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ABSTRACT 

 

Static Structural Analysis of OceanGate’s Titan Submersible:  

Analytical and Numerical Comparison with Ansys 

 

Ignacio D. Ramírez Romero

 

 The following work analyzes the static structural response of a deep-sea ocean submersible. 

More specifically, a simplified geometry model of OceanGate’s Titan Submersible was developed 

using available online resources and later analyzed using Ansys’s Static Structural. The geometry 

model is represented by a carbon fiber reinforced epoxy (CFRE) cylindrical section flanked by 

two titanium hemispheres, with a polymethyl methacrylate (PMMA) observation window 

embedded in the bow. The cylindrical section and the hemispheres are connected through two 

titanium O-ring interfaces assumed to be perfectly bonded. Total nodal displacements and 

structural failure were investigated developing a Finite Element model in Ansys Static Structural. 

Total displacements predicted by Ansys for the CFRE cylindrical section were then compared to 

those predicted by an analytical model. A brief literature review of failure of composite materials 

and an overview of the Finite Element Method (FEM) is discussed. Results suggest that failure 

occurs at the edges and middle of the cylindrical section with the current thickness and laminate 

selection. A low safety factor was observed in the O-Ring section connected to the pressure hull. 

Additional study cases and potential improvements are shared in the last section of this report.  

 

  



iv 

Acknowledgements 

 

 Although the journey of professional learning is never-ending, I would like to express my 

gratitude to the entire SJSU Aerospace Engineering Department. Without the dedication and 

tireless efforts of our professors to teach and equip us with the tools to succeed both academically 

and professionally, the completion of this journey would not have been possible. In particular, I 

would like to thank Dr. Chierichetti for her infinite patience, encouragement, and support in the 

completion of this project. Challenges that have cost me hours of work have been solved in minutes 

by her expertise, skillfulness, and insight. Not only did Dr. Chierichetti approve of pursuing the 

project in which I was actively interested, but she also helped me prepare for the job interview that 

enabled me to secure a position as a mechanical engineer after the completion of my bachelor’s 

degree. My current project investigator, Rufus Yazzie, and program manager, Stephen Shock, have 

also provided with encouragement, a wealth of technical resources, and an infinite number of jokes 

about California, for which I am proud and thankful. 

 Lastly, I thank my family and friends, who have both encouraged me and endured my 

absence from family and social events to support the pursuit of my career goals. Specially, I 

express my eternal gratitude toward my grandmother and grandaunt, Carolina Téllez Pérez and 

María Matilde Téllez Pérez. These two stellar ladies have shared their time, energy, and resources 

ensuring I had a loving home and the support to challenge myself daily and care for my friends, 

community and country. They have and continue to do so since I gained consciousness until now, 

at her 86 and 77 years of life. 

   



v 

Table Of Contents 
 

List of Figures ............................................................................................................................... vii 

List of Tables .................................................................................................................................. x 

Symbols, Subscripts, Superscripts and Acronyms ......................................................................... xi 

1. Introduction ................................................................................................................................. 1 

1.1  Introduction ...................................................................................................................... 1 

1.2  Background ...................................................................................................................... 1 

1.3 Previous Studies on Structural Failure Modeling ............................................................ 3 

1.3.1  Classical Failure Criteria of Composite Materials .................................................... 4 

1.3.2 Modern Failure Fracture Mechanics of Composite Laminates................................. 5 

1.3.3  Structural Failure of Composite Pressure Hulls for Deep-Sea Applications .......... 10 

1.3.4 Structural Failure of Titanium Alloys for Deep Sea Applications ......................... 11 

1.3.5 Structural Studies of Acrylic Windows for Deep Sea Applications ....................... 12 

1.4 Project Proposal.............................................................................................................. 14 

1.5 Methodology .................................................................................................................. 14 

1.6 Conclusions .................................................................................................................... 15 

2. Finite Element Method Overview ............................................................................................. 16 

2.1  Finite Element Method Overview .................................................................................. 16 

2.2 Fundamental Elements of Finite Element Method ......................................................... 17 

2.2.1 Fundamental Principles of FEA .............................................................................. 17 

2.2.2 Basic Elements ........................................................................................................ 27 

2.2.3 Constraints and Boundary Conditions .................................................................... 35 

2.2.4 Computational Approach ........................................................................................ 36 

2.3 Composite Material Modeling in Ansys ........................................................................ 37 

2.4 Nonlinear Structural Analysis in Ansys ......................................................................... 39 

3. Geometry Model of the Titan Submersible .............................................................................. 43 

3.1  General Methodology ..................................................................................................... 43 

3.2 Main Components .......................................................................................................... 44 

3.2.1 Cylindrical Pressure Hull ........................................................................................ 46 

3.2.2 Interface O-Rings .................................................................................................... 49 

3.2.3 Stern, Spherical Section .......................................................................................... 55 

3.2.4 Bow, Spherical Section ........................................................................................... 60 

3.2.5 Observation Window .............................................................................................. 62 

3.2.6 Final Assembly ....................................................................................................... 66 



vi 

3.3 Assumptions and Limitations ......................................................................................... 68 

4. Analytical Prediction of Displacement and Buckling Load of the Cylindrical Laminated 

Composite Section of Titan Submersible ..................................................................................... 71 

4.1 Mathematical Model: Introduction................................................................................. 71 

4.1.1 Shell Theory for Cylindrical Laminated Composites: Critical Assumptions ......... 72 

4.1.2 Membrane Theory: Prediction of Displacements ................................................... 76 

4.1.3 Membrane Theory: Prediction of Critical Buckling Load ...................................... 80 

4.2 Laminate Model, Material Properties and Loading Conditions ..................................... 82 

4.3 Algorithm Workflow and Implementation in MATLAB ® ........................................... 84 

4.4 Results and Discussion ................................................................................................... 86 

4.4.1 Critical Buckling Load ............................................................................................ 86 

4.4.2 Displacements: Axial, Radial, and Circumferential ............................................... 86 

5. Execution of FEA in Ansys ...................................................................................................... 88 

5.1  General Overview .......................................................................................................... 88 

5.2 Geometry Model ............................................................................................................ 88 

5.2.1 Material Assignment and Properties ....................................................................... 88 

5.2.2 Laminate Modeling Technique ............................................................................... 91 

5.3 Geometry Model Discretization ..................................................................................... 94 

5.4  Boundary and Loading Conditions .............................................................................. 100 

6.0  Results and Future Work ................................................................................................. 103 

6.1  Results .......................................................................................................................... 103 

6.2 Convergence Study ...................................................................................................... 110 

6.3 Failure of Isotropic Materials ....................................................................................... 111 

6.4 Comparison to Analytical Model ................................................................................. 113 

6.5 Concluding Remarks .................................................................................................... 115 

6.6 Future Work ................................................................................................................. 115 

References ................................................................................................................................... 116 

 

  



vii 

List of Figures 

Figure 1.1 - Titan Submersible underwater and its schematic [6]. ................................................. 2 
Figure 1.2 - Observed dominant damage modes in cross-ply composite laminates under fatigue 

loading [19]. .................................................................................................................................... 6 
Figure 1.3 - Damage evolution in composites under fatigue loading [19]. .................................... 7 
Figure 1.4 - Basic structural parameters of frustrum observation window from [27]. ................. 13 
Figure 1.5 - Workflow Diagram of the Proposed Investigation. .................................................. 14 
Figure 2.1 - Modeling and FE representation of a structure [32] ................................................. 18 
Figure 2.2 - (a) Geometrical representation of the structure, (b) Discretization into 5 finite 

elements, and (c) Corresponding nodal locations ......................................................................... 20 
Figure 2.3 - (a) Single Bar Element and (b) Free Body Diagram. ................................................ 21 
Figure 2.4 – Analytical displacements using Euler-Bernoulli beam theory versus FEM with 5 

elements ........................................................................................................................................ 24 
....................................................................................................................................................... 25 
Figure 2.5 - (a) Cantilever beam. (b) One inadmissible configuration (upper dashed line) and two 

admissible configurations (lower dashed lines) [32]. ................................................................... 25 
Figure 2.6 - (a) Reference configuration of a linear spring system. (b) Stretched configuration after 

application of force P [32]. ........................................................................................................... 25 
Figure 2.7 - Representation of the principle of stationary potential energy. ................................ 26 
Figure 2.8 – Common types of 2D and 3D elements in FEA [33]. .............................................. 28 
Figure 2.9 – (a) Linear Triangle Element (CST) and (b) Displacement field representation [32 . 29 
Figure 2.10 – a) Deformation of a beam modeled by CSTs along x-axis, loaded in bending and (b) 

Deformation of lower-left triangular element [32] ....................................................................... 29 
Figure 2.11 – Quadratic Triangle Element (LST) [32]. ................................................................ 30 
Figure 2.12 – Bilinear Quadrilateral Element (Q4) [32]. .............................................................. 31 
Figure 2.13 – Variations in axial stress and shear strain on a cantilever beam modeled by Q4 

elements [32]. ................................................................................................................................ 31 
Figure 2.14 – Quadratic Rectangular Element .............................................................................. 32 
Figure 2.15 – Linear Tetrahedron Element ................................................................................... 33 
Figure 2.16 – Quadratic Tetrahedron Element ............................................................................. 33 
Figure 2.17 – Eight-nodded Trilinear Element ............................................................................. 34 
Figure 2.18 – Twenty-node Solid Element. .................................................................................. 35 
Figure 2.20. – Ansys ACP Feature and model tree [35]. .............................................................. 38 
Figure 2.21 – Ansys fabric and stack up properties GUI [35]. ..................................................... 38 
Figure 2.22 –Representation of conventional and continuum shell models in Ansys [35]. ......... 39 
Figure 2.23 – Nonlinear Displacement Curve [36 ........................................................................ 41 
Figure 2.24 – First iteration of the nonlinear stress analysis solver method [36]. ........................ 41 
Figure 2.25 – Second iteration of the nonlinear stress analysis solver method [36]. ................... 42 
Figure 3.1 – General methodology followed to develop the geometry model of the Titan 

Submersible................................................................................................................................... 43 
Figure 3.2 – Isometric view of the Titan Submersible [7] ............................................................ 45 
Figure 3.3 – Schematic of the Titan Submersible and main structural components [37] ............. 45 
Figure 3.4 – Adaptation of main structural components of the Titan Submersible ...................... 46 
Figure 3.5 – Cylindrical section and additional components of the Titan Submersible ............... 47 



viii 

Figure 3.6 – Cylindrical pressure hull used in first design iteration of the Titan Submersible [37]

....................................................................................................................................................... 47 
Figure 3.7 – Two-dimensional sketch model of the cylindrical pressure hull .............................. 48 
Figure 3.8 – Isometric, top, and front view of the cylindrical pressure hull component in 

SolidWorks ® ............................................................................................................................... 49 
Figure 3.9 – Interface O-Rings and additional components of the Titan Submersible ................. 50 
Figure 3.10 – Most valuable visualizations of the Interface O-Rings [37] ................................... 51 
Figure 3.11 – Qualitative Cross-sectional profile of the O-Ring .................................................. 51 
Figure 3.12 – Digital scaling of the O-Ring dimensions .............................................................. 52 
Figure 3.13 - Two-dimensional sketch model of the Titanium Interface O-Ring ........................ 54 
Figure 3.14 – Isometric, front, and top view of the Titanium O-ring Interface in SolidWorks ® 55 
Figure 3.15 – Stern, Spherical Section and additional components of the Titan Submersible ..... 56 
Figure 3.16 – Bow, Spherical Section (in lieu of the Stern, Spherical Section) [42] ................... 57 
Figure 3.17 - Two-dimensional sketch model of the Stern, Spherical Section ............................. 58 
Figure 3.18 - Isometric, side, and front view of the Stern, Spherical Section in SolidWorks ®. . 59 
Figure 3.19 – Bow, Spherical Section and additional components of the Titan Submersible ...... 60 
Figure 3.20 - Two-dimensional sketch model of the Bow, Spherical Section ............................. 61 
Figure 3.21 - Side, isometric, and front view of the Stern, Spherical Section in SolidWorks ® . 62 
Figure 3.22 – Observation Window and additional components of the Titan Submersible ......... 63 
Figure 3.23 – Uninstalled Observation Window [37] ................................................................... 64 
Figure 3.24 - Two-dimensional sketch model of the Observation Window ................................. 65 
Figure 3.25 - Side, isometric, and front view of the Stern, Spherical Section in SolidWorks ® . 66 
Figure 3.26 – Assembly of the Titan Submersible using its five main components .................... 67 
Figure 3.27 – Isometric, front, and side views of the final assembly of the Titan Submersible ... 68 
Figure 3.28 – Visualization of some components excluded from the simplified geometry model [7]

....................................................................................................................................................... 69 
Figure 3.29 – Instances of component bonding in the operational Titan Submersible [42, 40] ... 69 
Figure 3.30 – Visualization of some components excluded from the simplified geometry model 

[40, 42] .......................................................................................................................................... 70 
Figure 4.1 – Representation of membrane forces in a shell [43] .................................................. 73 
Figure 4.2 – Visualization of the distances of other laminates with respect to the reference plane 

[43] ................................................................................................................................................ 75 
Figure 4.3 – a) Cylinder model and its acceptable applied loads. b) Forces and moments inside the 

wall [43] ........................................................................................................................................ 76 
Figure 4.4 – a) Applied loads on the shell and the membrane forces. b) Membrane forces acting 

on the shell element [43] ............................................................................................................... 80 
Figure 4.5 – Various curvatures of typical shells [43] .................................................................. 81 
Figure 4.6 – Visualization of local buckling pattern ..................................................................... 82 
Figure 4.7 – Cross-sectional view of the cylindrical section ........................................................ 83 
Figure 4.8 – Workflow of MATLAB® script to find the displacements ..................................... 85 
Figure 4.9 – Workflow of MATLAB® script to find the buckling load ...................................... 85 
Figure 4.10 – Calculated critical buckling load and its corresponding four constants ................. 86 
Figure 4.11 – a) Axial, b) Circumferential, and c) Radial displacements .................................... 87 
Figure 5.1 – Problem modeling approach in Ansys Static Structural ........................................... 88 
Figure 5.2 – a) Assignment of ply thickness and b) Creation of laminate with 667 plies ............ 92 
Figure 5.3 – ABD matrix determined by a) Ansys and b) Analytical Approach in MATLAB ® 93 



ix 

Figure 5.4 – Longitudinal and circumferential ply assignment in ACP ....................................... 93 
Figure 5.5 – Coarse mesh: a) Isometric, b) Front, c) Side, and d) Back views ............................ 96 
Figure 5.6 – Medium mesh: a) Isometric, b) Front, c) Side, and d) Back views .......................... 97 
Figure 5.7 - Fine mesh: a) Isometric, b) Front, c) Side, and d) Back views ................................. 98 
Figure 5.8 – Ideal mesh: a) Isometric, b) Front, c) Side, and d) Back views (not used due to Ansys’s 

license limitations ......................................................................................................................... 99 
Figure 5.10 – Implementation of Boundary Conditions: Fixed Supports ................................... 101 
Figure 6.1 – Displacement from lateral views of the xz plane ................................................... 104 
Figure 6.2 – Displacements from the front and back views of the yz plane ............................... 105 
Figure 6.3 – Ansys’s failure composite tool ............................................................................... 105 
Figure 6.4 – Displacement from lateral views of the xz plane ................................................... 106 
Figure 6.5 – Displacements from the front and back views of the yz plane ............................... 107 
Figure 6.6 – Ansys’s failure composite tool ............................................................................... 107 
Figure 6.7 – Displacement from lateral views of the xz plane ................................................... 108 
Figure 6.8 – Displacements from the front and back views of the yz plane ............................... 109 
Figure 6.9 – Ansys’s failure composite tool ............................................................................... 109 
Figure 6.10 - Selected nodal locations for numerical convergence ............................................ 110 
Figure 6.11 – Convergence at selected nodal locations .............................................................. 111 
Figure 6.12 – Failure of Isotropic Materials in Ansys by von-Mises criteria ............................. 112 
Figure 6.14 – Analytical versus FEM solution predicted displacements.................................... 114 
 

  



x 

List of Tables 

Table 1.1 - Dimensions of the Titan submersible according to online resources. .......................... 3 
Table 1.2 - Main prediction methods for composite materials subject to  compressive load [19, 20].

....................................................................................................................................................... 11 
Table 1.3 - Design of experiments matrix. ................................................................................... 15 
Table 2.1 - Characteristics of the conceptual structure ................................................................. 20 
Table 2.2 - Commonly used support conditions for beams and frames [34]. ............................... 36 
Table 2.3 - General methodology to solve a problem by FEA. .................................................... 37 
Table 3.1 - Examples of logical tests performed on the gathered information ............................. 44 
Table 3.2 - Cylindrical pressure hull dimensions and information source ................................... 48 
Table 3.3 - Titanium O-Ring interface dimensions and information source ................................ 53 
Table 3.4 - Stern, spherical section dimensions and information source ...................................... 57 
Table 3.5 - Bow, spherical section dimensions and information source ...................................... 61 
Table 3.6 - Observation window dimensions and information source ......................................... 64 
Table 3.7 - Summarized assumptions and limitations with the proposed geometry model ......... 70 
Table 4.1 - Comparison of analytical methods for composite structures [43] .............................. 72 
Table 4.2 - Parameters required for equations 4.31 - 4.36b .......................................................... 78 
Table 4.3 - Parameters in equation 4.45 ....................................................................................... 79 
Table 4.4 - Parameters in equation 4.46 ....................................................................................... 79 
Table 4.5 - Parameters in equation 4.50 ....................................................................................... 81 
Table 4.6 - Mechanical properties of matrix constituents [43] ..................................................... 83 
Table 4.7 - Implemented loading conditions ................................................................................ 84 
Table 4.8 - Positive, arbitrary constants used in the calculation of the buckling load .................. 86 
Table 5.1 - Material assignment of the submersible’s components .............................................. 89 
Table 5.2 - Material properties of titanium ................................................................................... 89 
Table 5.3 - Material properties of PMMA .................................................................................... 90 
Table 5.4 - Material properties of CFRE laminate ....................................................................... 90 
Table 5.5 - Meshing methods and element types per mesh resolution ......................................... 94 
Table 5.6 - Global mesh settings per mesh type ........................................................................... 95 
Table 5.7 - Hydrostatic pressure values applied in Ansys .......................................................... 102 
Table 6.1 - Displacements at five nodal locations to observe convergence ............................... 110 
Table 6.2 - Comparison of maximum displacements in cylindrical pressure hull...................... 114 
Table 6.3 - Potential continuation study cases for this investigation. ......................................... 115 
 

  



xi 

Symbols, Subscripts, Superscripts and Acronyms 

Symbol Definition Units (SI) 

𝜎 Stress Pa 

D Delamination damage variable - 

N Cycle number of fatigue loading - 

Y Range of damage evolution variable - 

A Material parameter - 

𝛽  Material parameter - 

𝑌12 Thermodynamic force relating to damage variables Pa 

𝑌12 Thermodynamic force relating to damage variables Pa 

k  Coupling parameter - 

𝐷𝐸   Residual Stiffness Damage  

𝐷𝑆 Residual Strength  

w  Exponential fitting parameter - 

X Strength value for 𝜎1 𝑃𝑎2  

Y Strength value for 𝜎2 𝑃𝑎2  

S Strength value for 𝜎12 𝑃𝑎  

𝑆0  Failure strength of composite laminate Pa 

𝐹𝑖  Experimental material constant 𝑃𝑎−1 

𝐹𝑖𝑗  Experimental material constant 𝑃𝑎−2 

𝜏  Shear Stress Pa 

E Modulus of elasticity Pa 

G Shear’s modulus Pa 

𝛾  Poisson’s ratio - 

[.]+ Heavyside function - 

𝜖  Strain - 

d Micro-level damage property - 

d  Displacement m 

ΔT  Environment and manufacturing temperature difference Kq 

𝛼  Coefficient of thermal expansion - 

Nini  Matrix crack initiation life - 

𝐾0  Material Parameter - 

𝜆  Material Parameter - 

g  Gravitational acceleration on earth 𝑚/𝑠2  

f  Applied force N 

F Applied force N 

Q Stiffness matrix - 

𝜌  Density  - 

q Ratio of extension length to total length - 

U Normalized displacement matrix of the matrix   



xii 

∇  Laplace Operator - 

𝜖  Strain - 

T Temperature K 

C Speed of Sounds m/s 

A Material parameter measured at transition temperature Pa 

B Material parameter measured at transition temperature - 

C Material parameter measured at transition temperature - 

m  Material parameter measured at transition temperature - 

n  Material parameter measured at transition temperature  - 

𝛾𝑠  Grüneisen coefficient - 

S Material parameter - 

𝐷1 Material parameter  - 

𝐷2 Material parameter  - 

𝐷3 Material parameter  - 

𝐷4 Material parameter  - 

𝜇  Modeling parameter - 

Δ  Difference between final and initial properties - 

A Material parameter K 

m Material parameter - 

𝑎1  Material parameter 𝐾−3  

𝑏1  Material parameter 𝐾−2  

𝑐1  Material parameter 𝐾−1  

𝑘1  Material parameter 𝐾/𝑃𝑎   

𝑑1  Material parameter K 

n  Material parameter - 

𝑎2  Material parameter 𝐾−2  

𝑏2  Material parameter 𝐾−1  

𝑐2  Material parameter 𝐾/𝑃𝑎   
𝑘2  Material parameter K 

t  Time s 

C Integral constant based on elastic strain before loading - 

A Area 𝑚2  

u  Displacement m 

k  Local stiffness matrix N/m 

K Global stiffness matrix N/m 

𝑙𝑡  Bar length m  

P Applied load N 

L Length m 

c Integration constant - 

Π𝑃 Potential Energy J 

Ω  External potential energy J 

U Internal strain energy J 

[B] Stress-displacement matrix - 



xiii 

[N] Matrix shape function - 

N Membrane Forces N 

h  Shell Thickness m 

R Radius of curvature m 

M Moment Nm 

𝜅  Laminate curvature m 

Q Reduced stiffness coefficients matrix Pa 

D Engineering constant - 

A Element of ABD matrix 𝑁/𝑚  

B Element of ABD matrix N 

D Element of ABD matrix Nm 

𝑇𝜎  Rotation matrix - 

𝑇𝜖  Rotation matrix - 

V Shear force N 

u  Axial displacement m 

v Circumferential displacement m 

w Radial displacement m 

T Torque Nm 

P Pressure Pa 

𝛾  Roots of characteristic equation - 

h Depth location of geometry m 

   

   

Subscripts    

( )1 Fiber direction  

( )2 Direction transverse to fiber  

( )12 In-plane   

( )1 Longitudinal Direction  

( )2 Transverse Direction  

()3 or ()6 Orthogonal Direction  

()f Fiber  

()m Matrix  

()m Melting  

()room Room  

()d or ()r Damaged state  

()0 Undamaged state  

()s,t Current  

()s Initial  

()i Of each element  

   

   

   

   



xiv 

Superscripts    

( )+ Tension  

( )- Compression  

( )0 Original State  

( ̇ )  Rate  

[]T Transpose Matrix  

   

Acronyms    

TS Titan Submersible  

FEM Finite Element Method  

FEA Finite Element Analysis  

   

 

 



1 

1. Introduction 

1.1  Introduction 

Humanity’s unending quest for knowledge and exploration has catalyzed the advancement 

of science and subsequent development of various technologies.  During this process, the lives of 

many individuals around the world have been positively impacted. That is the case, for example, 

with Global Positioning System (GPS), whose original purpose was the tracking of maritime 

vehicles and military targets [1]. Today, individuals around the world enjoy the accessibility of 

GPS for tasks spanning from driving to a desired destination or knowing with precision the location 

of certain objects. Moreover, the development of Sonar Navigation and Ranging -also referred to 

as sonar, - used to map objects in the ocean, pioneered the later creation of ultrasound [2]. The 

benefits of this technology enable medical professionals to monitor fetal development and assess 

potential anomalies in several internal organs [3]. Fruits of scientific and technological innovation 

have, undeniably, positively impacted the lives of individuals around the world. 

Another oceanic invention with a noble purpose -but a catastrophic outcome- was that 

embodied by OceanGate’s Titan submersible.  As included in OceanGate’s website (now 

archived), its main mission was to facilitate commercial expeditions and scientific research and 

exploration [4]. Most notably, within the scope of these commercial expeditions, was the transport 

of passengers to the wreckage site of the Titanic, located approximately 690 kms southeast of 

Newfoundland, Canada. On June 18, 2024, the US Navy’s sonar detected an acoustic signature 

which was later confirmed to be the implosion of the Titan submersible [5]. Stockton Rush, the 

principal engineer who oversaw the design and construction of the Titan, neglected warnings 

provided by industry experts regarding the questionable reliability and safety of the Titan. Should 

these warnings have been considered seriously, the loss of five human lives, who participated in 

the last expedition of the Titan submersible during its implosion, including that of Stockton Rush 

himself, could have been prevented. This work seeks to provide a general insight into structural 

challenges generated by the operational design of the Titan submersible using Ansys Static 

Structural . Identifying, understanding, and improving deficiencies in the final design of human 

occupied vehicles (HOV) in deep-sea environments will provide future designers with an 

additional outlook about limitations and promising design configurations for the development of 

deep-sea vehicles. 

 

1.2  Background  

An image of the Titan Submersible and its schematic is depicted in Figure 1.1. The 

pressurized section of the submersible consisted of two main elements: a carbon-fiber cylindrical 

section flanked by two titanium spheres with one acrylic window [6]. Possibly, for legal reasons 

after the implosion of the submersible, OceanGate deleted all the content previously available on 

its website. Despite the lack of current peer-reviewed literature detailing its specific dimensions, 

available online resources appeared to reach consensus regarding its principal measurements.  Four 

of these sources, [7], [8], [9], [10], reflect the specifications summarized in Table 1.1.  
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Figure 1.1 - Titan Submersible underwater and its schematic [6]. 
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Table 1.1 - Dimensions of the Titan submersible according to online resources. 

Dimensions 
Wikipedia 

[7] 

Seattle Times 

[8] 

The 

Guardian 

[9] 

People 

[10] 

Overall 

Dimensions 

Length [ft] 22 22 22 22 

Height [ft] 8.2 8.3 8.2 8.3 

Width [ft] 9.2 - 9.19 9.2 

Carbon-

Fiber 

Wound 

Cylinder 

Diameter [ft] 5.5* 4.6 - - 

Length [ft] 8.3 8.3 - - 

Thickness [in] 5.0 - - - 

Titanium 

Caps 
Thickness [in] 3.25 - - - 

*Judged as the “outer diameter”  

 

 The nature of the Titan Submersible’s mission, which required reaching a depth of 

approximately 4km, subjected the structure to extremely harsh operating conditions. The 

hydrostatic pressure increases by 1 atmosphere for every 10.06 meters of descent [11]. For this 

corresponding diving depth, the submersible experienced an omnidirectional pressure of 398 

atmospheres, or 40.33 MPa, attempting its implosion. Of the three main materials previously 

identified, carbon fiber composite possesses failure modes whose theoretical models have not 

undergone extensive experimental testing. Precisely, this cyclical increase in pressure at such low 

diving depths might have switched the cause of structural failure from overall buckling to gradual 

material failure in the composite pressure hull [12]. The various material interfaces, in addition to 

the cyclical pressure loading experienced by this maritime system add complexity to the modeling 

techniques of composite pressure hulls, relative to the better understood behavior of isotropic 

materials, such as metal alloys. To mitigate the enormous hydrostatic pressure to which the vessel 

was exposed, the thickness of the structure had to be significantly increased. Nevertheless, pressure 

hulls of large thicknesses are more prone to phenomenon called snap buckling, a sudden, 

catastrophic material failure [12]. It is crucial to consider various potential failure mechanisms 

appropriate to each material to assess the potential mechanical behavior of an underwater 

composite pressure vessel.  

1.3 Previous Studies on Structural Failure Modeling 

Understanding the various possible failure mechanisms of a fiber-reinforced composite 

structure, like the cylindrical body of the Titan Submersible, requires first exploring the most 

fundamental unit of this type of composite material: a laminate. In a fiber reinforced composite 

material, a lamina consists of two constituents: fibers and a bonding material interface called 

matrix. When a group of laminae are stacked in multiple directions to achieve superior mechanical 

properties, the resulting unit structure is called a laminate. Several methodologies have been 

developed to predict the structural failure mechanisms for complex materials of this nature. The 

author proposes discussing these theories as classical and modern. After reviewing these two 
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failure theories for laminates, failure theories targeting composite pressure hulls specifically will 

be explored. Finally, structural failure modeling of the other dominant materials, titanium alloy 

and acrylic, will be briefly explored. 

 

1.3.1  Classical Failure Criteria of Composite Materials  

One such categorization classified failure as occurring at either single-scale or multi-scale. 

In the single-scale arena, the first major effort consisted of modeling a composite structure as 

homogenized and unidirectional. In 1948, Hill [13] proposed describing the yield criterion for 

isotropic metals as orthotropic by using six independent yield stresses. Using a cartesian coordinate 

system, these could be described as three normal stresses in each symmetrical direction and three 

shear stresses on each symmetrical plane. In 1965, Azzi and Tsai [14] proposed a mathematical 

model derived by equating the six yield stresses in the Hill criterion to a series of corresponding 

strength values of a unidirectional composite. This model became known as the Tsai-Hill criteria, 

and its mathematical expression is summarized in equation 1.1. Here, the normal stress in the fiber 

and transverse directions are represented by σ1 and σ2. The in-plane shear stress is denoted by σ12, 

and X, Y, and S are the strength values of σ1, σ2, and σ12. Its main source of criticism became its 

incorrect modeling based on yielding, which does not correctly capture the failure mechanism of 

unidirectional composites.  

(
σ1

X
)
2

− (
σ1σ2

X
) + (

σ2

Y
)
2

+ (
σ12

S
) = 1       (1.1) 

 

 Experimental inconsistencies between values predicted by the Tsai-Hill criteria led to a 

proposed improvement by Tsai and Wu [15]. Distinctive to Tsai-Hill, the Tsai-Wu criteria was 

based on a scalar function expressed as a polynomial in terms of the stress tensor components, as 

denoted by equation 1.2. For a unidirectional laminate, indices i and j obtain the values of 1, 2, and 

6, and the repeated indices signal summation. The coefficients Fi and Fij are referred to as material 

strength constants, which are obtained experimentally. The Tsai-Wu criteria allowed for the 

creation of an ellipsoidal fit representation of the failure limits. Like the Tsai-Hill criteria, the main 

critique attributed to Tsai-Wu was its inadequacy describing the failure mechanics of a lamina and 

representing instead a convenient mathematical framework.    

 

Fiσj + Fijσiσj = 1         (1.2)  

 

 Subsequent improvements to the Tsai-Hill took the form of Hashin and later Puck failure 

criteria. In his research, Hashin [16] signaled differences between experimental data and some 

stress components in equation 1.2. As a result, he then proposed increasing the number of failure 

modes for a composite material, such as failure for i) fibers in tension, ii) fibers in compression, 

iii) matrix in tension, and iv) matrix in compression. These failure modes are outlined as depicted 

in equations 1.3 through 1.6. Equations 1.3 and 1.4 represent the failure criteria for fibers in tension 

and compression, while 1.5 and 1.6 correspond to the failure criteria for the matrix in tension and 

compression. Subscripts 1, 2, and 3 refer to the longitudinal, transverse, and orthogonal (through-

thickness) directions, whereas superscripts + and – denote tension or compression. The variable S 

denotes the values at which the corresponding failure types occur. In a subsequent investigation, 

Puck and colleagues [17] incorporated the concept of a failure plane which would not intersect the 

fibers of a unidirectional composite and had previously been suggested by Hashin, as well as 
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hybrid modes, which would consider failure during combined loading modes, such as tension and 

compression. Although the discussed theories enhanced the understanding and prediction of failure 

in a unidirectional laminate composite, Talreja [18] asserted that these classical theories were 

limited by the inability to describe the initiation of the first event that would cause the evolution 

of subsequent failure in the composite structure. All these initial efforts catalyzed the subsequent 

improvements in models of failure in composite materials. 

 

(
σ11

S11
+ )

2

+ α(
σ12
2 +σ13

2

S12
2 ) ≥ 1.0        (1.3) 

(
σ11

S11
− )

2

≥ 1.0          (1.4) 

(
σ22+σ33

S22
+ )

2

+
σ23
2 −σ22σ33

S23
2 +

σ12
2 +σ13

2

S12
2 ≥ 1.0      (1.5) 

[(
S22
−

2S23
)
2

− 1] (
σ22+σ33

S22
− ) +

(σ23−σ33)
2

4S23
2 +

σ23
2 −σ22σ33

S23
2 +

σ12
2 +σ13

2

S12
2 ≥ 1.0  (1.6) 

 

 

1.3.2 Modern Failure Fracture Mechanics of Composite Laminates  

 One of the more recent efforts to characterize and predict structural failure of composite 

laminates was proposed by Qi and collaborators [19], whose work is summarized in the entirety 

of this subsection. First, the dominant damage modes in composite laminates were identified as 

matrix cracking, local delamination, and fiber breakage. This is illustrated in Figure 1.2, located 

below. Under repeated cyclic loadings, they observed that matrix cracks would first originate in 

weaker piles, which would typically form parallel to the direction of the fibers. As the number of 

loading cycles increased, these cracks would then saturate, leading to the degradation of the 

transverse modulus and shear modulus. Consequently, local delamination would start and develop 

at the edges of the transverse matrix cracks because of the stress concentration effects. As the 

matrix interface accumulated more damage, the fibers would then start to progressively bear more 

loading until fiber breakage -leading to catastrophic structural failure- would occur. Qi and 

colleagues provided a useful visualization of this process, as depicted in figure 1.3.  
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Figure 1.2 - Observed dominant damage modes in cross-ply composite laminates under fatigue 

loading [19]. 
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Figure 1.3 - Damage evolution in composites under fatigue loading [19]. 

To model the damage experienced by a composite structure, Qi introduced the concept of 

damaged strain energy density of an elementary ply, as summarized by equation 1.7. Subscripts 

11, 22, and 12 denote the longitudinal, transverse, and orthogonal (through-thickness) directions. 

Superscripts f and m denote fiber and matrix, while 0 denotes the original properties (before-

damage) of the ply. The main stresses, shear stress, Elasticity Modulus, shear modulus, Poisson’s 

ratio, and the macro-level damage properties are denoted by σ, τ, E, G, γ, and d, respectively. The 

blanket [. ]+ represents the Heavyside function. By applying the definition of strain energy release 

rate, in equation 1.8, the strain-stress relationship of a damaged ply could then be reflected in terms 

of the constitutive equations 1.9-a to 1.9-c. ϵ𝑖𝑗 represents the strain components. This set of three 

equations enabled the quantification of the damaged stiffness properties under fatigue loading. By 

including the effects of temperature changes, which induce thermal stress in composite laminates, 

as reflected by 1.10, the constitutive equations, 1.9-a through 1.9-c, could then be expressed as 

Equations 1.11-a through 1.11-c. Here, ϵ𝑇 is the residual strain, ΔT denotes the difference between 

the loading environment and the manufacturing temperature, and α represents the thermal 

coefficient of expansion. Subscripts 1, 2, and 6 in α denote the longitudinal, transverse, and 

orthogonal (through-thickness) directions. 

 

𝑒𝑑 =
1

2
(

𝜎11
2

𝐸1
0(1−𝑑𝑓)

+
𝜎22
2

𝐸2
0(1−[𝜎22]+𝑑22

𝑚 )(1−𝑑22
𝑙 )
+

𝜏12
2

𝐺12
0 (1−𝑑12

𝑚 )(1−𝑑12
𝑙 )
−
2𝜈12

0 𝜎11𝜎22

𝐸1
0(1−𝑑𝑓)

)  (1.7)  
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𝜖𝑖𝑗 =
𝜕𝑒𝑑

𝜕𝜎𝑖𝑗
          (1.8) 

𝜖11 =
𝜎11

𝐸1
0(1−𝑑𝑓)

−
𝜈12
0

𝐸1
0(1−𝑑𝑓)

𝜎22        (1.9-a) 

𝜖22 =
𝜎22

𝐸2
0(1−[𝜎22]+𝑑22

𝑚 )(1−𝑑22
𝑙 )
−

𝜈12
0

𝐸1
0(1−𝑑𝑓)

𝜎11      (1.9-b) 

𝛾12 =
𝜏12
2

𝐺12
0 (1−𝑑12

𝑚 )(1−𝑑12
𝑙 )

        (1. 9-c) 

𝜖𝑇 = Δ𝑇𝛼          (1.10) 

𝜖11 =
𝜎11

𝐸1
0(1−𝑑𝑓)

−
𝜈12
0

𝐸1
0(1−𝑑𝑓)

𝜎22 + 𝛼1Δ𝑇      (1.11-a) 

𝜖22 =
𝜎22

𝐸2
0(1−[𝜎22]+𝑑22

𝑚 )(1−𝑑22
𝑙 )
−

𝜈12
0

𝐸1
0(1−𝑑𝑓)

𝜎11 + 𝛼2Δ𝑇     (1.11-b) 

𝛾12 =
𝜏12
2

𝐺12
0 (1−𝑑12

𝑚 )(1−𝑑12
𝑙 )
+ 𝛼6Δ𝑇       (1.11-c)  

 

 The main objective of modeling the damage evolution history of a composite laminate 

undergoing fatigue is the prediction of stiffness degradation. To achieve this objective, three 

damage evolution laws were outlined and integrated into the previous damage characterization 

model. These three laws were a) evolution law of matrix cracking, b) evolution law of 

delamination, and c) evolution law of fiber breakage. Principal highlights of this work appear 

summarized in the paragraphs below.  

 

A. Evolution Law of Matrix Cracking  

 The first event in the proposed evolution damage model starts with the generation of 

transverse cracks in the matrix. The concept of initial matrix crack initiation life, summarized by 

Equation 1.16, was introduced to define whether transverse cracks would start or continue, evolve, 

and saturate. Nini represents the matrix crack initiation life; σmax
90  denotes the maximum stress in 

cracked plies, and σti
90is the initiation stress of an initial matrix crack in cracked plies, under the 

assumption of quasi-static loading. K0 and λ are material parameters. Specifically, this theory 

outlined that when an applied maximum stress was smaller than the initial matrix crack initiation 

stress, matrix cracks would be expected to occur after several cycles. When the number of cycles 

reached the local initial matrix crack initiation life, cracks would be assumed to start. Moreover, 

when an applied maximum stress exceeded the initial matrix crack initiation stress, cracks would 

initiate during that stress cycle and eventually saturate. When this occurred, the damaged stiffness 

matrix of cracked cracks could then be calculated by the crack opening displacement theory, 

expressed by equation 1.17. Qd represents the damaged stiffness matrix, ρ denotes the density of 

the transverse crack, I is the identity matrix, q represents the ratio of the extension length to the 

total length, and U is the normalized displacement matrix of the matrix crack surface. The 

undamaged longitudinal modulus and undamaged stiffness matrix are denoted by E1
0 and Q0, 

respectively. Consequently, the damaged elastic modulus of composite laminates could then be 

quantified according to the damaged longitudinal modulus, damaged transverse modulus, and 

damaged shear modulus, represented by equations 1.18-a to 1.18-c. 

 

logNini = log K0 − 2λ log σti
90 + 2λ log σmax

90       (1.16) 

Qd = [I +
ρq

E1
0 Q0U]

−1

Q0        (1.17) 
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E1(ρ) =
Q11
d Q22

d −Q12
d 2

Q22
d          (1.18-a) 

E2(ρ) =
Q11
d Q22

d −Q12
d 2

Q11
d          (1.18-b)  

G12(ρ) = Q66
d           (1.18-c) 

 

 

B. Evolution Law of Delamination 

Proceeding crack saturation, in the matrix damage history of events, is local delamination 

phase. Although observations have confirmed that it is feasible for delaminate damage to occur 

before saturation [19], even at small stress levels, this model assumes that local delaminate damage 

would occur after saturation. To describe the evolution of local delamination, the Paris-law, 

reflected on equation 1.19 was employed. D represents the delamination damage variable, N 

denotes the cycle number of fatigue loading, and Y is the range of damage evolution variable; A 

and β are material parameters. The evolution damage variable Y was defined according to 1.20, 

where Y12 and Y22 denote the thermodynamic forces relating to damage variables, and k is the 

coupling parameter. Consequently, using damage mechanics theory, the damage variables could 

then be expressed as 1.21-a and 1.21-b. 

 
ΔD

ΔN
= A(ΔY)β          (1.19) 

Y = √Y12 + kY22         (1.20)  

Y22 = −
∂e

∂d22
l =

1

2

σ22
2

E2
0(1−d22

m )(1−d22
l )

2       (1.21-a) 

Y12 = −
∂e

∂d12
l =

1

2

τ12
2

G12
0 (1−d22

m )(1−d22
l )

2       (1.21-b)  

 

 

C. Evolution Law of Fiber Breakage 

 After the cracks begin to saturate, and delamination occurs, under cyclical loading, fibers 

become subjected to bearing higher loads. When the local stress experienced by a fiber would 

reach a critical value, fiber breakage would then occur. Equation 1.22, which represents a brittle 

failure law, was used to model the initiation of fiber breakage damage, where the bearing stress 

and the failure strength of the fibers are denoted by σf and Sf. As this equation reflects, an increase 

in bearing stress would be accompanied by a decrease in fiber strength. The quantification of this 

decrease in fiber strength required the introduction of the residual strength and residual stiffness 

of a composite laminate, as shown by Equation 1.23. The residual strength and stiffness damage 

variables are denoted by Ds and DE, while w represents a material parameter. Subsequently, Ds 
and DE are redefined by equations 1.24-a and 1.24-b. The initial longitudinal elastic modulus and 

failure strength of the composite laminate are denoted by E1
0 and S0; E1

𝑑 and Sr represent the 

damaged longitudinal elastic modulus and strength. E1
𝑐𝑟 denotes the critical longitudinal elastic 

modulus when the composite laminate fails under fatigue loading at the corresponding maximum 

longitudinal stress σmax. The calculation of the residual strength of a composite laminate under a 

specific cycle number could then be predicted according to equation 1.25. The laminate was 

considered to fail when the obtained residual strength was smaller than the applied maximum stress 

of fatigue loading. Because the previous laws and damage characterization model were established 
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for an elementary ply, coordinate transformation equations would need to be computed to obtain 

the constitutive equations for plies in laminates oriented at a θ-angle. 

 
σf

Sf
= 1           (1.22) 

Ds = (DE)
w          (1.23) 

DE =
E1
0−E1

d

E1
0−E1

cr          (1.24-a) 

DS =
S0
1−Sr

1

S0−σmax
           (1.24-b)  

Sr = S0 − (S0 − σmax) (
E1
0−E1

d

E1
0−E1

cr)
w

       (1.25) 

 

1.3.3  Structural Failure of Composite Pressure Hulls for Deep-Sea Applications 

The most recent available structural failure review, specifically addressing composite 

pressure hulls for deep-sea applications, is that offered by Li et al [20], whose work is synthesized 

in this section. Three principal aspects were proposed as the principal structural failure modes: 

overall buckling failure, material failure, and snap buckling failure. Overall buckling was 

identified as the dominant failure mode. Experiments involving various cylindrical composites, 

made from different materials and prepared using different manufacturing processes, were 

performed to test each of the specimens under external hydrostatic pressure to failure. Notably, 

some of the most recent work was conducted by Ross and Little [21], Pavlopoulou and Roy [22], 

and Zhang et al [23]. In these experiments, two main sub-modes of failure were observed: elastic 

(linear) and inelastic (non-linear) buckling. Elastic buckling is based on linear assumptions, and it 

involves the calculation of the critical buckling load by numerical or analytical methods. 

Theoretical approaches include the use of the buckling formula to determine the linear buckling 

load of a composite cylindrical shell. Popular numerical methods include Finite Element Analysis 

(FEA), identified as the most popular by Luo and Wang [24], specially using commercial software 

like ABAQUS, ANSYS, or DYNA, and NASTRAN. Results obtained through linear buckling 

assumptions are the foundation to perform the subsequent inelastic buckling analysis. Inelastic 

buckling occurs due to the large deformations caused by structural buckling, which are 

characterized by non-linear effects. Since pressure shells are expected to experience defects during 

the manufacturing, storage, and assembly process, geometric nonlinearity will occur. As a result, 

conducting gradual (step-by-step) non-linear simulations is recommended to clearly record the 

evolution of structural nonlinear buckling.  

In the case of thick-walled composite shells, material failure under compression can cause 

loss of bearing capacity.  When a compressive, unidirectional load is applied on a composite 

structure, along the fiber direction, the fiber behaves like an extended column prone to buckling. 

Consequently, macro and micro buckling will be the primary failure sub-modes. Four were 

identified as the dominant factors influencing the failure modes of composites under compression: 

i) material properties, ii) fiber deflection angle, iii) fiber volume content, and iv) defect sensitivity. 

The principal theoretical methods of prediction for this failure category focus on determining the 

compressive strength of a unidirectional composite material or shell structures under compression 

failure. Some of these methods are the elastic microbuckling theory, nonlinear microbuckling 

theory, three-parameters model, fracture mechanics, FEA, and cumulative damage analysis 

technology. The third failure mode discussed is snap buckling. This failure mode is unique to 
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composite pressure hulls exposed to high hydrostatic pressures and an inherently non-linear 

problem. It can occur with or without initial delamination and lead to instantaneous interlaminar 

fracture. Implemented approaches to predict damage evolution for a composite material under 

compressive load include six main approaches, summarized in table 1.2. 

 

Table 1.2 - Main prediction methods for composite materials subject to  

compressive load [19, 20]. 

Method Dominant Use 

Elastic Microbuckling theory 
Compressive Strength of unidirectional 

composite material 
Nonlinear Buckling theory 

Three Parameters model 

Fracture mechanics method 
Compression failure of composite shell 

structures 
Finite element analysis method 

Cumulative damage analysis technology 

 

 Li et all [20] asserted that snap buckling is a unique failure mode of composite shells with 

large thickness subjected to significant hydrostatic pressures. As the name implies, snap refers to 

instantaneous fracture and can occur without pre-existing delamination. Snap buckling is a non-

linear problem, and, unlike regular buckling, where the post-deformation shape is somewhat 

similar to the pre-buckling form, the post-snap buckling shape is radically different from the 

original configuration. In one key study conducted by Kachanov [24], snap buckling was attributed 

to delamination coupled buckling. This term refers to gradual process of delamination due to the 

lower interlaminar strength and the simultaneous buckling of delamination sub-layers. Kachanov 

proposed to solve this problem theoretically by using a hybrid method combining large deflection 

theory with the fracture mechanics method. Another recent study was conducted by Lou and Wang 

[25] who created a model for the inner surface of a composite spherical shell under compression 

using the principle of elastic similarity. In this work, the coupled buckling concept previously 

introduced by Kachanov was explored, as well as the effects of delamination thickness and 

location.   

 

1.3.4 Structural Failure of Titanium Alloys for Deep Sea Applications 

 The most recent investigation involving implosion of spherical, Titanium Alloy pressure 

hulls, at the time this report was written, corresponded to that performed by Zheng and Zhao [26]. 

This mentioned work focused on analyzing the implosion and failure mechanisms of a high-

strength/beta annealed titanium alloy Ti-6Al-4V pressure hull in a high-pressure environment. An 

experimental investigation was first performed and later reconciled with numerical models, which 

included describing the fluid behavior and structural deformation before, during, and after the 

failure of the specimen. While details about the fluid behavior and post-implosion interaction are 

included in Zheng and Zhao’s work, this subsection will focus on the elastoplastic deformation 

and structural failure stage of titanium alloy only. The structural deformation of the titanium alloy 

sphere was discretized and solved implementing FEM based on OpenRadioss, an open-source 

solver framework. The elastoplastic deformation of the titanium sphere was modeled by equation 
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1.26, where σ represents the second Piola-Kirchoff stress tensor component, d is the displacement, 

f represents the applied force, and ρ is the density of the multiphase flow. The second Piola-

Kirchoff stress tensor component is then defined by equation 1.27, where p is the fluid pressure 

and δ denotes the Piola-Kirchoff function. Once the structure entered the elastoplastic deformation 

phase, the Johnson-Cook (J-C) constitutive equation was adapted express the equivalent plastic 

stress σ̅, as shown by equation 1.28. A, B, C, m, and n represent material parameters measured at 

or below the transition temperature; ϵ̅plastic denotes the equivalent plastic strain, whereas the work 

and reference equivalent plastic strain rates are denoted by ϵ̇ and ϵ̇0. The workpiece, melting, and 

room temperatures are represented by T, Tm, and Troom. 

 

∇ ∙ (𝛔 + 𝛔∇𝐝) + 𝐟 = ρ
∂2𝐝

∂t2
         (1.26) 

σ = −pδ          (1.27) 

σ̅ = (A + Bϵn̅plastic) (1 + C ln
ϵ̇

ϵ̇0
 ) [1 − (

T−Troom

Tmelt−Troom
)
m

]    (1.28) 

 

 Similarly, the J-C failure criteria was used to model the structural failure of finite elements 

in the structure, where under the current strain rate, temperature, pressure, and equivalent stress 

conditions, the equivalent failure strain expression was defined according to equation 1.29. Here, 

the material parameters D1 through D5 are measured at or below the transition temperature, and 

the stress triaxiality is defined as the ratio of the pressure to equivalent plastic stress, σ̇ = P/σ̅ . 

When the damage parameter of a unit element in equation 1.30 became equal to 1, the material 

stiffness gradually disappeared, in accordance with explicit dynamics method, specified in 

OpenRadioss solver. The material stiffness was assumed to degrade progressively until reaching 

failure. Because the proposed model considered the effect of equations of state to describe the 

post-implosion deformation of the titanium structure, the Grüneisen model was implemented in 

the numerical simulation. More specifically, equation 1.31 was employed as the equation of state 

for titanium alloy during its compression. ρs denotes the density, C represents the speed of sound, 

γs is the Grüneisen coefficient, a is a first-order volume correction to γs, and S is a material 

parameter. Parameter μ is defined by equation 1.32, where ρs,t and ρs denotes the current and 

initial densities of the structure.  

 

ϵfailure = [D1 + D2 expD3σ̇] (1 + D4 ln
ϵ̇

ϵ̇0
) [1 + D5(

T−Troom

Tmelt−Troom
)]   (1.29) 

D = ∑
Δϵ

ϵfailure
          (1.30)  

ps = ρsC
2μ [1 + (1 −

γs

2
) μ −

a

2
μ2] / [1 − (S − 1)μ]2 + γsE    (1.31) 

μ =
ρs,t

ρs
− 1          (1.32) 

 

1.3.5 Structural Studies of Acrylic Windows for Deep Sea Applications 

 Similarly, the most recent available literature exploring the deformation of an observation 

window in a deep-sea vehicle was conducted by He et al [27]. In this mentioned investigation, a 

finite element model was developed with ABAQUS 2022 and validated through experimental data. 

More specifically, a polymethyl methacrylate (PMMA) frustum observation window of a manned 
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submersible, designed according to ASME-PVHO-1, was modeled as illustrated in Figure 1.4. In 

this schematic, Di, α, t, and R, represent the initial diameter, cone angle, thickness, and arc 

transition radius, respectively. To simulate the hydrostatic pressure and thermal loading pertaining 

to deep-sea environment, a parametric analysis implementing temperature combinations ranging 

between 2 to 30° Celsius, loading rates between 2.3 to 8 MPa/min, and friction coefficients values 

from 0.05 to 0.3 was conducted.  

Figure 1.4 - Basic structural parameters of frustrum observation window from [27]. 

 

 He et al [27] signaled that in the time-hardening theory, for an isothermal process, the 

relationship between the stress σ, creep rate ϵ̇cr, and time, t, can be expressed according to 

equations 1.33 to 1.35. The stress and time-response functions are denoted by f1(σ) and f2(t), 
respectively, where n, A, and m represent exponential parameters. A temperature-dependent time-

hardening model was then developed by introducing the creep strain rate and subsequently material 

parameters, as expressed in equations 1.36 through 1.38. ϵ̇cr denotes the creep strain rate; σ is the 

uniaxial stress; t is the total time; T is the temperature; a1, b1, c1, k1, d1, n, a2, b2, c2, and k2 are 

material parameters. By integrating the creep strain from equation 1.37, equations 1.39a through 

1.39c could then be obtained, where C is an integral constant dependent on the elastic strain before 

loading. Lastly, the material constants required for the model were obtained by implementing the 

nonlinear least square method with compression creep test data for the PMMA material at different 

temperatures.  

 

Φ = (ϵ̇cr, σ, t) = 0         (1.33) 

ϵ = f1(σ) ∙ f2(t)         (1.34-a) 

f1(σ) = σn          (1.34-b) 

f2(t) =
A

m+1
tm+1         (1.34-c) 

ϵcr =
A

m+1
∙ σn ∙ tm+1         (1.35) 

 

ϵ̇cr = Aσ
ntm          (1.36) 

ϵcr = Aσ
ntm+1 + C         (1.37) 

ϵ̇cr = (a1T
3 + b1T

2 + c1T + k1σ + d1)σ
nt(a2T

2+b2T+k2σ+c2)   (1.38) 

 

ϵcr = Aσ
ntm+1 + C         (1.39-a) 

A1 = a1T
3 + b1T

2 + c1T + k1σ + d1      (1.39-b) 

m1 = a2T
2 + b2T + k2σ + c2       (1.39-c) 
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1.4 Project Proposal 

 The accurate modeling and prediction of the structural response of a HOV in deep-sea 

environments is indispensable to ensure the safety of its occupants. Before ceasing operations, 

OceanGate, as a private company, maintained design selections and technical details confidential 

from the public, despite warnings that implementing that design was “safe” for its occupants. At 

the time this report was proposed, no structural studies to corroborate its safety had been made 

available to the public. Consequently, this work seeks to reproduce a simplified geometry model 

of the Titan Submersible and generate the static structural response at its lowest operational depth, 

which is 4km. This analysis is to be conducted by comparing an analytical method for cylindrical 

composites to a FE model in Ansys. Potential troubling areas will be identified and design 

recommendations will be made. 

 

1.5 Methodology  

 In more detail, the operational, simplified design geometry of the Titan submersible will 

first be reproduced using SolidWorks ®. A finite Element Method (FEM) will be developed and 

implemented in Ansys. Once results are generated and found satisfactory, convergence studies will 

be performed to identify the most stable numerical solution. This process then will be repeated 

implementing modifications in accordance with the test matrix summarized in table 1.3. 
 

 

 

 

Figure 1.5 - Workflow Diagram of the Proposed Investigation. 
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Table 1.3 - Design of experiments matrix. 

Case Modification 

1 1.5x thickness increase in thickness in pressure hull and titanium hemispheres 

2 3.0x thickness increase in thickness in pressure hull and titanium hemispheres 

3 Nominal Thicknesses, ply layout [0, 30, 60, 90]s, ceteris paribus 

4 Ply layout [0, 30, 60, 90]s; 1.5x global thickness increase 

5 Ply layout [0, 30, 60, 90]s; 3.0x global thickness increase 

6 Replacement of Carbon Pressure Hull for Titanium 

 

1.6 Conclusions 

The presented literature review has focused on introducing the reader to appropriate 

background information about the Titan Submersible incident, its main physical characteristics, 

and principal constituent materials. Various theoretical failure theories of the two main dominant 

constituents, carbon fiber and titanium were explored, and a brief study about modeling of creep 

behavior in acrylic observation windows was included. Moreover, the relatively potent and 

sophisticated computational tools enjoyed by modelers and investigators of composite structural 

failure represents a great advantage to advance the understanding and predicting capabilities in 

today’s world. These numerical tools and methods will be leveraged in this study to provide 

curious readers and future designers of HOVs with more insights about the effects of various 

design configurations involving carbon-fiber composites and titanium alloy. 
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2. Finite Element Method Overview 

2.1  Finite Element Method Overview   

 The inherent complexity arisen when modeling physical processes in three-dimensional 

space has pushed the scientific community to develop various methods of numerical analysis, such 

as Finite Difference, Finite Volume and Boundary Element Method. Arguably, however, the Finite 

Element Method (FEM) has become the approach of choice to solve a wide variety of problems 

that can be described in terms of partial differential equations or integral expressions. Its impact 

in the field of structural analysis -along with other engineering disciplines- has been analogous to 

a quantum leap in scientific modeling and engineering design in the past century; nonetheless, its 

usefulness and applicability continue to resonate today.   By considering the historical background, 

key developments, and areas of potential improvement, an analyst reader can gain a deeper 

understanding of the architecture of this powerful engineering method, its advantages and 

limitations, and think about alternatives to improve its efficiency and accuracy. Aiming to broaden 

the scope of this investigation, this section seeks to provide a synopsis of the historical overview 

and future of the FEM. Additionally, fundamental concepts of Finite Element Analysis (FEA) and 

its specific implementation in the field of Structural Mechanics in Ansys will be discussed.      

 Several individuals have contributed to the birth, development, and sophistication of the 

FEM as it is known today. Some scholars, like Oden [28], argue that an analogous idea to FEA 

can be traced back to the work of German mathematician Karl Schellback, whom in 1851 proposed 

discretizing a surface using right triangles to find the minimum surface area within a boundary. 

Approximating a differential equation with a set of algebraic equations was an intrinsic concept of 

FEA. Almost a century later, in 1943, Richard Courant of New York University determined the 

torsional rigidity of a hollow shaft through the Riley-Ritz method, where the cross-section of the 

shaft was divided into triangles, and the stress function was interpolated linearly at each of the 

nodes. In the 1950s, academics and private-sector engineers further developed Courant’s early 

concepts to solve problems in civil and aeronautical engineering applications. One of them was 

John Argyris of the Imperial College of London, who created an energy method for structural 

analysis, which enabled FEM for three-dimensional elements in the 1950s. The second is Ray 

Clough, of UC Berkeley, who in the 1960s derived the stiffness matrix of an element in a 

continuum in the. Thirdly is Olgierd Zienkiewicz, of Northwestern University, who in 

collaboration with J. Z. Zhu, formulated an error estimation technique, which served as a quality 

control to the FEM solutions and implemented the concept of adaptive mesh refinement by the 

1990s.  Lie et al [29] asserted that three previous individuals could be credited with making the 

most “pivotal, critical, and significant contributions to the birth and early development of the 

FEM.” Lastly, early developments of FEM were complimented by the development of the first 

general-purpose computer code, which was developed by structural engineers John Tinsley Oden 

and G. C. Best in the 1960s. The elements in this program library contained elements for 2D 

elasticity, 2D plane elasticity, 3D beam and rod elements, and elements for general composite 

materials [30].  

  The time spanning the 1960s to the 1990s witnessed crucial advancements in FEM 

methodology improvements and applications. One of these was the implementation of explicit, 

implicit-explicit, or implicit time integration with damping control to solve nonlinear structural 

dynamics problems, proposed by T. Belytschko, K. C. Park, and T. J. Hughes [29]. In fields such 

as fluid mechanics, FEM started to be implemented to solve the Navier-Stokes equations as an 
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alternative to finite difference and finite volume methods; this was preceding effort to the 

subsequent development of FEM solvers for fluid-structure interactions. Another significant 

development was the formulation of the Arbitrary Lagrangian-Eulerian (ALE) based FEM 

formulations in engineering simulation. This technique enabled the mesh domain to move 

arbitrarily to optimize the shape of the elements, ultimately leading to improved accuracy and 

numerical convergence. Lastly, in the 1980s, the development of nonlinear probabilistic FEM 

enabled the quantification and inclusion of uncertainty in major problem simulation parameters, 

such as loading conditions, material behavior, and geometric configuration. Almost parallel to 

these events was the development of FEM software technology. On the private sector, in 1963, the 

MacNeal-Schwedler Software Corporation (MSC) developed its FEM code Structural Analysis by 

Digital Simulation of Analog Methods (SADSAM), whereas NASA completed its own FEM code 

NASTRAN (NASA STRuctural Analysis) by 1969. During the same decade, John Swanson, a 

then Westinghouse mechanical engineer, left the company and developed its own ANSYS FEM 

code [31]. Moreover, Livermore National Laboratories also developed a 2D Nonlinear FEM code 

called DYNA3D; later, it evolved into LS-DYNA. This technology was bought and incorporated 

into ANSYS software, as ANSYS LS-DYNA in 2018. Moreover, in the 1970s, David Hibbitt, 

Bengy Karlsson, and Paul Sorensen created a company called HKS, which released a commercial 

FEM software called ABAQUS. Today, ABAQUS and ANSYS are arguably the two most popular 

FEM software used by academia and the private sector, aiding investigators to model and 

approximate solutions to many complex engineering problems. 

The present and future FEM areas of research seem to be focused on two principal aspects. 

First is the study of the various forms of machine and deep-learning methods [29]. This area of 

research seeks to design and train a neural network to approximate any given continuous function 

to an arbitrary level of accuracy, solve high dimensional PDEs in strong form, and accelerate 

convergence of the solution. This process is expected to generate new discoveries, create more 

robust numerical approximation techniques, and procure the development of more efficient 

discretization processes.  Secondly is the merging of deep machine learning methods with reduced 

order modeling methods. More specifically, this research aims to enable high-resolution topology 

design while maintaining a high level of speed and accuracy in the computed solution. Reducing 

the computational cost is expected to facilitate the demand between sensors, control algorithms, 

and simulation architectures, such as interactions between automated driving control (autonomous 

vehicles) and structural health monitoring systems.   

 

2.2 Fundamental Elements of Finite Element Method  

 Most real-world problems involve complex geometries, non-isotropic material 

composition, and loading conditions that cannot be solved with using conventional analytical 

methods. In this case, by developing and implementing an appropriate simplified physical model 

of the system of interest, the FEM can provide an approximate solution to the problem at hand. 

 

2.2.1 Fundamental Principles of FEA  

 The fundamental concept of the FEM, as signaled in the previous subsection, is the idea 

that a continuum can be discretized into a finite number of elements. A physical element, such as 

the post in figure 2.1a, consists of an infinite number of points, able to displace in an infinite 



18 

number of directions upon the application of forces. Interaction of a physical element and its 

constituents with forces, subject to constraints, can be represented mathematically through a 

Boundary Value Problem (BVP), where physical phenomena in an arbitrarily defined region can 

be described through differential equations. The investigation of a field variable, such as 

displacement, in structural mechanics, or temperature, in fluid mechanics, is the main objective of 

the analysis. In the case of the discussed post, a FE analysis can be achieved by representing the 

post with three line-elements of different cross-sectional areas, connected at nodes, and subject to 

a pressure applied on top of element 1, as element 3 remains fixed, as shown in Figure 2.1b. This 

representation enables the analysis of a system with a finite number of elements restricted to 

moving in a selected number of degrees of freedom. Applying the FEA to an analyzed system 

implies approximating numerically the field variable at the nodes of the discretized domain. 

 

Figure 2.1 - Modeling and FE representation of a structure [32]. 

  

In linear-static analysis, an underlying principle to investigate the nodal displacements is 

the analogy to Hook’s law, represented by equation 2.1, and written, for convenience, in matrix 

form. Here, f represents the applied force, k the stiffness, and x the displacement for each element, 

denoted by the subscript i. As summarized by this equation, each nodal element is assumed to have 

an associated stiffness resisting the motion as a response to an applied force. As will be discussed 

in the proceeding section, each corresponding element in the discretized domain is then 

represented in a global stiffness matrix, where each individual element is converted from a local 

coordinate system to a global coordinate system through transformation matrices. This global 

stiffness matrix is represented by equation 2.2. Inverting the matrix, as denoted by equation 2.3, 

leads to determining the value of each nodal displacement. The displacements at the non-nodal 

points are then approximated through piece-wise interpolation of polynomial functions, such as 

those in the form of equation 2.4. Additional properties of interest, such as strains and stresses can 

then be determined after the prediction of this main field quantity. 

 
{f}i = [k]i{x}i          (2.1) 
{F} = [K]{X}          (2.2) 

(a) (b) 
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[X] = [K]−1[F]         (2.3) 

ϕ(x, y) = N1(x, y)ϕ1 + N2(x, y)ϕ2       (2.4) 

   

 Four popular formulation techniques are used to obtain the series of equations to assemble 

the global stiffness matrix for a finite elements grid in a BVP: i) equilibrium, ii) direct stiffness, 

iii) variational methods, and iv) weighted residuals. The first two are limited to the analysis of the 

simplest forms of geometry, such as bar elements or trusses. Variational methods, such as the 

principle of stationary potential energy, can be used to analyze most BVPs involving more 

complex types of geometries. Weighted residual methods, such as the Galerkin or least-squares, 

can be used for any type of BVP. To demonstrate the essential mathematical process of FEA on a 

simple element, the direct stiffness method is used in the proceeding paragraphs to predict the 

displacement of six nodal locations when a force, P, is applied to the post in figure 2.2a. This 

structure possesses a uniform circular cross-sectional area, which decreases linearly from a value 

A, at the base, to a value A/3 at the top. The analyzed structure is assumed to be isotropic, behave 

linear-elastically, and have the characteristics described in table 2.1. Only axial displacements are 

allowed in this analysis. 
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Figure 2.2 - (a) Geometrical representation of the structure, (b) Discretization into 5 finite 

elements, and (c) Corresponding nodal locations. 

 

Table 2.1 - Characteristics of the conceptual structure. 

Property Units Value 

Material Steel AISI 302 

Base Diameter m 0.3 

Base Cross-sectional Area, A m2 0.0707 

Bar Length, 𝐥𝐭 m 1 

Youngs Modulus, E Pa 180E9 

Applied Load, P N 981 

𝐀

𝟑
 

𝐥𝐭 

𝐀 
Ele1 

Ele2 

Ele3 

Ele4 

Ele5 

No6 

No5 

No4 

No3 

No2 

No1 

(a) (b) (c) 
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The FEA starts with the discretization of the conceptual structure into a finite number of 

elements. Specifically, the geometry is discretized into five elements, as denoted by the 

abbreviation “Elei”  in figure 2.2b; this corresponding discretization yields to six nodal locations, 

where the displacements are to be investigated. Nodal locations are denoted by “Noi” in figure 

2.2c. For a single bar element, such as that in Figure 2.3a, subject to axial forces at nodal locations 

1 and 2, the corresponding free-body diagrams are represented in Figure 2.3b. As a result, for 

element 1, Newton’s second law can be expressed by equation 2.6, where F1 is the force applied 

to the nodal location, σ is the stress, and A is the cross-sectional area. The stress, 𝜎, can then be 

described by equation 2.7, in terms of the Youngs Modulus E and the strain ϵ. In Equation 2.8, the 

strain ϵ can be expressed in terms of the nodal displacements at node 2, u2, and node 1, u1, divided 

by the element length L. Substituting equations 2.7 and 2.8 into 2.6, and defining the stiffness k 

according to 2.9, leads to equation 2.10. Similarly, at the second nodal element, Newton’s second 

law is written as Equation 2.11, where F2 is the force applied to this nodal location. Solving for F2 

and substituting the relations of equations 2.7 through 2.9, yields equation 2.12. Finally, expressing 

equations 2.10 and 2.11 as matrices leads to expression 2.13, where the 2x2 matrix represents the 

stiffness matrix of a bar element. When only axial displacements are allowed, as is the case with 

the analyzed post, the global stiffness matrix can be assembled by appending the individual 

stiffness matrices of each element, as shown by equation 2.14, so that the global stiffness matrix 

takes the form of 2.15. Now, including the displacements and forces matrices, denoted by 2.16 and 

2.17, the system of equations can take the form reflected by 2.18.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 - (a) Single Bar Element and (b) Free Body Diagram. 

 

 

 

 

(a) 

(b) 
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At Node 1 

ΣFNo1 = 0 = F1 + σA         (2.6) 

σ = Eϵ          (2.7) 

ϵ =
u2−𝑢1

𝐿
         (2.8) 

k =
AE

L
          (2.9) 

F1 = ku1 − ku2         (2.10) 

 

At Node 2 

ΣFNo2 = 0 = F2 − σA         (2.11) 

F2 = −ku1 + ku2         (2.12) 

[
k −k
−k k

] {
u1
u2
} = {

F1
F2
}        (2.13) 

 
[𝐊] = [kel1] + [kel2] + [kel3] + [kel4] + [kel5]     (2.14) 

 

[𝐊] =

[
 
 
 
 
 
k1 

−𝑘1     
0
0
0
0

−𝑘1     
𝑘1 + 𝑘2   
−𝑘2
0
0
0

0
−𝑘2

𝑘2 + 𝑘3   
−𝑘3
0
0

0
0
−𝑘3

𝑘3 + 𝑘4   
−𝑘4
0

0
0
0
−𝑘4

𝑘4 + 𝑘5   
−𝑘5

0
0
0
0

−𝑘5 
𝑘5 ]

 
 
 
 
 

    (2.15) 

 

[X] =  [u1 u2 u3   u4 u5 u6]T       (2.16) 

 

[F] = [f1 f2 f3   f4 f5 f6]
T       (2.17) 

[
 
 
 
 
 
k1 

−𝑘1     
0
0
0
0

−𝑘1     
𝑘1 + 𝑘2   
−𝑘2
0
0
0

0
−𝑘2

𝑘2 + 𝑘3   
−𝑘3
0
0

0
0
−𝑘3

𝑘3 + 𝑘4   
−𝑘4
0

0
0
0
−𝑘4

𝑘4 + 𝑘5   
−𝑘5

0
0
0
0

−𝑘5 
𝑘5 ]

 
 
 
 
 

 

[
 
 
 
 
 
u1
u2
u3
u4
u5
u6]
 
 
 
 
 

=  

[
 
 
 
 
 
f1
f2
f3
f4
f5
f6]
 
 
 
 
 

    (2.18)  

 

 Once the system of equations has been assembled, the corresponding boundary conditions 

need to be applied. For a fixed post, the displacement of nodal element 1, which is fixed to the 

ground, is 0, expressed by equation 2.19. Node 1 also experiences a reaction force, denoted by R1 

in equation 2.20. The only applied force occurs at nodal location 6, as expressed by 2.21 and 2.22. 

Implementing these set of constraints into 2.18 leads to the new system of equations expressed by 

2.19. Since the reaction is unknown at this at this point, and the first nodal displacement is 0, the 

first row and column of 2.19 are removed from the system, leading to 2.20. Solving by inverting 

the matrix leads to the displacements, in meters, expressed on 2.21. Finally, by substituting these 

displacements back into equation 2.19, the reaction force can be solved, and is equal to 850.2 N.  

The corresponding MATLAB code implemented to solve this problem can be found in section 1 

of the Appendix.   

 

u1 = 0           (2.19) 
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f1 = 𝑅1          (2.20) 

f6 = −𝑃          (2.21) 

f2 = 𝑓3 = 𝑓4 = 𝑓5 = 0        (2.22) 

[
 
 
 
 
 
k1 

−𝑘1     
0
0
0
0

−𝑘1     
𝑘1 + 𝑘2   
−𝑘2
0
0
0

0
−𝑘2

𝑘2 + 𝑘3   
−𝑘3
0
0

0
0
−𝑘3

𝑘3 + 𝑘4   
−𝑘4
0

0
0
0
−𝑘4

𝑘4 + 𝑘5   
−𝑘5

0
0
0
0

−𝑘5 
𝑘5 ]

 
 
 
 
 

 

[
 
 
 
 
 
0
u2
u3
u4
u5
u6]
 
 
 
 
 

=  

[
 
 
 
 
 
𝑅1
0
0
0
0
−P]
 
 
 
 
 

    (2.19)  

 

[
 
 
 
 
𝑘1 + 𝑘2   
−𝑘2
0
0
0

−𝑘2
𝑘2 + 𝑘3   
−𝑘3
0
0

0
−𝑘3

𝑘3 + 𝑘4   
−𝑘4
0

0
0
−𝑘4

𝑘4 + 𝑘5   
−𝑘5

0
0
0

−𝑘5 
𝑘5 ]

 
 
 
 

 

[
 
 
 
 
u2
u3
u4
u5
u6]
 
 
 
 

=  

[
 
 
 
 
0
0
0
0
−P]
 
 
 
 

     (2.20)  

 

[𝑢2 𝑢3 𝑢4 𝑢5 𝑢6]T = 1 ∗ 10−6[−0.0154, −0.0332, −0.0542, −0.0799, −0.1130]T (2.21) 

 

 In contrast, the analytical exact displacements for this bar under an axial load can be 

determined using Euler-Bernoulli beam theory, which is represented by equation 2.22. Using the 

fundamental theorem of calculus, the integration of 2.22 leads to equation 2.23. Repeating this 

process once more leads to equation 2.24. After applying the corresponding boundary conditions 

reflected by equations 2.25, the force P applied at the top of the bar, and no displacement at its 

base, the corresponding constants of integration are found in equation 2.26. Integrating these 

results, the axial displacement of the bar can be described analytically by equation 2.27. Plotting 

and comparing these results to those generated by FEM, as in figure 2.4, reveals that FEM results 

under-predict the displacements.  

 

−
d

dx
[EA(x)

du

dx
 ] = 0         (2.22) 

EA(x)
du

dx
= c1          (2.23) 

u(x) =
3ltc1 ln(3lt−2x)

2EA
+ c2        (2.24) 

(EA(x)
du

dx
)
x=lt

= P,  u(0) = 0      (2.25) 

c1 = P,  c2 =
3ltP

2EA
ln (3lt)       (2.26) 

u(x) =
3lrP

2EA
ln (

3lt

3lt−2x
)         (2.27) 
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Figure 2.4 – Analytical displacements using Euler-Bernoulli beam theory versus FEM with 5 

elements. 

 

 When encountering more complex geometries, equilibrium or direct stiffness method 

cannot be used to derive the stiffness matrix. As a result, in most FEA applications, variational 

methods are typically used to derive the stiffness matrix of a system. To do this, a functional is 

required. This is an expression that contains the governing differential equations of the studied 

BVP. Implementing the principle of stationary potential energy yields a functional required to 

conduct stress analysis. This principle states that, from all the admissible displacements a system 

can achieve, the equilibrium displacement minimizes its total potential energy. Admissible 

displacements are displacements that satisfy the boundary conditions and compatibility condition 

(or physical continuity of the material). This was illustrated by Cook [32], as shown in Figure 2.5b, 

where the upper line shows a crack, at location A, and a kink, at B, which would violate the material 

continuity. - The formulation of residual methods can be found in chapter 5 of Cook et al [32], but 

its discussion will be excluded from this work. 
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Figure 2.5 - (a) Cantilever beam. (b) One inadmissible configuration (upper dashed line) and two 

admissible configurations (lower dashed lines) [32]. 

 In a system consisting of a linear spring, which is stretched by an applied force, as shown 

in Figure 2.6, its associated displacement can be investigated as follows. The potential energy ΠP 

is the sum of the internal strain energy U, and the external potential energy Ω (2.5). U and Ω are 

defined by equations 2.6 and 2.7, respectively, where k is the spring stiffness, D represents the 

associated displacement, and P is the applied force. Deriving equation 2.5 with respect to x leads 

to equation 2.9, where subsequently solving for the displacement, D, leads to equation 2.10. When 

these functions are shown graphically, as in figure 2.7, the minimum potential energy represents 

the equilibrium displacement of the system.  

 

 

  

Figure 2.6 - (a) Reference configuration of a linear spring system. (b) Stretched configuration 

after application of force P [32]. 

 

ΠP = U + Ω          (2.5) 

U =
1

2
kD2          (2.7) 

Ω = −PD          (2.8) 
dΠp

𝑑𝐷
= 𝑘𝐷𝑒𝑞 − 𝑃 = 0         (2.9) 

Deq =
𝑃

𝑘
          (2.10) 
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Figure 2.7 - Representation of the principle of stationary potential energy. 

 

 The previous simple system consisting of a single element is the foundation for the analysis 

of a mesh grid with hundreds or thousands of degrees of freedom. This was explained by Cook 

[32] as follows. In a system consisting of n degrees of freedom, the displacement vector D, 

containing admissible configurations only, has the form of equation 2.11. Since the potential 

energy of a system depends only on the corresponding nodal displacements of the system, or 

degrees of freedom, the total potential energy can be written as 2.12. Applying the principle of 

stationary potential energy leads to equation 2.13. Because each dDi term is independent from the 

other elements and nonzero, only their corresponding coefficients, 
∂Πp

∂Di
, can be zero. This fact can 

be written in the form of equation 2.14. The complete derivation of the stiffness matrix using the 

principle of potential energy of an elastic body can be found in chapter 4.4 of [32]. The results, 

however, reflect that the stiffness matrix [K] can be generated by equation 2.15, where [B] 

represents the stress-displacement matrix, denoted by equation 2.16. In three dimensions, the 

partial [∂] is equal to the elements contained in 2.17, namely the partial derivative operators or 

each corresponding direction. [N] denotes the matrix shape function, which contains the 

corresponding nodal locations, as equation 2.18. Moreover, the force vector {f} can be expressed 

as equation 2.19, where {fb}, {fs}, and {fp} denote the body forces, surface tractions, and point 

loads, respectively. Matrix {u} denotes the nodal displacements; after being evaluated, the 

corresponding strains and stresses can be determined by equations 2.21 and 2.22. The constitutive 

matrix is represented by [E], and the initial stresses and strains are denoted by {σ0} and {ϵ0}. 

 

{D} = [D1 D2…Dn]
T         (2.11) 

Energy 

D 
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ΠP = (D1, D2, … , Dn)         (2.12) 

dΠp =
∂Πp

∂D1
dD1 +

∂Πp

∂D2
dD2 +⋯+

∂Πp

∂Dn
dDn      (2.13) 

{
∂Πp

∂𝐃
} = {0}          (2.14) 

[K] = ∫ [B]T[D][B]dV
𝑉

        (2.15) 

[B] = [∂][N]          (2.16) 

         

[∂] =

[
 
 
 
 
 
 
 
 
 
 
 
𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

0 0
𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑧

𝜕

𝜕𝑦

𝜕

𝜕𝑧
0

𝜕

𝜕𝑥]
 
 
 
 
 
 
 
 
 
 
 

        (2.17) 

 

 
[N] = [𝑁1𝑁2…]         (2.18) 

{f} = ∫ [N]T{fb}dVV
+ ∫ [N]T{fs}dVV

+ {fp}      (2.19) 

{u} = [N]{d}          (2.20) 
{ϵ} = [𝜕]{u}          (2.21) 

{σ} = [E]({ϵ} − {ϵ0}) + {σ0}        (2.22) 

 

 

2.2.2 Basic Elements  

 As previously mentioned, partitioning a continuum implies dividing a bounded region into 

smaller units – or finite elements, - which are connected to neighboring elements at nodes and 

boundary lines. Depending on the dimensionality and desired analysis of the domain of interest 

and the desired level of simplification, these grid elements can be described in terms of various 

types of simple shapes, each with characteristic strengths and weaknesses. Classification and 

naming of these elements can vary by author, such as Reddy [34] who refers to some elements as 

serendipity elements, while Cook et al [32] simply uses the term improved elements. In this work, 

finite elements are classified by dimensionality, namely one, two, or three-dimensional; other 

advanced elements, such as plates and shells, are excluded from this discussion, but formulation 

details can be found in chapters 15 and 16 of [32] and 12 of [34]. Line (or bar) elements are used 

in one dimension; triangular and quadrilateral elements are used for two dimensions, and 

tetrahedrons and hexahedron elements in 3D. These types of 2D and 3D shapes can be represented 

as first or higher order elements, depending on the desired level of accuracy. Higher-order elements 

described the interpolation of the field quantity, such as displacements, by quadratic or higher-

order polynomials. They can capture more accurately stress distributions in complex geometries, 
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but at the expense of greater required computational power. Examples of higher order elements 

are illustrated in the second row of figure 2.8, such as the 6-noded triangle or 20-noded 

hexahedron.  

Figure 2.8 – Common types of 2D and 3D elements in FEA [33]. 

A. One-Dimensional Elements: Bar 

 BVPs where the axial dimension in the analyzed geometry is much larger than the lateral 

and thickness dimensions, such as a slender bar, can simplified to one-dimensional FEA. The bar 

element represents the simplest type of FEA, and, as a result, is the least computationally expensive 

element. The chief limitation associated with this element is the inability to generate 

displacements, strains, and stresses in the lateral and through-thickness directions. As the problem 

explored in section 2.2.1, the assembly of the global stiffness matrix can be achieved by appending 

the individual stiffness matrices of each nodal element. In the case of truss analysis, rotation 

matrices can be implemented to generate the global stiffness matrix in terms of the global 

coordinate system, and later solve for the displacements, stress, and strains. 

 

B. Two-Dimensional Elements: Constant Strain (CST) and Linear Strain Triangle (LST) 

 Geometries where the axial and lateral directions must be considered to capture 

appropriately the studied physical phenomena require the use of two-dimensional elements. The 

linear triangle, illustrated in figure 2.9-a, is one of the basic elements used in 2D analysis. This 

element has three nodal elements, and its implementation produces a linear displacement variation 

of the investigated field quantity in the axial, u, and lateral, y, coordinates, as shown in 2.9-b. This 

is the reason why it is also referred to as the constant-strain triangle (CST). Because of its 

simplicity, it is typically used when high solution accuracy is not sought, and computational power 

is limited. Arguably, the main deficiency of this element is its inability to model deformation 

caused by bending. In the case of a beam loaded in bending only, such as in figure 2.10-a, the 

stress on each element along the x-axis, σx, displays a constant behavior rather than a linear 

variation that would be predicted by Euler-Bernoulli beam theory. Similarly, element 2, in 2.10-b 

displays a transverse shear strain that should not occur. As a result, this element tends to be very 

stiff when loading in bending conditions.      

 



29 

Figure 2.9 – (a) Linear Triangle Element (CST) and (b) Displacement field representation [32]. 

Figure 2.10 – a) Deformation of a beam modeled by CSTs along x-axis, loaded in bending and 

(b) Deformation of lower-left triangular element [32]. 

 

 Moreover, the quadratic triangle has one additional node placed between each adjacent 

vertex, as shown in figure 2.11, each with two corresponding degrees of freedom. These additional 

nodes provide a better displacement prediction, relative to the CST, at the expense of more required 

computational power. This configuration yields a displacement field in terms of a complete 

second-order polynomial, as denoted by equations 2.23 and 2.24. In return, the computed strains 

can then vary linearly -reason why it is also called Linear-Strain Triangle. Despite being able to 

model strain variations linearly, the LST does not produce more accurate results -relative to beam 

theory- than the LST in some cases. For example, when modeling an isotropic cantilever beam 

under parabolic loading, Cook et al [32] found that increasing the number of CSTs yielded less 
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accurate results than the LST. Another associated limitation of the LST is that it yields a linear 

shear strain, γxy, rather than quadratic result in the y-direction.  

 

Figure 2.11 – Quadratic Triangle Element (LST) [32]. 

 

ui = a1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥
2 + 𝑎5𝑥𝑦 + 𝑎6𝑦

2     (2.23) 

vi = a7 + 𝑎8𝑥 + 𝑎9𝑦 + 𝑎10𝑥
2 + 𝑎11𝑥𝑦 + 𝑎12𝑦

2     (2.24) 

 

 

 

C. Two-Dimensional Elements: Bilinear (Q4) and Quadratic Rectangle (Q8, Q9) 

 The bilinear rectangle (Q4) has four nodal elements, as illustrated in figure 2.12. It is called 

“bilinear” because its displacement field is the product of two linear polynomials. Because of its 

simplicity, it is also used when computational resources are limited, and high accuracy is not 

required. Like the CST, one of its main deficiencies is its behavior in pure bending. A cantilever 

beam in bending, as shown in figure 2.13-a, modelled by Q4 elements exhibits parasitic shear 

strain γxy, which should be zero, but has a non-zero value. Two are the main implications of this 

phenomenon. First, the axial stress σx on the lower elements will be significantly different for the 

elements with constrained displacements (near the wall), as shown in figure 2.13-b. Second, the 

shear stress on the x-axis τxy shows a linear-like spurious variation, even though its value should 

be constant, as predicted by beam theory, as illustrated by figure 2.13-c. 
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Figure 2.12 – Bilinear Quadrilateral Element (Q4) [32]. 

 

Figure 2.13 – Variations in axial stress and shear strain on a cantilever beam modeled by Q4 

elements [32]. 

 

 The quadratic rectangle, like the quadratic triangle element (LST), has one additional node 

between the original adjacent corners, as shown in figure 2.14. The 8 total nodal elements give this 

element its additional name, Q8. It is considered a higher-order element because its shape functions 

possess high-order polynomial terms which enable the better representation of displacements, 

strains, and stresses. Specifically, these displacements are captured by equations 2.25 and 2.26. 

The Q8 is the most robust element -compared to the CST, LST, and Q4- in capturing complex 

stress distributions and curved geometry. As a result, it is used when a higher degree of accuracy 
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is desired and computational power is not limited. The quadratic rectangle does not display the 

parasitic shear strain issue experienced by the bilinear quadrilateral element, Q4. As a result, the 

Q8 is typically used in applications where bending must be captured accurately.  

 

Figure 2.14 – Quadratic Rectangular Element. 

 

 

ui = a1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥
2 + 𝑎5𝑥𝑦 + 𝑎6𝑦

2 + 𝑎7𝑥
2𝑦 + 𝑎8𝑥𝑦

2   (2.25) 

vi = a9 + 𝑎10𝑥 + 𝑎11𝑦 + 𝑎12𝑥
2 + 𝑎13𝑥𝑦 + 𝑎14𝑦

2 + 𝑎15𝑥
2𝑦 + 𝑎16𝑥𝑦

2  (2.26) 

 

 

 

D. Three-Dimensional Elements: T4 and T10 Tetrahedra  

 BVPs where interactions between width, length, and thickness must be considered 

altogether require the use of three-dimensional elements. One of the simplest 3D elements is the 

four-node tetrahedron (T4), which is illustrated in figure 2.15. These elements are typically used 

to discretize complex geometries, such as those asymmetrical and with high curvature. Like the 

CST in two-dimensional analysis, the T4 is susceptible to shear-locking behavior. Nevertheless, 

this issue can be overcome by implementing higher-order elements, such as the ten-nodded 

tetrahedron (T10), illustrated in figure 2.16. Both the T4 and T10 have shape functions represented 

in terms of “natural” reference coordinates, which Cook et al [32], for example, names r, s, and t. 

The implementation of this reference coordinate system allows the element to maintain their 

position with respect to itself and become independent of its orientation in the global coordinate 

system. The shape functions of the T4 are expressed in equation 2.27, whereas the shape functions 

of the T10 are expressed in 2.27. The T10 can capture better higher stress gradients and avoid 

shear locking behavior, but this is penalized by a higher required computational power. 
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Figure 2.15 – Linear Tetrahedron Element. 

 

Figure 2.16 – Quadratic Tetrahedron Element. 

 

N1 = 1 − 𝑟 − 𝑠 − 𝑡  𝑁2 = 𝑟  N3 = 𝑠  N4 = 𝑡   (2.26)  

 

N1 = (1 − 𝑟 − 𝑠 − 𝑡)(1 − 2𝑟 − 2𝑠 − 2𝑡)  

𝑁2 = 𝑟(2𝑟 − 1) N5 = 4𝑟(1 − 𝑟 − 𝑠 − 𝑡) 𝑁8 = 4𝑟𝑠 

𝑁3 = 𝑠(2𝑠 − 1) N6 = 4𝑠(1 − 𝑟 − 𝑠 − 𝑡) 𝑁9 = 4𝑠𝑡   (2.27) 

𝑁4 = 𝑡(2𝑡 − 1) N7 = 4𝑡(1 − 𝑟 − 𝑠 − 𝑡) 𝑁10 = 4𝑟𝑡 
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E. Three-Dimensional Elements: H8 and H20 Rectangular Solid Elements 

 The second simplest 3D element is the eight-nodded trilinear element (H8), illustrated in 

figure 2.17.  It receives this name because each of its shape functions is the product of three linear 

polynomial functions that have the form of equation 2.28. The H8 is typically used in relatively 

simply geometries, such as straight, symmetric shapes with no curvature. Like the T4, this element 

is susceptible to shear-locking behavior, but this issue can also be avoided by implementing a 

higher-order element, such as the twenty-node solid element (H20), depicted in figure 2.18. In 

addition, the H20 element can capture more accurately high stress gradients at the expense of 

greater computational power. Its shape functions are quartic. Both the H8 and H20 can be 

developed through isoparametric formulation, which is discussed in extensive detail in chapter 6 

of Cook et al [32]. 

 

Figure 2.17 – Eight-nodded Trilinear Element. 

 

 

 

𝑁𝑖 =
(𝑎±𝑥)(𝑏±𝑦)(𝑐±𝑧)

8𝑎𝑏𝑐
         (2.28) 
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Figure 2.18 – Twenty-node Solid Element. 

2.2.3 Constraints and Boundary Conditions 

 After the analyzed geometry has been discretized through 1D, 2D, or 3D elements, 

boundary conditions need to be imposed, as previously demonstrated in section 2.2.1. The purpose 

of this implementation is to represent mathematically support areas and forces applied to the 

studied BVP. Most BCs can be categorized as i) displacement constraints or ii) traction and force 

constraints. Displacement constraints assign a zero-value to the degrees of freedom of the selected 

nodal locations. In the case of a pinned beam, for example, the horizontal and vertical 

displacements, u and w, would be constraint to have a 0 value, and the moment would need to be 

specified. In contrast, in the case of a vertical roller, only the horizontal displacement would 

correspond to 0, and the transverse force and moment would need to be known. Commercial FEA 

software handles the implementation of displacement constraints by modifying the displacement 

in the assembled global stiffness matrix, whereas traction and force constraints are enforced by 

modifying the loading vector. Additional supports and its corresponding displacement and force 

BCs are shown in table 2.2.  
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Table 2.2 - Commonly used support conditions for beams and frames [34]. 

 

2.2.4 Computational Approach  

As a simplification, four main milestones can be outlined in this process: 1) learning about 

the problem, 2) developing a mathematical model, 3) modeling and simulating it, and 4) revising 

the results. Cook et al [32] proposed following the general methodology summarized in Table 2.3. 
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Table 2.3 - General methodology to solve a problem by FEA. 

Stage Description 

Problem 

Revision 

Research and prepare an appropriate model describing the physics of the 

system of interest according to the desired level of accuracy. 

Development of 

Mathematical 

Model 

Determine appropriate simplifications and create a mathematical model. 

Obtain approximate results from analytical calculations, handbook formulas, 

verified previous solutions, or experiments. 

Modeling and 

Simulation 

Generate input data describing the geometry, material properties, loads, and 

boundary conditions. 

Determine an appropriate mesh size and density, and potential areas of 

refinement. 

Specify quantities of interest to display, such as deformed shapes and 

stresses. 

Revision of 

Results 

Examine qualitatively whether the results seem logical. 

Perform adjustments to the physics model and domain discretization to obtain 

a satisfactory solution. 

 

 

2.3 Composite Material Modeling in Ansys 

 In addition to enabling the implementation of the FEM, Ansys, the commercial software 

selected for this study, counts with the capability of analyzing composite structures. As explored 

in section 1.3, the main inherent challenges involved with these types of structures are the 

anisotropic mechanical properties, manufacturing defects, and the mechanical behavior of the 

individual constituents (fiber and matrix). Ansys deals with these challenges by offering a set of 

“composite modeling features” which aid the user in creating an accurate digital representation of 

the analyzed composite structure. One of these features is ACP Pre, whose graphic user interface 

(GUI) and model tree are shown in figure 2.20. As the name implies, the term “layup” refers to 

the collection of piles that make up the composite lamina. The material, thickness, and orientation 

need to be specified for each individual ply. By convention, the first ply entry is treated as the 

bottom ply, but the individual ply orientation can be customized in different manners, such as in 

terms of a global coordinate system, or simply top-down. The “individual” material properties of 

the fibers and matrix are defined on the conventional material library of Ansys, whereas the 

thickness and ply orientation are defined in the ACP Pre suit.  For visualization, this menu is 

included in figure 2.21, located below. 
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Figure 2.20. – Ansys ACP Feature and model tree [35]. 

  

 

Figure 2.21 – Ansys fabric and stack up properties GUI [35]. 
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 Ansys’s ACP Pre provides different methods of modeling composite layups. First is the 

conventional shell composite layup. This can be understood as a two-dimensional model intended 

for thin-walled structures, where the thickness direction is much smaller than other dimensions. 

This assumption implies that in-plane and interlaminar stresses are not significant. These 

conventional shell elements are then used to discretize the reference surface of each ply; 

displacement and rotational degrees of freedom are allowed. In contrast, the solid- shell composite 

layup provides a three-dimensional representation for thicker structures, where in-plane and 

interlaminar stress interactions must be considered. This model considers double-sided contact 

across the individual plies to better capture interlaminar interactions, such as delamination and 

bucking, in the composite layup. Only displacements can be captured with this type of element. A 

visual distinction between conventional and continuum shell composite layups is illustrated by 

figure 2.22. The third method is the solid composite layup, which is the most robust and detailed 

element to model each laminate in the composite structure. Ansys’s user’s manual recommends to 

use this element when the interlaminar stresses must be captured accurately, such as in thick 

structures. This type of element is the most computationally expensive, followed by the solid-shell 

composite layup.   

 

Figure 2.22 –Representation of conventional and continuum shell models in Ansys [35]. 

 

2.4 Nonlinear Structural Analysis in Ansys 

 When a load is applied on a conventional structure, it first experiences elastic deformation, 

where the displacements of the elements composing the material are very small. As a result, it can 

be assumed that the material properties and boundary conditions remain constant under loading. 

When this occurs, Ansys formulates the global stiffness matrix and then implements iterative 

solves to find the field variable, displacements, and secondary outputs, strains and stresses. 

Nevertheless, when the material surpasses the elastic deformation zone and experiences significant 
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deformations, non-linear problem behavior is expected. In structural mechanics problems, Cook 

et al [32] identified three main types of nonlinear behavior. First is material non-linearity, which 

occurs when the material properties depend on the stress and strain, such as during plasticity and 

creep. Second is contact nonlinearity, where a gap is formed between adjacent parts, creating thus 

sliding of frictional forces. Lastly is geometric nonlinearity, where once deformation is large 

enough, the equilibrium equations must be modified to conform with the newly deformed 

structure.  

 Ansys deals with these challenges by implementing a series of solution methods and 

convergence monitoring algorithms. Ansys’s Mechanical user’s manual [35], for example, states 

that solving nonlinear problems implies the following: 

• A combination of incremental and iterative procedures 

• Using the Newton-Raphson method 

• Determining convergence 

• Defining loads as a function of time 

• Selecting Suitable time increments automatically 

 

In more detail, when solving for a nonlinear displacement curve, such as that illustrated by 

figure 2.23, Ansys breaks the simulation in smaller time increments and finds the approximate 

equilibrium configuration. In more detail, when the structure is in equilibrium, the sum of internal 

and external forces, I, and P, respectively must be 0, as expressed by equation 2.29. Once the 

structure begins to show non-linear behavior, Ansys uses the structure’s tangent stiffness, K0, to 

determine the displacement correction ca. This method is based on the elastic-limit configuration 

u0, where upon the application of a small load increment, ΔP, the resulting displacement is updated 

to 𝑢𝑎,as illustrated by figure 2.24. During this initial iteration, Ansys calculates the updated 

structure’s internal forces, Ia, and assigns the difference between the applied load and Ia to Ra, the 

force residual for the corresponding iteration. The default tolerance for this value is 0.5% but can 

be adjusted. If Ra is smaller than the specified tolerance, the displacement is assumed to be in 

equilibrium. Otherwise, an additional iteration is performed by determining a different correction, 

cb, as illustrated in figure 2.25. In addition to these iterative solution methods, Ansys also provides 

additional methods to troubleshoot and aid in convergence, such as performing non-linear 

diaglostics, tracking convergence graphicallty, and non-linear stabilization, as outlined in section 

8.12 of the user’s manual [35]. 
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Figure 2.23 – Nonlinear Displacement Curve [36]. 

 

 

 P + I = 0          (2.29) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 2.24 – First iteration of the nonlinear stress analysis solver method [36]. 
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Figure 2.25 – Second iteration of the nonlinear stress analysis solver method [36]. 
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3. Geometry Model of the Titan Submersible 

3.1  General Methodology 

 To conduct the proposed structural analysis of the Titan submersible, the geometry model, 

material assignment, and material properties were first prepared. Unsurprisingly, the nature of 

reverse-engineering an invention requires that the investigator consults all available resources and 

uses sound engineering judgement in certain areas to generate the most reasonable approximation 

to the actual product design. While the dimensions and material assignments of some structural 

components were available at the time this report was prepared, others had to be estimated. These 

main sources and assumptions are discussed in greater detail in each of the subsections under 

section 3.2, titled Main Components. The general process followed to develop the geometry model 

of the Titan Submersible is shown in figure 3.1. This process started with the gathering of 

intelligence, which in this context refers to descriptive pictures, visualizations, dimensions, and 

material assignments of each of the main components of the Titan Submersible. Consequently, this 

information was categorized and compared. Logical tests were then performed; some of these 

example questions can be found in table 3.1, located below. Conducting each of these tests 

encouraged the consistent and active evaluation of the obtained dimensions and material 

selections. Once these characteristics were deemed satisfactory, each major component was 

developed and subsequently assembled in SolidWorks ®, as explained in the following section.  

Figure 3.1 – General methodology followed to develop the geometry model of the Titan 

Submersible. 
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Table 3.1 - Examples of logical tests performed on the gathered information. 

Logical Test Example Question 

Reasonable 
Is it reasonable that the flange thickness of an O-Ring be 1.0m? 

Is it reasonable for an observation window diameter to be 5cm? 

Comparable 

The cylindrical pressure hull is reported by resource A to have a wall 

thickness of 5.0 and 5.1inches respectively, whereas resource C reports 

100inches. Does resource C provide a reasonably comparable dimension?   

Realistic 

Visually, the thickness of a component is suspected to be identical to the 

width of a thumb. Resource D reports this thickness to be 1mm. Is this 

realistic, knowing that the width of a thumb is roughly 22mm? 

 

3.2 Main Components  

 A general description and visualization of the Titan submersible was first presented in 

section 1.2, but, for readability, more detailed pictures of the vehicle are reintroduced below. 

Figure 3.2 shows an isometric view of the submersible outside the water. Figure 3.3 was presented 

by Stockton Rush at a conference in 2022 [37], during which he described the main structural 

components of the submersible. The right image in figure 3.3 is further adapted to identify and 

label these main structural components, as shown in figure 3.4. Because these components were 

the main line of defense protecting the passengers in the submersible, the author proposes to 

conduct the structural analysis by focusing on these components only. In short, the carbon-fiber 

cylindrical hull is flanked by two spherical sections, which are connected to the main cylinder 

through two interface O-Rings. For convenience, these main components are bulletized after 

paragraph. Although conventional reading direction suggests that the first discussed component 

be the observation window, followed by the bow, spherical section, the author chooses to introduce 

the components by logical assembly order. In other words, these components will be developed in 

the most intuitive way, starting with the simplest. Corresponding dimensions and computer-aided 

drawing development are discussed in detail in the proceeding sections. 

• Cylindrical Pressure Hull 

• Interface O-Rings 

• Stern, Spherical Section 

• Bow, Spherical Section 

• Observation Window 
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Figure 3.2 – Isometric view of the Titan Submersible [7]. 

 

 

 

Figure 3.3 – Schematic of the Titan Submersible and main structural components [37]. 
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Figure 3.4 – Adaptation of main structural components of the Titan Submersible. 

 

3.2.1 Cylindrical Pressure Hull 

 The cylindrical pressure hull of the submersible could be described as the middle section 

of the structure, as signaled in figure 3.5. During normal operations, it was analogous to the 

fuselage section of a passenger aircraft, where the passengers were seated. The most valuable real-

life picture -found at the time this report was written- was shown by Stockton Rush in his 2022 

business presentation [37] and is labeled as figure 3.6. It shows the cylindrical pressure hull, as 

workers apply an adhesive paste to the top surface, which is connected to the interface O-ring. 

This component is characterized by three main dimensions: inner diameter, length, and thickness. 

In Wikipedia [7] and a Seattle Times article [8], these values were reflected as 5.5ft, 8.3ft, and 

5.0in, respectively. Converting these values to metric units, as equations 3.30 to 3.32 show, leads 

to the numbers summarized in table 3.2.  
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Figure 3.5 – Cylindrical section and additional components of the Titan Submersible. 

 

 

 

 

 

Figure 3.6 – Cylindrical pressure hull used in first design iteration of the Titan Submersible [37]. 
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Table 3.2 - Cylindrical pressure hull dimensions and information source. 

Component Name Dimension Source 

Cylindrical Section 

Inner  

Diameter [m] 
1.4022 Seattle Times [8] 

Length [m] 2.5298 Wikipedia [7] 

Thickness [cm] 12.70 Wikipedia [7] 

 

4.6ft ∗ (
30.48m

1ft
) = 140.21cm        (3.1) 

8.3ft ∗ (
30.48cm

1ft
) = 252.98cm       (3.2) 

5.0in ∗ (
2.54cm

1in
) = 12.7cm        (3.3) 

 

Once these values were compiled, a two-dimensional sketch model was developed in 

SolidWorks ®, as shown in figure 3.7. The grey cross-sectional area enclosed by the black lines 

was then revolved 360 degrees about the x-axis, which enabled the creation of the three-

dimensional pressure hull. Starting from the top left corner, and proceeding clockwise, figure 3.8 

shows the isometric, top, and front views, respectively, of this component.  

 

 

 

 

 

Figure 3.7 – Two-dimensional sketch model of the cylindrical pressure hull. 
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Figure 3.8 – Isometric, top, and front view of the cylindrical pressure hull component in 

SolidWorks ®. 

 

3.2.2 Interface O-Rings 

 As the name implies, the Interface O-Rings are the connecting bodies between the CFRE 

cylindrical pressure hull and the Titanium spherical sections, as shown in figure 3.9. The purpose 

of these rings was to create a seal between its two flanking components and prevent fluid leakage, 

such as air outside or water inside the submersible. The most insightful available visualizations of 

this component are compiled in figure 3.10. The top left image shows the surface connecting to 

the spherical section, while the top right shows the surface joining the cylindrical section. The 

bottom right image provides additional details about the cross-section mating with the CFRE hull, 
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and the bottom left provides the outer profile of the O-Ring. Four valuable details that can be 

observed from this image are bulletized below. These observations are annotated in figure 3.11 for 

clarification. 

• The side meeting the spherical section is flat and slightly protruded in the radial direction, 

away from the central axis. 

• The side joining the CFRE cylindrical pressure hull is not flat but C-shaped. The lower half 

of this C section holds the inner diameter edge of the pressure hull surface, while the upper 

half holds the outer diameter surface.  

• The lower C section appears to be uniformly extended to the opposite end, which meets 

the spherical section. Both protrude in the axial direction, pointing toward the cylindrical 

section. 

•  The middle section is of uniform shape and smaller than connecting end. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 – Interface O-Rings and additional components of the Titan Submersible. 
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Figure 3.10 – Most valuable visualizations of the Interface O-Rings [37]. 

 

Figure 3.11 – Qualitative Cross-sectional profile of the O-Ring. 

 

 

 Because no available resources provided information about the measurements of this 

component, digital scaling and engineering judgement were used to determine the most reasonable 

component dimensions. A male, adult human thumb can be observed in the amplified bottom right 

image in figure 3.10, labeled now figure 3.12. The average thumb width, Tb, measured at the 
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knuckle (see bottom right corner of 3.11) was reported as 22mm by a ring-maker website [41]. 

Figure 3.12 was a frame obtained from a video [40] and is the closest approximation to a near-

perpendicular camera angle. As a result, figure 3.12 is assumed to be an ideal, scalable 

representation of the real O-Ring component. Using digital scaling, the magnitude of the arrow 

placed over the thumb was rotated and scaled to match the dimensions illustrated in the upper and 

lower images of figure 3.12. These dimensions were then compiled and recorded in table 3.3.   

 

 

Figure 3.12 – Digital scaling of the O-Ring dimensions. 
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Table 3.3 - Titanium O-Ring interface dimensions and information source. 

Component 

Name 
Dimension Source 

O-Ring  

Interface 

Inner Diameter, C-Section [m] 1.4022 
Wikipedia 

[7] 

Outer Diameter, C-Section [m] 1.6562 
Wikipedia 

[7] 

Thickness, C-Section [cm] 0.60 
Engineering 

Judgement 

Width, C-Section [cm] 1.40 
Engineering 

Judgement 

Web Thickness, C-Section [cm] 2.80 
Engineering 

Judgement 

Length, O-Ring Mid-Section [cm] 28.00 
Engineering 

Judgement 

Thickness, Spherical Section Interface [cm] 2.80 
Engineering 

Judgement 

 

 Using the previous dimensions as the most reasonable estimates, the two-dimensional 

sketch depicted in figure 3.13 was then developed. For clarity, figure 3.13-a shows only two 

dimensions, the radial inner and outer distances from the origin, rinn and rout. The space between 

these two dimensions encloses the cylindrical pressure hull thickness. Figure 3.13-b includes the 

remaining measurements: thickness of spherical section interface thSSI, length of the O-Ring 

middle section lmid, web thickness of the C-section twebCSec, width of the C-section wCSec, and 

thickness of the C-section tCSec. To create the three-dimensional O-ring, the gray, enclosed area 

was revolved 360 degrees about the x-axis. Starting from the top left, and moving clockwise, the 

isometric, front, and top views are compiled in figure 3.14. 
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Figure 3.13 - Two-dimensional sketch model of the Titanium Interface O-Ring. 

 

(a) 

(b) 
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Figure 3.14 – Isometric, front, and top view of the Titanium O-ring Interface in SolidWorks ®. 

 

3.2.3 Stern, Spherical Section 

 The general geometry of the stern and bow spherical directions is nearly identical. The 

distinction between the two is the embedded observation window, which is only present at the bow 

section, as can be observed in figure 3.15. The purpose of the stern spherical section was to store 

mission-essential equipment for the survivability of humans at normal atmospheric conditions. 

Among this equipment were soda lime pellets, required to remove the CO2 from the cabin, and 

electrical systems for navigation and control of the submersible [39]. Although no real-life pictures 

of the stern spherical section were available, figure 3.16, representing the bow section [42], 

provides three pieces of valuable insight into the geometry of this component. First is the 

realization that surface meeting the O-Ring is slightly protruded in the radial direction to match 

the outer diameter of the O-Ring. Second is the observation that the thickness of this protruded 

surface is similar to the O-Ring section. Third is the visual confirmation that the section is, in fact, 

spherical rather than ellipsoidal. This component is characterized by four dimensions: inner 

diameter, wall thickness, thickness of O-Ring interface wall, and outer diameter of O-Ring 
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interface wall. The first two values were extracted from Wikipedia [7], while engineering judgment 

was used to determine the values of the last two, as summarized in table 3.4, below.  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 – Stern, Spherical Section and additional components of the Titan Submersible. 
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Figure 3.16 – Bow, Spherical Section (in lieu of the Stern, Spherical Section) [42]. 

 

 

Table 3.4 - Stern, spherical section dimensions and information source. 

Component 

Name 
Dimension Source 

Stern 

Spherical 

Section 

Inner Diameter [m] 1.4022 
Wikipedia 

[7] 

Thickness [cm] 8.26 
Wikipedia 

[7] 

Thickness, O-Ring Interface Wall [cm] 2.80 
Engineering 

Judgement 

Outer Diameter, O-Ring Interface Wall 

[m] 
1.7762 

Engineering 

Judgement 

 

The two-dimensional sketch based on the dimensions of table 7 was then developed and is 

shown in figure 3.17. After revolving this enclosed surface once about the x-axis, its corresponding 

three-dimensional profile was created. From the top left corner, proceeding clockwise, figure 3.18 

shows the isometric, side, and back profiles of this component.  

 

 

 

 

Similar Thickness 
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Figure 3.17 - Two-dimensional sketch model of the Stern, Spherical Section. 
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Figure 3.18 - Isometric, side, and front view of the Stern, Spherical Section in SolidWorks ®. 
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3.2.4 Bow, Spherical Section 

 As signaled in the previous subsection, the bow spherical section has an embedded 

observation window; this is illustrated by figure 3.19. In addition to providing access and the 

structural connection to the observation window, this section was reported to be assigned as a 

latrine area. The same procedure to develop the base sketch of the stern, spherical section was 

followed at first, implementing the first four dimensions in table 3.5. Since the geometry of the 

observation window was described to have an inner and outer diameter of 38 and 53 cm, 

respectively [7, 38], the corresponding intersection coordinates were found, as shown in figure 

3.20. Then, a revolved cut was performed, which led to the creation of its corresponding three-

dimensional profile. From the top left, moving clockwise, figure 3.21 shows the side, isometric, 

and front profiles of this component. 

 

Figure 3.19 – Bow, Spherical Section and additional components of the Titan Submersible. 
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Table 3.5 - Bow, spherical section dimensions and information source. 

Component 

Name 
Dimension Source 

Bow 

Spherical 

Section 

Inner Diameter [m] 1.4022 Wikipedia [7] 

Thickness [cm] 8.26 Wikipedia [7] 

Thickness, O-Ring Interface Wall [cm] 2.80 
Engineering 

Judgement 

Outer Diameter, O-Ring Interface Wall [m] 1.7762 
Engineering 

Judgement 

Base Diameter Intersection, 

Observation Window [cm] 
38.0 Wikipedia [7] 

Outer Diameter Intersection, 

Observation Window [cm] 
53.0 

ThinkReliability.com 

[38] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20 - Two-dimensional sketch model of the Bow, Spherical Section. 

 

  

 

Intersection of 

Observation 

Window 
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Figure 3.21 - Side, isometric, and front view of the Stern, Spherical Section in SolidWorks ®. 

 

 

3.2.5 Observation Window 

 The observation window of the submersible provided the passengers with a direct access 

port to observe the wreckage of the Titanic. It is labeled below, in figure 3.22. The most valuable 

real-life image is shown in figure 3.23. This frame was taken from a video [37], where OceanGate 

employees appear to carry the uninstalled PPMA observation window. Measurements provided by 

Wikipedia [7] and ThinkReliability,com [38] appear to be in qualitative agreement: the base and 

outer diameter of this component are recorded as 38.0 and 53.0 cm, respectively. While the radius 

of curvature of the window was not included, engineering judgement strongly suggests that this 

curvature is similar to that followed by the bow spherical section. Using SolidWorks ®, the 

horizontal intersection coordinates of the window base and outer diameters were found to be 67.49 
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and 73.75cm, while the radius of the spherical section was 78.37cm. These dimensions are 

summarized in table 3.6, located below.   

 

Figure 3.22 – Observation Window and additional components of the Titan Submersible. 
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Figure 3.23 – Uninstalled Observation Window [37]. 

 

 

 

Table 3.6 - Observation window dimensions and information source. 

Component 

Name 
Dimension Source 

PPMA 

Observation 

Window 

Base Window Diameter [m] 38.0 Wikipedia [7] 

Exterior Window Diameter [cm] 53.0 
TinnkReliability.com 

[38] 

Base Window Diameter, x-intersection 

[cm] 
67.49 

Engineering 

Judgement 

Exterior Window Diameter, x-

intersection [cm] 
73.75 

Engineering 

Judgement 

Window Outer Radius of Curvature 

[cm] 
78.37 

Engineering 

Judgement 

 

 Implementing the previous dimensions, a two-dimensional base profile was then created, 

as shown in figure 3.24. This enclosed area was revolved 360 degrees about the x-axis, which 



65 

created a three-dimensional profile. From the top, moving clockwise, figure 3.25 shows the 

isometric, side and front views of the observation window. 

 

 

Figure 3.24 - Two-dimensional sketch model of the Observation Window. 
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Figure 3.25 - Side, isometric, and front view of the Stern, Spherical Section in SolidWorks ®. 

  

3.2.6 Final Assembly 

 After the three-dimensional representation of each of the previous components was 

developed, the assembly process followed. Creating a 3D representation of an object in 

SolidWorks is also known, more informally, as a creating a part. In this context, the assembly 

refers to the process of constructing a final, single 3D representation using a several parts. As a 

result, the assembly of the five components developed in sections 3.2.1 to 3.2.5 led to the final 

Titan Submersible model shown in figure 3.26. From the top left, moving clockwise, the isometric, 

front, and side views are contrasted in figure 3.27.  
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Figure 3.26 – Assembly of the Titan Submersible using its five main components. 
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Figure 3.27 – Isometric, front, and side views of the final assembly of the Titan Submersible. 

 

3.3 Assumptions and Limitations 

 The proposed, rapid three-dimensional prototype of the Titan Submersible was constructed 

implementing a series of assumptions, for which there are associated limitations. One of these 

principal assumptions is the component simplification in the geometry model. Components that 

can be observed in footage of the operational Titan Submersible, such as those denoted in figure 

3.28, are examples of exclusions from the presented geometry model. These are, for example, 

electrical wiring cables, navigation thrusters, the outer white shell, and the landing skids. The 

second chief assumption is the bonding between connecting components is unbreakable. During 

the manufacturing process of the submersible [40], OceanGate collaborators were observed 

applying adhesive to glue the CFRE pressure hull to the Titanium Interface O-Rings. Similarly, 

footage shows that the bow hemisphere was attached to the O-Ring through bolts [42]. These two 

characteristics can be visualized in figure 3.29. In third place is the adoption of a simplified 

topology compared to that of the Titan Submersible. For example, the proposed model does not 

include the fillets that can be observed in the O-Ring, or the protruded prismatic surfaces to connect 

other components, as these were excluded from the analysis. The observation window seat is 

another example. Because it was assumed to be perfectly bonded to the bow hemisphere, no bolts 
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or connecting surface were modeled. These aspects can be observed in figure 3.30. Lastly, there is 

unavoidable uncertainty in implementing dimensions from available resources, and the only way 

to verify the veracity of these sources is by physically measuring these dimensions. All these 

discussed assumptions and limitations are summarized in table 3.7, located below.  

Figure 3.28 – Visualization of some components excluded from the simplified geometry model 

[7]. 

 

Figure 3.29 – Instances of component bonding in the operational Titan Submersible [42, 40]. 
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Figure 3.30 – Visualization of some components excluded from the simplified geometry model 

[40, 42]. 

 

 

Table 3.7 - Summarized assumptions and limitations with the proposed geometry model. 

Assumption Associated Limitation 

Component  

Simplification 

Failure could have originated in the small, excluded components, such as 

connecting bolts, cables, or corresponding orifices. This possibility is 

excluded from this analysis. 

Component  

Bonding 

Components are assumed to have a perfectly unbreakable bond. The 

possibility of failure caused by the adhesive use to bond the CFRE pressure 

full and the Titanium Interface O-Rings is not considered. The same is 

assumed for the boding between the PPMA observation window and the 

bow, Titanium spherical section. 

Simplified 

 Topology 

Specific topological features, such as fillets in corners of the interface O-

Ring and the base collar of the observation window are not considered in 

this stage of the analysis. This topology will be optimized in chapter XXXX. 

Uncertainty  

in Dimensions 

Without physical confirmation of these dimensions, they are no more than 

an approximation.  
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4. Analytical Prediction of Displacement and Buckling Load of the 

Cylindrical Laminated Composite Section of Titan Submersible 

4.1 Mathematical Model: Introduction 

In preparation to generate the FEM solution for the proposed problem using Ansys, a rapid 

analytical approach was first implemented. Unlike isotropic materials, such as metals, the 

mechanical properties of laminated composite structures are heavily dependent on the selected 

constituents and orientation. This was previously identified in the literature review, conducted in 

section 1.3. As a result, the cylindrical section of the Titan Submersible, composed of CFRE, was 

selected to predict the displacements and buckling load using shell theory for laminated 

composites. These properties are bulletized for convenience to the reader. 

• Displacements: Axial, Radial, and Circumferential, in [mm]. 

• Buckling Load, in [N] 

Although analytical solutions are limited and constricted under a set of assumptions, these 

methods can provide three main advantages before the use of computer-aided engineering to 

investigate a problem of interest. The first and most obvious advantage is to gain a fundamental 

understanding of the physical phenomena being studied, identify properties of interest, and 

understand the set of assumptions under which the mathematical model is valid. Another benefit 

of analytical methods is the generation of benchmarking data which can then be compared to 

numerical solutions produced through computer software. This can provide the engineering analyst 

with an appropriate qualitative and quantitative judgement of the properties of interest, such as 

magnitude of displacement and locations where stresses are the largest. Lastly, the dimensions of 

the cylindrical component, estimated in section 3.2.1, can be easily corroborated by first assessing 

the analytical results. This can save the analyst computational resources (available computational 

time, electricity, wear-and-tear of computer equipment) before undertaking the task of developing 

a FEA simulation. 

To investigate the displacements and buckling of the laminated composite geometry of 

interest, three different approaches were first considered, as reflected in Table 4.1. These were flat 

plate theory, composite beam theory, and shell theory. As its name implies, flat plate theory is 

limited to geometries with no significant curvature. While a cylindrical structure, such as the one 

subject of this study, can be considered as a cylindrical beam, composite beam theory is not 

intended to account for curvature effects. Moreover, shell theory is intended for inherently curved 

structures, such as spheres and cylinders. As a result, this theory was adopted to develop the 

analytical mathematical model and generate the properties of interest. 
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Table 4.1 - Comparison of analytical methods for composite structures [43]. 

Method Flat Plate Theory 
Composite Beam 

Theory 
Shell Theory 

Intended  

Geometry 
Thin, flat plates Long, slender beams  

Cylindrical and 

spherical shapes 

Brief 

Description 

Used for analysis of large, flat 

panels with no curvature.  

Used for beams 

where axial and 

flexural behaviors are 

dominant. 

Used for structures 

with curvature. 

Main 

Assumptions 

Thickness is smaller 

compared to other 

dimensions. 

 

Strains vary linearly across 

plate. 

 

Shear deformations are 

negligible. 

  

The dominant stresses are in-

plane: σx, σy, τxy >> σz 

Shear deformations 

are neglected. 

 

Axial, transverse, and 

torque loads can be 

applied to the model. 

 

Curvature effects are 

not well accounted. 

Thin shells resist 

loads by membrane 

forces, which are 

tangent to the 

reference surface at 

any point. 

 

Bending moments are 

neglected. 

 

Results are 

reasonable except 

near supports and 

areas of abrupt 

changes in loading. 

 

 

4.1.1 Shell Theory for Cylindrical Laminated Composites: Critical Assumptions 

Unlike plates, which resist transverse loads through bending and transverse shear forces, thin 

shells resist these loads through membrane forces. These membrane forces exist in the 

corresponding plane tangential to the reference surface. The mathematical model associated to 

determine these membrane forces is referred to as the membrane theory of shells by Kollar and 

Springer [43], whose work and findings are developed in the entirety of this and the following two 

subsections. They outlined the following assumptions and limitations to the proposed theory. 

• The theory uses underlying assumptions of thin plate theory: 

o The laminate undergoes small displacements. 

o Strains vary linearly across the thickness direction (out-of-plane). 

o Shear deformations are negligible. 

o Out-of-plane normal stress σz and shear stress τxz and τyz are small compared to 

the in-plane normal σx, σy, and shear τxy stresses. 

• Bending moments are neglected. 

• Cylinder thickness, h, is small compared with all other dimensions. 

• Membrane forces are dependent on geometry, boundary conditions, and applied loads; they 

are independent of material properties. 

• Changes in curvature do not affect the stresses. 
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• Results predicted through this theory are reasonable except near the supports and areas of 

abrupt changes in loads. 

 

As mentioned in the third series of assumptions, this analysis starts assuming that the thickness, 

h, is smaller than other dimensions, so that the membrane forces can be determined according to 

equations 4.1 to 4.4. Coordinates x, y, and z represent the local coordinates, where x and y exist in 

the plane tangential to the reference point of interest, while z is perpendicular. This is better 

visualized in figure 4.1, adapted from [43]. In the previous equations, Nx, Nx, Nx, and Nx represent 

the membrane forces acing at the reference surface of an infinitesimal element; Rx and Ry are the 

local radii of curvature. The origin of the coordinate system is taken to be the midsurface, so that 

the limits of integration hb and ht correspond to the back coordinate and top distance of the shell 

thickness. Implementing the assumption of a thin shell, so that z approaches 0, reduces equations 

4.1 through 4.4 into 4.5 to 4.8 

 

Nx = ∫ 𝜎𝑥 (1 +
𝑧

𝑅𝑦
) 𝑑𝑧

ℎ𝑡
−ℎ𝑏

        (4.1) 

Ny = ∫ 𝜎𝑦 (1 +
𝑧

𝑅𝑥
)𝑑𝑧

ℎ𝑡
−ℎ𝑏

        (4.2) 

Nxy = ∫ 𝜏𝑥𝑦 (1 +
𝑧

𝑅𝑦
)𝑑𝑧

ℎ𝑡
−ℎ𝑏

        (4.3) 

Nyx = ∫ 𝜏𝑦𝑥 (1 +
𝑧

𝑅𝑥
) 𝑑𝑧

ℎ𝑡
−ℎ𝑏

        (4.4) 

Nx = ∫ 𝜎𝑥𝑑𝑧
ℎ𝑡
−ℎ𝑏

         (4.5) 

Ny = ∫ 𝜎𝑦𝑑𝑧
ℎ𝑡
−ℎ𝑏

         (4.6) 

Nxy = ∫ 𝜏𝑥𝑦𝑑𝑧
ℎ𝑡
−ℎ𝑏

         (4.7) 

Nyx = ∫ 𝜏𝑦𝑥𝑑𝑧
ℎ𝑡
−ℎ𝑏

         (4.8) 

 

Figure 4.1 – Representation of membrane forces in a shell [43]. 

 

 Implementing the fourth critical assumption, namely the independence of membrane forces 

on the material properties of the analyzed geometry, the equations of static equilibrium, 4.9, can 

be used to determine the membrane forces. In more detail, the 6-by-6 matrix in equation 4.9 is 

referred to as the ABD matrix, which can be understood as the stiffness response of a laminate to 

in-plane forces and moments.  
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{
  
 

  
 
Nx
Ny
Nxy
Mx

My

Mxy}
  
 

  
 

=

[
 
 
 
 
 
A11 A12 A16 B11 B12 B16
A12 A22 A26 B12 B22 B26
A16 A26 A66 B16 B26 B66
B11 B12 B16 D11 D12 D16
B12 B22 B26 D12 D22 D26
B16 B26 B66 D16 D26 D66]

 
 
 
 
 

{
  
 

  
 
ϵx
0

ϵy
0

γxy
0

κx
κy
κxy}

  
 

  
 

   (4.9) 

 

 Although the derivation of the ABD matrix is beyond the scope of this work, the details 

leading to its development can be obtained in chapters 2 and 3 of [43]. Mathematically, the ABD 

matrix of a laminate is defined by the stiffness matrices in equations 4.10 through 4.12, and are 

defined by the elements i, j = 1, 6. Because [Q] is constant across each ply, these equations can 

take the form of the summations in equations 4.13 through 4.15, where k reflects to each individual 

ply number. For a laminate of an arbitrary number of layers, oriented at any angle, its ABD matrix 

can be assembled by first developing the reduced stiffness coefficient matrix Q, which is expressed 

by equation 4.16. The elastic modulus in the longitudinal and transverse directions are represented 

by E1 and E2, respectively, while the longitudinal Poisson’s ratio is denoted by 𝜈12. The 

longitudinal shear modulus is given by G12, and the engineering constant D, is expressed by 

equation 4.17, and created merely for convenience. This set of mechanical properties are 

dependent on the composite structure constituents, namely the fiber and the matrix, and can be 

determined mathematically through the “rules of mixture”, whose development is deferred to 

section 4.2. Once the Q matrix has been built, the ABD matrix can be developed by considering 

the contribution of each other laminate with respect to an arbitrarily defined reference plane, as 

illustrated in figure 4.2. When a ply is oriented at a non-zero angle, like the reference Q matrix, 

rotation matrices must be used to reflect the express the properties of that matrix in the original 

frame of refence. To achieve this objective, the rotation matrices outlined by equations 4.18a and 

4.18b must be built and later multiplied by Q, as expressed by 4.19. Letters c and s denote the 

cosine and sine of the corresponding fiber orientation of ply k, at angle theta, assumed to be 

positive when measured from the +x to the +y axis. 

 

 

[𝐴] = ∫ [𝑄]𝑑𝑧
ℎ𝑡
−ℎ𝑏

= 𝐴𝑖,𝑗 = ∫ 𝑄𝑖,𝑗𝑑𝑧
ℎ𝑡
−ℎ𝑏

      (4.10) 

[𝐵] = ∫ 𝑧[𝑄]𝑑𝑧
ℎ𝑡
−ℎ𝑏

= 𝐵𝑖,𝑗 = ∫ 𝑧𝑄𝑖,𝑗𝑑𝑧
ℎ𝑡
−ℎ𝑏

      (4.11) 

[𝐷] = ∫ 𝑧2[𝑄]𝑑𝑧
ℎ𝑡
−ℎ𝑏

= 𝐷𝑖,𝑗 = ∫ 𝑧2𝑄𝑖,𝑗𝑑𝑧
ℎ𝑡
−ℎ𝑏

      (4.12) 

𝐴𝑖,𝑗 = ∑ (𝑄𝑖𝑗)
𝐾
𝑘=1 𝑘

(𝑧𝑘 − 𝑧𝑘−1)       (4.13) 

𝐵𝑖,𝑗 =
1

2
∑ (𝑄𝑖𝑗)
𝐾
𝑘=1 𝑘

(𝑧𝑘
2 − 𝑧𝑘−1

2 )       (4.14) 

𝐷𝑖,𝑗 =
1

3
∑ (𝑄𝑖𝑗)
𝐾
𝑘=1 𝑘

(𝑧𝑘
3 − 𝑧𝑘−1

3 )       (4.15) 

[Q] = [

𝐸1

𝐷

𝜈12𝐸2

𝐷
0

𝜈12𝐸2

𝐷

𝐸2

𝐷
0

0 0 𝐺12

]        (4.16) 

𝐷 = 1 −
𝐸2

𝐸1
𝜈12
2          (4.17) 
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[Tσ] = [
𝑐2 𝑠2 2𝑐𝑠
𝑠2 𝑐2 −2𝑐𝑠
= 𝑐𝑠 𝑐𝑠 𝑐2 − 𝑠2

]        (4.18a) 

[Tϵ] = [
𝑐2 𝑠2 𝑐𝑠
𝑠2 𝑐2 −𝑐𝑠
−2𝑐𝑠 2𝑐𝑠 𝑐2 − 𝑠2

]       (4.18b) 

[𝑄𝑘] = [[Tσ]][𝑄][Tϵ]         (4.19) 

 

 

Figure 4.2 – Visualization of the distances of other laminates with respect to the reference plane 

[43]. 

 

Consequently, implementing the fifth assumption, the curvatures become 0, and 4.9 

reduces to equation 4.20, where ϵx
0, ϵy

0, and γxy
0  represent the strains of the reference surface. By 

neglecting the variations of strains across the shells, the strains can be described by equation 4.21. 

Finally, this implies that the stresses in each layer can be calculated by equation 4.22. These 

fundamental assumptions are the base to develop the resulting mathematical models for composite 

shells described in the next two sub-sections, 4.1.2 and 4.1.3. 

 

{

ϵx
0

ϵy
0

γxy
0

} = [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

]

−1

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

}       (4.20) 

 

{

ϵx
ϵy
γxy
} = {

ϵx
0

ϵy
0

γxy
0

}          (4.21) 

 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄16 𝑄26 𝑄66

] {

ϵx
ϵy
γxy
}       (4.22) 
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4.1.2 Membrane Theory: Prediction of Displacements 

 The analyzed geometry is treated as a thin-walled cylinder with built-in ends, such as the 

one in figure 4.3a. It can be subjected to a pressure Pz, which may vary linearly along the radial 

direction, and a constant axial load 𝑁̂ and constant torque 𝑇̂. For these applied loads, the 

corresponding forces and moments inside the wall of the cylinder are shown in figure 4.3b. The 

uppercase letters M, N, and V represent the moments, forces, and shear forces, and the subindices 

x, y, and z denote the corresponding direction or plane where they occur. R represents the radial 

distance from the main axis of the cylinder to its outer surface. Consequently, five equilibrium 

relationships can now be established, as summarized by 4.23 through 4.27. The strains and 

curvatures of the reference surface are then expressed by equations 4.28a through 4.29c. Axial, 

circumferential, and radial displacements, the properties of interest for this subsection, are denoted 

by u0, v0, and 𝑤0, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 – a) Cylinder model and its acceptable applied loads. b) Forces and moments inside 

the wall [43]. 

 
dNx

dx
= 0          (4.23) 

d

dx
(RNxy +Mxy) = 0         (4.24) 

Ny

R
−
d2Mx

dx2
= Pz         (4.25) 

Vx =
dMx

dx
          (4.26) 

Vy =
dMxy

dx
          (4.27) 

ϵx
0 =

𝑑𝑢0

𝑑𝑥
          (4.28a) 

ϵy
0 =

𝑤0

𝑅
          (4.28b) 

γxy
0 =

𝑑𝑣0

𝑑𝑥
          (4.28c) 

κx = −
d2𝑤0

𝑑𝑥2
          (4.29a) 

(a) (b) 
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κy = −
d2𝑤0

𝑑𝑥2
          (4.29b) 

κxy = −
2

𝑅

𝑑𝑣0

𝑑𝑥
          (4.29c) 

 

 Chapter 8.2 of [43] provides specific details about the formulation of the results leading to 

the development of the equations of interest to describe the axial, circumferential, and radial 

displacements. The purpose of this section, however, is to provide a top-level overview of the 

process leading to this result. The equations of equilibrium, 4.23 through 4.27, strain-displacement, 

4.28 through 4.29, and force-strain, 4.9, provide relationships for all the forces, moments, and 

displacements of the wall. Integration of the first two equilibrium equations leads to equations 

4.30a and 4.30b, where D1 and 𝐷2 denote unknown constants. Substituting the force-strain 

relationship, 4.9 into 4.27a-b leads to equation 4.31. For convenience and simplicity of terms, the 

collection of matrices [a1] through [a4], [H], g, and elements f1 through f5 will be collected in 

table 4.2. The derivatives of u0and v0, which appear on the second element of equation 4.31 can 

then be expressed by 4.32; the internal forces Ny and My are then expressed as equation 4.33. 

Substituting the strain and curvature relationships, equations 4.28a through 4.29c, into 4.33 leads 

to equation 4.34. Additional substitution of equation 4.32 into 4.34 results in 4.35, which is then 

re-expressed as equations 4.36a-b.  

D1 = 𝑁𝑥          (4.30a) 

D2 = 𝑁𝑥𝑦 +
𝑀𝑥𝑦

𝑅
         (4.30b) 

{
𝐷1
𝐷2
} = [𝑎2] {

𝑤0

𝑅

−
d2𝑤0

𝑑𝑥2

} + [𝑎3] {

𝑑𝑢0

𝑑𝑥

𝑑𝑣0

𝑑𝑥

}       (4.31) 

{

𝑑𝑢0

𝑑𝑥

𝑑𝑣0

𝑑𝑥

} = −[𝑎3]
−1[𝑎2] {

𝑤0

𝑅

−
𝑑2𝑤0

𝑑𝑥2

} + [𝑎3]
−1 {

𝐷1
𝐷2
}     (4.32) 

{
𝑁𝑦
𝑀𝑥
} = [

𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16

]

{
  
 

  
 
ϵx
0

ϵy
0

γxy
0

𝜅𝑥
𝜅𝑦
κxy}

  
 

  
 

     (4.33) 

{
𝑁𝑦
𝑀𝑥
} = [𝑎1] {

𝑤0

𝑅

−
d2𝑤0

𝑑𝑥2

} + [𝑎4] {

𝑑𝑢0

𝑑𝑥

𝑑𝑣0

𝑑𝑥

}       (4.34) 

{
𝑁𝑦
𝑀𝑥
} = [𝐻] {

𝑤0

𝑅

−
d2𝑤0

𝑑𝑥2

} + {
𝑔1
𝑔2
}        (4.35) 

𝑁𝑦 = 𝐻11
𝑤0

𝑅
− 𝐻12

𝑑2𝑤0

𝑑𝑥2
+ 𝑔1       (4.36a) 

𝑀𝑥 = 𝐻21
𝑤0

𝑅
− 𝐻12

𝑑2𝑤0

𝑑𝑥2
+ 𝑔2       (4.36b)  
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Table 4.2 - Parameters required for equations 4.31 - 4.36b. 

[a1] = [
𝐴22 −

𝐵22

𝑅
𝐵12

𝐵12 −
𝐷12

𝑅
𝐷11

]   [a3] = [
𝐴11 𝐴16 −

2𝐵16

𝑅

𝐴16 +
𝐵16

𝑅
𝐴66 −

𝐵66

𝑅
−
2𝐷66

𝑅2

] 

 

[a2] = [
𝐴12 −

𝐵12

𝑅
𝐵11

𝐴26 −
𝐷26

𝑅2
𝐵16 +

𝐷16

𝑅

]                 [a4] = [
𝐴12 𝐴26 −

2𝐵26

𝑅

𝐵11 𝐵16 −
2𝐷16

𝑅

] 

 

[H] = [
𝐻11 𝐻12
𝐻21 𝐻22

] = [𝑎1] − [𝑎4][𝑎3]
−1[𝑎2]   

 

𝐠 = {
𝑔1
𝑔2
} = [𝑎4][𝑎3]

−1 {
𝐷1
𝐷2
}  

 

f1 = H22 𝑓2 = −
1

𝑅
(𝐻21 +𝐻12)  𝑓3 =

𝐻11

𝑅2
 f4 = Pz0 −

𝑔1

𝑅
  f5 = Pz1 

 

 

 Inserting equations 4.36a-b into 4.25 leads to equation 4.37. The solution to this equation 

yields the radial displacement of the reference surface, the first equation of interest, expressed by 

4.38. The length of the cylinder is represented by L; λ and 𝛽 denote the real and imaginary 

components of the roots of the characteristic polynomial, as expressed in equations 4.40a-b and 

4.39. The constant D1 represents the membrane force component in the x-axis caused by the 

magnitude of the axial force 𝑁̂, as in equation 4.41. D2, expressed by 4.43, is obtained by inserting 

the total torque acting on the cylinder, 4.42, into 4.30b. Implementing the boundary conditions 

outlined by 4.44a-b, the constants C1 − C4 leads to the equations summarized in 4.45. The terms 

Yij are summarized in table 4.3, for convenience.  

  

𝑓1
𝑑4𝑤0

𝑑𝑥4
+ 𝑓2

𝑑2𝑤0

𝑑𝑥2
+ 𝑓3𝑤

0 = 𝑓4 + 𝑥𝑓5       (4.37)   

w0 = 𝑒−𝜆𝑥[𝐶1 cos(𝛽𝑥) + 𝐶2 sin(𝛽𝑥)] + 𝑒
−𝜆(𝐿−𝑥)[𝐶3 cos(𝛽(𝐿 − 𝑥))  (4.38) 

+𝐶4 sin(𝛽(𝐿 − 𝑥))]} + [
1

𝑓3
(𝑓4 + 𝑥𝑓5)]  

γ = √−𝑓2+
√𝑓2

2−4𝑓1𝑓3

2𝑓1
         (4.39) 

λ = Re(γ)          (4.40a) 

β = Im(γ)          (4.40b) 

D1 = 𝑁𝑥 =
𝑁̂

2𝜋𝑅
         (4.41) 

𝑇̂ = (𝑁𝑥𝑦𝑅)2𝜋𝑅 +𝑀𝑥𝑦2𝜋𝑅        (4.42) 

D2 =
𝑇̂

2𝜋𝑅2
          (4.43) 

w0 = 0 
dw0

𝑑𝑥
= 0 at x = 0      (4.44a) 
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w0 = 0 
dw0

𝑑𝑥
= 0 at x = L      (4.44b) 

 

[

1 − 𝑌13 𝑌14
−𝜆 𝛽 𝑌23 𝑌24
𝑌31 𝑌32 1 0
𝑌41 𝑌42 𝜆 𝛽

]{

𝐶1
𝐶2
𝐶3
𝐶4

} =

{
  
 

  
 

𝑓4

𝑓3
𝑓5

𝑓3
𝑓4+𝐿𝑓5

𝑓3
𝑓5

𝑓3 }
  
 

  
 

      (4.45) 

 

Table 4.3 - Parameters in equation 4.45. 

𝑌13 = 𝑒
−𝜆𝐿 cos𝛽𝐿     Y14 = e

−𝜆𝐿 sin𝛽𝐿 

Y23 = e
−𝜆𝐿(𝜆 cos𝛽𝐿 + 𝛽 sin𝛽𝐿)   Y24 = e

−𝜆𝐿(−𝛽 cos𝛽𝐿 + 𝜆 sin𝛽𝐿) 
𝑌31 = 𝑒

−𝜆𝐿 cos𝛽𝐿     Y32 = 𝑒
−𝜆𝐿𝑠𝑖𝑛 𝛽𝐿  

Y41 = −e
−𝜆𝐿(𝜆 cos𝛽𝐿 + 𝛽 sin𝛽𝐿)   Y42 = e

−𝜆𝐿(𝛽 cos𝛽𝐿 − 𝜆 sin𝛽𝐿) 
 

 

Finally, integrating expressions 4.32 leads to the axial and circumferential displacements, 

expressed by equation 4.46. These are the additional two properties of interest for this analysis. 

The corresponding terms in this equation, namely the derivates and integral of w0, are summarized 

in table 4.4, included below. The terms 𝑢0
0 and 𝑣0

0 denote the rigid-body motions, which will be 

neglected in this analysis. The strains can then be calculated by using equation 4.28a – 4.29c. 

 

{𝑢
0

𝑣0
} = −[𝑎3]

−1[𝑎2] {

∫𝑤0𝑑𝑥

𝑅

−
𝑑𝑤0

𝑑𝑥

} + 𝑥[𝑎3]
−1 {

𝐷1
𝐷2
} + {

𝑢0
0

𝑣0
0}    (4.46) 

 

 

Table 4.4 - Parameters in equation 4.46. 

w0 =
1

f3
(𝑓4 + 𝑥𝑓5) + 𝑒

−𝜆𝑥 cos(𝛽𝑥) 𝐶1 + 𝑒
−𝜆𝑥 sin(𝛽𝑥)𝐶2  

+𝑒−𝜆(𝐿−𝑥) cos(𝛽(𝐿 − 𝑥)) 𝐶3 + 𝑒
−𝜆(𝐿−𝑥) sin(𝛽(𝐿 − 𝑥)) 𝐶4  

𝑑𝑤0

𝑑𝑥
=

𝑓5

𝑓3
+ 𝑒−𝜆𝑥 cos(𝛽𝑥) (−𝜆𝐶1 + 𝛽𝐶2) + 𝑒

−𝜆𝑥 sin(𝛽𝑥) (−𝛽𝐶1 − 𝜆𝐶2)  

+𝑒−𝜆(𝐿−𝑥) cos(𝛽(𝐿 − 𝑥)) (𝜆𝐶3 − 𝛽𝐶4) + 𝑒
−𝜆(𝐿−𝑥) sin(𝛽(𝐿 − 𝑥)) (𝛽𝐶3 − 𝜆𝐶4)   

∫ w0𝑑𝑥 =
1

𝑓3
(𝑓4𝑥 +

𝑥2

2
𝑓5) + 𝑒

−𝜆𝑥 cos(𝛽𝑥)
−𝜆𝐶1−𝛽𝐶2

𝜆2+𝛽2
+ 𝑒−𝜆𝑥 sin(𝛽𝑥)

𝛽𝐶1−𝜆𝐶2

𝜆2+𝛽2
  

+𝑒−𝜆𝑥 cos(𝛽(𝐿 − 𝑥))
𝜆𝐶3−𝛽𝐶4

𝜆2+𝛽2
+ 𝑒−𝜆𝑥 sin(𝛽(𝐿 − 𝑥))

𝛽𝐶3−𝜆𝐶4

𝜆2+𝛽2
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4.1.3 Membrane Theory: Prediction of Critical Buckling Load  

 This analysis starts by considering a composite shell subjected to surface loads on the wall 

and compressive and shear loads at the edges. Once this set of applied loads becomes larger than 

a critical limit, the shell buckles, either locally or globally. For a small shell element exposed to 

these loads, as the one in in figure 4.4a, the corresponding membrane forces acting on it can be 

visualized in figure 4.4b. These relationships are expressed by equations 4.46a – 4.46c. The load 

parameter is denoted by 𝜆, which for some value causes local bucking and becomes λcr. As 

mentioned in the previous section, the derivation leading to these results is reserved to chapter 8.4 

of [43], but key results are outlined in this sub-section. First, in the region where the local buckling 

occurs, the shell has constant curvatures, as expressed by equations 4.47a-c, and the reference 

surface can be described in terms of two variables, as shown by 4.48. Various curvatures of typical 

shells can be observed in figure 4.5 [43]. The radii of curvatures can then be expressed by 4.49a-

c. Implementing these assumptions, equation 4.50 can be formulated. The in-plane and out-of-

plane amplitude of the buckling waves are represented by u1, 𝑣1, 𝑢2, 𝑣2, and w1, and 𝑤2, 

respectively. These wavelengths are assumed to be short. For convenience, the matrices [O], [L], 

[J], and the parameters Φ1 and Φ2 are grouped in table 4.5.  

 

 

Figure 4.4 – a) Applied loads on the shell and the membrane forces. b) Membrane forces acting 

on the shell element [43]. 

 

Nx = −λNx0          (4.46a) 

𝑁𝑦 = −𝜆𝑁𝑦0          (4.46b) 

Nxy = −λNxy0          (4.46c) 

𝑅𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡         (4.47a) 

𝑅𝑦 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡         (4.47b) 

𝑅𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡         (4.47c) 

f(x, y) = S          (4.48) 
1

𝑅𝑥
= −

𝜕2𝑓

𝜕𝑥2
          (4.49a) 

1

𝑅𝑦
= −

𝜕2𝑓

𝜕𝑦2
          (4.49b) 

1

𝑅𝑥𝑦
= −

2𝜕2𝑓

𝜕𝑥𝜕𝑦
          (4.49c) 

 

a) b) 
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([
𝑂 𝐿
𝐿 𝑂

] [
𝑀𝑜 𝑀𝑛

𝑀𝑛 𝑀𝑜
] [
𝑂 𝐿
𝐿 𝑂

]
𝑇

− 𝜆 [
Φ1[J] Φ2[J]
Φ2[J] Φ1[J]

])

{
 
 

 
 
𝑢1
𝑣1
𝑤1
𝑢2
𝑣2
𝑤2}
 
 

 
 

= 0    (4.50) 

 

Figure 4.5 – Various curvatures of typical shells [43]. 

 

Table 4.5 - Parameters in equation 4.50. 

[𝑂] = [

−𝛼 0 𝛽 0 0 0
0 −𝛽 𝛼 0 0 0
1

𝑅𝑥

1

𝑅𝑦
0 𝛼2 + 𝛽2𝑐2

2 𝛽2 + 𝛼2𝑐1
2 −2𝛼𝛽(1 + 𝑐1𝑐2)

]   

 

[𝐿] = [

𝛽𝑐2 0 −𝛼𝑐1 0 0 0
0 𝛼𝑐1 −𝛽𝑐2 0 0 0

0 0
1

𝑅𝑥𝑦
−2𝛼𝛽𝑐2 −2𝛼𝛽𝑐1 2(𝑐1𝛼

2 + 𝑐2𝛽
2
]   

  

[𝑀𝑜] =

[
 
 
 
 
 
𝐴11 𝐴12 0 𝐵11 𝐵12 0
𝐴12 𝐴22 0 𝐵12 𝐵22 0
0 0 𝐴66 0 0 𝐵66
𝐵11 𝐵12 0 𝐷11 𝐷12 0
𝐵12 𝐵22 0 𝐷12 𝐷22 0
0 0 𝐵66 0 0 𝐷66]
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[𝑀𝑛] = [
𝐴 𝐵
𝐵 𝐷

] − [𝑀𝑜]         

[𝐽] = [
0 0 0
0 0 0
0 0 1

]   

        

Φ1 = 𝑁𝑥0 = (𝛼
2 + 𝛽2𝑐2

2) + 𝑁𝑥𝑦02(𝛼
2𝑐1 + 𝛽

2𝑐2
2) + 𝑁𝑦0(𝛼

2𝑐1 + 𝛽
2)  

  
Φ2 = −2𝛼𝛽(𝑁𝑥0𝑐2 +𝑁𝑥𝑦0(1 + 𝑐1𝑐2) + 𝑁𝑦0𝑐1)  

 

 Notably, among the parameters required to solve equation 4.50 are four constants: 𝛼, 𝛽, 𝑐1, 
and  𝑐2. These values describe the wave pattern of the buckled wave; an instance of buckling 

pattern of a shell is shown in figure 4.6. Determining the eigenvalues presented by equation 4.50 

correspond to the critical load parameters of interest, namely λcr. The finite, lowest value, greater 

than zero, will be the solution of interest for the set of selected four constants. For short 

wavelengths, consistent with the assumption made in the previous paragraph, real, positive, and 

arbitrary values can be used to determine the critical buckling load.  

 

 

Figure 4.6 – Visualization of local buckling pattern. 

 

4.2 Laminate Model, Material Properties and Loading Conditions 

 While no peer-reviewed study has corroborated the laminate composition of the Titan 

Submersible, an available online source [44] cited the ply layout to be composed of 667 plies, 

alternatingly aligned in the axial and circumferential direction. In other words, this stacking 

sequence can be represented as follows: [(0, 90)333𝑠 0]. It also identified the matrix and fiber 

constituents to be Grafil 37-800 30K and Epoxy Resin 862. The mechanical properties of the resin 

are highly dependent on the curing agent. Some of these chemicals can be Diethyltoluenediamine 

(DETDA) epoxy curing agent and EPIKURE ™ Anhydride-based curing agent. In this stage of 

the study, mechanical properties for the fiber and matrix were obtained from [43] and are outlined 

in table 4.6, located below. As signaled in the fourth paragraph of subsection 4.1.1, the rules of 

mixture for composite materials were then used to determine the final mechanical properties of 

interest: Young’s Modulus in the longitudinal, 𝐸1, and transverse directions, 𝐸2, the longitudinal 

shear modulus, 𝐺12, and the longitudinal Poisson’s ratio 𝜈12 for a reference ply, oriented at a 0-

degree angle. The derivation of these properties can be found in chapter 11 of [43], and the series 

of equations to model these properties are summarized by 4.51 to 4.54. With these quantities, the 

reduced stiffness coefficient matrix, Q, can then be formulated, as expressed by equation 4.16, 

shown below again for convenience to the reader.  
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𝐸1 = 𝐸𝑓1𝑉𝑓 + 𝐸𝑚(1 − 𝑉𝑓)        (4.51) 

E2 = (
Vf

Ef1
+
1−𝑉𝑓

𝐸𝑚
)
−1

         (4.52) 

G12 = (
Vf

Gf12
+
1−𝑉𝑓

𝐺𝑚
)
−1

        (4.53) 

ν12 = 𝜈𝑓12𝑉𝑓 + 𝜈𝑚(1 − 𝑉𝑓)        (4.54)  

[Q] = [

𝐸1

𝐷

𝜈12𝐸2

𝐷
0

𝜈12𝐸2

𝐷

𝐸2

𝐷
0

0 0 𝐺12

]        (4.16) 

𝐷 = 1 −
𝐸2

𝐸1
𝜈12
2          (4.17) 

 

Table 4.6 - Mechanical properties of matrix constituents [43]. 

Material Property Symbol Units Value 

Grafil 37-800  
(30k TOW) 

Longitudinal Young’s Modulus 𝐸𝑓1  GPa 231 
Longitudinal Shear Modulus 𝐺𝑓12  GPa 91 
Longitudinal Poisson's Ratio  𝜈𝑓12  - 0.27 

Volume Fiber Fraction 𝑉𝑓 - 0.7 

Epon Resin 
862 

Matrix Young's Modulus 𝐸𝑚  GPa 2.8 
Matrix Shear Modulus 𝐺𝑚 GPa 1 
Matrix Poisson's Ratio 𝜈𝑚 - 0.35 

 

 

 As previously identified, the pressure at the maximum operational depth of the Titan, 4 km 

under the surface of the ocean, corresponds to 40.33 MPa. To determine the axial load, the cross-

sectional area of the cylindrical had to be considered, as visualized in figure 4.7. The inner radius 

of the cylinder and its thickness are denoted by 𝑟𝑖 and h, and these values are 70.11cm and 12.7cm, 

respectively. Since the pressure can be expressed by equation 4.55, solving for the force leads to 

4.56. The cross-sectional area is then determined by 4.57, for which the corresponding magnitude 

of the axial force is found to be 24.606∗ 106N. Following the convention established by figure 

4.3a, a compressive force is negative. Table 4.7 summarizes the loading conditions implemented 

to generate the displacements of interest. 

 

 

Figure 4.7 – Cross-sectional view of the cylindrical section. 
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𝑃 =
𝐹

𝐴𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛
         (4.55) 

Faxial = 𝑃 ∗ 𝐴𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛        (4.56) 

Across−section = 𝜋(𝑟𝑜𝑢𝑡𝑒𝑟
2 − 𝑟𝑖𝑛𝑛𝑒𝑟

2 )       (4.57) 

Faxial = 24.606 ∗ 10
6𝑁        (4.58) 

 

Table 4.7 - Implemented loading conditions. 

Loading Condition Units Value 

Constant Pressure MPa 40.33 

Axial Load N -24.606 x106 

Torque N*m 0 

 

4.3 Algorithm Workflow and Implementation in MATLAB ® 

 The two algorithms developed by the author to predict the buckling load and displacements 

of interest can be found in sections 2 and 3 of the appendix. Although the series of equations used 

to generate the properties of interest were discussed in chapters 4.1 through 4.2, the purpose of this 

subsection is to provide a visualization of this process to the reader. At this stage of the 

investigation, interested readers can perform customized calculations by copy-pasting these scripts 

into MATLAB and modifying the loading conditions, geometry, and laminate stacking sequence. 

Once this is completed, results will be generated and stored accordingly. Comments have been 

added to guide the reader in understanding the units, significance of the variables, and calculation 

at hand. 

 The first section of the algorithm determines and plots the axial, circumferential, and radial 

displacements. It achieves this objective by first gathering a series of inputs; these are the cylinder 

geometry and loading conditions, ply layout, and mechanical properties of the fiber and matrix. 

Consequently, the calculation of the engineering constants are performed to populate the reduced 

stiffness matrix. With this information, the ABD matrix can be assembled. Along with the cylinder 

geometry and loading conditions, the characteristic polynomial equation 4.39 can be built and its 

roots solved. Once these values are known, the elements of equation 4.45 can be developed to then 

invert the matrix and find the values of the constants in matrix “C”.  After these computations are 

completed, the axial, radial, and circumferential displacements can then be determined. This 

process can be better visualized in figure 4.8. 

 Figure 4.9 describes the process followed in the script to investigate the buckling load. 

Similar to the previous script, the ply layout and mechanical properties of the fiber and matrix are 

half of the required inputs. The cylinder geometry and an array of positive and arbitrary values for 

four constants, α, β, c1, and 𝑐2 represent the second half. With this information, the engineering 

constants are calculated and the reduced stiffness matrix then assembled. After the ABD matrix is 

developed, the second half of the inputs is used to develop the matrices M0, 𝑀𝑛, and J; 

consequentlty, the matrices OL, G,Φ1 and Φ2 are assembled for each corresponding possible 

combination of the four inputted constants. The eigenvalues are determined and stored for each 

iteration. Finally, the lowest, finite, and positive eigenvalue is selected, along with the constants 

used to achieve this, for reference. This value corresponds to the solution of interest, the critical 

buckling load.   
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Figure 4.8 – Workflow of MATLAB® script to find the displacements. 

 

 

 

 

Figure 4.9 – Workflow of MATLAB® script to find the buckling load. 
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4.4 Results and Discussion 

4.4.1 Critical Buckling Load 

  Although the author decided to first introduce the theory behind the calculation of 

displacements in subsection 4.1.1, the first calculation performed to assess the results was the 

critical buckling load. If the determined buckling load was very close to the applied axial load, the 

displacements would be expected to be excessively large and exceed the fundamental assumptions 

under classical laminate theory (CLT): small displacements are allowed only. In other words, if 

the applied load neared 2 or 3 times the critical buckling load, CLT could not be soundly used to 

predict the displacements, since the development of shell theory uses the CLT underlying 

assumptions. The values of the four positive, arbitrary constants required to determine the critical 

buckling load are summarized in table 4.8. The computed critical buckling load was found to be 

292.7866481∗ 106 N; figure 4.10 is a screen capture once the calculations were executed with 

MATLAB ®. This value is 11.9 times larger than the maximum operational axial load, at the 

lowest sea depth, corresponding to 24.606∗ 106 N. As a result, the displacements are anticipated 

to be acceptably small, and shell theory suitable for the prediction of the displacements. 

 

Table 4.8 - Positive, arbitrary constants used in the calculation of the buckling load. 

Constant Minimum Value Maximum Value Total Elements 

𝜶 1 50 100 

𝜷 1 50 100 

𝒄𝟏 0 2 21 

𝒄𝟐 0 2 21 

Figure 4.10 – Calculated critical buckling load and its corresponding four constants. 

 

4.4.2 Displacements: Axial, Radial, and Circumferential 

  Figures 4.11 through 4.13 show the predicted axial 𝑢0, circumferential 𝑣0, and radial 𝑤0 

displacements. Conventionally, for applications not related to the depths of the ocean, the 

magnitude of the displacements is typically in the range of the micro-meters (1 ∗ 10−6). The first 

observation from these results is that the magnitude of the displacement is in the millimeters 1 ∗
10−3. Most intuitively, since the cylinder is compressed by the axial load applied at its edges, the 

radial displacements are positive and symmetrical throughout the axial distance of the cylinder, 

graphed in the vertical axis for all figures. In other words, the material constituents displace away 

from the axis of symmetry of the cylinder, by as much as 2.26mm. The thickness of a single US 

dime measures 1.35mm [45]; consequently, the displacement of the material constituents is less 

than that of two piled 10-cent coins. Although this might seem excessive, given the colossal 

operational pressure, 40.33MPA, it is expected that this material geometry experiences such 

displacement under this operating conditions. Similarly, the most drastic axial and circumferential 

displacements approach the magnitude of 2.5mm. Since the theory assumes that the displacements 
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are not accurate at the edges, this value is taken as a reasonable approximation. Unlike the radial 

displacements, these two do not show a symmetrical variation, across the axial distance of the 

cylinder, as is expected. This set of values will be used as a comparison for the FEM solution, 

discussed in the next chapter. 

 

Figure 4.11 – a) Axial, b) Circumferential, and c) Radial displacements. 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) 
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5. Execution of FEA in Ansys 

5.1  General Overview 

 After the rapid analysis of the cylindrical CFRE section was conducted, as explained in 

chapter 4, Ansys Static Structural was then used to develop a numerical solution through the FEM. 

The implemented modeling strategy consisted of gathering the corresponding material properties, 

discretizing the geometry model, applying boundary conditions and loads, evaluating results, and 

making corrections as required. This process is shown in figure 5.1. Work presented in this section 

includes the upper-half of the diagram, as results will be discussed in section 6. 

 

Figure 5.1 – Problem modeling approach in Ansys Static Structural. 

 

5.2 Geometry Model  

5.2.1 Material Assignment and Properties 

 Three materials were identified during the early research stages of this project and outlined 

in section 1.2. These were: Titanium Grade 3, Polymethyl Methacrylate (PMMA) and Carbon 

Fiber Reinforced Epoxy (CFRE). The material assignment is summarized in table 5.1. For 

convenience to the reader, the Titan Submersible drawing, labeled previously as Figure 3.26, is 

juxtaposed, as shown in the third column of the table.  
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Table 5.1 - Material assignment of the submersible’s components. 

 

 Material properties are highly dependent on the manufacturing process, which may vary 

by company. Manufacturing company A, for example, may have treatment processes that yield a 

higher level of purity while minimizing voids and porosity, as compared to company B. These 

factors will ultimately influence the mechanical properties of the processed material. As a result, 

without knowledge of the actual material properties used in the design of the submersible, the best 

reasonable approximation can be made by employing “average” properties from available sources. 

Three resources were consulted to obtain the mechanical properties of the Titan Submersible. For 

Titanium Grade 3, ASM Aerospace Specification Metals Inc. website [46] was consulted. In the 

case of PMMA, a similar study found in the literature review [27] contained all the properties of 

interest. Lastly, to obtain the properties of CFRE, the rules of mixture were used, employing the 

typical material properties for Carbon Fiber and Epoxy, as included in [43]. All the properties of 

interest are summarized in tables 5.2 through 5.4. To assess the soundness of these values, similar 

values obtained from the Ansys’ material library were compared and are reflected in the third 

column of each corresponding table. The used values, reflected in column 4, were subsequently 

updated in the Ansys’s material library. 

 

Table 5.2 - Material properties of titanium. 

Property Unit 
Value 

Note and Source Ansys  
Titanium Alloy Used 

Density kg/m^3 4620 4500 

[46] 

Youngs Modulus Pa 9.60E+10 1.05E+11 
Poisson's Ratio - 0.36 0.37 

Tensile Yield Strength Pa 9.30E+08 4.49E+08 
Compressive Yield 

Strength Pa 9.30E+08 4.50E+08 

Tensile Ultimate Strength Pa 1.07E+09 1.00E+09 
 

Component 
Material 

Assignment 

 

Observation 

Window 
PMMA 

Bow and  

Stern Titanium  

Grade 3 Interface  

O-Rings 

Cylindrical Section CFRE 
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Table 5.3 - Material properties of PMMA. 

Property Unit 
Value 

Note and Source Ansys Granite 
Library Used 

Density kg/m^3 1200 1190 

[27] 

Youngs Modulus Pa 3.00E+09 2.74E+09 
Poisson's Ratio - - 0.38 

Tensile Yield Strength Pa 6.40E+07 1.15E+08 
Compressive Yield 

Strength Pa 6.40E+07 1.15E+08 

Tensile Ultimate Strength Pa 6.30E+10 - 
 

 

Table 5.4 - Material properties of CFRE laminate. 

Property Unit 

Value 

Note and Source Ansys Epoxy 
Carbon 

UD 365GP Prepreg 
Used 

Density kg/m^3 1540 1600 
Typical Ply Property  

Graphite T300/Epoxy 
 [43], p. 486 

Young's  
Modulus 

x-
direction 

Pa 

2.09E+11 1.63E+11 

Rules of  
Mixture  

Calculation 

y-
direction 9.45E+09 9.08E+09 

z-
direction 9.45E+09 9.08E+09 

Poisson's  
Ratio 

xy plane 
- 

0.27 0.294 
yz plane 0.4 0.59 
xz plane 0.27 0.294 

Shear  
Modulus 

xy plane 
Pa 

5.50E+09 3.25E+09 
yz plane 3.90E+09 2.85E+09 
xz plane 5.50E+09 3.25E+09 

Orthotropic 
Stress Limit - 

Tensile 

x-
direction 

Pa 

1.98E+09 1.50E+09 

Typical Ply Property  
Graphite T300/Epoxy  

[43], p. 486 

y-
direction 2.60E+07 4.00E+07 

z-
direction 2.60E+07 4.00E+07 

x-
direction Pa -8.93E+08 -

1.50E+09 
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Orthotropic 
Stress Limit - 
Compressive 

y-
direction -1.39E+08 -

2.46E+08 
z-

direction -1.39E+08 -
2.46E+08 

Orthotropic 
Stress Limit - 

Shear 

xy plane 

Pa 

1.00E+08 6.80E+07 [43], p. 486 

yz plane 5.00E+07 3.40E+07 
Assumed 50% of 

orthotropic  
Stress Limit xy plane 

xz plane 1.00E+08 6.80E+07 
Typical Ply Property  

Graphite T300/Epoxy 
 [43], p. 486 

Orthotropic 
Strain Limit - 

Tensile 

x-
direction 

- 

0.0095 0.00947 

Calculated 

y-
direction 0.0028 0.00275 

z-
direction 0.0028 0.00275 

Orthotropic 
Strain Limit - 
Compressive 

x-
direction -0.0043 -0.00427 

y-
direction -0.0147 -0.01471 

z-
direction -0.0147 -0.01471 

Orthotropic 
Strain Limit - 

Shear 

xy plane 0.0182 0.01818 
yz plane 0.0128 0.01282 
xz plane 0.0182 0.01818 

 

 

5.2.2 Laminate Modeling Technique 

 As previously signaled, Ansys Composites PrePost (ACP) is the simulation tool to develop 

composite structures. In the analytical approach outlined in chapter 4.2, the laminate was identified 

to be composed of 667 alternatingly aligned in the longitudinal and circumferential directions: 

[ [0, 90]333s, 0]. To represent this topology in ACP, the thickness per ply was first determined by 

dividing the thickness of the cylindrical section, hcylinder, by the number of plies, nplies, as 

reflected in equation 5.1. The corresponding thickness per ply was determined to be 0.1904mm. 

Consequently, the 667 plies and their corresponding orientation were created. This implementation 

can be visualized in figure 5.2. As intended, ACP calculated the total laminate thickness to be 

0.127m; this can be observed at the bottom of figure 5.2 b). This process enabled the cylindrical 

section to be represented and a shell, for a subsequent import to Ansys Static Structural, where the 

meshing, boundary, and loading conditions are defined, as will be explained in the two proceeding 

subsections. 

 

tply =
ℎ𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

𝑛𝑝𝑙𝑖𝑒𝑠
          (5.1) 
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Figure 5.2 – a) Assignment of ply thickness and b) Creation of laminate with 667 plies. 

 

 Using this same module within ACP, once the laminate has been created, the ABD matrix 

can be generated. A comparison between the ABD matrix generated by Ansys and the analytical 

approach implemented with MATLAB is shown in figure 5.3. An acceptable agreement is 

observed across the A and D matrices. Non-zero elements appear to differ by less than 1%. 

Elements reflected as 0 in the analytical calculations, such as the first two elements in the last row 

of the A matrix, appear to approach zero; these values, for example, are 2.2713e-10 and 6.0023e-

7. According to the Classical Laminate Theory, the values of the B matrix in a symmetric laminate 

are 0. The small-valued elements reflected in the last 3 rows and last 3 columns, pertaining to the 

B matrix calculated by Ansys, are observed to also approach zero. In the analytical approach, these 

values are automatically assigned as 0 if the laminate is symmetric. Lastly, the corresponding ply 

orientation was visually checked to ensure that the intended orientation was correctly assigned. 

The odd-numbered plies were oriented in the longitudinal direction while the even-numbered 

counterparts were positioned in the circumferential direction, as shown in figure 5.4.  

 

 

 

 

 

 

 

a) 

b) 
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Figure 5.3 – ABD matrix determined by a) Ansys and b) Analytical Approach in MATLAB ®. 

 

 

 

Figure 5.4 – Longitudinal and circumferential ply assignment in ACP. 

 

 

 

 

 

 

 

 

a) 

b) 

a) 
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5.3 Geometry Model Discretization 

 

 While geometry discretization precedes laminate model creation in the Ansys workflow, 

the author opted to discuss laminate development alongside material characteristics, as seen in 

Section 5.2. The intent of this approach was to ensure that readers can first assess the mechanical 

properties of both isotropic and orthotropic materials (composite structure) before addressing FEA 

domain discretization.  

The geometry model was discretized in terms of a three gradual augmentation of elements. 

In other words, three meshes with incremental number of elements were developed: coarse, 

medium, and fine. Increasing the number of nodes in a domain is a technique referred by Cook et 

al [32] as a “weak patch test” to identify numerical convergence in a FEM solution. Creating a 

mesh using a computational tool is an iterative process, during which a combination of various 

methods, element sizes, and controls must be tested to generate a successful mesh. Once this is 

achieved, additional refinements and modifications are then tested to produce the greatest number 

of good-quality elements. Given the “regular” geometry of the submersible, three main types of 

meshing methods were used: tetrahedrons, sweep, quadrilateral dominant, and automatic. As the 

name implies, the tetrahedron method employs tetrahedron elements in areas with curved and 

irregular topologies. This was implemented for the observation window. In contrast, the sweep 

method is used for more regular shapes, such as the base of the bow and stern, the “body” of the 

connecting O-Rings, which are cylindrical. The quadrilateral dominant method is similar to sweep 

but it is recommended for shell models; as a result, it was implemented in the cylindrical section. 

Lastly, in automatic meshing method, Ansys selects the best meshing method based on the 

topology at hand. Primary elements can include a combination of tetrahedral and hexahedral 

elements, for example. This method was used in the spherical sections: the bow and the stern. The 

specific method and sizing by mesh resolution is summarized in table 5.5. The discussion of the 

last column, whose element size is “ideal” is deferred to the next paragraph.  

  

Table 5.5 - Meshing methods and element types per mesh resolution.  

Component Method Primary 
 Element 

Element Size [cm] 

Coarse Medium Fine Ideal 

Observation  
Window Tetrahedrons 7.5 7.0 6 1.5 

Bow Automatic Ansys Selected 21 19.5 18 3 

Bow Base Sweep Quadrilaterals 7.125 6.0 5.25 1.5 

O-Ring  
Stern to Cyl. Sweep Quadrilaterals 7.125 6.0 5.25 1.5 

Cylindrical  
Section 

Quadrilateral  
Dominant Quadrilaterals 10.5 9.5 9.188 4 

O-Ring 
Bow to Cyl. Sweep Quadrilaterals 7.125 6.0 5.25 1.5 
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Stern Base Sweep Quadrilaterals 7.125 6.0 5.25 1.5 

Stern Automatic Ansys Selected 9.0 8.5 7.875 2 

 

 To achieve a uniform mesh in a large structure, like the Titan Submersible, several 

refinements and smaller element sizes would be expected. Nevertheless, since Ansys’ student 

license limits the Static Structural solution to no more than 32,000 elements, the main constraint 

was to select element sizes relatively close to each other without exceeding this node limit. 

Unsurprisingly, the element quality would be compromised without being able to implement 

smaller element sizes. An “ideal” element size was developed, but not executed due to Ansys 

license limitations, to contrast the impact of implementing a smaller element size on the mesh 

quality. The initial global target, minimum, and maximum element sizes are summarized in table 

5.6, located below. These sizes were initially used to define the mesh resolution, but more specific 

adjustments and refinements were developed, as can be seen in columns four through six of table 

5.5. In the case of the coarse mesh, for example, a global target size of 7.125 cm was intended; 

however, this element size appeared to be inadequate for mesh quality in the bow and was relaxed 

to 21cm. In the case of the medium-resolution mesh, the target element size of 6cm was also 

relaxed to 9.5cm in the cylindrical section because good-quality elements could be obtained at this 

size. Relaxing the number of elements without reducing the mesh quality is perceived as an 

acceptable practice, as it will reduce the computational time required to obtain the FEM solution. 

Isometric, front, and lateral views of the coarse, medium, fine, and ideal meshes can be observed 

in figures 5.5a through 5.8c. 

 

Table 5.6 - Global mesh settings per mesh type. 

Global Attribute Coarse Medium Fine Ideal 

Target Element Size [cm] 7.125 6.0 5.25 1.5 

Minimum Element Size [cm] 0.007125 0.006 0.00525 0.0105 

Maximum Element Size [cm] 7.125 6.0 5.25 1.5 

Order Quadratic Quadratic Quadratic Quadratic 

Growth Rate 1.2 1.2 1.2 1.1 

Total Nodes 43,989 59,667 86,071 2,102,175 

Total Elements 15,484 21,928 31,024 1,061,591 
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Figure 5.5 – Coarse mesh: a) Isometric, b) Front, c) Side, and d) Back views. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 
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d) 
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Figure 5.6 – Medium mesh: a) Isometric, b) Front, c) Side, and d) Back views. 
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d) 
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Figure 5.7 - Fine mesh: a) Isometric, b) Front, c) Side, and d) Back views. 
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Figure 5.8 – Ideal mesh: a) Isometric, b) Front, c) Side, and d) Back views (not used due to 

Ansys’s license limitations. 
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d) 
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5.4  Boundary and Loading Conditions  

A. Boundary Conditions. 

 Lastly, in preparation for generating the FEM solution, the boundary and loading 

conditions were implemented. This step occurs in the Static Structural environment of Ansys. To 

capture correctly the physical interactions between the structure and the simplified loading 

conditions, its environment was first observed. The submersible used vertical and lateral thrusters 

to guide its motion in the ocean, as can be seen in figure 5.9. In static conditions, the locations of 

these thrusters can be simplified as simple points. Implementing fixed supports at four locations 

would constraint the displacements of these four nodal locations to be zero, which might cause 

undesirable stress concentrations near vicinities of these supports. As a result, only two nodal 

locations were constrained with fixed supports. One of them was the node located at the 

intersection of the xy and yz planes, as illustrated by the top figure 5.10. The second nodal location 

corresponded to the node on the yz plane, at the edge of the axial location (x-axis), as in the bottom 

figure 5.10.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 – Location of vertical thrusters of Titan Submersible [6]. 
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Figure 5.10 – Implementation of Boundary Conditions: Fixed Supports. 

 

B. Loading Conditions 

As explained in section 1.1, at the lowest operating depth, corresponding to 4km, the 

submersible was exposed to a pressure of 40.33 MPa. In Ansys, this loading condition was 

represented with a hydrostatic pressure, which is determined according to equation 5.2. The fluid 

density, gravitational acceleration, and depth of the geometry are represented by 𝜌, 𝑔, and ℎ, 

respectively. Consequently, implementing the density of sea water, acceleration due to gravity on 

earth, and operational depth of the submersible, as summarized in table 5.7, led to the 

corresponding hydrostatic pressure contours reflected in figure 5.11. Because the origin of the 

global coordinate system was placed at the geometric center of the pressure hull, lower pressure 

distribution is observed at the top of the hull than the bottom. At the top, the highest pressure is 

calculated as 40.41MPa, while the lowest pressure is 40.39MPa at the bottom.  

 

𝑃ℎ𝑦𝑑𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = 𝜌𝑔ℎ         (5.2) 
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Table 5.7 - Hydrostatic pressure values applied in Ansys. 

Variable Units Value 

𝝆 𝑘𝑔/𝑚3 1030 

g m/𝑠2 9.8066 

h m 4000 

 

  

 

Figure 5.11 – Loading Condition: Hydrostatic pressure contour generated by Ansys.   
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6.0  Results and Future Work  

6.1  Results 

 After implementing the previous boundary and loading conditions, results were generated 

in Ansys. For convenience to the reader, these results are grouped by their mesh size, in the 

subsections below, A through C. For each mesh size, three figures are presented in the following 

order. First are the lateral and front views, capturing the xz and yz planes from both sides. Next is 

the composite failure tool, showing whether failure occurred in any of the plies.  

  Three main observations can be made across all types of mesh resolution. First, 

qualitatively, all results show that the largest displacement occurs at the edge of the joining O-

Ring, on the bow side. This can be observed in figures 6.1, 6.4, and 6.7. Similarly, is noticed that 

the slightly bigger pressure gradient is “bending” the submersible upward, since there is a larger 

stress concentration at the bottom of the submersible (negative z-axis) than the upper section, as 

previously visualized in figure 5.11. Secondly, with this modelled layup, failure is predicted in 

every mesh resolution. This is illustrated by figures 6.3, 6.6, and 6.9, where the safety margin of 

one is exceeding, signaling material failure. In most cases, this occurs in the “red” areas, which 

are observed to be the edges of the cylindrical section and the middle section. As a result, additional 

reinforcement will be required in these sections by either increasing the shell thickness or 

numerically testing different layups, possibly alternating ±30, ±45, ±53, or ±60 degrees. Lastly, 

the acrylic window is observed to undergo significant deformation, as its original spherical shape 

is observed to compress inward, consistent with its expected physical behavior. This can be 

observed in the upper images of figures 6.1, 6.4, and 6.7. 
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A. Coarse Mesh   

 

Figure 6.1 – Displacement from lateral views of the xz plane. 
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Figure 6.2 – Displacements from the front and back views of the yz plane. 

Figure 6.3 – Ansys’s failure composite tool. 
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B. Medium Mesh 

 

Figure 6.4 – Displacement from lateral views of the xz plane. 
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Figure 6.5 – Displacements from the front and back views of the yz plane. 

 

 

Figure 6.6 – Ansys’s failure composite tool. 
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C. Fine Mesh 

 

Figure 6.7 – Displacement from lateral views of the xz plane. 
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Figure 6.8 – Displacements from the front and back views of the yz plane. 

 

 

Figure 6.9 – Ansys’s failure composite tool. 
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6.2 Convergence Study  

 As previously signaled, at the time this work was conducted, Ansys’s solver limited the 

solution to 32,000 elements. Consequently, the number of nodes and subsequent reductions had to 

be closely tailored around this limit. Five different nodal locations were selected to investigate 

numerical convergence within the nodal limits of Ansys’s student license. In more detail, these 

nodal locations were extracted from the xy plane. One selection was made for the stern, one for 

the stern-side O-Ring, two for the cylindrical section, flaking the origin, and one for the window. 

They can be visualized in figure 6.10. The predicted displacements for each selected nodal 

location, and its mesh resolution, are compiled in table 6.1. It can be observed that the 

displacements are significantly larger for the coarse mesh. In the case of the maximum 

displacement, for example, the computed magnitude was 13.61cm, while for the fine this value 

reduced to 3.33cm. This is expected, as the assigned target element size of the coarse mesh was 

7.125cm, while the fine mesh used 5.250cm to remain within Ansys’s element number limits. 

Given the difference is displacement magnitude, the author wished he could execute additional 

mesh refinements to observe further numerical convergence. For visualization, these values are 

plotted in figure 6.11. 
 

Figure 6.10 - Selected nodal locations for numerical convergence. 
 

Table 6.1 - Displacements at five nodal locations to observe convergence. 

Mesh 

Target  
Element  

Size 
[cm] 

Total  
Nodes 

Total  
Elements 

Displacement  
max [cm] 

Nodal Displacement [cm] 

Stern 
O-Ring,  

Stern 
Side 

Cabin,  
Left 

Cabin,  
Right Window 

Coarse 7.125 43,989 15,484 13.61 5.66 6.52 9.46 9.69 10.63 
Medium 6.000 59,667 21,928 6.45 2.92 3.23 4.70 4.79 5.19 

Fine 5.250 86,071 31,024 3.33 1.40 1.61 2.34 2.39 3.08 

 

Nodal locations 
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Figure 6.11 – Convergence at selected nodal locations.  
 

6.3 Failure of Isotropic Materials   

 Although a finer mesh is likely required to truly identify certain mesh resolution as the 

converged solution, given Ansys’s student license limitations, the fine mesh was treated as the 

solution. Consequently, the von-Mises and Tresca criteria were used to evaluate potential areas of 

failure of isotropic materials, namely the Titanium components and PMMA observation window. 

It can be observed that the rims of the Titanium O-Ring interfaces experience the lowest safety 

factor by both von-Mises and Tresca theories. These numbers correspond to 0.10509 and 

0.091568, respectively, suggesting that additional reinforcement, such as a bigger thickness, is 

required to ensure structural integrity is maintained in these at-risk areas. Figures 6.12 and 6.13 

illustrate the results obtain implementing both failure criteria. 
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Figure 6.12 – Failure of Isotropic Materials in Ansys by von-Mises criteria. 
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Figure 6.13 – Failure of Isotropic Materials in Ansys by Tresca criteria.  

 

6.4 Comparison to Analytical Model 

 As indicated in the previous paragraph, additional mesh refinements are needed to further 

investigate convergence. Given the trends observed in figure 6.11, the author suspects it is highly 

likely to observe further decreases in predicted displacements for more refined mesh sizes. The 

analytical model discussed in chapter 5.1 predicted a maximum radial displacement of 0.226cm 

while the fine mesh reported 3.05cm. The analytical theory predicts the location to be at about 1/3 

and 2/3 of the cylinder length, whereas the FEM solution identified two main failure areas: near 

the edges of the cylindrical pressure hull and the middle-section, 1/2 location of the cylinder length. 

As previously identified in subsection 5.2, the presented analytical approach was not valid near 

the edges, where Kollár and Springer [43] asserted that different methods should be used. The 

magnitude of the total displacements generated by the FEM solution is observed to be smaller in 
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areas away from the edges. The analytical and numerical results are included in figure 6.14, located 

below. 
 

 

 

 

Table 6.2 - Comparison of maximum displacements in cylindrical pressure hull. 

Model Maximum 
Displacement [cm] Region Consideration 

Analytical 0.226 
1/3 and 2/3 of 
cylinder radial 

direction 
Theory is not valid for areas near the edges. 

Ansys 
Coarse 12.849 

Near edge Better agreement observed for areas away 
from the edges. Medium 5.94 

Fine 3.05 
 

 

Figure 6.14 – Analytical versus FEM solution predicted displacements. 

a) b) 

c) 

d) 
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6.5 Concluding Remarks  

 Before formulating conclusions, the limitations and assumptions of this study must be 

reconsidered. First, the geometry model used in this prototype was created from available online 

resources and best-engineering judgement. Despite carefully investigating the dimensions and 

material properties, without knowing the specific values used by the manufacturers, these efforts 

remain, at best, and approximation to the “actual” predicted values conducted by the then active 

OceanGate company. The connections between components, such as the window and bow, and O-

Rings to cylindrical and spherical sections were assumed to be perfectly bonded and unaffected by 

water intrusion. This idealization might not be the case, as manufacturing practices can 

dramatically affect porosity and imperfections between contact surfaces; consistent duty cycles are 

also expected to further degrade these bonding interfaces. In other words, bonding degradation is 

likely to exist and was not included in this study. Third, given the student license limitations of 

Ansys, additional mesh refinements are required to visualize the true extent of convergence before 

certain mesh resolution is assessed as “true”. The author urges the reading audience to maintain 

these considerations in mind and is happy to provide drawings and higher-resolution (ideal) 

meshing for additional studies with a full commercial Ansys license. 

Nonetheless, using the highest resolution created mesh, under the 32,000 elements limit, 

provides valuable qualitative information for future submarine vehicle prototyping and testing. 

The middle and edge sections of the cylinder experience the greatest deformations, where 

additional reinforcement should occur. Alternating layup orientations identified previously, such 

as ±30, ±45, ±53, or ±60° could be implemented to better distribute the pressure loads across the 

structure. Similarly, for the isotropic materials, the Titanium O-Ring interfaces were identified as 

the areas experiencing the lowest safety factors, for which additional thickness can be added to 

better withstand the working environment. 
 

6.6 Future Work 

  Without a doubt, using additional resources, specifically a full-Ansys license, the author 

would opt to further refine the mesh until numerical convergence is further explored. This will 

enable the analyst to better understand the “converged” stress values experienced by the structure. 

Additionally, since the submersible reportedly used an alternating layup of [(0, 90)333s, 0], the 

author proposes to explore the cases in table 6.3 and determine whether these configurations lead 

to greater safety factors.  
 

Table 6.3 - Potential continuation study cases for this investigation. 

Case Modification 

1 1.5x thickness increase in thickness in pressure hull and titanium hemispheres 

2 3.0x thickness increase in thickness in pressure hull and titanium hemispheres 

3 Nominal Thicknesses, ply layout [0, 30, 60, 90]s, ceteris paribus 

4 Ply layout [0, 30, 60, 90]s; 1.5x global thickness increase 

5 Ply layout [0, 30, 60, 90]s; 3.0x global thickness increase 
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Appendix A: Calculations of Nodal Displacements using FEM with MATLAB 

%%   FEA of Bar with 5 elements 

clear; close; clc; 

 

%    Known Values 

d = 0.3;            % Bar Base Diameter [m] 

lf = 1;             % Total Bar Length [m] 

E = 180e9;          % Young's Modulus - Steel, stainless AISI 302 [Pa]  

A0 = (pi/4)*d^2;    % Base Area [m^2] 

P = -100*9.81;      % Applied Load [N] 

 

%    Nodal Properties 

li = linspace(0, lf, 6);           % Nodal Location of Each Element 

l = lf/5;                          % Length of Each Element 

A = A0 - (1/(3*lf))*(2*A0*li);     % Nodal Elements Area [m^2] 

k = (E/l).*A;                      % Stiffness of Each Element 

 

%    Global Stiffness Matrix 

k = [k(1)+k(2)    -k(2)               0              0              0              0;...              

       -k(2)         k(1)+k(2)         -k(2)          0              0              0;...      

       0             -k(2)          k(2)+k(3)           -k(3)            0              0;... 

       0             0                   -k(3)          k(3)+k(4)      -k(4)          0;... 

       0             0                   0              -k(4)          k(4)+k(5)      -k(5);... 

       0             0                   0              0              -k(5)          k(5)]; 

 

%    Stiffness Matrix Before Reaction 

kbr = k(2:end, 2:end);             % Extracts 2nd to last row and 2nd to last column 

 

%    Force Vector Before Reaction 

fbr = [0; 0; 0; 0; P]; 

f = [0; fbr];            % Force vector to solve for reaction 

 

%    Displacements Before Reaction 

ubr = kbr\fbr;           % Displacements before solving for reaction force 

u = [0; ubr];            % Displacements to solve for reaction 

 

%    Solving for Reaction Force 

R = k*u - f; 

 

%   Analytical Solution 

x = linspace(0, lf, 1001);         % Length of Rod for Analytical Solution 

uAn = ((3*lf*P)/(2*E*A0))*log((3*lf)./(3*lf - 2*x)); 

 

figure, 

plot(x, uAn) 

grid on 
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hold on 

scatter(li, u, 25, 'filled') 

legend('Analytical', 'FEM, 5-Elements') 

xlabel('Bar Length [m]', FontWeight='bold') 

ylabel('Displacement [m]', FontWeight='bold') 
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Appendix B: Calculations of Displacements for Cylindrical Section of the Pressure Hull 

%%   Analytical Calculation of Displacements for Cylindrical Pressure Hull 

%    Based on Equations from Ch 8.1 (Mechanics of Composite Structures (p. 397) 

%    Developed by Ignacio Ramirez Romero 

%    General Commands 

clear all; close all; clc; 

 

%    Cylinder Geometry 

h = 12.7e-2;                            % Thickness [m] 

L = 2.5298;                             % Length [m] 

ri = 70.11e-2;                          % Inner Radius [m] 

x = linspace(0, L, 25299);              % Displacement Array for Length 

 

%    Loading Conditions 

Pz0 = 40.33e6;                          % Constant Pressure [Pa] 

Pz1 = 0;                                % Constant Pressure 2, if Pressure Distribution is used [Pa/m] 

N = -Pz0*(pi*((ri+h)^2 - ri^2));        % Axial Load [N] 

T = 0;                                  % Torque [N*m] 

 

%    Ply Geometry and Computation of ABD Matrix   ---------------------------- 

hLa = h;                                % Lamina Thickness [m] 

or = repmat([0, 90], 1, 333);           % Array with Ply Orientation [[0, 90]_333s 0] 

or = [or, 0];                           % Adds 0 Ply to match Titan's Laminate 

plyNu = 1:length(or);                   % Ply Number Assignment, Bottom to Top 

hPly = hLa/(length(or));                % Thickness of Each Ply 

zref = round(length(or)/2);             % Reference plane (middle of laminate) 

 

%    Computation of Ply Properties using Rules of Mixture 

%    Properties of Fiber 

Ef1 = 231e9;                            % Longitudinal Youngs Modulus of Fiber [Pa] 

Gf12 = 91e9;                            % Longitudunal Shear Modulus of Fiber [Pa] 

nuf12 = 0.27;                           % Longitudinal Poisson's Ratio of Fiber 

Vf = 0.7;                               % Volume Fiber Fraction 

 

%    Properties of Matrix 

Em = 2.8e9;                             % Matrix Young Modulus [Pa] 

Gm = 1e9;                               % Matrix Shear Modulus [Pa] 

num = 0.35;                             % Matrix Poisson's Ratio 

 

%    Rules of Mixture Ply Properties 

E1 = Ef1*Vf + Em*(1-Vf); 

E2 = (Vf/Ef1 + ((1-Vf)/Em))^-1; 

G12 = (Vf/Gf12 + ((1-Vf)/Gm))^-1; 

nu12 = nuf12*Vf + num*(1-Vf); 

 

%    Reduced Stiffness Matrix for reference ply at 0 deg 
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D = 1 - (E2/E1)*nu12^2;  % Engineering Constant [unitless] 

Q0 = [E1/D,         (nu12*E2)/D,        0;... 

     (nu12*E2)/D,   E2/D,               0;... 

     0,             0,                  G12]; 

 

%    Calculation of Reduced Stiffness Matrix of All Other Plies 

for i = 1:length(or) 

    %     Defining the current angle th 

    th = or(i); 

     

    %     Checking if th = 0 

    if th == 0 

        % If th1 is 0, create Qth variable with name Qth1, Qth2, ..., Qth5 

        eval(['Qth' num2str(i) ' = Q0;']); 

    else 

        %      Otherwise, compute Tsig and Teps based on the current angle (i) 

        Tsig = [cosd(th)^2,      sind(th)^2,         2*cosd(th)*sind(th);... 

                sind(th)^2,         cosd(th)^2,         -2*cosd(th)*sind(th);... 

                -cosd(th)*sind(th), cosd(th)*sind(th),  cosd(th)^2 - sind(th)^2]; 

             

        Teps = [cosd(th)^2,      sind(th)^2,         cosd(th)*sind(th);... 

                sind(th)^2,         cosd(th)^2,         -cosd(th)*sind(th);... 

                -2*cosd(th)*sind(th), 2*cosd(th)*sind(th),  cosd(th)^2 - sind(th)^2]; 

             

        %      Computing Qth using the formula Qth = Tsig \ Q0 * Teps 

        eval(['Qth' num2str(i) ' = Tsig\Q0*Teps;']); 

    end 

end 

 

A = 0; % Initial value for loop summation 

B = 0; % Initial value for loop summation 

D = 0; % Initial value for loop summation 

 

for i = 1:length(or) 

    %     Calculating z values (z0, z1, z2, ..., zn) 

    z_i = -(zref - i) * hPly; % This automatically calculates z1, z2, ..., zn 

    z_prev = -(zref - (i-1)) * hPly;  % Previous z value 

 

    %     Using previously computed Qth values 

    eval(['Qth_current = Qth' num2str(i) ';']); 

 

    %     Calculating A and B components 

    A = A + Qth_current * (z_i - z_prev); 

    B = B + (1/2)*(Qth_current * (z_i^2 - z_prev^2));  % For B calculation 

    D = D + (1/3)*(Qth_current * (z_i^3 - z_prev^3));  % For B calculation 

end 
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%    Finding if B is symetrical based on the ply orientation 

%    Check if A is mirrored (symmetric) 

if isequal(or, fliplr(or)) 

    B = zeros(size(B)); 

    ABD = [A, B; B D]; 

    disp('Layup is Symmetric; B=0.'); 

else 

    B = -B; 

    ABD = [A, B; B D]; 

    disp('Layup is Symmetric; B is not 0.'); 

end 

 

%    End of Section where ABD Matrix is determined --------------------------- 

 

%    Re-assigning indices in A, B, and D matrices for consistency with book 

A(1,6) = A(1,3); 

A(2,6) = A(2,3); 

A(6,6) = A(3,3); 

 

B(1,6) = B(1,3); 

B(2,6) = B(2,3); 

B(6,6) = B(3,3); 

 

D(1,6) = D(1,3); 

D(2,6) = D(2,3); 

D(6,6) = D(3,3); 

 

 

%    Computing the various values to find the constants f_i 

R = ri + 0.5*h;     % Radius of Reference [m] 

D1 = N/(2*pi*R);   % Constant Required for Analysis, from loading 

D2 = T/(2*pi*R^2);  % Constant Required for Analysis, from loading 

 

a1 = [A(2,2) - B(2,2)/R,   B(1,2);... 

    B(1,2) - D(1,2)/R,     D(1,1)]; 

 

a3 = [A(1,1),                 A(1,6) - (2/R)*B(1,6);... 

    A(1,6) + B(1,6)/R,        A(6,6) - B(6,6)/R - (2/R^2)*D(6,6)]; 

 

a2 = [A(1,2) - B(1,2)/R,      B(1,1);... 

    A(2,6) - D(2,6)/R^2,      B(1,6) + D(1,6)/R]; 

 

a4 = [A(1,2),                 A(2,6) - (2/R)*B(2,6);... 

    B(1,1),                   B(1,6) - (2/R)*D(1,6)]; 
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H = a1 - (a4/a3)*a2; 

 

g = (a4/a3)*[D1 D2]'; 

 

f1 = H(2,2); 

f2 = (-1/R)*(H(2,1) + H(1,2)); 

f3 = H(1,1)/R^2; 

f4 = Pz0 - g(1)/R; 

f5 = Pz1; 

 

%    Roots of Characteristic Polynomial 

ga = sqrt((-f2 + sqrt(f2^2 - 4*f1*f3))/(2*f1)); 

la = real(ga);           % Real Component 

be = imag(ga);           % Imaginary Component 

 

%    Y-parameters from table 8.3 (p. 375) 

Y13 = exp(-la*L)*cos(be*L); 

Y23 = exp(-la*L)*(la*cos(be*L) + be*sin(be*L)); 

Y31 = Y13; 

Y41 = -Y23; 

Y14 = exp(-la*L)*sin(be*L); 

Y24 = exp(-la*L)*(-be*cos(be*L) + la*sin(be*L)); 

Y32 = Y14; 

Y42 = exp(-la*L)*(be*cos(be*L) - la*sin(be*L)); 

 

%    Creating System of Matrices to Solve for the Constants, C1 - C4 

Ymat = [1,     0,        Y13,      Y14;... 

    -la,       be,       Y23,      Y24;... 

    Y31,       Y32,      1,        0;... 

    Y41,       Y42,      -la,       be];           

fmat = -[f4/f3; f5/f3;    (1/f3)*(f4 + L*f5); f5/f3]; 

C = Ymat\fmat; 

C1 = C(1); 

C2 = C(2); 

C3 = C(3); 

C4 = C(4);     

 

%    Generating radial w0, axial u0, and circumferential v0 displacements 

w0 = exp(-la.*x).*(C1*cos(be.*x) + C2*sin(be.*x)) + ... 

     exp(-la.*(L - x)).*((C3*cos(be.*(L - x))) + C4*sin(be*(L - x))) + ... 

     (1/f3)*(f4 + x.*f5);          % Radial Displacements [m] 

 

intw0dx = (1/f3).*(f4.*x + 0.5.*(x.^2).*f5) + ... 

     exp(-la.*x).*cos(be.*x).*((-la*C1 - be*C2)./(la^2 + be^2)) + ... 

     exp(-la.*x).*sin(be.*x).*((be*C1 - la*C2)./(la^2 + be^2)) + ... 

     exp(-la.*(L - x)).*cos(be.*(L - x)).*((la*C3 + be*C4)./(la^2 + be^2)) + ... 
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     exp(-la.*(L - x)).*sin(be.*(L - x)).*((-be*C3 + la*C4)./(la^2 + be^2)); 

 

dw0dw = f5/f3 + exp(-la.*x).*cos(be.*x).*(-la*C1 + be*C2) + ... 

     exp(-la.*x).*sin(be.*x).*(-be*C1 - la*C2) + ... 

     exp(-la.*(L - x)).*cos(be.*(L - x)).*(la*C3 - be*C4) + ... 

     exp(-la.*(L - x)).*sin(be.*(L - x)).*(be*C3 + la*C4); 

 

%    The elements of equation 8.37 are separated as follows for convenience: 

el3 = [intw0dx./R; -dw0dw]; 

el6 = [D1; D2]; 

xArray = [x; x]';        % To make matrices agree with x values 

 

u0v0 =  -(a3\a2)*el3 + transpose(xArray*inv(a3)*el6); 

 

%    Extracting individual results 

u0 = u0v0(1,:);          % Axial Displacements [m] 

v0 = u0v0(2,:);          % Circumferential Displacements [m] 

 

 

%    Plotting Results 

figure, 

plot(w0, x) 

grid on 

ylabel('Axial Distance [m]', 'FontWeight',' bold') 

xlabel('Radial Displacements [m]', 'FontWeight',' bold') 

 

figure(2), 

plot(u0, x) 

grid on 

ylabel('Axial Distance [m]', 'FontWeight',' bold') 

xlabel('Axial Displacements [m]', 'FontWeight',' bold') 

 

figure(3), 

plot(v0, x) 

grid on 

ylabel('Axial Distance [m]', 'FontWeight',' bold') 

xlabel('Circumferential Displacements [m]', 'FontWeight',' bold') 
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Appendix C: Calculations of Critical Buckling Load for the Cylindrical Pressure Hull 

%%   Buckling Analysis of Composite Cylinder, p. 407 

%    Based on Equations from Ch 8.4 (Mechanics of Composite Structures (p. 404) 

%    Developed by Ignacio Ramirez Romero 

%    General Commands 

clear all; close all; clc; 

 

%    Cylinder Geometry and Other Constants 

h = 12.7e-2;                            % Thickness [m] 

L = 2.5298;                             % Length [m] 

ri = 70.11e-2;                          % Inner Radius [m] 

Ry = ri + 0.5*h;                        % Shell Radius 

Rx = inf;                               % Analysis Constant 

Rxy = Rx;                               % Analysis Constant 

 

%    Loading Conditions 

Nx0 = 1;                                % Assumed Axial Load [N] 

Ny0 = 0;                                % Transverse Load [N] 

Nxy0 = 0;                               % Membrane Load [N] 

 

%    Ply Geometry and Computation of ABD Matrix   ---------------------------- 

hLa = h;                                % Lamina Thickness [m] 

or = repmat([0, 90], 1, 333);           % Array with Ply Orientation [0, 90]_333 

or = [or, 0];                           % Adds 0 Ply to match Titan's Laminate 

plyNu = 1:length(or);                   % Ply Number Assignment, Bottom to Top 

hPly = hLa/(length(or));                % Thickness of Each Ply 

zref = round(length(or)/2);             % Reference plane (middle of laminate) 

 

%    Computation of Ply Properties using Rules of Mixture 

%    Properties of Fiber 

Ef1 = 231e9;                            % Longitudinal Youngs Modulus of Fiber [Pa] 

Gf12 = 91e9;                            % Longitudunal Shear Modulus of Fiber [Pa] 

nuf12 = 0.27;                           % Longitudinal Poisson's Ratio of Fiber 

Vf = 0.7;                               % Volume Fiber Fraction 

 

%    Properties of Matrix 

Em = 2.8e9;                             % Matrix Young Modulus [Pa] 

Gm = 1e9;                               % Matrix Youngs Modulus [Pa] 

num = 0.35;                             % Matrix Poisson's Ratio 

 

%    Rules of Mixture Ply Properties 

E1 = Ef1*Vf + Em*(1-Vf); 

E2 = (Vf/Ef1 + ((1-Vf)/Em))^-1; 

G12 = (Vf/Gf12 + ((1-Vf)/Gm))^-1; 

nu12 = nuf12*Vf + num*(1-Vf); 
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%    Reduced Stiffness Matrix for reference ply at 0 deg 

D = 1 - (E2/E1)*nu12^2;                 % Engineering Constant [unitless] 

Q0 = [E1/D,         (nu12*E2)/D,        0;... 

     (nu12*E2)/D,   E2/D,               0;... 

     0,             0,                  G12]; 

 

%    Calculation of Reduced Stiffness Matrix of All Other Plies 

for i = 1:length(or) 

    % Defining the current angle th 

    th = or(i); 

     

    % Checking if th = 0 

    if th == 0 

        % If th1 is 0, create Qth variable with name Qth1, Qth2, ..., Qth5 

        eval(['Qth' num2str(i) ' = Q0;']); 

    else 

        %      Otherwise, compute Tsig and Teps based on the current angle (i) 

        Tsig = [cosd(th)^2,      sind(th)^2,         2*cosd(th)*sind(th);... 

                sind(th)^2,         cosd(th)^2,         -2*cosd(th)*sind(th);... 

                -cosd(th)*sind(th), cosd(th)*sind(th),  cosd(th)^2 - sind(th)^2]; 

             

        Teps = [cosd(th)^2,      sind(th)^2,         cosd(th)*sind(th);... 

                sind(th)^2,         cosd(th)^2,         -cosd(th)*sind(th);... 

                -2*cosd(th)*sind(th), 2*cosd(th)*sind(th),  cosd(th)^2 - sind(th)^2]; 

             

        %     Computing Qth using the formula Qth = Tsig \ Q0 * Teps 

        eval(['Qth' num2str(i) ' = Tsig\Q0*Teps;']); 

    end 

end 

 

A = 0; % Initial value for loop summation [N/m] 

B = 0; % Initial value for loop summation [N] 

D = 0; % Initial value for loop summation [N*m] 

 

for i = 1:length(or) 

    %     Calculating z values (z0, z1, z2, ..., zn) 

    z_i = -(zref - i) * hPly; % This automatically calculates z1, z2, ..., zn 

    z_prev = -(zref - (i-1)) * hPly;  % Previous z value 

 

    %     Using previously computed Qth values 

    eval(['Qth_current = Qth' num2str(i) ';']); 

 

    %     Calculating A and B components 

    A = A + Qth_current * (z_i - z_prev); 

    B = B + (1/2)*(Qth_current * (z_i^2 - z_prev^2));  % For B calculation 

    D = D + (1/3)*(Qth_current * (z_i^3 - z_prev^3));  % For B calculation 
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end 

 

%    Finding if B is symetrical based on the ply orientation 

%    Check if A is mirrored (symmetric) 

if isequal(or, fliplr(or)) 

    B = zeros(size(B)); 

    ABD = [A, B; B D]; 

    disp('Layup is Symmetric; B=0.'); 

else 

    B = -B; 

    ABD = [A, B; B D]; 

    disp('Layup is Symmetric; B is not 0.'); 

end 

 

%    End of Section where ABD Matrix is determined --------------------------- 

 

%    Re-assigning indices in A, B, and D matrices for consistency with book 

A(1,6) = A(1,3); 

A(2,6) = A(2,3); 

A(6,6) = A(3,3); 

 

B(1,6) = B(1,3); 

B(2,6) = B(2,3); 

B(6,6) = B(3,3); 

 

D(1,6) = D(1,3); 

D(2,6) = D(2,3); 

D(6,6) = D(3,3); 

 

%    Generating M0, Mn, and J matrices 

M0 = [A(1,1),  A(1,2),   0,        B(1,1),   B(1,2),   0;... 

     A(1,2),   A(2,2),   0,        B(1,2),   B(2,2),   0;... 

     0,        0,        A(6,6),   0,        0,        B(6,6);... 

     B(1,1),   B(1,2),   0,        D(1,1),   D(1,2),   0;... 

     B(1,2),   B(2,2),   0,        D(1,2),   D(2,2),   0;... 

     0,        0,        B(6,6),   0,        0,        D(6,6)]; 

 

Mn = ABD - M0; 

 

J = [0, 0, 0;... 

     0, 0, 0;... 

     0, 0, 1]; 

 

%    Defining parameter ranges 

al = linspace(1, 50, 100); 

be = linspace(1, 50, 100); 
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c1 = linspace(0, 2, 21); 

c2 = linspace(0, 2, 21); 

 

%    Preallocating storage for results 

la = struct();   

 

%    Iterating over all possible combinations 

for i = 1:length(al) 

    for j = 1:length(be) 

        for k = 1:length(c1) 

            for m = 1:length(c2) 

 

                %   Extracting current parameter values 

                al1 = al(i); 

                be1 = be(j); 

                c11 = c1(k); 

                c21 = c2(m); 

 

                %   Generating O and L matrices 

                O = [-al1,     0,        be1,      0,        0,        0;... 

                     0,        -be1,     al1,      0,        0,        0;... 

                     1/Rx,     1/Ry,     0,        al1^2+((be1^2)*c21^2), be1^2+((al1^2)*c11^2),  -

2*al1*be1*(1+c11*c21)]; 

 

                L = [be1*c21,   0,        -al1*c11,  0,        0,        0;... 

                     0,        al1*c11,  -be1*c21,  0,        0,        0;... 

                     0,        0,        1/Rxy,    -2*al1*be1*c21,     -2*al1*be1*c11,     2*(c11*al1^2 + 

c21*be1^2)]; 

 

                %   Computing OL, G, Ph1, Ph2, PhJ 

                OL = [O, L; L, O]; 

                G = OL * [M0, Mn; Mn, M0] * transpose(OL); 

 

                %   Computing Phi matrices 

                Ph1 = al1^2 + be1^2*c21^2; 

                Ph2 = -2*al1*be1*c21; 

                PhJ = [Ph1*J, Ph2*J; Ph2*J, Ph1*J]; 

 

                %   Solving eigenvalue problem 

                eigenVals = eig(G, PhJ); 

                la_min = min(eigenVals); 

 

                %   Storing result with dynamic field naming 

                field_name = sprintf('la_al%d_be%d_c1%d_c2%d', i, j, k, m); 

                la.(field_name) = la_min; 

            end 
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        end 

    end 

end 

 

%    Extracting Results 

%    Extracting field names and corresponding values 

fields = fieldnames(la); 

values = struct2array(la); 

 

%    Filtering the infinite values 

finite_indices = ~isinf(values) & (values > 0) & isreal(values);  % Ensure values are finite, 

positive, and real 

finite_values = values(finite_indices); 

finite_fields = fields(finite_indices); 

 

%    Ensuring there are valid finite values before proceeding 

if isempty(finite_values) 

    error('No finite values found in the dataset.'); 

end 

 

%    Finding the minimum finite value 

[la_result, min_idx] = min(finite_values); 

 

%    Extracting the corresponding field name 

min_field = finite_fields{min_idx}; 

 

%    Parsing the field name to extract indices 

tokens = regexp(min_field, 'la_al(\d+)_be(\d+)_c1(\d+)_c2(\d+)', 'tokens'); 

tokens = str2double(tokens{1});  % Convert extracted strings to numbers 

 

%    Extracting indices 

i_res = tokens(1); 

j_res = tokens(2); 

k_res = tokens(3); 

m_res = tokens(4); 

 

%    Retrieving actual parameter values 

al_res = al(i_res); 

be_res = be(j_res); 

c1_res = c1(k_res); 

c2_res = c2(m_res); 

 

%    Displaying results 

fprintf('Minimum finite la: %.6f\n', la_result); 

fprintf('Occurs at: al = %.2f, be = %.2f, c1 = %.2f, c2 = %.2f\n', al_res, be_res, c1_res, c2_res); 


