

ON-ORBIT MASS PROPERTY IDENTIFICATION
FOR A COUPLED SPACECRAFT SYSTEM

 A Project
Presented to

The Faculty of the Department of Aerospace Engineering
San José State University

 In Partial Fulfillment
 of the Requirements for the Degree
 Master of Science

 By
 Gregory Kessing
 May 2021

© 2021

Gregory R. Kessing

ALL RIGHTS RESERVED

 The Designated Project Advisor(s) Approves the Project Titled

 On-Orbit Mass Property Identification for a Coupled Spacecraft System

 by

 Gregory Kessing

 APPROVED FOR THE DEPARTMENT OF AEROSPACE ENGINEERING

 SAN JOSÉ STATE UNIVERSITY

 May 2021

 Prof. Long Lu SJSU Faculty Advisor

i

 ABSTRACT
On-Orbit Mass Property Identification for a Coupled Spacecraft System

 by Gregory Kessing

With ever increasing forays into space come an increasing number of encounters with objects,

man-made or otherwise, that are unknown in their nature. Whether the unknown object is

manipulated or maneuvered away from is ultimately up to the mission designer. If manipulating

the unknown object is the desired objective, then a detailed analysis of the properties of the

acquired object is required. This project provides the analysis to do so using an identification

maneuver to vary the properties of the system, after rendezvous with the unknown object. The

proposed algorithm is designed to use the maneuver to estimate the mass properties of the

coupled system and isolate the properties of the acquired object from that data. Throughout the

duration of the identification maneuver, a recursive least squares algorithm is used to identify the

inertia matrix of the system. After implementation of the proposed sequence, the estimation of

the system inertia matrix provides the desired output to well within an allowable error tolerance.

The robustness of the system is then analyzed for its ability to handle noise generated by the

sensors used to gather the required data. A recursive least squares filter is used to control for the

undetermined levels of sensor and process noise. State estimation is proposed to handle

unavailable or unmeasurable states of the system. Future work and research topics are proposed

to further improve the system developed in this report.

ii

 ACKNOWLEDGEMENTS

I would like to first thank Professor Lu for his guidance throughout the course of this project

and the introduction to guidance, navigation, and controls topics through the AE 168 and AE 245

courses. These courses were instrumental in my determination of project topic and my area of

interest in aerospace engineering. I would also like to thank my family and friends for their

support and understanding in my pursuit of a graduate degree and change in career path.

iii

TABLE OF CONTENTS

Abstract ... i

Acknowledgements .. ii

Table of Contents .. iii

LIST OF FIGURES .. vi

Nomenclature .. viii

Chapter 1. INTRODUCTION .. 1
1.1 Motivation ... 1
1.2 Literature Review.. 2

1.2.1 Optimization ... 5
1.2.2 Disturbance and Noise Filtering ... 6

1.3 Report Outline ... 8

Chapter 2. SPACECRAFT DYNAMICS ... 12
2.1 Frame of Reference ... 12
2.2 Euler Angles.. 13
2.3 Equations of Motion ... 15
2.4 State Space Model ... 17

Chapter 3. PARAMETER ISOLATION .. 19
3.1 Overview ... 19
3.2 Assumptions .. 20
3.3 Inertia Equation ... 20
3.4 Solving for Unknowns .. 21
3.5 Results ... 25

Chapter 4. ADAPTIVE ESTIMATION ... 29
4.1 Overview ... 29
4.2 Least-Squares Estimation .. 29
4.3 Recursive Least Squares ... 30
4.4 MATLAB Implementation ... 31

4.4.1 Test Data Creation .. 31
4.4.2 Recursive Least Squares Estimation ... 32

4.5 Simulink Implementation.. 34

iv

4.6 Results ... 40

Chapter 5. DESIGN VALIDATION .. 42
5.1 Overview ... 42
5.2 Implementation Example .. 43
5.3 Parameter Identification with Sensor Noise ... 46
5.4 Noise Level Analysis .. 48
5.5 Recursive Least Squares Filter .. 52

5.5.1 Setup ... 52
5.5.2 Results ... 55

Chapter 6. CONCLUSIONS AND FUTURE WORK ... 57
6.1 Completed Work ... 57
6.2 Challenges Faced .. 57
6.3 Future Work .. 58

6.3.1 Physical Attributes vs Noise Level Investigation ... 58
6.3.2 State Estimation .. 58

References .. 66

Appendices ... 69
A. Derivations .. 69

A.1 Kalman Filter ... 69
A.2 Extended Kalman Filter ... 72
A.3 Least-Squares Estimation ... 73
A.4 Recursive Least Squares Estimation .. 74

B. MATLAB Code Files ... 78
B.1 Recursive Least Squares for Cassini .. 78
B.2 Rotational Equations of Motion ... 80
B.3 Recursive Least Squares Step ... 81
B.4 Kalman Filter .. 81
B.5 Extended Kalman Filter .. 82
B.6 Partial Differentiation ... 83
B.7 Linearization of Differential ... 84
B.8 Kalman Filter Code from Brunton & Kutz [4] ... 84
B.9 Monte Carlo Example .. 87
B.10 Radius to CoM_b1 ... 89
B.11 Unknown Mass Calculation .. 89
B.12 Unknown Inertia Calculation .. 89
B.13 Parameter Isolation MATLAB .. 89
B.14 Noise Generation ... 92
B.15 Loop Code for Noise Iterations ... 92
B.16 Parameter Identification Simulink File ... 94

v

vi

LIST OF FIGURES
Figure 1.1: TD-TD-RLS .. 8
Figure 1.2: Extended Kalman Filter ... 10
Figure 1.3: Extended Kalman Filter and Recursive Least Squares Algorithm 11
Figure 2.1: Earth Centered Inertia Frame [22] ... 12
Figure 2.2: ECI Frame and Body Frame [23] .. 13
Figure 2.3: Euler Rotations [24] .. 13
Figure 2.4: State Space Block Diagram ... 17
Figure 3.1: Diagram of Coupled Spacecraft .. 19
Figure 3.2 rTA Solution in Simulink ... 21
Figure 3.3 Simulink Implementation of the Solution for rb .. 22
Figure 3.4 Simulink Mass of Unknown Object Calculation .. 23
Figure 3.5 Recursive Least Square Implementation .. 23
Figure 3.6: Total Inertia Matrix Estimation ... 24
Figure 3.7: Unknown Inertia Matrix Simulink Implementation .. 25
Figure 3.9: Unknown Object Inertia Estimation Error .. 26
Figure 3.10: RLS Estimation Plots .. 27
Figure 3.11: Unknown Inertia Estimate with Reaction Wheel Cutoff at 60s 27
Figure 3.12: RLS Estimation Plots for 60s Cutoff ... 28
Figure 4.1: Motion of Cassini .. 32
Figure 4.2: Error Plots for RLS .. 33
Figure 4.3: 6DOF Block Diagram .. 34
Figure 4.4: 6DOF Output ... 35
Figure 4.5: Simulink with RLS Block ... 36
Figure 4.6: RLS Output with Error .. 36
Figure 4.7: Correction Subsystem for Asymmetry .. 37
Figure 4.8: RLS with Asymmetry Correction .. 37
Figure 4.9: RLS Subsystem ... 38
Figure 4.10: Output Corrected for Asymmetrical System ... 38
Figure 4.11: Torque about X .. 39
Figure 4.12: Torque about Y .. 39
Figure 4.13: Torque about Z .. 40
Figure 4.14: Total Inertia Matrix Construction .. 40
Figure 5.1 Monte Carlo Example ... 43
Figure 5.2: Sensor Noise Effects on Position .. 44
Figure 5.3: Estimated Angle(s) vs True Angle .. 45
Figure 5.4: Estimated Angle(s) for vn = 5, R = 1 .. 46
Figure 5.5: Noise Generated by randn() function .. 47
Figure 5.6: Simulink Implementation of Sensor Noise .. 48
Figure 5.7: Monte Carlo Results of Omega and Linear Acceleration Noise 49
Figure 5.8: 500 Iteration varying rotational velocity and linear acceleration looking down the

trough .. 50
Figure 5.9: Side view looking at rotational velocity .. 50
Figure 5.10: Centripetal Acceleration vs Noise ... 51
Figure 5.11: Rotational Velocity vs Noise ... 52
Figure 5.12: RLS Filter .. 53

vii

Figure 5.13: RLS Filtering of Omega Noise .. 53
Figure 5.14: RLS Filtering of Linear Acceleration Noise ... 54
Figure 5.15: RLS Filtering in Simulink ... 55
Figure 5.16: Parameter Estimation with Noise Reduction by RLS Filter 56
Figure 6.1: Pendulum [2] ... 60
Figure 6.2: Inverted Pendulum on Cart [3] .. 60
Figure 6.3: Zero Mean Signal Noise Representation ... 61
Figure 6.4: X-Position for Pendulum on Cart .. 63
Figure 6.5: Estimated vs True States for Pendulum on a Cart ... 64
Figure 6.6: Close up view of State vs Estimated States ... 64

viii

NOMENCLATURE
(∗)𝐴𝐴 Variable for known spacecraft
(∗)𝐵𝐵 Variable for unknown spacecraft
(∗)𝑇𝑇 Variable for total or combined spacecraft duo

τ Torque

𝐼𝐼 Inertia matrix (tensor)

𝐹𝐹 Linear force

𝑎𝑎 Linear acceleration

𝑣𝑣 Linear velocity

α Angular acceleration

ω Rotational velocity

∗̇ Time derivative of a variable, ∗ as the placeholder

𝑟𝑟∗ Radius vector to specified object

𝑚𝑚 Mass

𝐽𝐽∗∗ Inertia value representing the inertia

𝐻𝐻 Angular momentum

𝐴𝐴 State matrix

𝐵𝐵 Input matrix

𝐶𝐶 Output or measurement matrix

𝐷𝐷

KP
KI
KD

Feed-forward matrix
Proportional Gain
Integral Gain
Derivative Gain

𝒙𝒙 State matrix

𝒙𝒙� Estimated state matrix

𝒖𝒖 Input matrix

𝒘𝒘 Process noise matrix

𝒛𝒛 Measurement matrix

𝒗𝒗 Measurement noise matrix

𝑷𝑷 Covariance matrix

𝑲𝑲 Filter gain matrix

𝑹𝑹 Measurement covariance matrix

ix

𝑸𝑸 Process noise covariance matrix

𝒉𝒉∗ Proposed filter matrix

𝛇𝛇 Error value

𝑺𝑺 Sum of the cost function

𝛟𝛟 Inverse of the covariance matrix

1

 INTRODUCTION

1.1 Motivation
As more advanced satellites are sent into orbit by rockets with ever increasing payload

capacity the operations that humanity has decided to undertake in space have grown in scope

drastically over the last couple of decades. There is now talk of a multitude of new activities in

space which require novel solutions. This activity includes Earth orbit cleanup of debris,

refueling of man-made satellites, and potential capture of asteroids with the intent of

maneuvering them into Earth or Lunar orbit. The most pressing of these proposed activities is the

cleanup of debris in Earth Orbit.

For the last 60 years, mankind has sent satellites into orbit but during this time, we have not

been kind stewards of the space around Earth. We have created an estimated 34,000 pieces of

debris larger than 10cm in diameter [1]. This has created a hazard when launching spacecraft into

Earth orbit and into the solar system at large due to the increased chances of an impact with

debris. When two objects collide at an orbital velocity of 7.8 km/s for low Earth orbit, they create

further debris clouds which increase the chances of another impact. Due to this threat of orbital

debris, NASA and the ESA have undertaken first steps towards beginning the cleanup process of

the space around Earth. As such, a spacecraft whose goal is to de-orbit this debris may require

knowledge about the mass properties of a single satellite which it aims to de-orbit.

The mass properties of a single satellite, usually the inertia tensor, has long been a topic of

interest in the field of guidance, navigation, and control due to its requirement in calculating a

future trajectory and the thrust cycle needed to achieve such a trajectory. For most satellites

which are intended to remain in space, a baseline inertia tensor is calculated before a satellite

leaves the Earth. During the lifespan an expected amount of fuel will be expended, changing the

2

inertia tensor along with the center of gravity and total mass. This change can be estimated by

either calculating the change in mass properties through fuel expenditure and container location

or using estimation algorithms utilizing known inputs and outputs of the spacecraft. For space-

based debris, these methods of determining an inertia tensor were either never taken or are

impossible to complete due to their unknown status once in space.

1.2 Literature Review
This section will cover literature attempting to solve the problem of de-orbiting debris and/or

spacecraft remains and relating to the topic of this paper with the goal of discussing the

following critical points:

• Mass property identification

• Inertia tensor

• Mass identification and center of mass

• Separation of the individual mass properties from the mass properties of the coupled

system

• Sensor noise elimination schemes

During a debris de-orbiting maneuver, one of the possible techniques is a rigid capture where

the object is manually de-orbited by another spacecraft. In this situation, a rigid capture system

will require knowledge of the mass properties of the debris if the control system is to properly

determine the correct thruster/reaction wheel outputs required to guide the coupled system along

the ideal trajectory [2]. This operation greatly reduces the propellant used during de-orbiting and

allows for an increased number of objects to be taken out of orbit per kilogram of propellant used

3

[3]. The mass property determination can be introduced during a de-tumbling maneuver required

to fully control and reorient the debris for a final de-orbit maneuver [4]. Another technique for

orbit degradation, is the utilization of a tethered spacecraft to impart a force slowing the

horizontal velocity of the debris. This will occur until the debris is on a trajectory to fall into the

atmosphere. In this case, the mass properties can be used to calculate the required total impulse

for maneuver to succeed [5].

A common method for mass property determination is to use Newton’s Second Law for

rotational systems.

 𝜏𝜏 = 𝐼𝐼𝐼𝐼 (1.2.1)

Using this law allows for accurate determination of mass properties through utilizing a known

input force and measuring the angular acceleration after the force is applied. Expanding this

equation into its constituent components displays the true unknowns that are required to solve for

the inertia matrix.

 𝐼𝐼 = 𝐼𝐼−1(𝑟𝑟−𝑟𝑟𝑐𝑐𝑐𝑐)×𝑇𝑇
𝑚𝑚−1𝑇𝑇

 (1.2.2)

The unknowns in Eq. (1.2.2) are I the inertia matrix, rcm the position of the center of mass, and

m-1 the mass inverse. The thrust (T), position of the thruster (r), and angular acceleration (𝐼𝐼) are

all known or can be found through sensor data [6]. Using multiple test configurations during the

analysis window the number of unknowns can be matched by the number of situations tested.

This will allow for the unknowns to be solved linearly so long as the weight ratio between the

objects is no more than 20:1. Another criteria for this method is that external forces and moments

affecting the spacecraft are minimal otherwise more testing will be required. During testing the

4

configurations tested should be as different as possible to allow the control system the widest

possible dataset [7].

Another potential for introducing angular acceleration is from forces derived from the

magnetic field from the Earth by utilizing torque rods. Magnetic systems are mostly used to end

the tumbling caused by detaching from a primary spacecraft but can be adapted to be used for

satellite acquisition. During this acquisition the pair of satellites will need to be stabilized during

which time the known force output from the magnetic system can be used to identify the mass

properties of the coupled spacecraft [8].

Using thruster jets to produce a controlled torque will be both expensive in terms of fuel

expenditure, and in terms of wear and tear on the spacecraft itself. Fuel is a limited commodity

onboard a spacecraft and refueling such a craft as is discussed in this paper is both inordinately

complex and cost in-effective. An alternative to thrusters is reaction wheels which produce

torque about the center of mass with no fuel expenditure through the use of electric motors

powered by solar panels and batteries onboard the craft. Algorithms developed for the use of

reaction wheels have been able to reproduce the inertial properties of the ISS within a margin of

error of 0.01%. The mass and center of mass location were also able to be estimated with similar

success over a slightly longer timespan [9].

Data from a maneuver by the Saturn orbiter Cassini has been used many times to test mass

property estimation algorithms. The data regarding spin rates of reaction wheels, and rotation

rates of the spacecraft allow for accurate estimations to be made. The estimation is made easier

due to an axis by axis rotation sequence that was performed by the craft during the time period

that the data was collected. A least squares estimation was able to produce accurate results

simply and effectively accounting for mass lost due to propulsion [10].

5

1.2.1 Optimization
 Accuracy of mass property estimation can be further increased through the utilization of

multiple methods. A proposed combination are conservation of rotational kinetic energy, Eq.

(1.2.3), and angular momentum, Eq. (1.2.4), unilaterally resulted in greatly improved estimation

and lower standard deviations [11].

 1
2
𝜔𝜔𝑇𝑇𝐼𝐼𝜔𝜔|𝑡𝑡 = 𝑇𝑇|0 + ∫ 𝜔𝜔𝑇𝑇𝑡𝑡

0 ∑𝑀𝑀𝑑𝑑𝜏𝜏 (1.2.3)

 𝑁𝑁𝑄𝑄𝑘𝑘�𝐼𝐼𝜔𝜔 + ∑ 𝐼𝐼𝑤𝑤,𝑖𝑖𝛺𝛺𝑖𝑖𝑎𝑎𝑖𝑖�|𝑘𝑘 = 𝑁𝑁𝑄𝑄𝑗𝑗�𝐼𝐼𝜔𝜔 + ∑ 𝐼𝐼𝑤𝑤,𝑖𝑖𝛺𝛺𝑖𝑖𝑎𝑎𝑖𝑖�|𝑗𝑗 (1.2.4)

This technique in conjunction with backstepping can produce desirable control results without

destabilizing a complicated system. This is achieved by utilizing ω as a low-level control while a

control law using the input u to stabilize Eq. (1.2.5) by forcing ω → ωd(ρ) Eq. (1.2.6) is instituted

[12].

 �̇�𝜔 = 𝐽𝐽−1𝑆𝑆(𝜔𝜔)𝐽𝐽𝜔𝜔 + 𝐽𝐽−1𝑢𝑢 (1.2.5)

 �̇�𝜌 = 𝐻𝐻(𝜌𝜌)𝜔𝜔 (1.2.6)

A control-Lyapunov function is derived using backstepping for the system of Eq. (1.2.5) and

Eq. (1.2.6). This results in an optimal control system when the cost function is considered [12].

Several observer-based inertia identification control systems have been purposed which have

proven to be accurate assuming no measurement errors [13,14]. An observer-based control

system including measurement error estimation and external disturbance is put forth resulting in

a higher accuracy algorithm for real world situations. In addition, estimation bounds are put into

place based on known limits of sensing equipment [15].

6

1.2.2 Disturbance and Noise Filtering
Noise reduction methods in a reaction wheel-based estimation scheme are a necessity and can

be the difference between mission success and failure. The Butterworth filter is a method that

maintains a frequency response that is near flat which results in the transfer function in Eq.

(1.2.7) where G0 represents the static gain, ωc the cut-off frequency, and sk the pole calculated by

the cut-off frequency.

 𝐻𝐻(𝑠𝑠) = 𝐺𝐺0
∏ 𝑠𝑠−𝑠𝑠𝑘𝑘

𝜔𝜔𝑐𝑐
𝑛𝑛
𝑘𝑘=1

 (1.2.7)

The zero-phase shift filter (Y0) utilizes a forward low pass filter (YF) and a rearward low pass

filter (YR) to filter the signal without impacting shifting the phase of the signal itself thereby

maintaining integrity. Shown below in Eq. (1.2.8).

 𝑌𝑌0 = 𝑌𝑌𝐹𝐹+𝑌𝑌𝑅𝑅
2

 (1.2.8)

A continuous-discrete extended Kalman filter (EKF) is determined to be superior to the

Butterworth filter and the zero-phase shift filter when accuracy over time is prioritized. After

determining angular rates using EKF, the rates are applied to a batch least square inertia

estimation technique. The EKF produced results closest to the true Inertia tensor and RMS value

of noise [16]. Subspace parameter identification can be used in conjunction with a Kalman filter

to increase accuracy further, but due to increased computation costs is rarely used onboard a

spacecraft. The use of QR decomposition and singular value decomposition are the main reasons

for this. Instead, if a Hankel matrix is constructed and an RQ decomposition is performed, much

of the computation cost can be eliminated. Estimates of mass properties can then be found using

a recursive estimation of the observation matrix [17].

7

Dynamic spacecraft systems are difficult to estimate due to parameters changing with time or

elements of the spacecraft being flexible. A method of estimating the parameters has been

defined using recursive predictor-based subspace identification (RPBSID) [18]. The method is

based around an estimation of Markov Parameters, or the impulse response of the system, being

found using a Kalman filter and a white noise sequence being introduced as seen in Eq. (1.2.9)

and Eq. (1.2.10).

 𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑘𝑘𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑘𝑘𝑢𝑢𝑘𝑘 + 𝐾𝐾𝑘𝑘𝑒𝑒𝑘𝑘 (1.2.9)

 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑘𝑘𝑥𝑥𝑘𝑘 + 𝑒𝑒𝑘𝑘 (1.2.10)

Where Kk is the Kalman gain matrix, ek is the white noise sequence, and k is the given

timestep. Estimation of the state vector (xk) is achieved using a least squares recursive form in

order to reduce the computational cost of the algorithm. Then state space parameters can be

identified through the recursive computation of the defining matrices [18].

For missions in low Earth orbit, external torque from the gravity-gradient and disturbance

from the atmosphere must be considered when completing any estimation of properties of the

spacecraft. An extended Kalman filter (EKF) scheme estimator can be used to eliminate external

torque influences from the resultant mass properties. This use of an EKF is more accurate than

using change in angular momentum alone [19].

Another method of increasing accuracy of the least squares estimation technique is introduced

as tracking differentiation (TD) with the use of an extended Kalman filter. Tracking

differentiation is defined in Eq. (1.2.11) where v is the input signal, xa is the filter value of v, xb is

the derivative of xa, r is the tracking velocity of tracking differentiation, and h is the step size of

the simulation. The TD algorithm is given by Eq. (1.2.11) below.

8

 �
𝑓𝑓ℎ = fhan(𝑥𝑥𝑎𝑎(𝑘𝑘) − 𝑣𝑣(𝑘𝑘), 𝑥𝑥𝑏𝑏(𝑘𝑘), 𝑟𝑟,ℎ0)

𝑥𝑥𝑎𝑎(𝑘𝑘 + 1) = 𝑥𝑥𝑎𝑎(𝑘𝑘) + ℎ𝑥𝑥𝑏𝑏(𝑘𝑘)
𝑥𝑥𝑏𝑏(𝑘𝑘 + 1) = 𝑥𝑥𝑏𝑏(𝑘𝑘) + ℎ𝑓𝑓ℎ

� (1.2.11)

In the algorithm 𝑣𝑣 is the input signal, xa and xb are the filter value and derivative of the filter

value respectively. 𝑟𝑟 represents the tracking of the algorithm and h is the step size. 𝑓𝑓ℎ𝑎𝑎𝑎𝑎

represents a switching algorithm designed to zero in on the true or ideal value.

Tracking differentiation is able to filter out noise better than traditional differentiation but

cannot fully eliminate the sensor noise so it is applied again in a TD-TD setup then a recursive

least squares estimation algorithm is applied as shown in Figure 1 [20].

Figure 1.1: TD-TD-RLS

1.3 Report Outline
A proof of concept algorithm has been proposed and implemented to determine the mass

properties of an unknown object in a combined known/unknown (a/b) duo spacecraft system.

This is accomplished through the use of a recursive least squares algorithm to firstly identify the

total system inertia matrix from the known state of the system. A retraction maneuver is then

completed to change the total inertia matrix and produce a different, yet mathematically related,

movement profile. Using the original and the new profile the estimates of the remaining

unknown parameters are solved for.

9

The Least Squares (LS) algorithm that is used for the inertia matrix estimation. Eq. (1.3.1)

describes the equation of rotational motion for a rigid body in freefall. The ‘T’ subscript in the

following equations denotes the total of the property that it is attached to (ie. IT is the total inertia

matrix for the combined spacecraft system).

 �̇�𝝎𝑇𝑇 = −𝐼𝐼𝑇𝑇−1𝝎𝝎𝑇𝑇 × 𝑰𝑰𝑻𝑻𝝎𝝎𝑇𝑇 + 𝑰𝑰𝑻𝑻−1𝒖𝒖 (1.3.1)

 𝒚𝒚 = 𝝎𝝎𝑇𝑇

The cost function in Eq. (1.3.2) is minimized resulting in an estimate of the state matrix

shown in Eq. (1.3.3).

 𝑰𝑰 = 1
2
(𝑧𝑧 − 𝑯𝑯𝒙𝒙�)𝑇𝑇(𝑧𝑧 − 𝑯𝑯𝒙𝒙�) (1.3.2)

 𝒙𝒙� = (𝑯𝑯𝑇𝑇𝑯𝑯)−1𝑯𝑯𝑇𝑇𝒛𝒛 (1.3.3)

Once the estimation is determined to be sufficient, noise is imparted to simulate a realistic

sensor that has a specific noise floor, beneath which any signal will be indistinguishable. To

combat this a recursive least squares filter is used to isolate the true data from the noise.

Validation in the form of a Monte Carlo simulation is utilized to determine the efficacy of the

method. The validation step shows that recursive least squares does not filter the noise to a

sufficient level and a more advanced filter is proposed in the form of a Kalman Filter.

The (Extended) Kalman Filter is implemented as shown in Figure 1.2, where the input ‘u’ is

created by a set of thrusters or reaction wheels designed to impart a torque on the spacecraft

system. The system model represents the inertia matrix and input matrix of the combined system

which will determine the angular velocity, ω, as a result of the input torque. In the testing

scenario, the full system model will be known but noise will be imparted and only some of the

10

states measured to give a realistic simulation scenario to the filter. The resultant, ‘𝒙𝒙�’, is the state

matrix reconstructed which defines the filtered properties of the system, whether or not they

were directly measured. The data flow is shown below:

Figure 1.2: Extended Kalman Filter
The EKF model equations are given in Eq. (1.3.4), where the functions f and h predict the

state and the measurement of the state respectively. Simulated system noise and sensor noise are

added to the system through w(t) and v(t) for each predictor through a gaussian white noise

process.

 �̇�𝒙 = 𝑓𝑓�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡) + 𝒘𝒘(𝑡𝑡)� (1.3.4a)

 𝒛𝒛(𝑡𝑡) = ℎ�𝒙𝒙(𝑡𝑡) + 𝒗𝒗(𝑡𝑡)� (1.3.4b)

Due to the nature of a continuous-time EKF, the predictions and updates are coupled and will

be handled simultaneously by the set of Eqs. (1.3.5).

 𝒙𝒙�̇ = 𝑓𝑓(𝒙𝒙�,𝒖𝒖) + 𝑲𝑲 ∗ {𝒛𝒛 − ℎ(𝒙𝒙�)}

 �̇�𝑷 = 𝑭𝑭𝑷𝑷 + 𝑷𝑷𝑭𝑭𝑇𝑇 − 𝑲𝑲𝑯𝑯𝑷𝑷 + 𝑸𝑸

 𝑲𝑲 = 𝑷𝑷𝑯𝑯𝑇𝑇𝑹𝑹−𝟏𝟏 (1.3.5)

 𝑭𝑭 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝒙𝒙�,𝒖𝒖

 𝒉𝒉 = 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

|𝒙𝒙�

The combined flowchart of the EKF and RLS estimation algorithm is shown in Figure 1.3.

11

Figure 1.3: Extended Kalman Filter and Recursive Least Squares Algorithm
The resulting inertia matrix is used in conjunction with the spacecraft a inertia matrix to solve

for the inertia matrix for spacecraft b using Eq. (1.3.6).

𝑰𝑰�𝑇𝑇 = �𝑰𝑰𝑖𝑖 + 𝑚𝑚𝑖𝑖𝒓𝒓𝑐𝑐𝑚𝑚𝑖𝑖
2

𝑛𝑛

𝑖𝑖=1

 𝑰𝑰�𝑇𝑇 = 𝑰𝑰𝑎𝑎 + 𝑚𝑚𝑎𝑎𝒓𝒓𝑐𝑐𝑚𝑚𝑎𝑎
2 + 𝑰𝑰𝑏𝑏 + 𝑚𝑚𝑏𝑏𝒓𝒓𝑐𝑐𝑚𝑚𝑏𝑏

2

 𝑰𝑰�𝑇𝑇 − 𝑰𝑰𝑎𝑎 − 𝑚𝑚𝑎𝑎𝒓𝒓𝑐𝑐𝑚𝑚𝑎𝑎
2 − 𝑚𝑚𝑏𝑏𝒓𝒓𝑐𝑐𝑚𝑚𝑏𝑏

2 = 𝑰𝑰𝑏𝑏 (1.3.6)

The algorithm will be simulated using MATLAB to verify the robustness and performance

where a series of differing virtual payloads will be estimated, and the algorithm verified by

comparing the output to the given mass properties. In proving robustness, noise from both the

system and sensors will be simulated via a Gaussian distribution. The noise will be based off the

hobbyist available BNO055 sensor with an accelerometer sensitivity rating of 0.077 m/s2 and a

gyroscope accuracy of 0.0086 rad/s [21]. The choice of this sensor comes down to availability,

ease of use, and the high noise floor when compared to industry sensors. The increase in noise

will allow for a high confidence factor for the algorithm when complete.

12

 SPACECRAFT DYNAMICS

2.1 Frame of Reference
When handling moving objects there are two common frames of reference. These are referred

to in general as the fixed frame and the inertial frame. When talking about spacecraft or aircraft

inside of the gravity well of Earth these corelate to the Earth Centered Inertial frame, or ECI, and

the body frame. The ECI frame is, as the name suggests, centered on the Earth with the 𝑧𝑧 axis

going through the north pole, the �⃗�𝑥 axis going through the intersection of the lines of zero degrees

latitude and zero degrees longitude, and the �⃗�𝑦 axis at a right angle to both of the other axes. This

can be seen in Figure 2.1 below.

Figure 2.1: Earth Centered Inertia Frame [22]
The body frame is connected to the body of the object that is being tracked during the motion

being described. This can be a satellite orbiting the Earth, or a plane flying through the atmosphere.

13

The body frame moves with the object and the object is seen as static at 𝑡𝑡 = 0 from the point of

view of the body frame. Figure 2.2 displays the body frame with respect to the ECI frame.

Figure 2.2: ECI Frame and Body Frame [23]

2.2 Euler Angles
The change in angle between the two primary frame of references can be described through a

series of rotations. Three body-axis rotations are an easy way to convert from one reference frame

to another. The first rotation is about any single axis, with the second rotation being about one of

the two axes not used in the first rotation, and the third rotation can be about any of the two axes

not used in the second rotation. This means that there are twelve total ways to complete the

rotations required to move between the two reference frames. The three angles that can complete

this conversion are called Euler angles and are shown in Figure 2.3 as α,β,𝑎𝑎𝑎𝑎𝑑𝑑 γ.

Figure 2.3: Euler Rotations [24]

14

The Euler angle rotations move through the axes with a common naming scheme for the axes

shown below:

 A → 𝐴𝐴′ → 𝐴𝐴′′ → B

Each of the rotations is based off a relation between one axis and another which is often called

a Direct Cosine Matrix, or DCM. Each element of the DCM is based off the function below:

 Cij = bi ∙ 𝑎𝑎𝑗𝑗 (2.2.1)

This is a general term and is not specific to rotating from the beginning A axis to the end B

axis. Writing out the matrix results in the following:

 𝐶𝐶𝑏𝑏/𝑎𝑎 = �
b1 ∙ 𝑎𝑎1 b1 ∙ 𝑎𝑎2 b1 ∙ 𝑎𝑎3
b2 ∙ 𝑎𝑎1 b2 ∙ 𝑎𝑎2 b2 ∙ 𝑎𝑎3
b3 ∙ 𝑎𝑎1 b3 ∙ 𝑎𝑎2 b3 ∙ 𝑎𝑎3

� (2.2.2)

The notation of “b/a” is specific as it denotes which way the matrix is converting, and in this

specific case, 𝑏𝑏 ← 𝑎𝑎. The transformation equation can be written as the following:

 𝑏𝑏 = 𝐶𝐶𝑏𝑏/𝑎𝑎𝑎𝑎 (2.2.3)

When using the DCM to convert from 𝐵𝐵 ← 𝐴𝐴 the DCM of each individual rotation can be

multiplied together to achieve the DCM 𝑪𝑪𝐵𝐵/𝐴𝐴 as shown in the following equation.

 𝑪𝑪𝐵𝐵/𝐴𝐴 = 𝐶𝐶1(θ1)𝐶𝐶2(θ2)𝐶𝐶3(θ3) (2.2.4)

Using this method of rotation about Euler angles means that any of the states (for example,

velocity or position) can be easily converted from one frame to another allowing for kinematics

to be observed in one frame and controlled in another.

15

2.3 Equations of Motion
The Equations of Motion, EoM, for a system describe its characteristics as a function of time.

Whether the system is perceived to be affected by a gravity well or not, the EoM can be derived

from Newton’s 2nd law of EoM. Once defined, the equations allow for mathematical relations to

be derived between variables describing different states within a system.

Newton’s 2nd law states that the acceleration of an object is directly proportional to the mass

of said object, or in equation form:

 𝐹𝐹 = 𝑚𝑚 ∗ δ𝑣𝑣
δ𝑡𝑡

= δ𝑚𝑚𝑣𝑣
δ𝑡𝑡

 (2.3.1)

Simplifying again results in force being equal to the change in momentum with time.

 𝐹𝐹 = δ𝐻𝐻
δ𝑡𝑡

 (2.3.2)

When talking about spacecraft, it can be assumed that little or minimal force is applied to the

system from rigid connections to the earth or another object by which the body axes are defined.

In this circumstance rotational motion becomes the primary influencer on the routine motion of

the spacecraft. Newton’s 2nd law of motions becomes Newton’s 2nd law of rotational motion.

 τ = 𝐽𝐽 ∗ α (2.3.3)

In Eq. (2.3.4), τ represents torque, the angular equivalent to force. 𝐽𝐽 represents the rotational

inertia of the system. Expanding the torque equation results in the following:

 �
α𝜕𝜕
α𝑦𝑦
α𝑧𝑧
� = �

𝐽𝐽𝜕𝜕𝜕𝜕 𝐽𝐽𝜕𝜕𝑦𝑦 𝐽𝐽𝜕𝜕𝑧𝑧
𝐽𝐽𝑦𝑦𝜕𝜕 𝐽𝐽𝑦𝑦𝑦𝑦 𝐽𝐽𝑦𝑦𝑧𝑧
𝐽𝐽𝑧𝑧𝜕𝜕 𝐽𝐽𝑧𝑧𝑦𝑦 𝐽𝐽𝑧𝑧𝑧𝑧

� �
τ𝜕𝜕
τ𝑦𝑦
τ𝑧𝑧
� (2.3.4)

Multiplying the matrices through reveals a set of governing equations when dealing with

angular acceleration in a system.

16

 α𝜕𝜕 = 𝐽𝐽𝜕𝜕𝜕𝜕τ𝜕𝜕 + 𝐽𝐽𝜕𝜕𝑦𝑦τ𝑦𝑦 + 𝐽𝐽𝜕𝜕𝑧𝑧τ𝑧𝑧 (2.3.5a)

 α𝑦𝑦 = 𝐽𝐽𝑦𝑦𝜕𝜕τ𝜕𝜕 + 𝐽𝐽𝑦𝑦𝑦𝑦τ𝑦𝑦 + 𝐽𝐽𝑦𝑦𝑧𝑧τ𝑧𝑧 (2.3.5b)

 α𝑧𝑧 = 𝐽𝐽𝑧𝑧𝜕𝜕τ𝜕𝜕 + 𝐽𝐽𝑧𝑧𝑦𝑦τ𝑦𝑦 + 𝐽𝐽𝑧𝑧𝑧𝑧τ𝑧𝑧 (2.3.5c)

Applying steps similar to those in Eq. (2.3.1) to Eq. (2.3.3) results in deriving an equation for

angular momentum from Eq. (2.3.4).

 𝐻𝐻 = 𝐽𝐽ω (2.3.6)

Expanding the matrices results in:

 �
𝐻𝐻𝜕𝜕
H𝑦𝑦
H𝑧𝑧

� = �
𝐽𝐽𝜕𝜕𝜕𝜕 𝐽𝐽𝜕𝜕𝑦𝑦 𝐽𝐽𝜕𝜕𝑧𝑧
𝐽𝐽𝑦𝑦𝜕𝜕 𝐽𝐽𝑦𝑦𝑦𝑦 𝐽𝐽𝑦𝑦𝑧𝑧
𝐽𝐽𝑧𝑧𝜕𝜕 𝐽𝐽𝑧𝑧𝑦𝑦 𝐽𝐽𝑧𝑧𝑧𝑧

� �
ω𝜕𝜕
ω𝑦𝑦
ω𝑧𝑧

� (2.3.7)

Multiplying out the matrices results in the following set of equations:

 𝐻𝐻𝜕𝜕 = 𝐽𝐽𝜕𝜕𝜕𝜕ω𝜕𝜕 + 𝐽𝐽𝜕𝜕𝑦𝑦ω𝑦𝑦 + 𝐽𝐽𝜕𝜕𝑧𝑧ω𝑧𝑧

 𝐻𝐻𝑦𝑦 = 𝐽𝐽𝑦𝑦𝜕𝜕ω𝜕𝜕 + 𝐽𝐽𝑦𝑦𝑦𝑦ω𝑦𝑦 + 𝐽𝐽𝑦𝑦𝑧𝑧ω𝑧𝑧 (2.3.8)

 𝐻𝐻𝑧𝑧 = 𝐽𝐽𝑧𝑧𝜕𝜕ω𝜕𝜕 + 𝐽𝐽𝑧𝑧𝑦𝑦ω𝑦𝑦 + 𝐽𝐽𝑧𝑧𝑧𝑧ω𝑧𝑧

After manipulating the equations in Eq. (2.3.6), Euler’s Equations of Rotational Motion show

themselves as:

 ω̇1 = (𝐽𝐽2−𝐽𝐽3)
𝐽𝐽1

ω2ω3 + 𝑀𝑀1
𝐽𝐽1

 ω̇2 = (𝐽𝐽3−𝐽𝐽1)
𝐽𝐽2

ω1ω3 + 𝑀𝑀2
𝐽𝐽2

 (2.3.9)

 ω̇3 = (𝐽𝐽1−𝐽𝐽2)
𝐽𝐽3

ω1ω2 + 𝑀𝑀3
𝐽𝐽3

17

2.4 State Space Model
The State Space model is a linear, time-invariant model of a known system. The model holds

within it the state vector, �⃗�𝑥, the time derivative of the state vector, �̇⃗�𝑥, the output vector, �⃗�𝑦, and the

input vector, 𝑢𝑢�⃗ . The model dynamics matrices are made up of the state matrix, 𝐴𝐴, the control

matrix, 𝐵𝐵, the output or measurement matrix, 𝐶𝐶, and the feed-forward matrix, 𝐷𝐷.

 �̇⃗�𝑥 = 𝐴𝐴�⃗�𝑥 + 𝐵𝐵𝑢𝑢�⃗ (2.4.1a)

 �⃗�𝑦 = 𝐶𝐶�⃗�𝑥 + 𝐷𝐷𝑢𝑢�⃗ (2.4.1b)

This model is shown in Figure 2.4 as a block diagram below.

Figure 2.4: State Space Block Diagram
A state variable is defined as the base property of a system being modeled. The state variables

are held in the �⃗�𝑥 vector and typically consist of location or translation data about the system.

Converting the governing rotational dynamics of a spacecraft into a state space representation

requires developing the equations of motion into the form seen in Eq. (2.3.10). In this form the

base properties are represented by the angular velocity terms, ω. To create the 𝐴𝐴 matrix the

partial derivative of the functions needs to be taken with respect to the variables in the state

matrix, �⃗�𝑥.

u yxẋ

D

∫

A

B C ++++

18

 A =

⎣
⎢
⎢
⎢
⎡
δ𝜕𝜕1
δω1

δ𝜕𝜕1
δω2

δ𝜕𝜕1
δω3

δ𝜕𝜕2
δω1

δ𝜕𝜕2
δω2

δ𝜕𝜕2
δω3

δ𝜕𝜕3
δω1

δ𝜕𝜕3
δω2

δ𝜕𝜕3
δω3⎦

⎥
⎥
⎥
⎤

 (2.4.2)

The application of this rule on Eq. (2.3.10) results in the following 𝐴𝐴 matrix.

 𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡ 0 (𝐽𝐽2−𝐽𝐽3)

𝐽𝐽1
ω3

(𝐽𝐽2−𝐽𝐽3)
𝐽𝐽1

ω2

(𝐽𝐽3−𝐽𝐽1)
𝐽𝐽2

ω3 0 (𝐽𝐽3−𝐽𝐽1)
𝐽𝐽2

ω1

(𝐽𝐽1−𝐽𝐽2)
𝐽𝐽3

ω2
(𝐽𝐽1−𝐽𝐽2)

𝐽𝐽3
ω1 0 ⎦

⎥
⎥
⎥
⎤

 (2.4.3)

To create the B matrix the partial derivative of the functions needs to be taken with respect to

the variables in the input matrix, 𝑢𝑢�⃗ .

 𝐵𝐵 =

⎣
⎢
⎢
⎢
⎡
δ𝜕𝜕1
δM1

δ𝜕𝜕1
δM2

δ𝜕𝜕1
δM3

δ𝜕𝜕2
δ𝑀𝑀1

δ𝜕𝜕2
δM2

δ𝜕𝜕2
δM3

δ𝜕𝜕3
δM1

δ𝜕𝜕3
δM2

δ𝜕𝜕3
δM3⎦

⎥
⎥
⎥
⎤

 (2.4.4)

Implementing this results in the following 𝐵𝐵 matrix:

 𝐵𝐵 =

⎣
⎢
⎢
⎢
⎡
1
𝐽𝐽1

0 0

0 1
𝐽𝐽2

0

0 0 1
𝐽𝐽3⎦
⎥
⎥
⎥
⎤

 (2.4.5)

 The 𝐶𝐶 matrix will depend on what sensors are onboard the spacecraft and the controllability

of the system. An example C matrix where motion about the x-axis is measured would result in:

 C  =  [1 0 0] (2.4.6)

19

 PARAMETER ISOLATION

 Overview
Using an internal measurement unit, or IMU, located at known location in spacecraft A, will

allow for all required measurements to be taken. From the IMU, the angular acceleration will be

isolated and compared the torque created by a set of reaction wheels inside the primary spacecraft.

In Figure 3.1, the known spacecraft is denoted in blue and by the tag ‘A’. The unknown debris or

spacecraft is denoted in red and by the tag ‘B’. The reaction wheels inside of Spacecraft A have

their potential influence on the spacecraft show in green about the primary axes of the craft.

Figure 3.1: Diagram of Coupled Spacecraft
For testing and verification purposes the Cassini Inertia Tensor and mass properties [9] will

be utilized to verify algorithms before using those algorithms to produce the final estimation of

the system.

 𝑱𝑱𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪  =   �
8810.8 −136.8 115.3
−136.8 8157.3 156.4
115.3 156.4 4721.8

� [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] (3.1.1)

20

 Assumptions
For the following calculations in Sections 3.3 and 3.4 to be solved a few assumptions will be

made about the known spacecraft. The primary assumption is that there are two main sets of

sensors onboard, the accuracy requirement for both will be analyzed in Chapter 5 in depth. The

first sensor that will be included is a rotation based sensor which can determine the rotation rate,

ω, in radians per second as well as the acceleration of the rotation, α, in radians per second per

second. The second sensor will be a linear acceleration sensor that will detect the linear

acceleration in meters per second per second created due to the rotation of the space craft about

the total center of mass with respect to the sensor itself, or the centripetal acceleration of the sensor.

The second assumption is that there is an arm that the spacecraft manipulates to attach itself to

the unknown object. This will aide by allowing for the dynamics of the system to be changed in a

known way and an analysis of the changes will provide further data for the calculation of the

parameters to be estimated.

 Inertia Equation

In this system, the designer knows the inertia matrix of Spacecraft A, 𝑱𝑱𝐴𝐴, as well as the mass

𝑚𝑚𝐴𝐴. Using RLS the total rotational inertia matrix can be found about the primary axes of

Spacecraft A. The inertial equation can be solved for using the sum of inertias and the parallel

axis theorem. This derivation is shown below.

 𝑱𝑱𝑇𝑇 = 𝑱𝑱𝐴𝐴𝑇𝑇 + 𝑱𝑱BT (3.3.1)

In Eq. (3.3.1), 𝑱𝑱𝑇𝑇 represents the rotational inertia of the total system about the center of mass

of the combined system. 𝑱𝑱𝐴𝐴𝑇𝑇 and 𝑱𝑱𝐵𝐵𝑇𝑇 represent the rotational inertia contribution of Spacecraft A

and Spacecraft B respectively about the center of mass of the system.

21

Expanding Eq. (3.2.1) using the parallel axis theorem leads to the following:

 𝐉𝐉𝑇𝑇 = 𝐉𝐉A + mA�𝑟𝑟AT�
2 + 𝐉𝐉B + mB�𝑟𝑟BT�

2
 (3.3.2)

When using vector notation the scalar r2 is invalid and it becomes the following:

 𝐉𝐉𝑇𝑇 = 𝐉𝐉A + mA�𝑟𝑟AT ∙ 𝑟𝑟AT
𝑇𝑇� + 𝐉𝐉B + mB�𝑟𝑟BT ∙ 𝑟𝑟BT

𝑇𝑇� (3.3.3)

 Solving for Unknowns
Using a linear acceleration sensor the perceived centripetal acceleration can be accessed from

the sensor located in Spacecraft A. Using an IMU, the angular velocity can be obtained and

together the radius from the center of mass of the total system to the center of mass of Spacecraft

A, 𝑟𝑟𝑇𝑇𝐴𝐴, can be solved for using Eq. (3.3.1).

 �⃗�𝑎𝑐𝑐 = 𝛚𝛚2 × 𝑟𝑟𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 (3.4.1)

To convert between 𝑟𝑟𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 and 𝑟𝑟𝑇𝑇𝐴𝐴 subtraction of the 𝑟𝑟𝐼𝐼𝑀𝑀𝐼𝐼 vector is required. The

implementation of these are shown in Simulink in Figure 3.2 below.

Figure 3.2 𝒓𝒓�⃗ 𝑻𝑻𝑨𝑨 Solution in Simulink

To calculate the vector of the center of mass of the total system to the center of mass of the

unknown object, 𝑟𝑟𝑏𝑏, it is possible to represent the vectors as a ratio of their masses.

22

 𝑚𝑚𝑏𝑏
𝑚𝑚𝑎𝑎

= 𝑟𝑟𝑏𝑏
𝑟𝑟𝑎𝑎

 (3.4.2)

Physically drawing the system together through the use of the retractable arm would allow for

the dynamics of the system to change. This results in a 𝑟𝑟𝑏𝑏2 and 𝑟𝑟𝑎𝑎2 substitution using the change

in the vectors 𝑑𝑑𝑟𝑟𝑏𝑏 and 𝑑𝑑𝑟𝑟𝑎𝑎 and the initial states. The ratio 𝑚𝑚𝑏𝑏:𝑚𝑚𝑎𝑎 can be ignored to result in the

following equation.

 𝑟𝑟𝑏𝑏1
𝑟𝑟𝑎𝑎1

=
𝑟𝑟𝑏𝑏1+𝑑𝑑𝑟𝑟𝑏𝑏

𝑟𝑟𝑎𝑎2
 (3.4.3)

Following the assumption laid out in Section 3.2 that the spacecraft knows the amount that it

retracted in the operation 𝑑𝑑𝑟𝑟𝑏𝑏 can be solved for as seen in Eq. (3.4.4). 𝑑𝑑𝑟𝑟𝑎𝑎 is solved for by solving

Eq. (3.4.1) post retraction.

 𝑑𝑑𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 𝑑𝑑𝑟𝑟𝑎𝑎 + 𝑑𝑑𝑟𝑟𝑏𝑏 (3.4.4)

The implementation for this in Simulink is shown below and the MATLAB function can be

found in Apendix B.10.

Figure 3.3 Simulink Implementation of the Solution for 𝒓𝒓𝒃𝒃

23

The mass of the unknown object, 𝑚𝑚𝑏𝑏, can then be solved through rearranging Eq. (3.4.2) to

form Eq. (3.4.5). See Figure 3.4 for the Simulink implementation and Apendix B.11 for the

MATLAB function.

 𝑚𝑚𝑏𝑏 = 𝑟𝑟𝑏𝑏∗𝑚𝑚𝑎𝑎
𝑟𝑟𝑎𝑎

 (3.4.5)

Figure 3.4 Simulink Mass of Unknown Object Calculation
To solve for the total inertia matrix the relation between torque applied and rotational

acceleration can be used along with a Recursive Least Squares estimator to estimate the value of

the total inertia matrix. This is discussed in Chapter 4 and implemented in Simulink as shown

below in Figure 3.5.

Figure 3.5 Recursive Least Square Implementation
This is then used in conjunction with the correction required to account for the products of

inertia which is later discussed in Section 4.5, Eq. (4.5.1), and Figure 4.5. This results in the

24

following Simulink Implementation. The RLS estimation shown above in Figure 3.5 is contained

within the three estimation blocks with the label “Fig. 3.5”.

Figure 3.6: Total Inertia Matrix Estimation
The final calculation in the determination of the unknowns is to isolate the inertia matrix of

the unknown spacecraft from Eq. (3.3.3). This is shown in the equation below.

 𝑱𝑱B = 𝑱𝑱TA − 𝑱𝑱A − 𝑚𝑚𝑎𝑎�𝑟𝑟𝑇𝑇𝑎𝑎 ∙ 𝑟𝑟𝑇𝑇𝑎𝑎
𝑇𝑇� − 𝑚𝑚𝑏𝑏�𝑟𝑟𝑇𝑇𝑏𝑏 ∙ 𝑟𝑟𝑇𝑇𝑏𝑏

𝑇𝑇� (3.4.6)

It is important to note that if there is a future case where the radius vectors become matrices,

[3x2] or similar, the outer product will need to be used instead of multiplying the transpose by

the original vector. This is implemented using a MATLAB function block in the Simulink as can

be seen in the image below and Appendix B.12

25

Figure 3.7: Unknown Inertia Matrix Simulink Implementation
The MATLAB file used to generate the data required for the calculations is available in

Appendix B.13. The final Simulink file that was used to combine the algorithm described

previously to obtain the desired unknown values can be found in Appendix B.16.

 Results
In this simulation the Cassini spacecraft is assumed to be trying to identify the mass properties

of an unknown object. The properties of which detailed below.

 𝑱𝑱𝑼𝑼𝑪𝑪𝑼𝑼𝑪𝑪𝑼𝑼𝒘𝒘𝑪𝑪  =   �
2000 0 0

0 2000 0
0 0 2000

� [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] (3.5.1)

 𝑚𝑚𝑢𝑢𝑛𝑛𝑘𝑘𝑛𝑛𝑢𝑢𝑤𝑤𝑛𝑛 = 500 [𝑘𝑘𝑘𝑘] (3.5.2)

 r⃗CoM  =   �
8
4
√20

� (3.5.3)

The simulation is run resulting in an average error for 𝑱𝑱𝑼𝑼𝑪𝑪𝑼𝑼𝑪𝑪𝑼𝑼𝒘𝒘𝑪𝑪 of 10−8 as shown in the error

plot in Figure 3.9. This value is calculated by using the average value of the estimated matrix and

dividing that by 2000, the value given to the unknown object as its principal moments of inertia.

The reasoning is that any adverse movements caused by the products of inertia during

maneuvering will be competing with the effects of the principal moments of inertia.

26

Figure 3.8: Unknown Object Inertia Estimation Error
When comparing Figure 3.9 to that of the errors resulting from the RLS estimation blocks,

Figure 3.10, a very similar trend can be seen where at 80 seconds into the simulation there is a

large dropoff and the estimation stabilizes afterwards. This time corresponds with the cutoff time

for the reaction wheels simulated torque. This correlation was examined by reducing the cutoff

time of the torque to 60 seconds to see if the estimation would be able to solve in less time due to

having no external moment applied to the system. This resulted in the plots seen in Figure 3.11

and Figure 3.12. In both of these figures the cutoff can be visibly seen in the estimation error but

neither shows an immediate settling of the residual error. This infers that the time that the

simulation requires to solve is independent of the time that the torque is applied. Further time

based questions will be proposed in Chapter 5.

27

Figure 3.9: RLS Estimation Plots

Figure 3.10: Unknown Inertia Estimate with Reaction Wheel Cutoff at 60s

Error Plots

0 20 40 60 80 100 120 140 160 180 200
10-20

100
Error X

0 20 40 60 80 100 120 140 160 180 200
10-20

100
Error Y

0 20 40 60 80 100 120 140 160 180 200
Time [s]

10-10

100 Error Z

0 20 40 60 80 100 120 140 160 180 200
Time [s]

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

Er
ro

r [
%

]

Unknown Object Inertia Estimation Error vs Time

28

Figure 3.11: RLS Estimation Plots for 60s Cutoff

Error Plots

0 20 40 60 80 100 120 140 160 180 200

10-10

100
Error X

0 20 40 60 80 100 120 140 160 180 200

10-10

100
Error Y

0 20 40 60 80 100 120 140 160 180 200
Time [s]

10-20

10-10

100 Error Z

29

 ADAPTIVE ESTIMATION

 Overview
An adaptive filter is an algorithm that takes a set of inputs and adjusts a guess for the coupling

value between those inputs. This is best used when a system has a measurable input and output.

The coupling value of the two measurements can generally be said to be solved for through

parameter estimation schemes. For this project, parameter estimation will be used to estimate the

inertia matrix from the moment input and angular acceleration output.

 Least-Squares Estimation
Least-Squares Estimation (LSE) is a method of estimation based on the average deviation

from the mean by a group of measured or given data. This estimation method can simply be

compared to the estimation of a single point where multiple samples of noisy data are collected.

To make an estimation of the true location of the data point the simplest method would be to take

the average of all data points. This method is the optimal method as the result is the

minimalization of the error values of each point squared giving the name least-squares estimate.

Practically, this method works by solving for a value that minimizes the estimation error between

each guess and the average of all the guesses, as seen in Eq. (4.2.1).

 𝑆𝑆 = ∑ (𝑒𝑒𝑖𝑖)2𝑁𝑁
𝑖𝑖 (4.2.1a)

 𝑆𝑆 = ‖𝑒𝑒‖22 (4.2.1b)

The derivation of the Least-Squares Estimation algorithm can be found in Appendix A.3 page

73. The algorithm is summed up in Eq. (A.3.9), shown below, where 𝑨𝑨𝑪𝑪×𝒎𝒎 represents the input

matrix, 𝒅𝒅𝑪𝑪×𝒎𝒎 represents the output matrix, and 𝒉𝒉𝑚𝑚×1
∗ represents the filter matrix. n represents the

number of data points represented and m the number of variables being solved for.

 𝒉𝒉∗ = (𝑨𝑨𝑇𝑇𝑨𝑨)−1𝑨𝑨𝑇𝑇𝒅𝒅

30

 Recursive Least Squares
Recursive Least Squares, or RLS, is the natural discrete continuation on the theory behind

Least-Squares Estimation. RLS is applied when the estimation algorithm is being used in a real

time application instead of a batch process. The algorithm minimizes the weighted least squares

cost function, assuming the errors are gaussian in nature, expanded from Eq. (4.2.1) results in the

function below.

 𝑆𝑆(β) = ∑𝑟𝑟𝑖𝑖(β)2 (4.3.1)

Summarizing the Recursive Least Squares estimation algorithm from Appendix A.4 page 74

leaves the following steps:

Solve for the gain vector in Eq. (A.4.12a)

 𝑲𝑲𝑛𝑛 = 𝑷𝑷𝑛𝑛−1𝒖𝒖𝑛𝑛
𝑰𝑰+𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1𝒖𝒖𝑛𝑛

Find the current error from the previous estimate in Eq. (A.4.19)

 𝛇𝛇 = 𝒅𝒅[𝑎𝑎] − 𝒖𝒖𝑛𝑛𝑇𝑇𝒉𝒉𝑛𝑛−1∗

Update the filter using Eq. (A.4.20)

 𝒉𝒉𝑛𝑛∗ = 𝒉𝒉𝑛𝑛−1∗ + 𝑲𝑲𝑛𝑛𝛇𝛇

Update the inverse matrix using Eq. (A.4.11)

 𝑷𝑷𝑛𝑛 = 𝑷𝑷𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1

31

 MATLAB Implementation
4.4.1 Test Data Creation

Implementation of the step by step process above first required the creation of data to test the

code with. The code for creating the test data is shown in Appendix B.1 on page 78 under the

MATLAB section “EOM Calculations”. The Cassini Probe was used as this baseline for the

proof of concept and its inertia matrix, as shown in Eq. (3.1.1), is used in the code. During the

creation of test data, there will be two distinct timeframes representing different input conditions.

Condition 1 from time 𝑡𝑡 = 1 to 𝑡𝑡 = 150 will use the input torque of 10 [Nm] about the x-axis.

 τ�⃗   = �
10
0
0
� [𝑁𝑁𝑚𝑚] (4.4.1)

During the second condition, from 𝑡𝑡 = 150 to 𝑡𝑡 = 200, the input torque will be zero about all

axes. This step input is being simulated to ensure that the functions developed can handle a

change in input which adds another degree of difficulty to the problem.

 τ�⃗   = �
0
0
0
� [𝑁𝑁𝑚𝑚] (4.4.2)

The function in used to simulate the motion of the spacecraft is rotationalEOM.m, detailed in

Appendix B.2 on page 80. This is based on the coupled rotational dynamics for a system where

the products of inertia are non-zero. The relationship is detailed below.

 τ�⃗ = 𝐼𝐼ω��⃗̇ + ω��⃗ × (𝐼𝐼ω��⃗) (4.4.3)

This produced the data set seen below in Figure 4.1.

32

Figure 4.1: Motion of Cassini
4.4.2 Recursive Least Squares Estimation

The estimation algorithm described at the end of Chapter 5 Section 4.3 was used to create the

MATLAB function RLSStep.m as seen in Appendix B.3 on page 81. The function was then

applied to the code to create an estimate of the relationship between the total moment and

angular acceleration data. From Eq. (2.3.4) and Eq. (4.4.3) we know this relationship is defined

by the inertia matrix. The output of the RLSStep.m function is a [3x1] vector matrix which can

describe the relationships between the angular acceleration and the moment about one axis. Thus

the function needs to be run three times in order to obtain column Ix_, column Iy_, and column

Iz_.

The error estimated for each estimate versus time is also output which is displayed in the

graph below.

33

Figure 4.2: Error Plots for RLS
As seen in Figure 4.2, the error for each of the estimates quickly goes below an acceptable

threshold of 10−06 within the first 20 seconds. This allows for a high degree of confidence in the

simulation which output 𝐽𝐽𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 detailed below.

 𝐽𝐽𝑒𝑒𝑒𝑒𝑡𝑡𝑖𝑖𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 = �
8810.8 −136.8 115.3
−136.8 8157.3 156.4
115.3 156.4 4721.8

� [𝑘𝑘𝑘𝑘 ∙ 𝑚𝑚2] (4.4.4)

When compared to the Cassini inertia matrix, Eq. (3.1.1), the matrices are identical.

34

 Simulink Implementation
Verification of the MATLAB implementation is needed to use the code for potential

determination of the mass properties of an unknown system. For this a Simulink block diagram

was set up to utilize the built in RLS block provided in the Aerospace Blockset of MATLAB.

The RLS block was implemented along with the 6 degree-of-freedom block to analyze the

movement and determination of the inertia tensor of the Cassini Probe. The inertia tensor will be

solved for by first imparting a moment about the x-axis, then the y-axis, and finally the z-axis.

This is done as a result of the output of the RLS block which must be a vector. The output of the

RLS block, when using moment about x, represents 𝐽𝐽𝜕𝜕𝜕𝜕, 𝐽𝐽𝜕𝜕𝑦𝑦, and 𝐽𝐽𝜕𝜕𝑧𝑧. These values will be

directly compared to the same values from the Cassini inertia matrix.

The first iteration of the moment about the x-axis block diagram, without a Recursive Least

Squares block, can be seen in Figure 4.3.

Figure 4.3: 6DOF Block Diagram
The 6DOF block outputs variables that describe the motion of the object being simulated in

both the Body Frame and the Earth Centered Inertia Frame. The output is shown in Figure 4.4

35

where the outputs of the angular acceleration, angular velocity, angular position (Euler Angle),

and the input moment are shown. Also shown is the centripetal acceleration which is calculated

using Eq. (3.4.1).

Figure 4.4: 6DOF Output
The output from this system clearly shows an acceleration due to the input torque but it does

not tell the whole story. To see what is going on the estimate of the inertia tensor is solved for as

shown in Figure 4.5. The x-direction estimated inertia values are displayed above the block

diagram. When the values are compared with the values in Eq. (3.1.1), they are incorrect.

36

Figure 4.5: Simulink with RLS Block
Investigating the incorrect values lead to comparing the graphs in Figure 4.4 and a disparity is

seen in the graphs of moment and angular acceleration. This disparity is due to the expected

linear relationship between the two based on Eq. (2.2.4). The error output from the RLS block

was also graphed to determine how confident the algorithm is in its estimate. As seen in Figure

4.6, the error value never drops below an acceptable threshold of 10−6.

Figure 4.6: RLS Output with Error

37

To determine why the incorrect values were the result of this simulation it is necessary to look

at the inertia equation given in Eq. (2.3.4) and expand it further. When dealing with an inertia

matrix that contains non-zero products of inertia, the effects of this asymmetry must be included.

Derived from Eq. (4.4.3), the term is shown below.

 τ = 𝑰𝑰α��⃗ + ω��⃗ × (𝑰𝑰ω��⃗) (4.5.1)

This is implemented into the Simulink through the subsystem shown in Figure 4.7 and input

into the system as shown in Figure 4.8. The RLS section of the diagram has been included in the

subsystem shown in Figure 4.9 for future diagrams.

Figure 4.7: Correction Subsystem for Asymmetry

Figure 4.8: RLS with Asymmetry Correction

38

Figure 4.9: RLS Subsystem
Outputting the same graph as before results in the angular acceleration graph and the moment

graph looking like each other in a linear way such that Eq. (2.3.4) would predict. The error from

the output also goes well past conventional stopping points, 10−6, and drops below 10−14.

Figure 4.10: Output Corrected for Asymmetrical System
Once the Ix_ solver was complete, Figure 4.11, the same was constructed for Y, Figure 4.12,

and Z, Figure 4.13, with the outputs of all being used to construct the total inertia matrix as seen

in Figure 4.14.

39

Figure 4.11: Torque about X

Figure 4.12: Torque about Y

40

Figure 4.13: Torque about Z

Figure 4.14: Total Inertia Matrix Construction

 Results
Both the Simulink and RLSStep.m algorithm are able to reliably return the true inertia mattrix

given multiple variations of input torque. When comparing the error values of the code written

for RLSStep.m with that of the Simulink block diagram it can be seen that both surpass 10−6, a

41

common cutoff threshold. This shows that the code that was written for this paper performs as

well as that given by Mathworks. RLSStep.m does maintain several advantages when the time

step size, input torque, and inertia matrix are all controlled for. These advantages are that the

error values drop past 10−6within 7 seconds, hit a lower floor than the simulink algorithm

(10−15 vs 10−14), and they reach the floor within 13 seconds while the Simulink errors require at

least 75 seconds.

42

 DESIGN VALIDATION

 Overview
The Monte Carlo method is a category of algorithms which use brute force to random

sampling to determine the quality or optimal setup of a simulation as is desired by the designer.

For control systems this method is generally used for two distinct circumstances being

optimization and validation. A Monte Carlo simulation would be considered optimization if a

system were being designed and an optimal controller were needed. The method would

randomize control parameters many times and the optimal combination would be selected by the

constraints put in place by the designer. For a PID controller this would be realized by setting the

proportional, integral, and derivative gains (KP, KI, and KD) to be randomly generated within a

predetermined range.

Monte Carlo Validation assumes that the designer has a set of gain values that are to be

validated and parameters outside of the domain of the controller are varied to create a wide array

of conditions under which the desired gain values are tested. Using the PID controller in a mass,

spring, and damper scenario, the designer can incorporate noise in the measurements to simulate

how well the chosen KP, KI, and KD.

Due to the complexity of some systems, a simulation will be run multiple times to see what

effect the variation of the noise level of the variable, or combinations of potential noise, have on

a system. This will give the designer a better idea of where money or time should be spent to

better optimize the system they are simulating. Another benefit of running smaller, focused,

simulations is that the simulation will solve faster and the simulation can be refined for further

study at a more rapid pace. After the refinement has been completed larger simulations can be

run for final verification of assumptions made to simplify the initial batch of simulations.

43

 Implementation Example
 In order to implement the Monte Carlo Validation in the algorithm described in Chapter 3, an

example using a pendulum and cart will first be demonstrated where the varying noise level will

be filtered out and the results scrutinized. The importance of the Kalman Filter and its function

will be discussed in Chapter 6. For this simulation noise in the distance sensor is used as the

changing varible and working from an unknown, instead of known, noise level will challenge the

ability of the filter to accurately provide clean data. In this circumstance, the designer of the

controller wants to estimate the maximum allowable noise before the assumed covariance, R, is

no longer valid. A Monte Carlo Validation algorithm will be implemented to vary the noise

level, 𝑣𝑣𝑛𝑛, and determine the allowable operating range. The code demonstrating this can be

found in Appendix B.9. The Simulink is shown below in Figure 5.1.

Figure 5.1 Monte Carlo Example
The simulation was setup with two separate state space simulations. The first, labeled “True”

contains the pure 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 matrices and zero noise input. The second, labeled “Estimate w/

Noise” uses the same matrices but has noise aded to the system both on the input and output in

44

order to test the Kalman Filter estimator. The effect on the estimation due to noise can be seen

below in Figure 5.2. The graph shows the disparity between the true state (red) and the estimates

(blue) grow as the magnitude of the noise grows larger.

Figure 5.2: Sensor Noise Effects on Position
In the above figure, the minimum noise level, and most accurate estimation pass, was 0.0037

[m]. The designer will determine the threshold by which they can certify the designed system

verified or inadequate. For a Kalman Estimation situation the estimate will not be based on what

was directly measured (x-position in this example), but by what was estimated (velocity, angle of

the pendulum, and the angular velocity of the pendulum. For this example the angle of the

pendulum will be considered the most important factor that is to be estimated. Figure 5.3 shows

the estimated positions (blue) vs the true position (red) for a assigned covariance of 0.5 and max

noise of 1.

45

Figure 5.3: Estimated Angle(s) vs True Angle
When comparing the range of the estimations to the true angle it can be seen that there is

aproximately a 0.0001 radian diffence in the worst case. This comes out to 0.0057 degrees,

which is two orders of magnitude less than the value being estimated at this timestep.

Expanding the noise threshold to 𝑣𝑣𝑛𝑛 = 5 the maximum error that would be observed at the

same timestep is approximately 0.0003 radians, which is still in the range of 2 orders of

magnitude less than the value being estimated. This is shown in Figure 5.4.

46

Figure 5.4: Estimated Angle(s) for 𝒗𝒗𝑪𝑪 = 𝟓𝟓, 𝑹𝑹 = 𝟏𝟏

 Parameter Identification with Sensor Noise
Random noise was implemented into the Parameter Identification scheme detailed in Chapter

3. This introduction of noise required the use of the built in MATLAB randn() function that creates

Gaussian white noise based off of the inputs that the designer uses. Gaussian white noise is

generated in a fashion that creates a distrobution similar to the noise that is seen in sensors and

other electronic devices. The level of noise trends towards the average, zero in this particular use

case, and can be seen in the figure below.

47

Figure 5.5: Noise Generated by randn() function
In the implementation in Simulink the noise will be generated using the Eq. (5.3.1)

 𝑆𝑆𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑙𝑙𝑁𝑁𝑢𝑢𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑆𝑆𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑙𝑙𝑂𝑂𝑟𝑟𝑖𝑖𝑂𝑂𝑖𝑖𝑛𝑛𝑎𝑎𝑂𝑂 + 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑛𝑛(3,1)
3

∗ 𝑁𝑁𝑁𝑁𝑆𝑆𝑠𝑠𝑒𝑒𝑀𝑀𝑎𝑎𝑂𝑂𝑛𝑛𝑖𝑖𝑡𝑡𝑢𝑢𝑑𝑑𝑒𝑒 (5.3.1)

The randn() signal is divided by 3 to create a unit distribution then multiplied by the desired

magnitude and added to the original signal. This is implemented for each of the readings that an

IMU would make as shown in the figure below enclosed by the blue box. The MATLAB code for

the function can be found in Appendix B.14.

0 20 40 60 80 100 120 140 160 180 200
Time [s]

-4

-3

-2

-1

0

1

2

3

4

N
oi

se
 M

ag
ni

tu
de

randn() Noise

48

Figure 5.6: Simulink Implementation of Sensor Noise
The code encompasing the loop and noise magnitude can be found in Appendix B.15. This

code does not contain the graphing or initial conditions due to them being near identical to the

code in Appendix B.13.

 Noise Level Analysis
A focused study was completed that looked at a max of two variables at a time in order to

understand the effects that each variable has on the estimation of the desired parameters. To get a

wide view of what the potential error values look like due to variations in omega noise and linear

acceleration noise a simulation of 100 iterations was run with the noise magnitude for both types

being between 10-1 and 10-8. The results are shown below in Figure 5.7.

49

Figure 5.7: Monte Carlo Results of Omega and Linear Acceleration Noise
In the figure about the Total Inertia Matrix Error it can be seen that the error is only affected by

the change in omega noise. This matches with what should be expected by the formulas given in

Section 2.1 and as can be seen in the Simulink diagram given by Figure 3.6 where the linear

acceleration is not seen in the inputs to the estimation scheme. The other plots, when moved in the

3-D space, show a trend in the form of a trough where the optimal sensor selection can be made in

relation to its noise floor.

After running the simulation for 500 iterations the trough can be seen more clearly by looking

at Figure 5.8. This trough in the data represents the ideal ratio between the noise level seen by the

sensor in rotational velocity and linear acceleration. When chosing a sensor and the noise ratio

skews towards one sensor or the other that will degrade the performance regardless of how

50

sensitive the other sensor is. This can be seen by looking at the graph from the XZ or YZ frame as

with the example below, in Figure 5.9, showing the Unknown Inertia Matrix vs rotational velocity.

Figure 5.8: 500 Iteration varying rotational velocity and linear acceleration looking down the
trough

Figure 5.9: Side view looking at rotational velocity

51

In the area where a clear line is seen, the data points are linear and soley dependent on rotational

velocity until the accuracy ratio approaches that of the trough showing that the noise in angular

velocity is too great and overwhelms the noise in linear acceleration. When the accuracy ratio

surpasses the trough the opposite is true.

For this circumstance where the unknown inertia matrix is given by Eq. (3.5.1) a reasonable

error magnitude would be less than 20 [kg m2] and a good error magnitude would be less than 2

[kg m2]. For the reasonable estimate the omega noise magnitude would need to be less than

5𝑥𝑥10−7 �𝑟𝑟𝑎𝑎𝑑𝑑
𝑒𝑒
� and the linear acceleration noise magnitude would need to be less than 4𝑥𝑥10−7 �𝑚𝑚

𝑒𝑒2
�.

This would produce the following figures showing the original signal versus the max allowable

noisy signal.

Figure 5.10: Centripetal Acceleration vs Noise

52

Figure 5.11: Rotational Velocity vs Noise

In both Figure 5.10 and Figure 5.11 the original signals are blue, green, and purple while the

noise is represented by the orange line. The magnitude of the noise is so much less than the

magnitude of the original signals that the plot of the noise appears to be constantly zero. This

noise to signal ratio is unacceptable and the noise must be filtered out at higher magnitudes

through a noise filter.

 Recursive Least Squares Filter
5.5.1 Setup

Similar to the RLS Estimation in Chapter 4, a Recursive Least Squares Filter will seek to

minimize the difference between the mean estimate and the current time step measurement, or

error, squared. This is implemented in Simulink in order to clear the noise generated due to

imperfect sensors as shown in Figure 5.12.

0 20 40 60 80 100 120 140 160 180 200
Time [s]

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

M
ag

ni
tu

de
 [r

ad
/s

]

Rotational Velocity vs Noise

53

Figure 5.12: RLS Filter

When the RLS filter is run with an omega noise magnitude of 10−2.5[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] a portion of the

noise can be filtered out, as shown in Figure 5.13. The lower graph contains just the noisy signal

while the upper contains the true the filtered signal. The magnitude of the noise is less in the filtered

signal and this allows for more accurate results when isolating the desired parameters. The same

filtering can be seen for the linear acceleration sensor with a noise magnitude of 10−4[𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] in

Figure 5.14.

Figure 5.13: RLS Filtering of Omega Noise

0 20 40 60 80 100 120 140 160 180
-0.04

-0.02

0

0.02

0.04

0.06
omega true and omega filtered

0 20 40 60 80 100 120 140 160 180
-0.04

-0.02

0

0.02

0.04

0.06
omega with noise

54

Figure 5.14: RLS Filtering of Linear Acceleration Noise
Using the RLS Filtering blocks between the noise generation and the first set of calculations

completed represents the flight computer apllying the filtering method to the data before

attempting to calculate the required unknowns. This setup can be seen below in Figure 5.15.

55

Figure 5.15: RLS Filtering in Simulink
5.5.2 Results

The implementation of the RLS Filter was partially successful due to the damping effect the

filter had on the noise magnitude. It was also not successful due to the poor estimation qualities

that it displayed. This is likely due to the filter not incoporating the dynamics of the system into

the estimation effort and soley relying on the data that it was provided then attempting to reduce

the squared error. The use of a Kalman Filter or similar filter type that adapts to the state space

matrices would improve the estimation.

Using the graphs in Figure 5.16, it can be seen that in order to reach a 1% error the rotational

velocity noise must have a noise magnitude of less than 10−4 [𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] for the Unknown Inertia

Matrix, Center of Mass vector, and the Unknown Mass Estimate. When comparing this to Figure

5.13 using the magnitude of peak rotation rate of 0.04 [𝑟𝑟𝑎𝑎𝑑𝑑/𝑠𝑠] this equates to a noise to signal

ratio of 0.25%. The formula can be seen in Eq. (5.5.1).

56

Figure 5.16: Parameter Estimation with Noise Reduction by RLS Filter

 𝑁𝑁𝑢𝑢𝑖𝑖𝑒𝑒𝑒𝑒𝑀𝑀𝑎𝑎𝑂𝑂𝑛𝑛𝑖𝑖𝑡𝑡𝑢𝑢𝑑𝑑𝑒𝑒
𝑆𝑆𝑖𝑖𝑂𝑂𝑛𝑛𝑎𝑎𝑂𝑂𝑀𝑀𝑎𝑎𝑂𝑂𝑛𝑛𝑖𝑖𝑡𝑡𝑢𝑢𝑑𝑑𝑒𝑒

= 𝑁𝑁𝑁𝑁𝑆𝑆𝑠𝑠𝑒𝑒: 𝑆𝑆𝑆𝑆𝑘𝑘𝑎𝑎𝑎𝑎𝑙𝑙 (5.5.1)

Again using Eq. (5.5.1), the linear acceleration noise magnitude required to reach a 1% error,

10−7 [𝑚𝑚/𝑠𝑠/𝑠𝑠], yields an allowable noise to signal ratio of 0.1%. Both the allowable error for the

rotational velocity and linear acceleration are well below what would be considered an

acceptable threshold.

57

 CONCLUSIONS AND FUTURE WORK

 Completed Work
The equations of rotational motion and spacecraft dynamics from Chapter 2, were used to

separate the inertia matrix, mass, and center of mass of Spacecraft B from a theoretically coupled

spacecraft duo, as seen in Chapter 3. The output of which was seen to be extremely accurate

assuming no noise in the system. To combat a noise level representing a real world system a

recursive least squares filter was proposed in Chapter 4. A design validation scheme was

implemented in the form of a Monte Carlo method in Chapter 5 to test a variety of noise levels

against the designed filter. The recursive least squares filter was determined to be inaccurate

enough that it, in the current form, does not represent a usable noise filtering method. In Chapter

6, a state estimation algorithm in the form of the Kalman Filter was described and implemented,

in a well studied example, to show its ability to filter noise and estimate all observable states.

 Challenges Faced
Through the first several iterations of the recursive least squares algorithm the inertia matrix

output was routinely incorrect by greater than 20% when compared to the inertia matrix used to

calculate the movement of the spacecraft. The first major correction was taking into account the

product of inertia influence described in Eq. (4.4.3). This correction brought the error to within

5% of the correct inertia value for the principal axes but the error was still large for the products

of inertia. The inclusion of a forgetting factor λ brought the error value output by the algorithm

to well below an acceptable threshold of 10−6 as well as matching the input matrix exactly.

When developing the design validation algorithm an incorrect Monte Carlo method was

initially implemented that utilized a static, yet random, grid for the tested noise levels creating a

semi-uniform plot. This was due to the use of preset random noise values that were then used in

58

a nested double for-loop. A single for-loop with the random values generated inside the loop was

used instead which resolved the issue. Following the implementation of the recursive least

squares filter a significant error rate was observed which was eventually resolved when the

angular acceleration estimate was seen to be multiple orders of magnitude less than the true

value for all three axes. This was solved by introducing a more accurate initial noise estimate for

the filter.

During the application of the Extended Kalman Filter the states would not settle and the filter

never reached an acceptable error determined to be an average of < 5% across all states

measured given the ideal circumstances used. This issue is not resolved at this time but will be

documented as future work.

 Future Work
6.3.1 Physical Attributes vs Noise Level Investigation

The investigation between how changing specific physical attributes of the spacecraft system

affect the allowable noise level is an important part of the design process and will impact the

choice of sensors for such a spacecraft. The recommended relationships are:

1. Mass ratio of the unknown and known spacecraft

2. Ratio of total inertia to the known ability of the spacecraft to impart a torque on the

system

3. What parameter is the most important for accurate estimation

6.3.2 State Estimation
6.3.2.1 Overview

All systems have some level of uncertainty, which is created due to measurement error,

inaccuracies of production, or the inability to measure specific states. Because of this an

59

inaccurate model of the system is utilized by the flight computer which results in imprecise

calculations which cannot be corrected using a controller. State estimation attempts to

circumvent this issue through the manipulation of the known equations of motion and the sensor

data being measured. This method determines the best guess of the true states for the system.

Once true sensor data is attained, unknown states can be estimated and utilized by the controller.

The result is an invaluable resource for systems without a human in the loop (for example, self-

driving vehicles, aircraft autopilot, spacecraft) that depend on having accurate data with the

effects of noise negated.

 To estimate the states of a system, that system must be fully observable. If a system is fully

observable, then all the state variables can be determined through measurement of the system

output. The observability of a system can be determined by finding the rank of the observability

matrix shown below.

 𝑶𝑶𝒃𝒃  =   �

𝑪𝑪
𝑪𝑪𝑨𝑨
…

𝑪𝑪𝑨𝑨𝑛𝑛−1
� (6.3.1)

The matrix uses the A and C matrices from the state space matrix of the system where n is the

number of states being observed. If the rank of the matrix is equal to n then the system is fully

observable. If the rank, r, is less than n then the system only has r states that can be observed.

As the quality of the estimation increases, the controllability of the system also increases due

to the true state matrix being approximated. During the discussion of state estimation, the test case

of a pendulum, Figure 6.1, and an inverted pendulum, Figure 6.2, balanced on a moving cart will

be used.

60

Figure 6.1: Pendulum [25]

Figure 6.2: Inverted Pendulum on Cart [26]

6.3.2.2 Kalman Filter
The Kalman Filter represents the optimal full state estimator utilizing the inputs, usually in the

form of a force or moment, and the output state of the system. In a physical control system, the

output state most commonly represents location, velocity, or acceleration, all of which can be

linear or rotational. The Kalman Filter makes several assumptions about the system being modeled.

61

The first of these is that the system is linear in nature and the general kinematics do not change

over time. Practically, this means that the matrices in the State Space system must be consistent in

any state. An object that is moving on a consistent surface would be an ideal use case for a Kalman

Filter. The second assumption is that there is a level of noise that must be accounted for being

created by the sensor and the system being modeled. This noise, for a Kalman Filter is assumed to

be Gaussian in nature. Gaussian noise has the characteristics of a normal distribution with a mean

of the true signal, or zero mean. An example of Gaussian zero mean sensor noise is shown in

Figure 6.3.

Figure 6.3: Zero Mean Signal Noise Representation

Summarizing the Kalman Filter from Appendix A.1 on page 69 gives the following set of

equations:

Calculate the Kalman Gain using Eq. (A.1.15):

 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)−1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

-4

-2

0

2

4

6

8

10

12

14

Si
gn

al
 S

tre
ng

th

True Signal
Measured Signal

62

Update the State Estimate using Eq. (A.1.5):

 𝒙𝒙�𝑘𝑘 = 𝒙𝒙�𝑘𝑘−1 + 𝑲𝑲𝑘𝑘(𝒚𝒚𝑘𝑘 − 𝑪𝑪𝒙𝒙�𝑘𝑘−1)

Update the error Covariance in response to the Kalman Gain from Eq. (A.1.16):

 𝑷𝑷𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)𝑷𝑷𝑘𝑘′

Project to next step using Eq. (A.1.17) and Eq. (A.1.21):

 𝒙𝒙�𝑘𝑘+1′ = 𝑨𝑨𝒙𝒙�𝑘𝑘

 𝑷𝑷𝑘𝑘+1 = 𝑨𝑨𝑷𝑷𝑘𝑘𝑨𝑨𝑇𝑇 + 𝑸𝑸

6.3.2.3 Extended Kalman Filter
An Extended Kalman Filter, EKF, is applied to a particular system when the system being

analyzed is non-linear in nature. The most common example used in academics is the inverted

pendulum supported by a cart, as shown in Figure 6.2. The dynamics of an inverted pendulum

are well documented and exceptionally well linked to the movement of the cart allowing for

discussion about many topics.

With any non-linear system, the equations of motion are initially linearized about time 𝑡𝑡 = 0.

Due to the characteristics of a non-linear system, the equations of motion will have to be

linearized at some time interval. This interval can be set at a predetermined number of iterations,

after the error value exceeds a limit, or after each successive estimation. This decision is

ultimately left up to the designer.

The Extended Kalman Filter works around the state space equations varying with time which

changes the Kalman Filter algorithm to the following form:

Calculate the Kalman Gain:

63

 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘|𝑘𝑘−1𝑪𝑪𝑘𝑘𝑇𝑇�𝑪𝑪𝑼𝑼𝑷𝑷𝑘𝑘|𝑘𝑘−1𝑪𝑪𝑘𝑘𝑇𝑇 + 𝑹𝑹𝑼𝑼�
−1

Update the State Estimate:

 𝒙𝒙�𝑘𝑘|𝑘𝑘 = 𝒙𝒙�𝑘𝑘|𝑘𝑘−1 + 𝑲𝑲𝑘𝑘�𝒚𝒚𝑘𝑘 − 𝑪𝑪𝑘𝑘𝒙𝒙�𝑘𝑘|𝑘𝑘−1�

Update the error Covariance in response to the Kalman Gain:

 𝑷𝑷𝑘𝑘|𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪𝑼𝑼)𝑷𝑷𝑘𝑘|𝑘𝑘−1
′

Project to next step using:

 𝒙𝒙�𝑘𝑘+1|𝑘𝑘
′ = 𝑨𝑨𝑘𝑘𝒙𝒙�𝑘𝑘|𝑘𝑘

 𝑷𝑷𝑘𝑘+1|𝑘𝑘 = 𝑨𝑨𝑘𝑘𝑷𝑷𝑘𝑘|𝑘𝑘𝑨𝑨𝑘𝑘𝑇𝑇 + 𝑸𝑸𝑘𝑘

6.3.2.4 MATLAB Example Implementation
The results of such a filter is demonstrated by Brunton & Kutz [27] through the use of the

MATLAB function 𝑙𝑙𝑙𝑙𝑒𝑒(). The algorithm from the book can be found in Appendix B.8. 𝑙𝑙𝑙𝑙𝑒𝑒()

outputs a gain value that will correct for the sensor noise in the data. This result can be seen in

Figure 6.4: X-Position for Pendulum on Cart where the noisy data from a distance sensor on a

pendulum carrying cart is run through a Kalman Filter to estimate the true value.

Figure 6.4: X-Position for Pendulum on Cart

64

Full state estimation can also be implemented with the 𝑙𝑙𝑙𝑙𝑒𝑒() function. Doing this when only

measuring the state x-position provides the graphs shown in Figure 6.5 and Figure 6.6. For both

graphs the solid line indicates the true state while the dashed line indicates the estimated states

being calculated from the x values only. Figure 6.6 is a close up view of Figure 6.5 as the

estimates are accurate enough that they are very difficult to discern when looking at the full

graph.

Figure 6.5: Estimated vs True States for Pendulum on a Cart

Figure 6.6: Close up view of State vs Estimated States

65

66

REFERENCES
[1] “Space debris by the numbers,” ESA Available:

https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers.

[2] Shan, M., Guo, J., and Gill, E., “Review and comparison of active space debris

capturing and removal methods,” Progress in Aerospace Sciences, vol. 80, 2016, pp.

18–32.

[3] Leomanni, M., Bianchini, G., Garulli, A., Giannitrapani, A., and Quartullo, R., “Orbit

Control Techniques for Space Debris Removal Missions Using Electric Propulsion,”

Journal of Guidance, Control, and Dynamics, vol. 43, 2020, pp. 1259–1268.

[4] Nishida, S.-I., and Kawamoto, S., “Strategy for capturing of a tumbling space debris,”

Acta Astronautica, vol. 68, 2011, pp. 113–120.

[5] Aslanov, V., and Yudintsev, V., “Dynamics of large space debris removal using

tethered space tug,” Acta Astronautica, vol. 91, 2013, pp. 149–156.

[6] Bergmann, E., Walker, B., and Levy, D., “Mass property estimation for control of

asymmetrical satellites,” Guidance, Navigation and Control Conference, 1985.

[7] Ma, O., Dang, H., and Pham, K., “On-Orbit Identification of Inertia Properties of

Spacecraft Using a Robotic Arm,” Journal of Guidance, Control, and Dynamics, vol.

31, 2008, pp. 1761–1771.

[8] Sharifi, E., and Damaren, C. J., “Nonlinear Optimal Approach to Spacecraft Attitude

Control Using Magnetic and Impulsive Actuations,” Journal of Guidance, Control,

and Dynamics, vol. 43, 2020, pp. 1154–1163.

[9] Bergmann, E., and Dzielski, J., “Spacecraft mass property identification with torque-

generating control,” Journal of Guidance, Control, and Dynamics, vol. 13, 1990, pp.

99–103.

[10] Lee, A. Y., and Wertz, J. A., “In-Flight Estimation of the Cassini Spacecrafts Inertia

Tensor,” Journal of Spacecraft and Rockets, vol. 39, 2002, pp. 153–155.

https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers

67

[11] Norman, M. C., Peck, M. A., and Oshaughnessy, D. J., “In-Orbit Estimation of Inertia

and Momentum-Actuator Alignment Parameters,” Journal of Guidance, Control, and

Dynamics, vol. 34, 2011, pp. 1798–1814.

[12] Krstic, M., and Tsiotras, P., “Inverse optimal stabilization of a rigid spacecraft,” IEEE

Transactions on Automatic Control, vol. 44, 1999, pp. 1042–1049.

[13] Salcudean, S. “A Globally Convergent Angular Velocity Observer for Rigid Body

Motion,” IEEE Transactions on Automatic Control, 36 (12), 1991, pp. 1493–1497.

[14] Khosravian, A. and Namvar, M. “Globally Exponential Estimationof Satellite Attitude

using a Single Vector Measurement and Gyro,” Proceedings of the 49th IEEE

Conference on Decision and Control, December 15-17, 2010.

[15] Ruiter, A. H. J. D., “Observer-based spacecraft attitude tracking with guaranteed

performance bounds,” 2015 American Control Conference (ACC), 2015

[16] Kim, D. H., Yang, S., Cheon, D.-I., Lee, S., and Oh, H.-S., “Combined estimation

method for inertia properties of STSAT-3,” Journal of Mechanical Science and

Technology, vol. 24, 2010, pp. 1737–1741

[17] Ren, L., Ban, X., Huang, X., and Ding, S., “Parameter Identification of Gyro Using

Recursive Subspace Algorithm,” IFAC-PapersOnLine, vol. 48, 2015, pp. 662–667.

[18] Ni, Z., Liu, J., Shen, X., and Chang, C., “On-orbit identification of spacecraft time-

varying moment of inertia using an improved recursive subspace method,” 2017 IEEE

International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE

Conference on Robotics, Automation and Mechatronics (RAM), 2017.

[19] Byeon, S., Lee, H., and Jeong, Y.-H., “Estimator for Spacecraft Mass Property and

Momentum Actuator Alignment under Influence of External Torque,” SpaceOps 2016

Conference, 2016.

[20] Xu, Z., Qi, N., and Chen, Y., “Parameter estimation of a three-axis spacecraft

simulator using recursive least-squares approach with tracking differentiator and

Extended Kalman Filter,” Acta Astronautica, vol. 117, Dec. 2015, pp. 254–262.

68

[21] Townsend, K., “Adafruit BNO055 Absolute Orientation Sensor,” Adafruit Learning

System Available: https://learn.adafruit.com/adafruit-bno055-absolute-orientation-

sensor.

[22] “Earth Centred Inertial Frame,” ADCS For Beginners Available:

https://adcsforbeginners.wordpress.com/tag/earth-centred-inertial-frame/

[23] Farissi, M. S., Carletta, S., Nascetti, A., and Teofilatto, P., “Implementation and

Hardware-In-The-Loop Simulation of a Magnetic Detumbling and Pointing Control

Based on Three-Axis Magnetometer Data,” Aerospace, Dec. 2019

[24] “Euler angles,” Euler angles - Knowino Available:

https://www.tau.ac.il/~tsirel/dump/Static/knowino.org/wiki/Euler_angles.html

[25] “Pendulum,” Wikipedia Available: https://en.wikipedia.org/wiki/Pendulum

[26] “Inverted pendulum,” Wikipedia Available:

https://en.wikipedia.org/wiki/Inverted_pendulum

[27] Brunton, S. L., Data Driven Science & Engineering, Cambridge University Press,

2017.

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor
https://adcsforbeginners.wordpress.com/tag/earth-centred-inertial-frame/
https://www.tau.ac.il/%7Etsirel/dump/Static/knowino.org/wiki/Euler_angles.html
https://en.wikipedia.org/wiki/Pendulum
https://en.wikipedia.org/wiki/Inverted_pendulum

69

APPENDICES

A. Derivations
A.1 Kalman Filter

The mathematical representation of the noise in the system is represented in Eq. (A.1.1a) &

(A.1.1b).

 �̇⃗�𝑥 = 𝑨𝑨x�⃗ + 𝐁𝐁u�⃗ + 𝑤𝑤𝑑𝑑 (A.1.1a)

 𝑦𝑦 = 𝑪𝑪x�⃗ + 𝐃𝐃u�⃗ + 𝑤𝑤𝑛𝑛 (A.1.1b)

The process noise, or disturbance, is captured in the matrix wd while the sensor noise is

captured by the matrix wn. Within a standard Kalman Filter, any noise added to the system is

assumed to be both Gaussian in nature and zero-mean. If noise is to be considered zero-mean,

then the noise pattern must maintain a rolling average of the true signal. Types of Kalman Filters

are available depending on if the noise skews in a particular direction or is unbalanced.

The covariance of the gaussian noise can be given by Eq (A.1.2).

 𝑸𝑸 = 𝐸𝐸[𝒘𝒘𝑑𝑑𝒘𝒘𝑑𝑑
𝑇𝑇] (A.1.2a)

 𝐑𝐑 = E[𝒘𝒘𝑛𝑛𝒘𝒘𝑛𝑛
𝑇𝑇] (A.1.2b)

Solving for the mean squared value results in the following set of equations with 𝒙𝒙�𝑘𝑘 denoting

the estimation of states:

 𝑷𝑷𝑘𝑘 = 𝐸𝐸[𝒆𝒆𝑘𝑘𝒆𝒆𝑘𝑘𝑇𝑇] = 𝐸𝐸[(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘)(𝒙𝒙𝑼𝑼 − 𝒙𝒙�𝑼𝑼)𝑇𝑇] (A.1.3)

When estimating the current state the new guess can be made through the use of a Kalman

gain, Kf, and the application of matrix algebra where the guessing function looks like Eq.

(A.1.4).

 𝒙𝒙�𝑘𝑘+1 = 𝒙𝒙�𝑘𝑘 + 𝑲𝑲𝑘𝑘(𝒚𝒚𝑘𝑘+1 − 𝒚𝒚�𝑘𝑘) (A.1.4)

70

Expand using Eq. (A.1.1b):

 𝒙𝒙�𝑘𝑘 = 𝒙𝒙�𝑘𝑘−1 + 𝑲𝑲𝑘𝑘(𝒚𝒚𝑘𝑘 − 𝑪𝑪𝒙𝒙�𝑘𝑘−1) (A.1.5)

The term inside the parenthesis can be called the measurement residual and redefined as:

 𝒎𝒎𝑘𝑘 = 𝒛𝒛𝑘𝑘 − 𝑪𝑪𝒙𝒙�𝑘𝑘−1 (A.1.6)

Combine Eq. (A.1.1) with Eq. (A.1.5):

 𝒙𝒙�𝑘𝑘 = 𝒙𝒙�𝑘𝑘−1 + 𝑲𝑲𝑘𝑘(𝑪𝑪𝒙𝒙𝑘𝑘 + 𝒘𝒘𝑑𝑑 − 𝑪𝑪𝒙𝒙�𝑘𝑘−1) (A,1.7)

Using Eq. (A.1.7) in Eq. (A.1.3):

 𝑷𝑷k = E ��(𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘−1) −𝑲𝑲𝑘𝑘𝑤𝑤𝑛𝑛� [(𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘−1) −𝑲𝑲𝑘𝑘𝒘𝒘𝑛𝑛]𝑇𝑇�

 (A.1.8)

Simplifying Eq. (A.1.8) by isolating the error term:

 𝑷𝑷𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)E[(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘−1)(𝒙𝒙𝑘𝑘 − 𝒙𝒙�𝑘𝑘−1)𝑇𝑇](𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪) + 𝑲𝑲𝑘𝑘E[𝒘𝒘𝑛𝑛𝒘𝒘𝑛𝑛
𝑇𝑇]𝑲𝑲𝑘𝑘𝑇𝑇 (A.1.9)

Simplify the Error functions according to Eq. (A.1.3) and Eq. (A.1.2b):

 𝑷𝑷𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)𝑷𝑷𝑘𝑘−1(𝑰𝑰 − 𝑲𝑲𝑼𝑼𝑪𝑪) + 𝑲𝑲𝑘𝑘𝑹𝑹𝑲𝑲𝑘𝑘
𝑇𝑇 (A.1.10)

Expanding the previous equation:

 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘−1 − 𝑲𝑲𝑘𝑘𝑪𝑪𝑷𝑷𝑘𝑘−1 − 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇𝑲𝑲𝑘𝑘
𝑇𝑇 + 𝑲𝑲𝑘𝑘(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)𝑲𝑲𝑘𝑘

𝑇𝑇 (A.1.11)

Using linear the linear algebra convention for transpose it can be said that the following

relationship is true and that Eq. (A.1.11) simplifies into Eq. (A.1.12).

 𝑲𝑲𝑘𝑘𝑪𝑪𝑷𝑷𝑘𝑘−1 = 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇𝑲𝑲𝑘𝑘
𝑇𝑇

 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘−1 − 2𝑲𝑲𝑘𝑘𝑪𝑪𝑷𝑷𝑘𝑘−1 + 𝑲𝑲𝑘𝑘(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)𝑲𝑲𝑘𝑘
𝑇𝑇 (A.1.12)

71

In order to minimize Pk with respect to Kk taking the derivative of Eq. (A.1.12) is necessary.

The resulting equation becomes:

 𝑷𝑷𝑘𝑘
𝑲𝑲𝑘𝑘

= −2(𝑪𝑪𝑷𝑷𝑘𝑘−1)𝑇𝑇 + 2𝑲𝑲𝑘𝑘(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑯𝑯𝑇𝑇 + 𝑹𝑹) (A.1.13)

Setting Eq. (A.1.13) equal to zero results in:

 (𝑯𝑯𝑷𝑷𝑘𝑘−1)𝑇𝑇 = 𝑲𝑲𝑘𝑘(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹) (A.1.14)

Solving for the Kalman gain results in:

 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)−1 (A.1.15)

Using the Kalman gain to simplify the equation for Pk leads to:

 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘−1 − 𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇(𝑪𝑪𝑷𝑷𝑘𝑘−1𝑪𝑪𝑇𝑇 + 𝑹𝑹)−1𝑪𝑪𝑷𝑷𝑘𝑘−1

 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘−1 − 𝑲𝑲𝑘𝑘𝑪𝑪𝑷𝑷𝑘𝑘−1

 𝑷𝑷𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪)𝑷𝑷𝑘𝑘−1 (A.1.16)

The future state can be predicted using the current estimate and the transition matrix A:

 𝒙𝒙�𝑘𝑘+1 = 𝑨𝑨𝒙𝒙�𝑘𝑘 (A.1.17)

Solving for the error using the state estimate and the next set of measurements:

 𝒆𝒆𝑘𝑘+1 = 𝒙𝒙𝑘𝑘+1 − 𝒙𝒙�𝑘𝑘+1

 = (𝑨𝑨𝒙𝒙𝑘𝑘 + 𝒘𝒘𝑑𝑑) − 𝑨𝑨𝒙𝒙�𝑘𝑘

 𝒆𝒆𝑘𝑘+1 = 𝑨𝑨𝒆𝒆𝑘𝑘 + 𝒘𝒘𝑘𝑘 (A.1.18)

Using Eq. (A.1.3) at time k+1 gives:

 𝑷𝑷𝑘𝑘+1 = 𝐸𝐸[(𝑨𝑨𝒆𝒆𝑘𝑘 + 𝒘𝒘𝑑𝑑)(𝑨𝑨𝒆𝒆𝑘𝑘 + 𝒘𝒘𝑑𝑑)𝑇𝑇] (A.1.19)

72

Expanding results in:

 𝑷𝑷𝑘𝑘+1 = E[(𝑨𝑨𝒆𝒆𝑘𝑘)(𝑨𝑨𝒆𝒆𝑘𝑘)𝑇𝑇] + E[𝐰𝐰k𝐰𝐰k
𝑇𝑇] (A.1.20)

Simplifying leaves:

 𝑷𝑷𝑘𝑘+1 = 𝑨𝑨𝑷𝑷𝑘𝑘𝑨𝑨𝑇𝑇 + 𝑸𝑸 (A.1.21)

A.2 Extended Kalman Filter
The Kalman Filter is easy to implement when considering the algorithm shown in Section 6.4.

The adaptation comes when considering that the 𝐶𝐶 & 𝐴𝐴 matrices need to be altered to conform

with the new state of the system with each successive itteration. The application of this can be

solved by linearizing the partial differentiation of the Equations of Motion at each time step. The

algorithms partDiff.m and linPart.m, on pages 83 & 84 respectively, solve this issue for and can

be implemented in the overall EKF algorithm. The algorithm will look as follows:

1. Solve for the partial differential of the equations of motion:

 [Apd,Bpd] = partDiff(fcn,store,point)

2. Linearize about the current states:

 [ALin,BLin] = linPoint(a,b,X,point)

3. Calculate the Kalman Gain:

 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘|𝑘𝑘−1𝑪𝑪𝑘𝑘𝑇𝑇�𝑪𝑪𝑼𝑼𝑷𝑷𝑘𝑘|𝑘𝑘−1𝑪𝑪𝑘𝑘𝑇𝑇 + 𝑹𝑹𝑼𝑼�
−1

 (A.2.1)

4. Update the State Estimate:

 𝒙𝒙�𝑘𝑘|𝑘𝑘 = 𝒙𝒙�𝑘𝑘|𝑘𝑘−1 + 𝑲𝑲𝑘𝑘�𝒚𝒚𝑘𝑘 − 𝑪𝑪𝑘𝑘𝒙𝒙�𝑘𝑘|𝑘𝑘−1� (A.2.2)

5. Update the error Covariance in response to the Kalman Gain:

73

 𝑷𝑷𝑘𝑘|𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑪𝑪𝑼𝑼)𝑷𝑷𝑘𝑘|𝑘𝑘−1
′ (A.2.3)

6. Project to next step using:

 𝒙𝒙�𝑘𝑘+1|𝑘𝑘
′ = 𝑨𝑨𝑘𝑘𝒙𝒙�𝑘𝑘|𝑘𝑘 (A.2.4)

 𝑷𝑷𝑘𝑘+1|𝑘𝑘 = 𝑨𝑨𝑘𝑘𝑷𝑷𝑘𝑘|𝑘𝑘𝑨𝑨𝑘𝑘𝑇𝑇 + 𝑸𝑸𝑘𝑘 (A.2.5)

7. Return to step 2

A.3 Least-Squares Estimation
The minimalization of the cost function in Eq. (5.3.1) is accomplished using a desired output

sequence, d[n], and an input sequence, x[n], to create a filter or gain value h[n] that corrects for

the error in the system. The relationship is shown in Eq. (A.3.1).

 𝒅𝒅[𝑎𝑎] = ∑ (𝒉𝒉𝑖𝑖𝒙𝒙𝑖𝑖−1)𝑛𝑛
𝑖𝑖=0 + 𝒆𝒆𝑖𝑖 (A.3.1)

Solving for the error:

 𝒅𝒅[𝑎𝑎] − ∑ (𝒉𝒉𝑖𝑖𝒙𝒙𝑖𝑖−1)𝑛𝑛
𝑖𝑖=0 = 𝒆𝒆𝑖𝑖 (A.3.2)

Rewriting this in pure vector notation leaves the following and simplifying the inputs into

matrix A.

 𝒆𝒆 = 𝒅𝒅 − 𝑨𝑨𝒉𝒉 (A.3.3)

Rewriting the cost function in Eq. (5.3.1b):

 𝑺𝑺 = ‖𝒅𝒅 − 𝑨𝑨𝒉𝒉‖22 (A.3.4)

 𝑺𝑺 = (𝒅𝒅 − 𝑨𝑨𝒉𝒉)𝑇𝑇(𝒅𝒅 − 𝑨𝑨𝒉𝒉) (A.3.5)

Expanding Eq. (A.3.5) results in the following:

 𝑺𝑺 = 𝒅𝒅𝑇𝑇𝒅𝒅 − 𝒉𝒉𝑇𝑇𝑨𝑨𝑇𝑇𝒅𝒅 − 𝒅𝒅𝑇𝑇𝑨𝑨𝒉𝒉 + 𝒉𝒉𝑇𝑇𝑨𝑨𝑇𝑇𝑨𝑨𝑇𝑇𝒉𝒉 (A.3.6)

74

Using matrix properties of (𝐴𝐴𝐵𝐵)𝑇𝑇 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇 the equation can be reduced to:

 𝑺𝑺 = 𝒅𝒅𝑇𝑇𝒅𝒅 − 2𝒅𝒅𝑇𝑇𝑨𝑨𝒉𝒉 + 𝑨𝑨𝑇𝑇𝑨𝑨𝒉𝒉2 (A.3.7)

The minimum of a function can be solved for by setting the derivative of said function to

zero:

 δ𝑺𝑺
δ𝒉𝒉

= 0 = −2𝑨𝑨𝑇𝑇𝒅𝒅 + 2𝑨𝑨𝑇𝑇𝑨𝑨𝒉𝒉 (A.3.8)

Solving Eq. (A.3.8) for h or the optimal filter gain results in the following:

 𝒉𝒉∗ = (𝑨𝑨𝑇𝑇𝑨𝑨)−1𝑨𝑨𝑇𝑇𝒅𝒅 (A.3.9)

Solving for the filter in Eq. (A.3.9) can also be solved using the variance of the input data

with respect to the covariance of the input and output data. This is accomplished in Eq. (A.3.10).

 β� = 𝐶𝐶𝑢𝑢𝑣𝑣𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒(𝜕𝜕𝑖𝑖,d𝑖𝑖)
𝑉𝑉𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑛𝑛𝑐𝑐𝑒𝑒(𝜕𝜕𝑖𝑖)

 (A.3.10)

Expanding Eq. (A.3.10) shows the math behind the covariance and variance functions.

 β� = ∑ (𝜕𝜕𝑖𝑖−�̅�𝜕)(𝑑𝑑𝑖𝑖−𝑑𝑑�)𝑁𝑁
𝑖𝑖=1
∑ (𝜕𝜕𝑖𝑖−�̅�𝜕)2𝑁𝑁
𝑖𝑖=1

 (A.3.11)

A.4 Recursive Least Squares Estimation
The recursive algorithm obtains the optimal filter h* by beginning with measurements of the

output, 𝒛𝒛𝑘𝑘, where k represents the current iteration and the given inputs, 𝑯𝑯𝑼𝑼. In the algorithm, the

current error statistics are held by the error covariance matrix, 𝑹𝑹𝑼𝑼, state residuals are held by a

covariance matrix, 𝑷𝑷𝑼𝑼, and the estimate filter represented by 𝐱𝐱�k. The model equation is

represented in Eq. (A.4.1), where n is the error value for the specified iteration.

The optimal future filter 𝒉𝒉𝑛𝑛+1∗ is given by Eq. (A.4.1).

 𝒉𝒉𝑛𝑛+1∗ = (𝑨𝑨𝑛𝑛+1𝑇𝑇 𝑨𝑨𝑛𝑛+1)−1𝑨𝑨𝑛𝑛+1𝑇𝑇 𝒅𝒅𝑛𝑛+1 (A.4.1)

75

Combining all the inputs into one row vector:

 𝒖𝒖𝑖𝑖 = �𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖−1 … 𝑥𝑥𝑖𝑖−(𝑚𝑚−1)� (A.4.2)

Eq. (A.4.1) can be rewritten using Eq. (A.4.2) and the following terms:

 𝛟𝛟𝑛𝑛 = ∑ 𝒖𝒖𝑛𝑛
𝑖𝑖=0 𝑖𝑖 𝒖𝒖𝑖𝑖

𝑇𝑇 (A.4.3)

 𝐳𝐳𝑛𝑛 = ∑ 𝒖𝒖𝑛𝑛
𝑖𝑖=0 𝑖𝑖 𝒅𝒅[𝑆𝑆] (A.4.4)

 𝒉𝒉∗ = 𝛟𝛟𝑛𝑛
−1𝒛𝒛𝑛𝑛 (A.4.5)

𝛟𝛟𝑛𝑛 can be expanded to form the following expression:

 𝛟𝛟𝑛𝑛 = ∑ 𝒖𝒖𝑛𝑛−1
𝑖𝑖=0 𝑖𝑖 𝒖𝒖𝑖𝑖

𝑇𝑇 + 𝒖𝒖𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇 (A.4.6)

Rewriting by substituting in 𝛟𝛟𝑛𝑛−1 and adding an Identity matrix of size m:

 𝛟𝛟𝑛𝑛 = 𝛟𝛟𝑛𝑛−1 + 𝒖𝒖𝑛𝑛𝑰𝑰𝒖𝒖𝑛𝑛𝑇𝑇 (A.4.7)

The Matrix Inversion Lemma says that Eq. (A.4.9) is the inverse of Eq. (A.4.8).

 𝑨𝑨 = 𝑩𝑩−1 + 𝑪𝑪𝑫𝑫−1𝑪𝑪𝑇𝑇 (A.4.8)

 𝑨𝑨−1 = 𝑩𝑩 − 𝑩𝑩𝑪𝑪(𝑫𝑫 + 𝑪𝑪𝑇𝑇𝑩𝑩𝑪𝑪)−1𝑪𝑪𝑇𝑇𝑩𝑩 (A.4.9)

Expand Eq. (A.4.7) using the Matrix Inversion Lemma:

 𝛟𝛟𝑛𝑛
−1 = 𝛟𝛟𝑛𝑛−1

−1 − 𝛟𝛟𝑛𝑛−1−1 𝒖𝒖𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝛟𝛟𝑛𝑛−1−1

𝑰𝑰+𝒖𝒖𝑛𝑛𝑇𝑇𝛟𝛟𝑛𝑛−1−1 𝒖𝒖𝑛𝑛
 (A.4.10)

Saying 𝑷𝑷𝑛𝑛 = 𝛟𝛟𝑛𝑛
−1 and 𝑷𝑷𝑛𝑛−1 = 𝛟𝛟𝑛𝑛−1

−1 and simplifying Eq. (A.4.10) with a gain vector:

 𝑷𝑷𝑛𝑛 = 𝑷𝑷𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1 (A.4.11)

Writing out Kn results in:

76

 𝑲𝑲𝑛𝑛 = 𝑷𝑷𝑛𝑛−1𝒖𝒖𝑛𝑛
𝑰𝑰+𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1𝒖𝒖𝑛𝑛

 (A.4.12a)

 𝑲𝑲𝑛𝑛 = (𝑷𝑷𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1)𝒖𝒖𝑛𝑛 = 𝑷𝑷𝑛𝑛𝒖𝒖𝑛𝑛 (A.4.12b)

Similarly, the operation performed for Eq. (A.4.6) and Eq. (A.4.7), zn-1 can be separated out

from zn resulting in a new equation:

 𝒛𝒛𝑛𝑛 = 𝒛𝒛𝑛𝑛−1 + 𝒖𝒖𝑛𝑛𝒅𝒅[𝑎𝑎] (A.4.13)

Plugging Eq. (A.4.13) into Eq. (A.4.5):

 𝒉𝒉𝑛𝑛∗ = 𝑷𝑷𝑛𝑛𝒛𝒛𝑛𝑛

 𝒉𝒉𝑛𝑛∗ = 𝑷𝑷𝑛𝑛(𝒛𝒛𝑛𝑛−1 + 𝒖𝒖𝑛𝑛𝒅𝒅[𝑎𝑎]) (A.4.14)

Expand the first term in Eq. (A.4.14) using Eq. (A.4.11) in order to add the previous estimate

to the current estimate error as seen in Eq. (A.4.17).

 𝒉𝒉𝑛𝑛∗ = (𝑷𝑷𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1)𝒛𝒛𝑛𝑛−1 + 𝑷𝑷𝑛𝑛𝒖𝒖𝑛𝑛𝒅𝒅[𝑎𝑎] (A.4.15)

Distribute the zn-1 and expand:

 𝒉𝒉𝑛𝑛∗ = 𝑷𝑷𝑛𝑛−1𝒛𝒛𝑛𝑛−1 − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝑷𝑷𝑛𝑛−1𝒛𝒛𝑛𝑛−1 + 𝑷𝑷𝑛𝑛𝒖𝒖𝑛𝑛𝒅𝒅[𝑎𝑎] (A.4.16)

Use Eq. (A.4.5) and Eq. (A.4.12b) to simplify the equation:

 𝒉𝒉𝑛𝑛∗ = 𝒉𝒉𝑛𝑛−1∗ − 𝑲𝑲𝑛𝑛𝒖𝒖𝑛𝑛𝑇𝑇𝒉𝒉𝑛𝑛−1∗ + 𝑲𝑲𝑛𝑛𝒅𝒅[𝑎𝑎] (A.4.17)

Factor out Kn from the right-hand section of the equation:

 𝒉𝒉𝑛𝑛∗ = 𝒉𝒉𝑛𝑛−1∗ − 𝑲𝑲𝑛𝑛(𝒖𝒖𝑛𝑛𝑇𝑇𝒉𝒉𝑛𝑛−1∗ − 𝒅𝒅[𝑎𝑎]) (A.4.18)

The section inside the parenthesis is the error of the algorithm. Use a new term, ζ, to describe

the error and simplify Eq. (A.4.18).

77

 𝛇𝛇 = 𝒅𝒅[𝑎𝑎] − 𝒖𝒖𝑛𝑛𝑇𝑇𝒉𝒉𝑛𝑛−1∗ (A.4.19)

 𝒉𝒉𝑛𝑛∗ = 𝒉𝒉𝑛𝑛−1∗ + 𝑲𝑲𝑛𝑛𝛇𝛇 (A.4.20)

78

B. MATLAB Code Files
B.1 Recursive Least Squares for Cassini

%% EOM Calculations %%
% ================== %
clc, close all, clear all

% Set initial angular velocity vector
w0 = [0
 0
 0];

% Declare Cassini Inertia Matrix
J = [8810.8 -136.8 115.3;
 -136.8 8157.3 156.4;
 115.3 156.4 4721.8];

dt = 0.01; % Set timestep for simulation
t1 = [1:dt:150]; % Time range for torque input
t2 = [150+dt:dt:200]; % Time range for zero torque

tau1 = [10 % 10Nm torque about x
 2
 4];
tau2 = [0 % Zero torque input
 0
 0];

% set max timestep to the same as Simulink
options = odeset('MaxStep',1/50);

% ODE45 is used to simulate the differential equation
% represented by rotationalEOM.m

79

[T1,om1] = ode45(@rotationalEOM,t1,w0,options,tau1,J)
[T2,om2] = ode45(@rotationalEOM,t2,om1(size(om1,1),:),options,tau2,J)

% Combine the data from the datasets with different torques to create one
% continuous dataset
omega = [om1
 om2];
t = [T1
 T2];

% Calculate rotational inertia and the realized input moment from the omega
% output from ODE45.
Jinv = inv(J);
for i = 1:size(omega,1)
 alpha(i,:) = Jinv*(tau1-cross(omega(i,:),omega(i,:)*J)');
 moment(i,:) = alpha(i,:)*J;
end

%% Calculate J using RLS based on Jguess %%
% ======================================= %

lamda = 0.95;
Linv = 1/lamda;

Jguess = [6000 0 0;
 0 4000 0;
 0 0 2000];

Px = eye(3);
hx = Jguess(:,1);
for i = 1:size(omega,1)

 [hx,errx,Px] = RLSStep(alpha(i,:)',moment(i,1),Px,hx,Linv);

80

 erx(:,i) = abs(errx);
end

Py = eye(3);
hy = Jguess(:,2);
for i = 1:size(omega,1)

 [hy,erry,Py] = RLSStep(alpha(i,:)',moment(i,2),Py,hy,Linv);
 ery(:,i) = abs(erry);
end

Pz = eye(3);
hz = Jguess(:,3);
for i = 1:size(omega,1)

 [hz,errz,Pz] = RLSStep(alpha(i,:)',moment(i,3),Pz,hz,Linv);
 er(:,i) = abs(err);
end

J_RLS = [hx hy hz]

B.2 Rotational Equations of Motion
function dydt = rotationalEOM(t,omega,torque,inertia)

% Function to solve for the rotational motion of an object

% t - time array [s]
% omega - angular velocity [rad/s]
% torque - input torque to the system [Nm]
% inertia - [3x3] inertia matrix of the system [kg*m^2]

81

dydt = inv(inertia)*(torque-cross(omega,inertia*omega));

B.3 Recursive Least Squares Step
function [h,err,P] = RLSStep(u,d,P,h,Linv)

% Function for 1 step of an RLS algorithm
%
% ==== input ====
% u - the input matrix nx1
% b - the output matrix nx1
% P - the inverse matrix
% h - the filter matrix
% L - lamda or forgetting factor 0<lamda<1
%
% ==== output ====
% K - gain vector
% err - error value

K = (P*u.*Linv)/(eye(size(d,2))+Linv.*u'*P*u);
err = d-u'*h;
h = h+K*err;
P = Linv.*(P-K*u'*P);
end

B.4 Kalman Filter
function [xn,P,K] = KalmanFilter(Alin,Blin,x,Yk,C,P,Qk,Rk)

% Continuous Time Kalman Filter Function
%
% Alin - Linearized A Matrix

82

% Blin - Linearized B Matrix
% x - incomming states
% C - measurement matrix
% P - previous process matrix
% Qk & Rk - noise covariances

Pkp = Alin*P*Alin'+Qk; % calculate the prediction matrix
Pkn = Pkp*C';

K = Pkp*C' ./ (C*Pkp*C' + Rk); % calculate Kalman Gain
Yk = C*x; % current observation
xn = x + K*(Yk - C*x); % estimate state matrix
P = (eye(size(Alin,1)) - K*C)*Pkp; % update process covariance matrix

B.5 Extended Kalman Filter
function [X,P,K] = ExtendedKalmanFilter(Apd,Bpd,X_var,x,Yk,C,P,Qk,Rk)

% Continuous Time Kalman Filter Function
%
[Alin,Blin] = linPoint(Apd,Bpd,X_var,x');

Yn = Alin*C + sqrt(Rk);

P = Alin*P*Alin'+Qk;
Pn = P*C'; % calculate the prediction matrix
Y = xn*C; % estimated output
K = Pn*inv(H*Pn+Rk); % Kalman Gain

x = xn+K*(Yk-Y); % state update
P = P-K*Pn'; % covariance update

83

B.6 Partial Differentiation
function [Apd,Bpd] = partDiff(fcn,store,point)

% Create the A and B matrices for a system of governing equations

% fcn is all of the equations of motion in a [n x 1] matrix
% store is all of the symbolic variables in the EoM in a [m x 1] matrix

a = size(fcn,1); % pull the number of functions
b = size(store,2); % pull the number of variables

% b should usually be larger than a by the numver of inputs

i=1;j=1;
for i = 1:b

 der(:,i) = diff(fcn(:,1),store(i)); % partial diff of all fcn with respect to the store of

symbols

 if i <= a % once we move past 'a' number of partial diffs we are in the inputs
 Apd(:,i) = der(:,i); % storing current differentiation for A

 else
 Bpd(:,j) = der(:,i); % store the rest of the determination as B
 j=j+1;
 end

 i=i+1;
end

84

B.7 Linearization of Differential
function [ALin,BLin] = linPoint(a,b,X,point)

% Linearize a system of equations already in their A & B matrices about a
% specific point.
%
% 'a' - symbolic A matrix created using partial differentials
%
% 'b' - symbolic B matrix created using partial differentials
%
% 'X' - storage location of the symbolic variables of the state matrix.
% Ex: X = [x v theta omega]
%
% 'point' - The values of the state variables that are to be linearized
% about. These variables must be in the same order as the state variables
% they are associated with.
%

ALin = double(subs(a,X,point)); % substitute points to be linearized about
BLin = double(subs(b,X,point)); % substitute points to be linearized about

B.8 Kalman Filter Code from Brunton & Kutz [4]
%% Matlab Function lqe Kalman Gain Determination
%
% This filter will be based around the linear pendulum down
% position.
%

clc, close all, clear all

% ========== Setup ==========

85

M = 5;
m = 1;
L = 2;
g = -9.81;
d = 1;

P = -1; % Pendulum up = 1

A = [0 1 0 0;
 0 -d/M -m*g/M 0;
 0 0 0 1;
 0 -P*d/(M*L) -P*(m+M)*g/(M*L) 0];

B = [0 1/M 0 P/(M*L)]';

C = [1 0 0 0];

D = zeros(1,1);

% ========== Defining Kalman Filter Parameters ==========

% In the typical inverted pendulum model we can expect that % the system will not experience

any major disturbances,
% such as physically being bumped
% into, so the 'vd' variable will be kept low when compared % to the 'vn' variable.

vd = 0.1*eye(4); % System "trustworthyness"
vn = 1; % Sensor "trustworthyness"

BK = [B vd 0*B]; % adding distrubance to the inputs

sysXMeasured = ss(A,BK,C,[0 0 0 0 0 vn]); % State Space

86

sysAllMeasured = ss(A,BK,eye(4),zeros(size(BK,1),size(BK,2))); % State Space for TRUE

system

[K,P,E] = lqe(A,vd,C,vd,vn); % Kalman Filter Gain determination

sysKalmanFilter = ss(A-K*C,[B K],eye(4),0*[B K]); % Kalman filter State Space

% ========== Estimate System in Down Position ==========

dt = 0.01;
t = 0:dt:60;

disturbance = randn(4,size(t,2));
noise = randn(size(t)); % this could be simplified to randn(size(t)) but I would prefer

to have easy access to the strength of the noise in the first position

input = 0*t;
input(100:120) = 100;
input(1500:1520) = -100;

input_total = [input; vd*vd*disturbance; noise];

[y,t] = lsim(sysXMeasured,input_total,t);

87

B.9 Monte Carlo Example
%% Monte Carlo Simulation

clc, close all, clear all

M = 5;
m = 1;
L = 2;
g = -9.81;
d = 1;

P = -1; % Pendulum up = 1

A = [0 1 0 0;
 0 -d/M -m*g/M 0;
 0 0 0 1;
 0 -P*d/(M*L) -P*(m+M)*g/(M*L) 0];

B = [0 1/M 0 P/(M*L)]';

C = [1 0 0 0];

D = zeros(1,1);

vd = 0*eye(4); % System "trustworthyness"
vd2 = vd*vd;
vn = 1; % Sensor "trustworthyness"

BK = [B vd 0*B]; % adding distrubance to the inputs

IC = [0;0;0;0];

dt = 0.01;
time = 0:dt:60;

imp1 = 10;
imp2 = 8;

R = 1;
%%
figure
hold on
tic
for i = 1:100
 vn(i) = rand*5;
 sim('SIM_MC_003',time);

88

 errorx(:,i) = (ans.TrueXhat(:,1)-ans.NoisyXhat(:,1));
 errorv(:,i) = (ans.TrueXhat(:,2)-ans.NoisyXhat(:,2));
 errortheta(:,i) = (ans.TrueXhat(:,3)-ans.NoisyXhat(:,3));
 erroromega(:,i) = (ans.TrueXhat(:,4)-ans.NoisyXhat(:,4));

 NoisyStates(:,:,i) = ans.NoisyXhat;

 i
end
toc
TrueStates = ans.TrueXhat;

%% Error Values

for i = 1:100
 Merrorx(i) = mean(errorx(:,i));
 Merrorv(i) = mean(errorv(:,i));
 Merrortheta(i) = mean(errortheta(:,i));
 Merroromega(i) = mean(erroromega(:,i));

 stdx(i) = std(errorx(:,i))/sqrt(length(errorx(:,i)));
 stdv(i) = std(errorv(:,i))/sqrt(length(errorv(:,i)));
 stdtheta(i) = std(errortheta(:,i))/sqrt(length(errortheta(:,i)));
 stdomega(i) = std(erroromega(:,i))/sqrt(length(erroromega(:,i)));
end

Data = [vn' Merrorx' stdx' Merrorv' stdv' Merrortheta' stdtheta' Merroromega' stdomega'];
varnames = {'Noise','Mean X','std X','Mean V','std V','Mean \theta','std \theta','Mean \omega','std
\omega'};
Error =
table(Data(:,1),Data(:,2),Data(:,3),Data(:,4),Data(:,5),Data(:,6),Data(:,7),Data(:,8),Data(:,9),'Vari
ableNames',varnames)

%% Plots
figure
hold on
for i=1:100
 plot(time,NoisyStates(:,1,i),'b')
end
plot(time,TrueStates(:,1),'r','linewidth',2)
hold off
title('Sensor Noise Effects on Position')
ylabel('Position of Cart [m]')
xlabel('Time [s]')
%%
figure

89

hold on
for i=1:100
 plot(time,NoisyStates(:,3,i),'b')
end
plot(time,TrueStates(:,3),'r','linewidth',2)
hold off
title('Estimated Angle(s) vs True Angle')
ylabel('Angle of Pendulum [rad]')
xlabel('Time [s]')

B.10 Radius to CoM_b1
function rb1 = fcn(ra1,ra2,rcm_change)
dra = norm(ra1-ra2);
drb = -rcm_change+dra;
rb1 = ra1*drb/dra;

B.11 Unknown Mass Calculation

function mb_calc = fcn(ma,ra,rb)

mb_calc = ma*norm(ra)/norm(rb);

B.12 Unknown Inertia Calculation
function Jb_calc = fcn(Ja,Jtotal,ma,ra_calc,mb_calc,rb_Calc)

Ra = ra_calc*ra_calc';
Rb = rb_Calc*rb_Calc';

Jb_calc = Jtotal-Ja-ma*Ra-mb_calc*Rb;

B.13 Parameter Isolation MATLAB
%%
clc, close all, clear all

%% Constants and Calculations of Values to be used
J_cassini = [8810.8 -136.8 115.3;
 -136.8 8157.3 156.4;
 115.3 156.4 4721.8]; % Cassini Inertia Matrix

Ja = J_cassini;

J_rwa_spin = 0.161; % cassini reaction wheel inertia 10.2514/6.2005-6271
ma = 2100;

90

mrwa = 5.152; % assuming the radius of the rwa's are 0.25m
rrwa = 0.25; % arbitrarily assigned
lrwa = 0.1; % arbitrarily assigned

J_rwa_offspin = 0.25*mrwa*rrwa^2+1/12*mrwa*lrwa^2; % calculate spin about y and z axis

J_rwa = diag([J_rwa_spin;J_rwa_offspin;J_rwa_offspin]);

Jb = [2000 0 0;
 0 2000 0;
 0 0 2000]; % object inertia matrix

Jxguess = [6000 0 0];
Jyguess = [0 4000 0];
Jzguess = [0 0 2000];

mb = 500;

torque_input = 10; % Torque applied
timeUp = 0;
timeDown = 60;

% ==== distance from CoM_A to CoM_B ====
rcm1 = [8;
 4;
 sqrt(20)];
rcm_change = 4;
rcm2 = (norm(rcm1)-rcm_change)*rcm1/norm(rcm1);

ra1 = -mb.*rcm1./(ma+mb);
rb1 = ra1+rcm1;

ra2 = -mb.*rcm2./(ma+mb);
rb2 = ra2+rcm2;

r_BNO = [0.5
 0.3
 0.25];

r_tBNO = ra1+r_BNO;
r_tBNO2 = ra2+r_BNO;

% ==== Total Inertia Matrix ====
J_calc = Ja+ma.*ra1*ra1'+Jb+mb.*rb1*rb1';

91

J_calc2 = Ja+ma.*ra2*ra2'+Jb+mb.*rb2*rb2';

%% Simulation and Initialization
dt = 0.1;
t = [0:dt:200];
tstep = 10;

% =================
% Covariance
% =================
P = eye(3);
paw = 1e4;
Px = paw*eye(3);
Py = paw*eye(3);
Pz = paw*eye(3);

% =================
% Noise for Sim
% =================

aN = 0; % alpha order of mag
tN = 0; % torque order of mag
omN = 0; % omega order of mag
% open_system('SIM_MST_003') Run if opening Simulink is desired
sim('SIM_MST_003_Images',t)

%% Outputs

t = ans.tout;
ac = ans.a_cent;
ac2 = ans.a_cent2;
alpha = ans.alpha;
alpha_Noise = ans.alpha_Noise;
omega = ans.omega;
omega_Noise = ans.omega_Noise;
eulang = ans.eulang;
r_aCalc = ans.r_aCalc;
r_aCalc2 = ans.r_aCalc2;
r_tBNO_calc = ans.r_tBNO_calc;
r_tBNO_calc2 = ans.r_tBNO_calc2;

r_bCalc1 = ans.r_bCalc1;
mb_calc = ans.mb_calc;

moments = ans.Moments;

92

momentsNC = ans.MomentsNoCorrection;
Torque_Noise = ans.Torque_Noise;

% ===============
% X Variables
% ===============

Hx = ans.Hx;
Errorx = ans.Errorx;
Covx = ans.Covx;

% ===============
% Y Variables
% ===============

Hy = ans.Hy;
Errory = ans.Errory;
Covy = ans.Covy;

% ===============
% Z Variables
% ===============

Hz = ans.Hz;
Errorz = ans.Errorz;
Covz = ans.Covz;

B.14 Noise Generation
function [omega_Noise,Torque_Noise,alpha_Noise,acent_Noise] =
fcn(omega,Torque,alpha,acent,omN,tN,aN,acN)

omega_Noise = omega+randn(3,1)/3.*omN;
Torque_Noise = Torque+randn(3,1)/3.*tN;
alpha_Noise = alpha+randn(3,1)/3.*aN;
acent_Noise = acent+randn(3,1)/3.*acN;

B.15 Loop Code for Noise Iterations
%% Initialize
dt = 0.1;

93

t = [0:dt:180];
tstep = 10;

% =================
% Covariance
% =================
P = eye(3);
paw = 1e4;
Px = paw*eye(3);
Py = paw*eye(3);
Pz = paw*eye(3);

iterations = 10;

%% Sim
% =================
% Noise for Sim
% =================
tic
for i = 1:iterations

 aN = 0; % alpha order of magnitude
 tN = 0; % torque order of magnitude
 omN = 10^(-(3.8+rand*2)); % omega noise order of magnitude
 acN = 10^(-(3.0+rand*1.5)); % centripetal acceleration noise OoM

 sim('SIM_MST_103',t);
 Jest=ans.estimated_I;
 Jtotal_calc(i,:,:) = Jest(size(Jest,1)-2:size(Jest,1),:);
 mb_calc(i,:) = ans.mb_calc;
 r_bCalc1(i,:,:) = ans.r_bCalc1;
 JTerr_avg(i) = abs(ans.Jerr_avg(size(t,2)));
 Jb_calc(i,:,:) = ans.Jb_calc(:,:,size(t,2));
 Jberr_avg(i,:) = [acN,omN,ans.JBerr_avg(size(t,2))];

 mb_error(i,:) = [acN,omN,ans.mb_error(size(t,2))];
 raErr_avg(i,:) = [acN,omN,ans.raErr_avg(size(t,2))];
 JTotal_Avg(i,:)=[acN,omN,ans.Jerr_avg(size(t,2))];

 i
end
toc

94

B.16 Parameter Identification Simulink File

	ON-ORBIT MASS PROPERTY IDENTIFICATION FOR A COUPLED SPACECRAFT SYSTEM
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	NOMENCLATURE
	CHAPTER 1: INTRODUCTION
	1.1 Motivation
	1.2 Literature Review
	1.2.1 Optimization
	1.2.2 Disturbance and Noise Filtering

	1.3 Report Outline

	CHAPTER 2: SPACECRAFT DYNAMICS
	2.1 Frame of Reference
	2.2 Euler Angles
	2.3 Equations of Motion
	2.4 State Space Model

	CHAPTER 3: PARAMETER ISOLATION
	3.1 Overview
	3.2 Assumptions
	3.3 Inertia Equation
	3.4 Solving for Unknowns
	3.5 Results

	CHAPTER 4: ADAPTIVE ESTIMATION
	4.1 Overview
	4.2 Least-Squares Estimation
	4.3 Recursive Least Squares
	4.4 MATLAB Implementation
	4.4.1 Test Data Creation
	4.4.2 Recursive Least Squares Estimation

	4.5 Simulink Implementation
	4.6 Results

	CHAPTER 5: DESIGN VALIDATION
	5.1 Overview
	5.2 Implementation Example
	5.3 Parameter Identification with Sensor Noise
	5.4 Noise Level Analysis
	5.5 Recursive Least Squares Filter
	5.5.1 Setup
	5.5.2 Results

	CHAPTER 6: CONCLUSIONS AND FUTURE WORK
	6.1 Completed Work
	6.2 Challenges Faced
	6.3 Future Work
	6.3.1 Physical Attributes vs Noise Level Investigation
	6.3.2 State Estimation

	References
	Appendices
	A. Derivations
	A.1 Kalman Filter
	A.2 Extended Kalman Filter
	A.3 Least-Squares Estimation
	A.4 Recursive Least Squares Estimation

	B. MATLAB Code Files
	B.1 Recursive Least Squares for Cassini
	B.2 Rotational Equations of Motion
	B.3 Recursive Least Squares Step
	B.4 Kalman Filter
	B.5 Extended Kalman Filter
	B.6 Partial Differentiation
	B.7 Linearization of Differential
	B.8 Kalman Filter Code from Brunton & Kutz [4]
	B.9 Monte Carlo Example
	B.10 Radius to CoM_b1
	B.11 Unknown Mass Calculation
	B.12 Unknown Inertia Calculation
	B.13 Parameter Isolation MATLAB
	B.14 Noise Generation
	B.15 Loop Code for Noise Iterations
	B.16 Parameter Identification Simulink File

