 𝑐𝑜𝑠𝜃) (5.35) 

As specified before, F𝑃
𝑥 and F𝑃

𝑦 are the horizontal and vertical components of the 

reaction applied on the pendulum from the rolling booster. Therefore, they can be derived as the 
function of the reaction force as follows: 

F𝑃
𝑥𝑖̂ = 𝐹⃑⃑⃑ 𝑃⃑  𝑠𝑖𝑛𝜃 (5.36) 

 

With the magnitude of: 

 

 

 

And, 

 

 

Magnitude of: 

 

 

F𝑃
𝑥 = |𝐹⃑⃑⃑ 𝑃⃑  |𝑠𝑖𝑛𝜃 (5.37) 

 

 

F𝑃
𝑦𝑗̂ ̂= 𝐹⃑⃑⃑ 𝑃⃑  𝑐𝑜𝑠𝜃 (5.38) 
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𝑅 

F𝑃
𝑦 = |𝐹⃑⃑⃑ 𝑃⃑ 

𝑅|𝑐𝑜𝑠𝜃 (5.39) 

Now, substitute F𝑃
𝑥 acquired from (3.21) into (3.11), and F𝑃

𝑦 acquired from (3.23) into 

(3.13) to get: 
 

 

 

And, 

|𝐹⃑⃑⃑ 𝑃⃑ 
𝑅|𝑠𝑖𝑛𝜃 = 𝑚𝑥̈ + 𝑚𝐿𝜃̈𝑐𝑜𝑠𝜃 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃 (5.40) 

 

 

|𝐹⃑⃑⃑ 𝑃⃑ 
𝑅| 𝑐𝑜𝑠𝜃 − 𝑚𝑔 = 𝑚(−𝐿𝜃̈𝑠𝑖𝑛𝜃 − 𝐿𝜃2̇ 𝑐𝑜𝑠𝜃) (5.41) 

 

Now, multiply 𝑐𝑜𝑠𝜃 to (3.22) and 𝑠𝑖𝑛𝜃 to (3.23) for the next step: 

|𝐹⃑⃑⃑ 𝑃⃑ 
𝑅|𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 = 𝑚𝑥̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃̈(𝑐𝑜𝑠𝜃)2 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 (5.42) 

And, 

|𝐹⃑⃑⃑ 𝑃⃑ 
𝑅| 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 − 𝑚𝑔𝑠𝑖𝑛𝜃 = −𝑚𝐿𝜃2̇ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 − 𝑚𝐿𝜃̈(𝑠𝑖𝑛𝜃)2 (5.43) 

 

Subtract (3.25) from (3.24) for the left-hand side: 

 

|𝐹⃑⃑⃑𝑃⃑ 
𝑅| 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 − |𝐹⃑⃑⃑𝑃⃑  | 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 𝑚𝑔𝑠𝑖𝑛𝜃 

 
𝑚𝑔𝑠𝑖𝑛𝜃 (5.44) 

 

The right-hand side of the equation is: 

𝑚𝑥̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃̈(𝑐𝑜𝑠𝜃)2 − 𝑚𝐿𝜃2̇ 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃2̇ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 + 𝑚𝐿𝜃̈(𝑠𝑖𝑛𝜃)2 

𝑚𝑥̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃̈ (5.45) 

 

Therefore, as the result of combining the left-hand side and the right-hand side of the 

equation as follows: 

𝑚𝑔𝑠𝑖𝑛𝜃 = 𝑚𝑥̈𝑐𝑜𝑠𝜃 + 𝑚𝐿𝜃̈ (5.46) 

 

Similarly, linearized (3.28) in the same process with (2.13), (3.16), and (3.17) as in (3.18) 

to result: 

𝑚𝑔𝜃 = 𝑚𝑥̈ + 𝑚𝐿𝜃̈ (5.47) 

 

Or, 

𝑔𝜃 = 𝑥̈ + 𝐿𝜃̈ (5.48) 
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Now, with (3.30), the second governing equation of motion for the system is introduced. 

However, it must be pointed out that, (3.30) is only qualified as the second governing equation 

for the system due to the fact that this simulation model uses a uniform point mass sphere placed 

on top of a massless inverted pendulum. Hence all the mass is not uniformly distributed but is 

concentrated in the top end of the pendulum. Therefore, it is possible to ignore the moment of 

inertia that then would possibly exist on a uniformly distributed pendulum rod rotating about it 

fixed point at the lower end of the rod. A scenario where the pendulum is a uniformly distributed 

rod would also be derived below to show the comparison between two different condition setups 

for the differences. 

 

Now the overall system can be represented as: 

 

{
(𝑀 + 𝑚)𝑥̈ + 𝑚𝐿𝜃̈ = 𝑢 

(5.49)
 

𝑔𝜃 = 𝑥̈ + 𝐿𝜃̈ 
 

However, (3.31) contains two equations that are coupled together. Therefore, it would be 
necessary to further decouple them, and now return to (3.29), before simplifying mass m [kg] out 

of the equation to achieve (3.30), by isolating 𝑚𝐿𝜃̈ in (3.18) and (3.29) for: 

 

{
𝑚𝐿𝜃̈ = 𝑢 − (𝑀 + 𝑚)𝑥̈ 

(5.50)
 

𝑚𝐿𝜃̈ = 𝑚𝑥̈ − 𝑚𝑔𝜃 
 

Therefore, (3.32) would result in the first decoupled governing equation of motion for the 

system as: 

𝑢 − (𝑀 + 𝑚)𝑥̈ = 𝑚𝑥̈ − 𝑚𝑔𝜃 

𝑀𝑥̈ = 𝑢 − 𝑚𝑔𝜃 (5.51) 

 

In a similar fashion to (3.33), to decouple (3.18), isolating the term 𝑥̈ in (3.30) to create a 

similar equation as: 

𝑥̈ = 𝐿𝜃̈ − 𝑔𝜃 (5.52) 

 

Now substituting (3.34) into (3.18) to acquire the other decoupled governing equation of 

motion of the system as follows: 

(𝑀 + 𝑚)(𝐿𝜃̈ − 𝑔𝜃) + 𝑚𝐿𝜃̈ = 𝑢 

𝑚𝐿𝜃̈ = (𝑀 + 𝑚)𝑔𝜃 − 𝑢 (5.53) 
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𝑥 

[ ] 

Hence, the simulation model of the system with the second order, linearized and 

decoupled is as follows: 

𝑀𝑥̈ = −𝑚𝑔𝜃 + 𝑢 { ̈ ( ) (5.54) 

 

Isolating 𝑥̈ and 𝜃̈ for: 

𝑚𝐿𝜃 =  𝑀 + 𝑚 𝑔𝜃 − 𝑢 

𝑥̈ = 
−𝑚𝑔 

𝜃 + 
1 

𝑢 
{ 𝑀 𝑀 (5.55) 

𝜃̈ = 
(𝑀+𝑚)𝑔 

𝜃 − 
1 

𝑢
 

𝑚𝐿 𝑚𝐿 

 
Let 𝑥 be 𝑥1, 𝑥̇ be 𝑥2 or 𝑥̇1, then 𝑥̈ would be 𝑥̇2, and 𝜃 be 𝑥3, 𝜃̇ be 𝑥4 or 𝑥̇3, then 𝜃̈ 

 
would be 𝑥̇ 

𝑥1 

, where [ 
𝑥2 ] = 

3 

𝑥4 

𝑥 
𝑥̇ 

[ 𝜃] 

𝜃̇ 

 
is the state vector, and vector u is the control input vector. 

Therefore, the open-loop linearized state-space system of the inverted pendulum about its 

unstable equilibrium point is: 
 

𝑥̇1 0 1 0 0 𝑥 0 

[ 
𝑥2̇] = 

−𝑚𝑔 

0 0 𝑀 
0 

1 1 

[ 
𝑥2 ] + 𝑀 𝑢 (5.56) 

𝑥̇3 0 0 0 1 𝑥3 0 
𝑥̇4 

(𝑚+𝑀)𝑔 

[ 0 0 
𝑚𝐿

 0]  
𝑥4 −  

1 

𝑚𝐿 
 

Meanwhile, state and output equations can be expressed as: 

 

{𝑥 ̇ = 𝐴𝑥 + 𝐵𝑢⃑  
𝑦 = 𝐶 𝑥 + 𝐷𝑢⃑  

 

 
(5.57) 

Where A is the state matrix, B is the input matrix, C is the output matrix and D is the 
0 1 0 0 0 

 
feedforward matrix. Therefore, A = 

−𝑚𝑔 

0 0 𝑀 0  
, B = 

1   
 

 

𝑀 , C = [0 0 1 0], since 
0 0 0 1 0 

(𝑚+𝑀)𝑔 
0

 1  
[ 0 0 

𝑚𝐿 ] [− 
𝑚𝐿] 

the only interested output is the attitude angle y = 𝜃, and no feedforward matrix. From (5.55), the 

transfer function of the open-loop system can be done via the Lagrange transform on both sides 

of the equal sign as: 

ℒ(𝜃̈) = ℒ [
(𝑀 + 𝑚)𝑔 

𝜃 −  
1 

𝑢(𝑠)] 
𝑚𝐿 𝑚𝐿 

4 



44  

] [ ] 

𝑠2𝜃(𝑠) = 
(𝑀 + 𝑚)𝑔 

𝜃(𝑠) −  
1

 𝑢(𝑠) 
 

 
𝜃(𝑠) 

 
 

𝑢(𝑠) 

𝑚𝐿 𝑚𝐿 

−
 1  

=  𝑚𝐿  

𝑠2−
(𝑀+𝑚)𝑔 

𝑚𝐿 

 

 
(5.58) 

Checking the controllability of the system with the controllability matrix Co can be 

defined as: 

𝐶𝑜 = [𝐵 𝐴𝐵 𝐴2𝐵 ⋯ 𝐴(𝑛−1)𝐵] (5.59) 

Where A is still the state matrix while B is still the input matrix, and “n” is the number of 

states, in this particular system, n is 4. Therefore, the controllability matrix can be achieved from 

(3.41) as follows: 

𝐶𝑜 = [𝐵 𝐴𝐵 𝐴2𝐵 𝐴3𝐵] (5.60) 

Calculating the components of the controllability matrix, 𝐴𝐵: 
 

0 1 0 0 0 −𝑚𝑔 

 
𝐴𝐵 = 

−𝑚𝑔 

0 0 𝑀 
0 

1 
 

 

𝑀 = [ 

 
 

𝑀 
0 ] (5.61) 

0 0 0 1 0 0 
 

 
Calculating 𝐴2𝐵: 

(𝑚+𝑀)𝑔 

[ 0 0 
𝑚𝐿

 0 −  
1

 
𝑚𝐿 

0 1 0 0 2 0 0 

 
𝐴2𝐵 = 

−𝑚𝑔 

0 0 𝑀 
0 

1 
 

 

𝑀 = 
𝑔 

 
 

𝑀𝐿 
 

(5.62) 
0 0 0 1 

(𝑚+𝑀)𝑔 
0

  0 0 
1  −(𝑚+𝑀)𝑔  

[ 0 0 
𝑚𝐿 ] [− 

𝑚𝐿] [  (𝑚𝐿)2  ] 
 

Calculating 𝐴3𝐵: 

 
0 1 0 0 3 0 𝑔 

 
𝐴3𝐵 = 

−𝑚𝑔 

0 0 𝑀 
0 

1 
 

 

𝑀 = 
𝑀𝐿 

0 
 

(5.63) 
0 0 0 1 

(𝑚+𝑀)𝑔 
0

  
0 −(𝑚+𝑀)𝑔 

 

1 (𝑚𝐿)2 

[ 0 0 
𝑚𝐿 ] [− 

𝑚𝐿] [ 0 ] 

0 
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𝑥 

1 

0 
−𝑚𝑔 

𝑀 
0 

𝑔 

𝑀𝐿 

 
𝐶𝑜 = 

𝑔 
 0 0 

𝑀 𝑀𝐿 
 

(5.64) 

0 
−(𝑚+𝑀)𝑔 

(𝑚𝐿)2 

 
−  

1 −(𝑚+𝑀)𝑔   0 0 
 

[ 𝑚𝐿 (𝑚𝐿)2 ] 

Now, to determine whether the system is fully controllable or not via taking the Rank of 

the controllability matrix, resulting in: 

 

𝑅𝑎𝑛𝑘(𝐶𝑜) = 4 (5.65) 

The system is fully controllable as it is full rank. In addition, this can also be determined 

by observing the presence of input control vector u in both governing equations of motion of the 

system. 

To simulate the model, parameters need to be assigned for the booster’s mass. M = 3 

[kg], the mass of the sphere located on top of the inverted pendulum, m = 1 [kg], the length of 

the massless inverted pendulum, L = 1 [m], while gravitational acceleration is g = 9.81 [kg/s2]. 
𝑥1 

For initializing the system with the initial conditions of 𝑥 = [ 
𝑥2 ] = 

𝑥 
𝑥̇ 

= [
 

0 0  ], where the 

𝑖 𝑥3 

𝑥4 

[ 𝜃] 

𝜃̇ 
0.01 

0 
booster would start at the origin, with no velocity, while the pendulum is set to be slightly off-set 

to the equilibrium of 0-degree angle and has no angular velocity. 

 
Now, with the initial position given as the starting state of the system, the desired state of 

 

the system can be 𝑥𝑓 

𝑥1 

= [ 
𝑥2 ] = 

3 

𝑥4 

𝑥 
𝑥̇ 

[ 𝜃] 

𝜃̇ 

1 

= [0], where the final position is an arbitrary location 
0 
0 

away from the origin, in this case, is 1, while not translational and angular velocity residue is 

wanted and the inverted pendulum to stay fully upward at an angle 𝜃 = 0. 

0 0 
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Figure 5-3 Altitude, Velocity, and Mass of the booster 

 

 

Figure 5-4 Simulation model of the booster 
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6. Conclusion and Path Forward 

 
This project provided great experience with the successful implementation designing of 

attitude control along with the creation of a mathematical model for various dynamic systems. 

The project has demonstrated the effectiveness of the designed system in meeting the project’s 

objectives. Through meticulous planning, rigorous testing, and iterative refinements, we 

achieved reliable performance, operational efficiency, and compliance with the specified 

requirements. The system has been validated to function consistently under expected operating 

conditions, ensuring enhanced reliability and control. However, throughout the project, various 

assumptions had to be made, which is a good engineering tool, but assumptions also significantly 

remove the complexity of the problems. 

The path forward from here is to design a better control system for the rocket booster with 

higher fidelity and fewer assumptions. Implementing better tools of control like the Kalman filter 

is a great way to improve the knowledge in the subject. For a better simulation model, it can be 

good to look into better and more dynamic environment block, gain scheduling with table look- 

up for different flight conditions. 
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m = 1; 

M = 3; 

L = 1; 

g = 9.81; 

d = 0; 
 
 

A = [0 1 0 0; 

0 0 (-(m*g)/M) 0; 

0 0 0 1; 

0 0 ((m+M)*g)/(m*L) 0]; 
 
 

B = [0; (1/M); 0; (-1/(m*L))]; 
 
 

lambda = eig(A) 

rank(ctrb(A,B)) 

Appendix A 

MATLAB Code 

 

 

 
clear all 

close all 

clc 

 
% Parameters 

m = 1; 

L = 1; 

g = 9.81; 
 
 

A = [ 0 1; 

g/L 0]; 
 
 

B = [0; 

1/(m*L^2)]; 
 
 

C = [1 0]; 
 
 

D = 0; 
 
 

Q = diag([2000 22]); 

R = 0.22; 
 
 

K = lqr(A,B,Q,R); 
 
 

open_system('lqrmodel'); 

sim('lqrmodel.slx'); 
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clear all, close all, clc 

m = 2; 

M = 5; 

L = 3; 

g = 9.81; 

d = 0; % No drags 

 
A = [0 1 0 0; 

0 0 (-(m*g)/M) 0; 

0 0 0 1; 

0 0 ((m+M)*g)/(m*L) 0]; 

 
B = [0; (1/M); 0; (-1/(m*L))]; 

 
Q = [1 0 0 0; 

0 1 0 0; 

0 0 10 0; 

0 0 0 1000]; 

R = .005; 

K = lqr(A,B,Q,R); 

 
ts = 0:.01:30; 

xi = [0; 0; 0.1; 0]; 

xf = [1; 0; 0; 0]; 

u=@(x)-K*(x - xf); 

[t,x] = ode45(@(t,x) pendoncart(x,m,M,L,g,d,u(x)),ts,x0); 

 
function dx = pendoncart(x,m,M,L,g,d,u) 

Sx = sin(x(3)); 

Cx = cos(x(3)); 

lambda = 
 
 

0 

0 

6.2642 

-6.2642 
 
 

 
ans = 

4 
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D = m*(L^2)*(M+m*(1-Cx^2)); 
 

dx(1,1) = x(2); 

dx(2,1) = (1/D)*(-m^2*L^2*g*Cx*Sx + m*L^2*(m*L*x(4)^2*Sx - d*x(2))) + m*L*L*(1/D)*u; 

dx(3,1) = x(4); 

dx(4,1) = (1/D)*((m+M)*m*g*L*Sx - m*L*Cx*(m*L*x(4)^2*Sx - d*x(2))) - m*L*Cx*(1/D)*u; 
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