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ABSTRACT

Static Structural Analysis of OceanGate’s Titan Submersible:
Analytical and Numerical Comparison with Ansys

Ignacio D. Ramirez Romero

The following work analyzes the static structural response of a deep-sea ocean submersible.
More specifically, a simplified geometry model of OceanGate’s Titan Submersible was developed
using available online resources and later analyzed using Ansys’s Static Structural. The geometry
model is represented by a carbon fiber reinforced epoxy (CFRE) cylindrical section flanked by
two titanium hemispheres, with a polymethyl methacrylate (PMMA) observation window
embedded in the bow. The cylindrical section and the hemispheres are connected through two
titanium O-ring interfaces assumed to be perfectly bonded. Total nodal displacements and
structural failure were investigated developing a Finite Element model in Ansys Static Structural.
Total displacements predicted by Ansys for the CFRE cylindrical section were then compared to
those predicted by an analytical model. A brief literature review of failure of composite materials
and an overview of the Finite Element Method (FEM) is discussed. Results suggest that failure
occurs at the edges and middle of the cylindrical section with the current thickness and laminate
selection. A low safety factor was observed in the O-Ring section connected to the pressure hull.
Additional study cases and potential improvements are shared in the last section of this report.
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1. Introduction

1.1 Introduction

Humanity’s unending quest for knowledge and exploration has catalyzed the advancement
of science and subsequent development of various technologies. During this process, the lives of
many individuals around the world have been positively impacted. That is the case, for example,
with Global Positioning System (GPS), whose original purpose was the tracking of maritime
vehicles and military targets [1]. Today, individuals around the world enjoy the accessibility of
GPS for tasks spanning from driving to a desired destination or knowing with precision the location
of certain objects. Moreover, the development of Sonar Navigation and Ranging -also referred to
as sonar, - used to map objects in the ocean, pioneered the later creation of ultrasound [2]. The
benefits of this technology enable medical professionals to monitor fetal development and assess
potential anomalies in several internal organs [3]. Fruits of scientific and technological innovation
have, undeniably, positively impacted the lives of individuals around the world.

Another oceanic invention with a noble purpose -but a catastrophic outcome- was that
embodied by OceanGate’s Titan submersible. As included in OceanGate’s website (now
archived), its main mission was to facilitate commercial expeditions and scientific research and
exploration [4]. Most notably, within the scope of these commercial expeditions, was the transport
of passengers to the wreckage site of the Titanic, located approximately 690 kms southeast of
Newfoundland, Canada. On June 18, 2024, the US Navy’s sonar detected an acoustic signature
which was later confirmed to be the implosion of the Titan submersible [5]. Stockton Rush, the
principal engineer who oversaw the design and construction of the Titan, neglected warnings
provided by industry experts regarding the questionable reliability and safety of the Titan. Should
these warnings have been considered seriously, the loss of five human lives, who participated in
the last expedition of the Titan submersible during its implosion, including that of Stockton Rush
himself, could have been prevented. This work seeks to provide a general insight into structural
challenges generated by the operational design of the Titan submersible using Ansys Static
Structural . Identifying, understanding, and improving deficiencies in the final design of human
occupied vehicles (HOV) in deep-sea environments will provide future designers with an
additional outlook about limitations and promising design configurations for the development of
deep-sea vehicles.

1.2 Background

An image of the Titan Submersible and its schematic is depicted in Figure 1.1. The
pressurized section of the submersible consisted of two main elements: a carbon-fiber cylindrical
section flanked by two titanium spheres with one acrylic window [6]. Possibly, for legal reasons
after the implosion of the submersible, OceanGate deleted all the content previously available on
its website. Despite the lack of current peer-reviewed literature detailing its specific dimensions,
available online resources appeared to reach consensus regarding its principal measurements. Four
of these sources, [7], [8], [9], [10], reflect the specifications summarized in Table 1.1.



6.7 m (22.0 ft)

25 M
(8.2 ft)

Figure 1.1 - Titan Submersible underwater and its schematic [6].




Table 1.1 - Dimensions of the Titan submersible according to online resources.

The

Dimensions Wikipedia Seattle Times Guardian People
[7] [8] 0] [10]
overall  -ength[f 22 22 22 22
Dimensions  Height [f{] 8.2 8.3 8.2 8.3
Width [ft] 9.2 - 9.19 9.2
Carbon- Diameter [ft] 5.5* 4.6 - i
Fiber Length [ft] 8.3 8.3 - ;
Wound . ]
Cylinder Thickness [in] 5.0 - - -
Titanium Thickness [in] 3.25 - - -
Caps

*Judged as the “outer diameter”

The nature of the Titan Submersible’s mission, which required reaching a depth of
approximately 4km, subjected the structure to extremely harsh operating conditions. The
hydrostatic pressure increases by 1 atmosphere for every 10.06 meters of descent [11]. For this
corresponding diving depth, the submersible experienced an omnidirectional pressure of 398
atmospheres, or 40.33 MPa, attempting its implosion. Of the three main materials previously
identified, carbon fiber composite possesses failure modes whose theoretical models have not
undergone extensive experimental testing. Precisely, this cyclical increase in pressure at such low
diving depths might have switched the cause of structural failure from overall buckling to gradual
material failure in the composite pressure hull [12]. The various material interfaces, in addition to
the cyclical pressure loading experienced by this maritime system add complexity to the modeling
techniques of composite pressure hulls, relative to the better understood behavior of isotropic
materials, such as metal alloys. To mitigate the enormous hydrostatic pressure to which the vessel
was exposed, the thickness of the structure had to be significantly increased. Nevertheless, pressure
hulls of large thicknesses are more prone to phenomenon called snap buckling, a sudden,
catastrophic material failure [12]. It is crucial to consider various potential failure mechanisms
appropriate to each material to assess the potential mechanical behavior of an underwater
composite pressure vessel.

1.3 Previous Studies on Structural Failure Modeling

Understanding the various possible failure mechanisms of a fiber-reinforced composite
structure, like the cylindrical body of the Titan Submersible, requires first exploring the most
fundamental unit of this type of composite material: a laminate. In a fiber reinforced composite
material, a lamina consists of two constituents: fibers and a bonding material interface called
matrix. When a group of laminae are stacked in multiple directions to achieve superior mechanical
properties, the resulting unit structure is called a laminate. Several methodologies have been
developed to predict the structural failure mechanisms for complex materials of this nature. The
author proposes discussing these theories as classical and modern. After reviewing these two



failure theories for laminates, failure theories targeting composite pressure hulls specifically will
be explored. Finally, structural failure modeling of the other dominant materials, titanium alloy
and acrylic, will be briefly explored.

1.3.1 Classical Failure Criteria of Composite Materials

One such categorization classified failure as occurring at either single-scale or multi-scale.
In the single-scale arena, the first major effort consisted of modeling a composite structure as
homogenized and unidirectional. In 1948, Hill [13] proposed describing the yield criterion for
isotropic metals as orthotropic by using six independent yield stresses. Using a cartesian coordinate
system, these could be described as three normal stresses in each symmetrical direction and three
shear stresses on each symmetrical plane. In 1965, Azzi and Tsai [14] proposed a mathematical
model derived by equating the six yield stresses in the Hill criterion to a series of corresponding
strength values of a unidirectional composite. This model became known as the Tsai-Hill criteria,
and its mathematical expression is summarized in equation 1.1. Here, the normal stress in the fiber
and transverse directions are represented by o, and o,. The in-plane shear stress is denoted by 6,,
and X, Y, and S are the strength values of o4, 5, and o4,. Its main source of criticism became its
incorrect modeling based on yielding, which does not correctly capture the failure mechanism of
unidirectional composites.
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Experimental inconsistencies between values predicted by the Tsai-Hill criteria led to a
proposed improvement by Tsai and Wu [15]. Distinctive to Tsai-Hill, the Tsai-Wu criteria was
based on a scalar function expressed as a polynomial in terms of the stress tensor components, as
denoted by equation 1.2. For a unidirectional laminate, indices i and j obtain the values of 1, 2, and
6, and the repeated indices signal summation. The coefficients F; and F;; are referred to as material
strength constants, which are obtained experimentally. The Tsai-Wu criteria allowed for the
creation of an ellipsoidal fit representation of the failure limits. Like the Tsai-Hill criteria, the main
critique attributed to Tsai-Wu was its inadequacy describing the failure mechanics of a lamina and
representing instead a convenient mathematical framework.

Ficj + FijGiGj =1 (12)

Subsequent improvements to the Tsai-Hill took the form of Hashin and later Puck failure
criteria. In his research, Hashin [16] signaled differences between experimental data and some
stress components in equation 1.2. As a result, he then proposed increasing the number of failure
modes for a composite material, such as failure for i) fibers in tension, ii) fibers in compression,
iii) matrix in tension, and iv) matrix in compression. These failure modes are outlined as depicted
in equations 1.3 through 1.6. Equations 1.3 and 1.4 represent the failure criteria for fibers in tension
and compression, while 1.5 and 1.6 correspond to the failure criteria for the matrix in tension and
compression. Subscripts 1, 2, and 3 refer to the longitudinal, transverse, and orthogonal (through-
thickness) directions, whereas superscripts + and — denote tension or compression. The variable S
denotes the values at which the corresponding failure types occur. In a subsequent investigation,
Puck and colleagues [17] incorporated the concept of a failure plane which would not intersect the
fibers of a unidirectional composite and had previously been suggested by Hashin, as well as



hybrid modes, which would consider failure during combined loading modes, such as tension and
compression. Although the discussed theories enhanced the understanding and prediction of failure
in a unidirectional laminate composite, Talreja [18] asserted that these classical theories were
limited by the inability to describe the initiation of the first event that would cause the evolution
of subsequent failure in the composite structure. All these initial efforts catalyzed the subsequent
improvements in models of failure in composite materials.
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1.3.2 Modern Failure Fracture Mechanics of Composite Laminates

One of the more recent efforts to characterize and predict structural failure of composite
laminates was proposed by Qi and collaborators [19], whose work is summarized in the entirety
of this subsection. First, the dominant damage modes in composite laminates were identified as
matrix cracking, local delamination, and fiber breakage. This is illustrated in Figure 1.2, located
below. Under repeated cyclic loadings, they observed that matrix cracks would first originate in
weaker piles, which would typically form parallel to the direction of the fibers. As the number of
loading cycles increased, these cracks would then saturate, leading to the degradation of the
transverse modulus and shear modulus. Consequently, local delamination would start and develop
at the edges of the transverse matrix cracks because of the stress concentration effects. As the
matrix interface accumulated more damage, the fibers would then start to progressively bear more
loading until fiber breakage -leading to catastrophic structural failure- would occur. Qi and
colleagues provided a useful visualization of this process, as depicted in figure 1.3.
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Figure 1.2 - Observed dominant damage modes in cross-ply composite laminates under fatigue
loading [19].
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Figure 1.3 - Damage evolution in composites under fatigue loading [19].

To model the damage experienced by a composite structure, Qi introduced the concept of
damaged strain energy density of an elementary ply, as summarized by equation 1.7. Subscripts
11, 22, and 12 denote the longitudinal, transverse, and orthogonal (through-thickness) directions.
Superscripts f and m denote fiber and matrix, while O denotes the original properties (before-
damage) of the ply. The main stresses, shear stress, Elasticity Modulus, shear modulus, Poisson’s
ratio, and the macro-level damage properties are denoted by o, T, E, G, y, and d, respectively. The
blanket [.]* represents the Heavyside function. By applying the definition of strain energy release
rate, in equation 1.8, the strain-stress relationship of a damaged ply could then be reflected in terms
of the constitutive equations 1.9-a to 1.9-C. ¢;; represents the strain components. This set of three
equations enabled the quantification of the damaged stiffness properties under fatigue loading. By
including the effects of temperature changes, which induce thermal stress in composite laminates,
as reflected by 1.10, the constitutive equations, 1.9-a through 1.9-c, could then be expressed as
Equations 1.11-a through 1.11-c. Here, €T is the residual strain, AT denotes the difference between
the loading environment and the manufacturing temperature, and o represents the thermal
coefficient of expansion. Subscripts 1, 2, and 6 in « denote the longitudinal, transverse, and
orthogonal (through-thickness) directions.
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The main objective of modeling the damage evolution history of a composite laminate
undergoing fatigue is the prediction of stiffness degradation. To achieve this objective, three
damage evolution laws were outlined and integrated into the previous damage characterization
model. These three laws were a) evolution law of matrix cracking, b) evolution law of
delamination, and c) evolution law of fiber breakage. Principal highlights of this work appear
summarized in the paragraphs below.

A Evolution Law of Matrix Cracking

The first event in the proposed evolution damage model starts with the generation of
transverse cracks in the matrix. The concept of initial matrix crack initiation life, summarized by
Equation 1.16, was introduced to define whether transverse cracks would start or continue, evolve,
and saturate. N;,; represents the matrix crack initiation life; 072, denotes the maximum stress in
cracked plies, and ois the initiation stress of an initial matrix crack in cracked plies, under the
assumption of quasi-static loading. K, and A are material parameters. Specifically, this theory
outlined that when an applied maximum stress was smaller than the initial matrix crack initiation
stress, matrix cracks would be expected to occur after several cycles. When the number of cycles
reached the local initial matrix crack initiation life, cracks would be assumed to start. Moreover,
when an applied maximum stress exceeded the initial matrix crack initiation stress, cracks would
initiate during that stress cycle and eventually saturate. When this occurred, the damaged stiffness
matrix of cracked cracks could then be calculated by the crack opening displacement theory,
expressed by equation 1.17. Q4 represents the damaged stiffness matrix, p denotes the density of
the transverse crack, | is the identity matrix, g represents the ratio of the extension length to the
total length, and U is the normalized displacement matrix of the matrix crack surface. The
undamaged longitudinal modulus and undamaged stiffness matrix are denoted by E? and Q,,
respectively. Consequently, the damaged elastic modulus of composite laminates could then be
quantified according to the damaged longitudinal modulus, damaged transverse modulus, and
damaged shear modulus, represented by equations 1.18-a to 1.18-c.

log Nip; = log Ko — 2Alog o7 + 2 log 050 (1.16)
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B. Evolution Law of Delamination

Proceeding crack saturation, in the matrix damage history of events, is local delamination
phase. Although observations have confirmed that it is feasible for delaminate damage to occur
before saturation [19], even at small stress levels, this model assumes that local delaminate damage
would occur after saturation. To describe the evolution of local delamination, the Paris-law,
reflected on equation 1.19 was employed. D represents the delamination damage variable, N
denotes the cycle number of fatigue loading, and Y is the range of damage evolution variable; A
and  are material parameters. The evolution damage variable Y was defined according to 1.20,
where Y;, and Y,, denote the thermodynamic forces relating to damage variables, and k is the
coupling parameter. Consequently, using damage mechanics theory, the damage variables could
then be expressed as 1.21-a and 1.21-b.
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C. Evolution Law of Fiber Breakage

After the cracks begin to saturate, and delamination occurs, under cyclical loading, fibers
become subjected to bearing higher loads. When the local stress experienced by a fiber would
reach a critical value, fiber breakage would then occur. Equation 1.22, which represents a brittle
failure law, was used to model the initiation of fiber breakage damage, where the bearing stress
and the failure strength of the fibers are denoted by o¢ and S;. As this equation reflects, an increase
in bearing stress would be accompanied by a decrease in fiber strength. The quantification of this
decrease in fiber strength required the introduction of the residual strength and residual stiffness
of a composite laminate, as shown by Equation 1.23. The residual strength and stiffness damage
variables are denoted by Dy and Dg, while w represents a material parameter. Subsequently, Dg
and Dg are redefined by equations 1.24-a and 1.24-b. The initial longitudinal elastic modulus and
failure strength of the composite laminate are denoted by E9 and S,; E¢ and S, represent the
damaged longitudinal elastic modulus and strength. E{" denotes the critical longitudinal elastic
modulus when the composite laminate fails under fatigue loading at the corresponding maximum
longitudinal stress o,,,5. The calculation of the residual strength of a composite laminate under a
specific cycle number could then be predicted according to equation 1.25. The laminate was
considered to fail when the obtained residual strength was smaller than the applied maximum stress
of fatigue loading. Because the previous laws and damage characterization model were established



for an elementary ply, coordinate transformation equations would need to be computed to obtain
the constitutive equations for plies in laminates oriented at a 6-angle.
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1.3.3 Structural Failure of Composite Pressure Hulls for Deep-Sea Applications

The most recent available structural failure review, specifically addressing composite
pressure hulls for deep-sea applications, is that offered by Li et al [20], whose work is synthesized
in this section. Three principal aspects were proposed as the principal structural failure modes:
overall buckling failure, material failure, and snap buckling failure. Overall buckling was
identified as the dominant failure mode. Experiments involving various cylindrical composites,
made from different materials and prepared using different manufacturing processes, were
performed to test each of the specimens under external hydrostatic pressure to failure. Notably,
some of the most recent work was conducted by Ross and Little [21], Pavlopoulou and Roy [22],
and Zhang et al [23]. In these experiments, two main sub-modes of failure were observed: elastic
(linear) and inelastic (non-linear) buckling. Elastic buckling is based on linear assumptions, and it
involves the calculation of the critical buckling load by numerical or analytical methods.
Theoretical approaches include the use of the buckling formula to determine the linear buckling
load of a composite cylindrical shell. Popular numerical methods include Finite Element Analysis
(FEA), identified as the most popular by Luo and Wang [24], specially using commercial software
like ABAQUS, ANSYS, or DYNA, and NASTRAN. Results obtained through linear buckling
assumptions are the foundation to perform the subsequent inelastic buckling analysis. Inelastic
buckling occurs due to the large deformations caused by structural buckling, which are
characterized by non-linear effects. Since pressure shells are expected to experience defects during
the manufacturing, storage, and assembly process, geometric nonlinearity will occur. As a result,
conducting gradual (step-by-step) non-linear simulations is recommended to clearly record the
evolution of structural nonlinear buckling.

In the case of thick-walled composite shells, material failure under compression can cause
loss of bearing capacity. When a compressive, unidirectional load is applied on a composite
structure, along the fiber direction, the fiber behaves like an extended column prone to buckling.
Consequently, macro and micro buckling will be the primary failure sub-modes. Four were
identified as the dominant factors influencing the failure modes of composites under compression:
i) material properties, ii) fiber deflection angle, iii) fiber volume content, and iv) defect sensitivity.
The principal theoretical methods of prediction for this failure category focus on determining the
compressive strength of a unidirectional composite material or shell structures under compression
failure. Some of these methods are the elastic microbuckling theory, nonlinear microbuckling
theory, three-parameters model, fracture mechanics, FEA, and cumulative damage analysis
technology. The third failure mode discussed is snap buckling. This failure mode is unique to
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composite pressure hulls exposed to high hydrostatic pressures and an inherently non-linear
problem. It can occur with or without initial delamination and lead to instantaneous interlaminar
fracture. Implemented approaches to predict damage evolution for a composite material under
compressive load include six main approaches, summarized in table 1.2.

Table 1.2 - Main prediction methods for composite materials subject to
compressive load [19, 20].

Elastic Microbuckling theory
Nonlinear Buckling theory
Three Parameters model
Fracture mechanics method
Finite element analysis method
Cumulative damage analysis technology

Compressive Strength of unidirectional
composite material

Compression failure of composite shell
structures

Li et all [20] asserted that snap buckling is a unique failure mode of composite shells with
large thickness subjected to significant hydrostatic pressures. As the name implies, snap refers to
instantaneous fracture and can occur without pre-existing delamination. Snap buckling is a non-
linear problem, and, unlike regular buckling, where the post-deformation shape is somewhat
similar to the pre-buckling form, the post-snap buckling shape is radically different from the
original configuration. In one key study conducted by Kachanov [24], snap buckling was attributed
to delamination coupled buckling. This term refers to gradual process of delamination due to the
lower interlaminar strength and the simultaneous buckling of delamination sub-layers. Kachanov
proposed to solve this problem theoretically by using a hybrid method combining large deflection
theory with the fracture mechanics method. Another recent study was conducted by Lou and Wang
[25] who created a model for the inner surface of a composite spherical shell under compression
using the principle of elastic similarity. In this work, the coupled buckling concept previously
introduced by Kachanov was explored, as well as the effects of delamination thickness and
location.

1.3.4 Structural Failure of Titanium Alloys for Deep Sea Applications

The most recent investigation involving implosion of spherical, Titanium Alloy pressure
hulls, at the time this report was written, corresponded to that performed by Zheng and Zhao [26].
This mentioned work focused on analyzing the implosion and failure mechanisms of a high-
strength/beta annealed titanium alloy Ti-6Al-4V pressure hull in a high-pressure environment. An
experimental investigation was first performed and later reconciled with numerical models, which
included describing the fluid behavior and structural deformation before, during, and after the
failure of the specimen. While details about the fluid behavior and post-implosion interaction are
included in Zheng and Zhao’s work, this subsection will focus on the elastoplastic deformation
and structural failure stage of titanium alloy only. The structural deformation of the titanium alloy
sphere was discretized and solved implementing FEM based on OpenRadioss, an open-source
solver framework. The elastoplastic deformation of the titanium sphere was modeled by equation
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1.26, where o represents the second Piola-Kirchoff stress tensor component, d is the displacement,
f represents the applied force, and p is the density of the multiphase flow. The second Piola-
Kirchoff stress tensor component is then defined by equation 1.27, where p is the fluid pressure
and & denotes the Piola-Kirchoff function. Once the structure entered the elastoplastic deformation
phase, the Johnson-Cook (J-C) constitutive equation was adapted express the equivalent plastic
stress &, as shown by equation 1.28. A, B, C, m, and n represent material parameters measured at
or below the transition temperature; €, denotes the equivalent plastic strain, whereas the work

and reference equivalent plastic strain rates are denoted by €and EO. The workpiece, melting, and
room temperatures are represented by T, Ty, and Troom-

2
V-(c+ovd)+f=p3 (1.26)
o= —pd (1.27)
— 1 € T_Troom m
0o = (A + Benplastic) (1 +C lné) [1 - (m) ] (128)

Similarly, the J-C failure criteria was used to model the structural failure of finite elements
in the structure, where under the current strain rate, temperature, pressure, and equivalent stress
conditions, the equivalent failure strain expression was defined according to equation 1.29. Here,
the material parameters D, through D are measured at or below the transition temperature, and
the stress triaxiality is defined as the ratio of the pressure to equivalent plastic stress, 6 = P/c .
When the damage parameter of a unit element in equation 1.30 became equal to 1, the material
stiffness gradually disappeared, in accordance with explicit dynamics method, specified in
OpenRadioss solver. The material stiffness was assumed to degrade progressively until reaching
failure. Because the proposed model considered the effect of equations of state to describe the
post-implosion deformation of the titanium structure, the Griineisen model was implemented in
the numerical simulation. More specifically, equation 1.31 was employed as the equation of state
for titanium alloy during its compression. ps denotes the density, C represents the speed of sound,
Ys is the Griineisen coefficient, a is a first-order volume correction to y, and S is a material
parameter. Parameter p is defined by equation 1.32, where pg; and pg denotes the current and
initial densities of the structure.

= . € T-Troom
Ztailure = [D1 + Dy exp D3] (1 + Dy In) [1 4 Dy (o) (129)
€ Tmelt—Troom
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D - Z Efailire (130)
Ps = psC2u[1+ (1= L) u—212] /[1 = (S = Dul? +v4E (1.31)
=2t _q (1.32)
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1.3.5 Structural Studies of Acrylic Windows for Deep Sea Applications

Similarly, the most recent available literature exploring the deformation of an observation
window in a deep-sea vehicle was conducted by He et al [27]. In this mentioned investigation, a
finite element model was developed with ABAQUS 2022 and validated through experimental data.
More specifically, a polymethyl methacrylate (PMMA) frustum observation window of a manned
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submersible, designed according to ASME-PVHO-1, was modeled as illustrated in Figure 1.4. In
this schematic, D;, a, t, and R, represent the initial diameter, cone angle, thickness, and arc
transition radius, respectively. To simulate the hydrostatic pressure and thermal loading pertaining
to deep-sea environment, a parametric analysis implementing temperature combinations ranging
between 2 to 30° Celsius, loading rates between 2.3 to 8 MPa/min, and friction coefficients values
from 0.05 to 0.3 was conducted.

PMMA frustum window

Seat

Figure 1.4 - Basic structural parameters of frustrum observation window from [27].

He et al [27] signaled that in the time-hardening theory, for an isothermal process, the
relationship between the stress o, creep rate €., and time, t, can be expressed according to
equations 1.33 to 1.35. The stress and time-response functions are denoted by f; (o) and f,(t),
respectively, where n, A, and m represent exponential parameters. A temperature-dependent time-
hardening model was then developed by introducing the creep strain rate and subsequently material
parameters, as expressed in equations 1.36 through 1.38. €. denotes the creep strain rate; o is the
uniaxial stress; t is the total time; T is the temperature; a;, b4, ¢;,k,,d;,n,a,,b,, c,, and k, are
material parameters. By integrating the creep strain from equation 1.37, equations 1.39a through
1.39c could then be obtained, where C is an integral constant dependent on the elastic strain before
loading. Lastly, the material constants required for the model were obtained by implementing the
nonlinear least square method with compression creep test data for the PMMA material at different
temperatures.

® = (€ 0,t) =0 (1.33)
e =f;(0) - f,(t) (1.34-3)
f;(0) = o" (1.34-b)
__A m+1 -
f,(t) = rn+1tm (1.34-c)
€or = 177 o - tmtl (1.35)
€cr = Ao™t™ (1.36)
€cr = Act™H1 4+ C (1.37)
€er = (T3 + by T2 4 ¢4 T + ky0 + d; ) ot @2T +b2T+kzo+c2) (1.38)
€cr = Act™H1 4+ C (1.39-3)
Al = a1T3 + bsz + C]_T + klo- + dl (1.39'b)
ml = azTZ + sz + sz + CZ (139'C)
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1.4 Project Proposal

The accurate modeling and prediction of the structural response of a HOV in deep-sea
environments is indispensable to ensure the safety of its occupants. Before ceasing operations,
OceanGate, as a private company, maintained design selections and technical details confidential
from the public, despite warnings that implementing that design was “safe” for its occupants. At
the time this report was proposed, no structural studies to corroborate its safety had been made
available to the public. Consequently, this work seeks to reproduce a simplified geometry model
of the Titan Submersible and generate the static structural response at its lowest operational depth,
which is 4km. This analysis is to be conducted by comparing an analytical method for cylindrical
composites to a FE model in Ansys. Potential troubling areas will be identified and design
recommendations will be made.

1.5 Methodology

In more detail, the operational, simplified design geometry of the Titan submersible will
first be reproduced using SolidWorks ®. A finite Element Method (FEM) will be developed and
implemented in Ansys. Once results are generated and found satisfactory, convergence studies will
be performed to identify the most stable numerical solution. This process then will be repeated
implementing modifications in accordance with the test matrix summarized in table 1.3.

Titan

Operational Generation of
Creation of Development of

Ply Layout FEM with Ansys

Design
Geometry
Development

Quasi- Static
Analysis

Convergence
Studies

Execution of Modifi- Generation of
. Development of . .
Geometry cation of FEM with Ansvs Quasi-Static
Modifications Ply Layout L Analysis

Evaluation
of Results

Figure 1.5 - Workflow Diagram of the Proposed Investigation.
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Table 1.3 - Design of experiments matrix.

1 1.5x thickness increase in thickness in pressure hull and titanium hemispheres
3.0x thickness increase in thickness in pressure hull and titanium hemispheres
Nominal Thicknesses, ply layout [0, 30, 60, 90]s, ceteris paribus
Ply layout [0, 30, 60, 90]s; 1.5x global thickness increase
Ply layout [0, 30, 60, 90]s; 3.0x global thickness increase
Replacement of Carbon Pressure Hull for Titanium

o O A WD

1.6 Conclusions

The presented literature review has focused on introducing the reader to appropriate
background information about the Titan Submersible incident, its main physical characteristics,
and principal constituent materials. Various theoretical failure theories of the two main dominant
constituents, carbon fiber and titanium were explored, and a brief study about modeling of creep
behavior in acrylic observation windows was included. Moreover, the relatively potent and
sophisticated computational tools enjoyed by modelers and investigators of composite structural
failure represents a great advantage to advance the understanding and predicting capabilities in
today’s world. These numerical tools and methods will be leveraged in this study to provide
curious readers and future designers of HOVs with more insights about the effects of various
design configurations involving carbon-fiber composites and titanium alloy.
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2. Finite Element Method Overview

2.1 Finite Element Method Overview

The inherent complexity arisen when modeling physical processes in three-dimensional
space has pushed the scientific community to develop various methods of numerical analysis, such
as Finite Difference, Finite Volume and Boundary Element Method. Arguably, however, the Finite
Element Method (FEM) has become the approach of choice to solve a wide variety of problems
that can be described in terms of partial differential equations or integral expressions. Its impact
in the field of structural analysis -along with other engineering disciplines- has been analogous to
a quantum leap in scientific modeling and engineering design in the past century; nonetheless, its
usefulness and applicability continue to resonate today. By considering the historical background,
key developments, and areas of potential improvement, an analyst reader can gain a deeper
understanding of the architecture of this powerful engineering method, its advantages and
limitations, and think about alternatives to improve its efficiency and accuracy. Aiming to broaden
the scope of this investigation, this section seeks to provide a synopsis of the historical overview
and future of the FEM. Additionally, fundamental concepts of Finite Element Analysis (FEA) and
its specific implementation in the field of Structural Mechanics in Ansys will be discussed.

Several individuals have contributed to the birth, development, and sophistication of the
FEM as it is known today. Some scholars, like Oden [28], argue that an analogous idea to FEA
can be traced back to the work of German mathematician Karl Schellback, whom in 1851 proposed
discretizing a surface using right triangles to find the minimum surface area within a boundary.
Approximating a differential equation with a set of algebraic equations was an intrinsic concept of
FEA. Almost a century later, in 1943, Richard Courant of New York University determined the
torsional rigidity of a hollow shaft through the Riley-Ritz method, where the cross-section of the
shaft was divided into triangles, and the stress function was interpolated linearly at each of the
nodes. In the 1950s, academics and private-sector engineers further developed Courant’s early
concepts to solve problems in civil and aeronautical engineering applications. One of them was
John Argyris of the Imperial College of London, who created an energy method for structural
analysis, which enabled FEM for three-dimensional elements in the 1950s. The second is Ray
Clough, of UC Berkeley, who in the 1960s derived the stiffness matrix of an element in a
continuum in the. Thirdly is Olgierd Zienkiewicz, of Northwestern University, who in
collaboration with J. Z. Zhu, formulated an error estimation technique, which served as a quality
control to the FEM solutions and implemented the concept of adaptive mesh refinement by the
1990s. Lie et al [29] asserted that three previous individuals could be credited with making the
most “pivotal, critical, and significant contributions to the birth and early development of the
FEM.” Lastly, early developments of FEM were complimented by the development of the first
general-purpose computer code, which was developed by structural engineers John Tinsley Oden
and G. C. Best in the 1960s. The elements in this program library contained elements for 2D
elasticity, 2D plane elasticity, 3D beam and rod elements, and elements for general composite
materials [30].

The time spanning the 1960s to the 1990s witnessed crucial advancements in FEM
methodology improvements and applications. One of these was the implementation of explicit,
implicit-explicit, or implicit time integration with damping control to solve nonlinear structural
dynamics problems, proposed by T. Belytschko, K. C. Park, and T. J. Hughes [29]. In fields such
as fluid mechanics, FEM started to be implemented to solve the Navier-Stokes equations as an
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alternative to finite difference and finite volume methods; this was preceding effort to the
subsequent development of FEM solvers for fluid-structure interactions. Another significant
development was the formulation of the Arbitrary Lagrangian-Eulerian (ALE) based FEM
formulations in engineering simulation. This technique enabled the mesh domain to move
arbitrarily to optimize the shape of the elements, ultimately leading to improved accuracy and
numerical convergence. Lastly, in the 1980s, the development of nonlinear probabilistic FEM
enabled the quantification and inclusion of uncertainty in major problem simulation parameters,
such as loading conditions, material behavior, and geometric configuration. Almost parallel to
these events was the development of FEM software technology. On the private sector, in 1963, the
MacNeal-Schwedler Software Corporation (MSC) developed its FEM code Structural Analysis by
Digital Simulation of Analog Methods (SADSAM), whereas NASA completed its own FEM code
NASTRAN (NASA STRuctural Analysis) by 1969. During the same decade, John Swanson, a
then Westinghouse mechanical engineer, left the company and developed its own ANSYS FEM
code [31]. Moreover, Livermore National Laboratories also developed a 2D Nonlinear FEM code
called DYNAZ3D; later, it evolved into LS-DYNA. This technology was bought and incorporated
into ANSYS software, as ANSYS LS-DYNA in 2018. Moreover, in the 1970s, David Hibbitt,
Bengy Karlsson, and Paul Sorensen created a company called HKS, which released a commercial
FEM software called ABAQUS. Today, ABAQUS and ANSY'S are arguably the two most popular
FEM software used by academia and the private sector, aiding investigators to model and
approximate solutions to many complex engineering problems.

The present and future FEM areas of research seem to be focused on two principal aspects.
First is the study of the various forms of machine and deep-learning methods [29]. This area of
research seeks to design and train a neural network to approximate any given continuous function
to an arbitrary level of accuracy, solve high dimensional PDEs in strong form, and accelerate
convergence of the solution. This process is expected to generate new discoveries, create more
robust numerical approximation techniques, and procure the development of more efficient
discretization processes. Secondly is the merging of deep machine learning methods with reduced
order modeling methods. More specifically, this research aims to enable high-resolution topology
design while maintaining a high level of speed and accuracy in the computed solution. Reducing
the computational cost is expected to facilitate the demand between sensors, control algorithms,
and simulation architectures, such as interactions between automated driving control (autonomous
vehicles) and structural health monitoring systems.

2.2  Fundamental Elements of Finite Element Method

Most real-world problems involve complex geometries, non-isotropic material
composition, and loading conditions that cannot be solved with using conventional analytical
methods. In this case, by developing and implementing an appropriate simplified physical model
of the system of interest, the FEM can provide an approximate solution to the problem at hand.

2.2.1 Fundamental Principles of FEA
The fundamental concept of the FEM, as signaled in the previous subsection, is the idea

that a continuum can be discretized into a finite number of elements. A physical element, such as
the post in figure 2.1a, consists of an infinite number of points, able to displace in an infinite
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number of directions upon the application of forces. Interaction of a physical element and its
constituents with forces, subject to constraints, can be represented mathematically through a
Boundary Value Problem (BVP), where physical phenomena in an arbitrarily defined region can
be described through differential equations. The investigation of a field variable, such as
displacement, in structural mechanics, or temperature, in fluid mechanics, is the main objective of
the analysis. In the case of the discussed post, a FE analysis can be achieved by representing the
post with three line-elements of different cross-sectional areas, connected at nodes, and subject to
a pressure applied on top of element 1, as element 3 remains fixed, as shown in Figure 2.1b. This
representation enables the analysis of a system with a finite number of elements restricted to
moving in a selected number of degrees of freedom. Applying the FEA to an analyzed system
implies approximating numerically the field variable at the nodes of the discretized domain.

Structure Aodel Discretized models

a, {711 a.A 1'#
-— il
1

n
—

a4 3 13
O |
o —
Ground Physical Finite element
representation representation
(a) (b)

Figure 2.1 - Modeling and FE representation of a structure [32].

In linear-static analysis, an underlying principle to investigate the nodal displacements is
the analogy to Hook’s law, represented by equation 2.1, and written, for convenience, in matrix
form. Here, f represents the applied force, k the stiffness, and x the displacement for each element,
denoted by the subscript i. As summarized by this equation, each nodal element is assumed to have
an associated stiffness resisting the motion as a response to an applied force. As will be discussed
in the proceeding section, each corresponding element in the discretized domain is then
represented in a global stiffness matrix, where each individual element is converted from a local
coordinate system to a global coordinate system through transformation matrices. This global
stiffness matrix is represented by equation 2.2. Inverting the matrix, as denoted by equation 2.3,
leads to determining the value of each nodal displacement. The displacements at the non-nodal
points are then approximated through piece-wise interpolation of polynomial functions, such as
those in the form of equation 2.4. Additional properties of interest, such as strains and stresses can
then be determined after the prediction of this main field quantity.

{th = [kli{x} (2.1)
{F} = [K{X} (2.2)
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[X] = [K]7*[F] (2.3)
(I)(X; Y) = Nl(X, Y)(I)l + NZ(X) Y)¢2 (24)

Four popular formulation techniques are used to obtain the series of equations to assemble
the global stiffness matrix for a finite elements grid in a BVP: i) equilibrium, ii) direct stiffness,
iii) variational methods, and iv) weighted residuals. The first two are limited to the analysis of the
simplest forms of geometry, such as bar elements or trusses. Variational methods, such as the
principle of stationary potential energy, can be used to analyze most BVPs involving more
complex types of geometries. Weighted residual methods, such as the Galerkin or least-squares,
can be used for any type of BVP. To demonstrate the essential mathematical process of FEA on a
simple element, the direct stiffness method is used in the proceeding paragraphs to predict the
displacement of six nodal locations when a force, P, is applied to the post in figure 2.2a. This
structure possesses a uniform circular cross-sectional area, which decreases linearly from a value
A, at the base, to a value A/3 at the top. The analyzed structure is assumed to be isotropic, behave
linear-elastically, and have the characteristics described in table 2.1. Only axial displacements are
allowed in this analysis.
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(a)

Figure 2.2 - (a) Geometrical representation of the structure, (b) Discretization into 5 finite
elements, and (c) Corresponding nodal locations.

Table 2.1 - Characteristics of the conceptual structure.

Property Units Value
Material Steel AISI 302
Base Diameter m 0.3
Base Cross-sectional Area, A m? 0.0707
Bar Length, 1, m 1
Youngs Modulus, E Pa 180E9
Applied Load, P N 981




The FEA starts with the discretization of the conceptual structure into a finite number of
elements. Specifically, the geometry is discretized into five elements, as denoted by the
abbreviation “Ele;” in figure 2.2b; this corresponding discretization yields to six nodal locations,
where the displacements are to be investigated. Nodal locations are denoted by “No;” in figure
2.2c. For a single bar element, such as that in Figure 2.3a, subject to axial forces at nodal locations
1 and 2, the corresponding free-body diagrams are represented in Figure 2.3b. As a result, for
element 1, Newton’s second law can be expressed by equation 2.6, where F; is the force applied
to the nodal location, o is the stress, and A is the cross-sectional area. The stress, g, can then be
described by equation 2.7, in terms of the Youngs Modulus E and the strain €. In Equation 2.8, the
strain e can be expressed in terms of the nodal displacements at node 2, u,, and node 1, u,, divided
by the element length L. Substituting equations 2.7 and 2.8 into 2.6, and defining the stiffness k
according to 2.9, leads to equation 2.10. Similarly, at the second nodal element, Newton’s second
law is written as Equation 2.11, where F, is the force applied to this nodal location. Solving for F,
and substituting the relations of equations 2.7 through 2.9, yields equation 2.12. Finally, expressing
equations 2.10 and 2.11 as matrices leads to expression 2.13, where the 2x2 matrix represents the
stiffness matrix of a bar element. When only axial displacements are allowed, as is the case with
the analyzed post, the global stiffness matrix can be assembled by appending the individual
stiffness matrices of each element, as shown by equation 2.14, so that the global stiffness matrix
takes the form of 2.15. Now, including the displacements and forces matrices, denoted by 2.16 and
2.17, the system of equations can take the form reflected by 2.18.

L -
—> X
1 2
(@)
F1 F2
——> U1 L—’ Uz
gt P g s
(b)
L >

Figure 2.3 - (a) Single Bar Element and (b) Free Body Diagram.
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At Node 1
ZFNO1 = O = F1 +0A

o =Ee
€= Uz —Uq
__AE
L
F1 = ku1 - kuZ
At Node 2

SFyo, = 0 = F, — 0A
F2 = —ku1 + ku2

5 =t

[K] = [kell] + [kelz] + [kel3] + [ke14] + [kels]

k, —ky 0 0 0
—ky kitk, ks 0 0
[K] = 0 —ky kyt+ks ks 0
0 0 —k3 k3 + k4 _k4 0
0 0 0 —ky kot ks —ks
0 0 0 0 —ks ks
[X] = [u1 uz uz uy us ug]T
[Fl=1[f, f, f3 f, fs f]7
ky —kq 0 0 0 0 7ru
—k; ki+k, —k, 0 0 0 u,
0 _kZ kz + k3 —k3 0 0 Us
0 0 —ks k3 +k, —ky 0 Uy
0 0 0 —ky kot ks —ks|[us
0 0 0 0 —ks ks 1luel

Once the system of equations has been assembled, the corresponding boundary conditions
need to be applied. For a fixed post, the displacement of nodal element 1, which is fixed to the
ground, is 0, expressed by equation 2.19. Node 1 also experiences a reaction force, denoted by R,
in equation 2.20. The only applied force occurs at nodal location 6, as expressed by 2.21 and 2.22.
Implementing these set of constraints into 2.18 leads to the new system of equations expressed by
2.19. Since the reaction is unknown at this at this point, and the first nodal displacement is 0, the
first row and column of 2.19 are removed from the system, leading to 2.20. Solving by inverting
the matrix leads to the displacements, in meters, expressed on 2.21. Finally, by substituting these
displacements back into equation 2.19, the reaction force can be solved, and is equal to 850.2 N.
The corresponding MATLAB code implemented to solve this problem can be found in section 1

of the Appendix.

u1=O
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(2.6)
2.7)
(2.8)

(2.9)
(2.10)

(2.11)
(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)



f, = R, (2.20)

f,=—P (2.21)
bhb=fh=ALA=f=0 (2.22)
[k,  —k 0 0 0 0 1701 R,
-k, ki+k, —k, 0 0 0 u, 0
0 —k,  ky + k3 —ks3 0 0 usf_ |1 0
0 0 —ky ks+k, ka0 [fusf |0 (2.19)
0 0 0 —k, katks —ks||us | 0 |
0 0 0 0 —ks ks llugl L-=P
ki +k, —k, 0 0 0 u, 0
—ky  ky+ ks —ks3 0 0 l [u3] [ 0 }
0 —ky ks+k, —ka 0 [[ug]=1]0 (2.20)
0 0 —k, katks —ks||Us ll 0 Jl
0 0 0 —ks ks 1lug —P

[Uz Uz Uy Us Ug]T = 1 % 1076[—0.0154, —0.0332, —0.0542, —0.0799, —0.1130]" (2.21)

In contrast, the analytical exact displacements for this bar under an axial load can be
determined using Euler-Bernoulli beam theory, which is represented by equation 2.22. Using the
fundamental theorem of calculus, the integration of 2.22 leads to equation 2.23. Repeating this
process once more leads to equation 2.24. After applying the corresponding boundary conditions
reflected by equations 2.25, the force P applied at the top of the bar, and no displacement at its
base, the corresponding constants of integration are found in equation 2.26. Integrating these
results, the axial displacement of the bar can be described analytically by equation 2.27. Plotting
and comparing these results to those generated by FEM, as in figure 2.4, reveals that FEM results
under-predict the displacements.

d du

~<[EAG S| =0 (2.22)

EA() & = ¢ (2.23)
3licq In(3l¢—2x)

u(x) = % + ¢, (2.24)
du

(EAG) &)let =P, u(0) =0 (2.25)

31tP

31,.P 3]

u(x) = —xIn (_3lt—t2x) (2.27)
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Figure 2.4 — Analytical displacements using Euler-Bernoulli beam theory versus FEM with 5
elements.

When encountering more complex geometries, equilibrium or direct stiffness method
cannot be used to derive the stiffness matrix. As a result, in most FEA applications, variational
methods are typically used to derive the stiffness matrix of a system. To do this, a functional is
required. This is an expression that contains the governing differential equations of the studied
BVP. Implementing the principle of stationary potential energy yields a functional required to
conduct stress analysis. This principle states that, from all the admissible displacements a system
can achieve, the equilibrium displacement minimizes its total potential energy. Admissible
displacements are displacements that satisfy the boundary conditions and compatibility condition
(or physical continuity of the material). This was illustrated by Cook [32], as shown in Figure 2.5b,
where the upper line shows a crack, at location A, and a kink, at B, which would violate the material
continuity. - The formulation of residual methods can be found in chapter 5 of Cook et al [32], but
its discussion will be excluded from this work.
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Figure 2.5 - (a) Cantilever beam. (b) One inadmissible configuration (upper dashed line) and two
admissible configurations (lower dashed lines) [32].

In a system consisting of a linear spring, which is stretched by an applied force, as shown
in Figure 2.6, its associated displacement can be investigated as follows. The potential energy Ilp
is the sum of the internal strain energy U, and the external potential energy Q (2.5). U and Q are
defined by equations 2.6 and 2.7, respectively, where k is the spring stiffness, D represents the
associated displacement, and P is the applied force. Deriving equation 2.5 with respect to x leads
to equation 2.9, where subsequently solving for the displacement, D, leads to equation 2.10. When
these functions are shown graphically, as in figure 2.7, the minimum potential energy represents
the equilibrium displacement of the system.

k P
H‘/‘N‘I‘Y 2 £
le——1 ——-—j < L+D

(a) (b)

Figure 2.6 - (a) Reference configuration of a linear spring system. (b) Stretched configuration
after application of force P [32].

U = ZkD? 2.7)
= —PD (2.8)

drp

E == kDeq —P = 0 (29)

Deg = (2.10)
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@ Stationary Value

Figure 2.7 - Representation of the principle of stationary potential energy.

The previous simple system consisting of a single element is the foundation for the analysis
of a mesh grid with hundreds or thousands of degrees of freedom. This was explained by Cook
[32] as follows. In a system consisting of n degrees of freedom, the displacement vector D,
containing admissible configurations only, has the form of equation 2.11. Since the potential
energy of a system depends only on the corresponding nodal displacements of the system, or
degrees of freedom, the total potential energy can be written as 2.12. Applying the principle of
stationary potential energy leads to equation 2.13. Because each dD; term is independent from the
other elements and nonzero, only their corresponding coefficients, %, can be zero. This fact can

1

be written in the form of equation 2.14. The complete derivation of the stiffness matrix using the
principle of potential energy of an elastic body can be found in chapter 4.4 of [32]. The results,
however, reflect that the stiffness matrix [K] can be generated by equation 2.15, where [B]
represents the stress-displacement matrix, denoted by equation 2.16. In three dimensions, the
partial [0] is equal to the elements contained in 2.17, namely the partial derivative operators or
each corresponding direction. [N] denotes the matrix shape function, which contains the
corresponding nodal locations, as equation 2.18. Moreover, the force vector {f} can be expressed
as equation 2.19, where {fy,}, {fs}, and {f,} denote the body forces, surface tractions, and point
loads, respectively. Matrix {u} denotes the nodal displacements; after being evaluated, the
corresponding strains and stresses can be determined by equations 2.21 and 2.22. The constitutive
matrix is represented by [E], and the initial stresses and strains are denoted by {o,} and {e,}-

{D}=[D; D, ..D,]T (2.11)
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Mp = (D4, Dy, ..., Dy) (2.12)

dr, = Zg‘l’ dp, + & “52dD, + - +6Hp dp, (2.13)
{iD} = {0} (2.14)
[K] = [, [B]"[D][B]dV (2.15)
[B] = [9][N] (2.16)

~ 0 0

0 a"—y 0

o o =
[o1=1|, s (2.17)

292 9

ady dx

0o = :—y

0

PP
[N] = [N1N-] (2.18)
{fy = [, INIT{fo}dV + [, [N]T{f}dV + {f;} (2.19)
{u} = [N]{d} (2.20)
{e} = [0]{u} (2.21)
{o} = [E]({e} — {€o}) + {00} (2.22)

2.2.2 Basic Elements

As previously mentioned, partitioning a continuum implies dividing a bounded region into
smaller units — or finite elements, - which are connected to neighboring elements at nodes and
boundary lines. Depending on the dimensionality and desired analysis of the domain of interest
and the desired level of simplification, these grid elements can be described in terms of various
types of simple shapes, each with characteristic strengths and weaknesses. Classification and
naming of these elements can vary by author, such as Reddy [34] who refers to some elements as
serendipity elements, while Cook et al [32] simply uses the term improved elements. In this work,
finite elements are classified by dimensionality, namely one, two, or three-dimensional; other
advanced elements, such as plates and shells, are excluded from this discussion, but formulation
details can be found in chapters 15 and 16 of [32] and 12 of [34]. Line (or bar) elements are used
in one dimension; triangular and quadrilateral elements are used for two dimensions, and
tetrahedrons and hexahedron elements in 3D. These types of 2D and 3D shapes can be represented
as first or higher order elements, depending on the desired level of accuracy. Higher-order elements
described the interpolation of the field quantity, such as displacements, by quadratic or higher-
order polynomials. They can capture more accurately stress distributions in complex geometries,
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but at the expense of greater required computational power. Examples of higher order elements
are illustrated in the second row of figure 2.8, such as the 6-noded triangle or 20-noded
hexahedron.

Beams Triangles Quadrilaterals Tetrahedrons Hexahedrons
—
o s
2-noded 4-noded
3-noded 4.noded 8-noded
] 4
o . ..... " .....
. W
3-noded 6-noded 8-noded N
10-noded
20-noded

Figure 2.8 — Common types of 2D and 3D elements in FEA [33].

A One-Dimensional Elements: Bar

BVPs where the axial dimension in the analyzed geometry is much larger than the lateral
and thickness dimensions, such as a slender bar, can simplified to one-dimensional FEA. The bar
element represents the simplest type of FEA, and, as a result, is the least computationally expensive
element. The chief limitation associated with this element is the inability to generate
displacements, strains, and stresses in the lateral and through-thickness directions. As the problem
explored in section 2.2.1, the assembly of the global stiffness matrix can be achieved by appending
the individual stiffness matrices of each nodal element. In the case of truss analysis, rotation
matrices can be implemented to generate the global stiffness matrix in terms of the global
coordinate system, and later solve for the displacements, stress, and strains.

B. Two-Dimensional Elements: Constant Strain (CST) and Linear Strain Triangle (LST)

Geometries where the axial and lateral directions must be considered to capture
appropriately the studied physical phenomena require the use of two-dimensional elements. The
linear triangle, illustrated in figure 2.9-a, is one of the basic elements used in 2D analysis. This
element has three nodal elements, and its implementation produces a linear displacement variation
of the investigated field quantity in the axial, u, and lateral, y, coordinates, as shown in 2.9-b. This
is the reason why it is also referred to as the constant-strain triangle (CST). Because of its
simplicity, it is typically used when high solution accuracy is not sought, and computational power
is limited. Arguably, the main deficiency of this element is its inability to model deformation
caused by bending. In the case of a beam loaded in bending only, such as in figure 2.10-a, the
stress on each element along the x-axis, o, displays a constant behavior rather than a linear
variation that would be predicted by Euler-Bernoulli beam theory. Similarly, element 2, in 2.10-b
displays a transverse shear strain that should not occur. As a result, this element tends to be very
stiff when loading in bending conditions.
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(a)
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Figure 2.10 — a) Deformation of a beam modeled by CSTs along x-axis, loaded in bending and
(b) Deformation of lower-left triangular element [32].

Moreover, the quadratic triangle has one additional node placed between each adjacent
vertex, as shown in figure 2.11, each with two corresponding degrees of freedom. These additional
nodes provide a better displacement prediction, relative to the CST, at the expense of more required
computational power. This configuration yields a displacement field in terms of a complete
second-order polynomial, as denoted by equations 2.23 and 2.24. In return, the computed strains
can then vary linearly -reason why it is also called Linear-Strain Triangle. Despite being able to
model strain variations linearly, the LST does not produce more accurate results -relative to beam
theory- than the LST in some cases. For example, when modeling an isotropic cantilever beam
under parabolic loading, Cook et al [32] found that increasing the number of CSTs yielded less
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accurate results than the LST. Another associated limitation of the LST is that it yields a linear
shear strain, vy, rather than quadratic result in the y-direction.

Figure 2.11 — Quadratic Triangle Element (LST) [32].

U = a; + ax + agy + asx? + asxy + agy? (2.23)
Vi = a; + agx + agy + a;0x? + a;1xy + a;,y? (2.24)

C. Two-Dimensional Elements: Bilinear (Q4) and Quadratic Rectangle (Q8, Q9)

The bilinear rectangle (Q4) has four nodal elements, as illustrated in figure 2.12. It is called
“bilinear” because its displacement field is the product of two linear polynomials. Because of its
simplicity, it is also used when computational resources are limited, and high accuracy is not
required. Like the CST, one of its main deficiencies is its behavior in pure bending. A cantilever
beam in bending, as shown in figure 2.13-a, modelled by Q4 elements exhibits parasitic shear
strain yy,, which should be zero, but has a non-zero value. Two are the main implications of this
phenomenon. First, the axial stress o, on the lower elements will be significantly different for the
elements with constrained displacements (near the wall), as shown in figure 2.13-b. Second, the
shear stress on the x-axis Ty, shows a linear-like spurious variation, even though its value should
be constant, as predicted by beam theory, as illustrated by figure 2.13-c.
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Figure 2.12 — Bilinear Quadrilateral Element (Q4) [32].
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Figure 2.13 — Variations in axial stress and shear strain on a cantilever beam modeled by Q4
elements [32].

The quadratic rectangle, like the quadratic triangle element (LST), has one additional node
between the original adjacent corners, as shown in figure 2.14. The 8 total nodal elements give this
element its additional name, Q8. It is considered a higher-order element because its shape functions
possess high-order polynomial terms which enable the better representation of displacements,
strains, and stresses. Specifically, these displacements are captured by equations 2.25 and 2.26.
The Q8 is the most robust element -compared to the CST, LST, and Q4- in capturing complex
stress distributions and curved geometry. As a result, it is used when a higher degree of accuracy
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is desired and computational power is not limited. The quadratic rectangle does not display the
parasitic shear strain issue experienced by the bilinear quadrilateral element, Q4. As a result, the
Q8 is typically used in applications where bending must be captured accurately.
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Figure 2.14 — Quadratic Rectangular Element.

Ui = a; + ayx + azy + a,x? + asxy + agy? + a;x%y + agxy? (2.25)
Vi = ag+ ajoX + a1y + a;px? + agzxy + agay? + a;sx?y + agxy? (2.26)

D. Three-Dimensional Elements: T4 and T10 Tetrahedra

BVPs where interactions between width, length, and thickness must be considered
altogether require the use of three-dimensional elements. One of the simplest 3D elements is the
four-node tetrahedron (T4), which is illustrated in figure 2.15. These elements are typically used
to discretize complex geometries, such as those asymmetrical and with high curvature. Like the
CST in two-dimensional analysis, the T4 is susceptible to shear-locking behavior. Nevertheless,
this issue can be overcome by implementing higher-order elements, such as the ten-nodded
tetrahedron (T10), illustrated in figure 2.16. Both the T4 and T10 have shape functions represented
in terms of “natural” reference coordinates, which Cook et al [32], for example, names r, s, and t.
The implementation of this reference coordinate system allows the element to maintain their
position with respect to itself and become independent of its orientation in the global coordinate
system. The shape functions of the T4 are expressed in equation 2.27, whereas the shape functions
of the T10 are expressed in 2.27. The T10 can capture better higher stress gradients and avoid
shear locking behavior, but this is penalized by a higher required computational power.
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Figure 2.15 — Linear Tetrahedron Element.
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Figure 2.16 — Quadratic Tetrahedron Element.
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E. Three-Dimensional Elements: H8 and H20 Rectangular Solid Elements

The second simplest 3D element is the eight-nodded trilinear element (H8), illustrated in
figure 2.17. It receives this name because each of its shape functions is the product of three linear
polynomial functions that have the form of equation 2.28. The H8 is typically used in relatively
simply geometries, such as straight, symmetric shapes with no curvature. Like the T4, this element
is susceptible to shear-locking behavior, but this issue can also be avoided by implementing a
higher-order element, such as the twenty-node solid element (H20), depicted in figure 2.18. In
addition, the H20 element can capture more accurately high stress gradients at the expense of
greater computational power. Its shape functions are quartic. Both the H8 and H20 can be
developed through isoparametric formulation, which is discussed in extensive detail in chapter 6

of Cook et al [32].
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Figure 2.17 — Eight-nodded Trilinear Element.
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Figure 2.18 — Twenty-node Solid Element.

2.2.3 Constraints and Boundary Conditions

After the analyzed geometry has been discretized through 1D, 2D, or 3D elements,
boundary conditions need to be imposed, as previously demonstrated in section 2.2.1. The purpose
of this implementation is to represent mathematically support areas and forces applied to the
studied BVP. Most BCs can be categorized as i) displacement constraints or ii) traction and force
constraints. Displacement constraints assign a zero-value to the degrees of freedom of the selected
nodal locations. In the case of a pinned beam, for example, the horizontal and vertical
displacements, u and w, would be constraint to have a 0 value, and the moment would need to be
specified. In contrast, in the case of a vertical roller, only the horizontal displacement would
correspond to 0, and the transverse force and moment would need to be known. Commercial FEA
software handles the implementation of displacement constraints by modifying the displacement
in the assembled global stiffness matrix, whereas traction and force constraints are enforced by
modifying the loading vector. Additional supports and its corresponding displacement and force
BCs are shown in table 2.2.
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Table 2.2 - Commonly used support conditions for beams and frames [34].

e ———
Displacement Force
boundary boundary
Type of support conditions conditions
z 4 None All, as specified
FREE
4 LI
E ¥ u=>0 Moment is specified
A w=0
PINNED

Transverse force and moment

z4
ROLLER are specified

(vertical)
Z
X :
w=0 Horizontal force and bending
moment are specified
ROLLER
(horizontal)

u=0 None specified

__:;_:l_’ w=0

dwldx =0

itk

FIXED or CLAMPED

2.2.4 Computational Approach

As a simplification, four main milestones can be outlined in this process: 1) learning about
the problem, 2) developing a mathematical model, 3) modeling and simulating it, and 4) revising
the results. Cook et al [32] proposed following the general methodology summarized in Table 2.3.
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Table 2.3 - General methodology to solve a problem by FEA.

Problem Research and prepare an appropriate model describing the physics of the
Revision system of interest according to the desired level of accuracy.

Development of Determine appropriate simplifications and create a mathematical model.
Mathematical  Obtain approximate results from analytical calculations, handbook formulas,
Model verified previous solutions, or experiments.

Generate input data describing the geometry, material properties, loads, and
boundary conditions.
Modelingand  Determine an appropriate mesh size and density, and potential areas of
Simulation refinement.
Specify quantities of interest to display, such as deformed shapes and

stresses.
. Examine qualitatively whether the results seem logical.
Revision of . . L N .
Results Perform adjustments to the physics model and domain discretization to obtain

a satisfactory solution.

2.3  Composite Material Modeling in Ansys

In addition to enabling the implementation of the FEM, Ansys, the commercial software
selected for this study, counts with the capability of analyzing composite structures. As explored
in section 1.3, the main inherent challenges involved with these types of structures are the
anisotropic mechanical properties, manufacturing defects, and the mechanical behavior of the
individual constituents (fiber and matrix). Ansys deals with these challenges by offering a set of
“composite modeling features” which aid the user in creating an accurate digital representation of
the analyzed composite structure. One of these features is ACP Pre, whose graphic user interface
(GUI) and model tree are shown in figure 2.20. As the name implies, the term “layup” refers to
the collection of piles that make up the composite lamina. The material, thickness, and orientation
need to be specified for each individual ply. By convention, the first ply entry is treated as the
bottom ply, but the individual ply orientation can be customized in different manners, such as in
terms of a global coordinate system, or simply top-down. The “individual” material properties of
the fibers and matrix are defined on the conventional material library of Ansys, whereas the
thickness and ply orientation are defined in the ACP Pre suit. For visualization, this menu is
included in figure 2.21, located below.
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Figure 2.20. — Ansys ACP Feature and model tree [35].

Marme:

#E Fabric Properties

UD_CarbonFiber

I UD_CarbonFiber

General | Analysis | Solid Model Opt. | Draping
General
Material: | Epoxy Carbon UD3E5GP - Modified
Thickness: 0.7904
Price/Area: 0.0

Figure 2.21 — Ansys fabric and stack up properties GUI [35].

38

Mame: Laminatel

ID: Laminatel
General | Analysis | Selid Model Opt. | Draping
Fabrics
Symmetry: Mo Symmetry
Layup Sequence: Bottom-Up
Fabric Angle
1 UD_CarbonFiber 0.0
2 UD_CarbonFiber 0.0
3 UD_CarbonFiber 0.0
4 UD_CarbonFiber 30.0




Ansys’s ACP Pre provides different methods of modeling composite layups. First is the
conventional shell composite layup. This can be understood as a two-dimensional model intended
for thin-walled structures, where the thickness direction is much smaller than other dimensions.
This assumption implies that in-plane and interlaminar stresses are not significant. These
conventional shell elements are then used to discretize the reference surface of each ply;
displacement and rotational degrees of freedom are allowed. In contrast, the solid- shell composite
layup provides a three-dimensional representation for thicker structures, where in-plane and
interlaminar stress interactions must be considered. This model considers double-sided contact
across the individual plies to better capture interlaminar interactions, such as delamination and
bucking, in the composite layup. Only displacements can be captured with this type of element. A
visual distinction between conventional and continuum shell composite layups is illustrated by
figure 2.22. The third method is the solid composite layup, which is the most robust and detailed
element to model each laminate in the composite structure. Ansys’s user’s manual recommends to
use this element when the interlaminar stresses must be captured accurately, such as in thick
structures. This type of element is the most computationally expensive, followed by the solid-shell
composite layup.

&

displacement and ratation
dagrees of freadom

Corenbional shell modal
gecmelry is spaciliad al the releranca suface,
thicknass s dalined by saclion propary

Finite Element Model Element

structural body
bieing modeled
displacemant

degrees of freedom only

Continuum shell model -

full 3-D geomatry is spaciliad,
elamant thickness Is dafined by nodal geomatry.

Figure 2.22 —Representation of conventional and continuum shell models in Ansys [35].

2.4 Nonlinear Structural Analysis in Ansys

When a load is applied on a conventional structure, it first experiences elastic deformation,
where the displacements of the elements composing the material are very small. As a result, it can
be assumed that the material properties and boundary conditions remain constant under loading.
When this occurs, Ansys formulates the global stiffness matrix and then implements iterative
solves to find the field variable, displacements, and secondary outputs, strains and stresses.
Nevertheless, when the material surpasses the elastic deformation zone and experiences significant
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deformations, non-linear problem behavior is expected. In structural mechanics problems, Cook
et al [32] identified three main types of nonlinear behavior. First is material non-linearity, which
occurs when the material properties depend on the stress and strain, such as during plasticity and
creep. Second is contact nonlinearity, where a gap is formed between adjacent parts, creating thus
sliding of frictional forces. Lastly is geometric nonlinearity, where once deformation is large
enough, the equilibrium equations must be modified to conform with the newly deformed
structure.

Ansys deals with these challenges by implementing a series of solution methods and
convergence monitoring algorithms. Ansys’s Mechanical user’s manual [35], for example, states
that solving nonlinear problems implies the following:

A combination of incremental and iterative procedures
Using the Newton-Raphson method

Determining convergence

Defining loads as a function of time

Selecting Suitable time increments automatically

In more detail, when solving for a nonlinear displacement curve, such as that illustrated by
figure 2.23, Ansys breaks the simulation in smaller time increments and finds the approximate
equilibrium configuration. In more detail, when the structure is in equilibrium, the sum of internal
and external forces, I, and P, respectively must be 0, as expressed by equation 2.29. Once the
structure begins to show non-linear behavior, Ansys uses the structure’s tangent stiffness, K, to
determine the displacement correction c,. This method is based on the elastic-limit configuration
u,, where upon the application of a small load increment, AP, the resulting displacement is updated
to ug,as illustrated by figure 2.24. During this initial iteration, Ansys calculates the updated
structure’s internal forces, I, and assigns the difference between the applied load and I, to R, the
force residual for the corresponding iteration. The default tolerance for this value is 0.5% but can
be adjusted. If R, is smaller than the specified tolerance, the displacement is assumed to be in
equilibrium. Otherwise, an additional iteration is performed by determining a different correction,
cp, as illustrated in figure 2.25. In addition to these iterative solution methods, Ansys also provides
additional methods to troubleshoot and aid in convergence, such as performing non-linear
diaglostics, tracking convergence graphicallty, and non-linear stabilization, as outlined in section
8.12 of the user’s manual [35].

40



Load

u

[
Displacemeant

Figure 2.23 — Nonlinear Displacement Curve [36].
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Figure 2.24 — First iteration of the nonlinear stress analysis solver method [36].
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Figure 2.25 — Second iteration of the nonlinear stress analysis solver method [36].
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3. Geometry Model of the Titan Submersible

3.1 General Methodology

To conduct the proposed structural analysis of the Titan submersible, the geometry model,
material assignment, and material properties were first prepared. Unsurprisingly, the nature of
reverse-engineering an invention requires that the investigator consults all available resources and
uses sound engineering judgement in certain areas to generate the most reasonable approximation
to the actual product design. While the dimensions and material assignments of some structural
components were available at the time this report was prepared, others had to be estimated. These
main sources and assumptions are discussed in greater detail in each of the subsections under
section 3.2, titled Main Components. The general process followed to develop the geometry model
of the Titan Submersible is shown in figure 3.1. This process started with the gathering of
intelligence, which in this context refers to descriptive pictures, visualizations, dimensions, and
material assignments of each of the main components of the Titan Submersible. Consequently, this
information was categorized and compared. Logical tests were then performed; some of these
example questions can be found in table 3.1, located below. Conducting each of these tests
encouraged the consistent and active evaluation of the obtained dimensions and material
selections. Once these characteristics were deemed satisfactory, each major component was
developed and subsequently assembled in SolidWorks ®, as explained in the following section.

- Gather and compare

intelligence through
available resources

Organize and compare
materials and
measurements

Perform a logical test:
- Reasonable?
- Comparable?
- Realistic?

Select dimensions and Develop a

material properties l geometry model
4

Figure 3.1 — General methodology followed to develop the geometry model of the Titan
Submersible.
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Table 3.1 - Examples of logical tests performed on the gathered information.

Is it reasonable that the flange thickness of an O-Ring be 1.0m?

Is it reasonable for an observation window diameter to be 5cm?

The cylindrical pressure hull is reported by resource A to have a wall

Comparable thickness of 5.0 and 5.1inches respectively, whereas resource C reports
100inches. Does resource C provide a reasonably comparable dimension?
Visually, the thickness of a component is suspected to be identical to the

Realistic width of a thumb. Resource D reports this thickness to be 1mm. Is this
realistic, knowing that the width of a thumb is roughly 22mm?

Reasonable

3.2 Main Components

A general description and visualization of the Titan submersible was first presented in
section 1.2, but, for readability, more detailed pictures of the vehicle are reintroduced below.
Figure 3.2 shows an isometric view of the submersible outside the water. Figure 3.3 was presented
by Stockton Rush at a conference in 2022 [37], during which he described the main structural
components of the submersible. The right image in figure 3.3 is further adapted to identify and
label these main structural components, as shown in figure 3.4. Because these components were
the main line of defense protecting the passengers in the submersible, the author proposes to
conduct the structural analysis by focusing on these components only. In short, the carbon-fiber
cylindrical hull is flanked by two spherical sections, which are connected to the main cylinder
through two interface O-Rings. For convenience, these main components are bulletized after
paragraph. Although conventional reading direction suggests that the first discussed component
be the observation window, followed by the bow, spherical section, the author chooses to introduce
the components by logical assembly order. In other words, these components will be developed in
the most intuitive way, starting with the simplest. Corresponding dimensions and computer-aided
drawing development are discussed in detail in the proceeding sections.

e Cylindrical Pressure Hull
Interface O-Rings
Stern, Spherical Section
Bow, Spherical Section
Observation Window
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Figure 3.2 — Isometric view of the Titan Submersible [7].

Carbon Fiber Main Cylinder

Titanium
Hemispheres

Figure 3.3 — Schematic of the Titan Submersible and main structural components [37].
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Spherical
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Interface
O-Rings

Figure 3.4 — Adaptation of main structural components of the Titan Submersible.

3.2.1 Cylindrical Pressure Hull

The cylindrical pressure hull of the submersible could be described as the middle section
of the structure, as signaled in figure 3.5. During normal operations, it was analogous to the
fuselage section of a passenger aircraft, where the passengers were seated. The most valuable real-
life picture -found at the time this report was written- was shown by Stockton Rush in his 2022
business presentation [37] and is labeled as figure 3.6. It shows the cylindrical pressure hull, as
workers apply an adhesive paste to the top surface, which is connected to the interface O-ring.
This component is characterized by three main dimensions: inner diameter, length, and thickness.
In Wikipedia [7] and a Seattle Times article [8], these values were reflected as 5.5ft, 8.3ft, and
5.0in, respectively. Converting these values to metric units, as equations 3.30 to 3.32 show, leads
to the numbers summarized in table 3.2.
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Figure 3.5 — Cylindrical section and additional components of the Titan Submersible.

Figure 3.6 — Cylindrical pressure hull used in first design iteration of the Titan Submersible [37].
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Table 3.2 - Cylindrical pressure hull dimensions and information source.

Inner .
Diameter [m] 1.4022  Seattle Times [8]

Cylindrical Section .\ ih1m]  2.5298  Wikipedia [7]
Thickness [cm]  12.70 Wikipedia [7]

30.48
4.6t (220 = 140.21cm (3.1)
30.48
8.3ft « (*22%) = 252.98cm (3.2)
5.0in * (Z'i?;m) = 12.7cm (3.3)

Once these values were compiled, a two-dimensional sketch model was developed in
SolidWorks ®, as shown in figure 3.7. The grey cross-sectional area enclosed by the black lines
was then revolved 360 degrees about the x-axis, which enabled the creation of the three-
dimensional pressure hull. Starting from the top left corner, and proceeding clockwise, figure 3.8
shows the isometric, top, and front views, respectively, of this component.

25298 = lCPH

a

-l 200
LB
‘ ‘[
=

B GCHirmer

70.11

Figure 3.7 — Two-dimensional sketch model of the cylindrical pressure hull.
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Figure 3.8 — Isometric, top, and front view of the cylindrical pressure hull component in
SolidWorks ®.

3.2.2 Interface O-Rings

As the name implies, the Interface O-Rings are the connecting bodies between the CFRE
cylindrical pressure hull and the Titanium spherical sections, as shown in figure 3.9. The purpose
of these rings was to create a seal between its two flanking components and prevent fluid leakage,
such as air outside or water inside the submersible. The most insightful available visualizations of
this component are compiled in figure 3.10. The top left image shows the surface connecting to
the spherical section, while the top right shows the surface joining the cylindrical section. The
bottom right image provides additional details about the cross-section mating with the CFRE hull,
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and the bottom left provides the outer profile of the O-Ring. Four valuable details that can be
observed from this image are bulletized below. These observations are annotated in figure 3.11 for
clarification.

e The side meeting the spherical section is flat and slightly protruded in the radial direction,
away from the central axis.

e The side joining the CFRE cylindrical pressure hull is not flat but C-shaped. The lower half
of this C section holds the inner diameter edge of the pressure hull surface, while the upper
half holds the outer diameter surface.

e The lower C section appears to be uniformly extended to the opposite end, which meets
the spherical section. Both protrude in the axial direction, pointing toward the cylindrical
section.

e The middle section is of uniform shape and smaller than connecting end.

Stern,
Cylindrical Spherjcal
Bow, Section Section
Spherical
Section

Observation
Window

Interface
O-Rings

Figure 3.9 — Interface O-Rings and additional components of the Titan Submersible.
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Video Credit:OceanGate

Figure 3.10 — Most valuable visualizations of the Interface O-Rings [37].

Protrusion Protrusion toward
away from cylindrical section
T, central axis R
o . %
."’ :..--‘ :5%_'_-
Side meeting Side meeting
spherical +«—i ; i— cylindrical
section i section

Uniform extension
from end to end

Figure 3.11 — Qualitative Cross-sectional profile of the O-Ring.

Because no available resources provided information about the measurements of this
component, digital scaling and engineering judgement were used to determine the most reasonable
component dimensions. A male, adult human thumb can be observed in the amplified bottom right
image in figure 3.10, labeled now figure 3.12. The average thumb width, Th, measured at the
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knuckle (see bottom right corner of 3.11) was reported as 22mm by a ring-maker website [41].
Figure 3.12 was a frame obtained from a video [40] and is the closest approximation to a near-
perpendicular camera angle. As a result, figure 3.12 is assumed to be an ideal, scalable
representation of the real O-Ring component. Using digital scaling, the magnitude of the arrow
placed over the thumb was rotated and scaled to match the dimensions illustrated in the upper and
lower images of figure 3.12. These dimensions were then compiled and recorded in table 3.3.

| Video Credit:OceanGate

,ﬁé\“ 0.625Tb
Q.

Width of the thumb,
at the knuckle

4

Figure 3.12 — Digital scaling of the O-Ring dimensions.
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Table 3.3 - Titanium O-Ring interface dimensions and information source.

Inner Diameter, C-Section [m] 1.4022 Wlk[|7p]ed|a

Outer Diameter, C-Section [m] 1.6562 W"}'%ed'a

Thickness, C-Section [cm] 0.60 Engineering

Judgement

O-Ring . Canti Engineering
Interface Width, C-Section [cm] 1.40 Judgement
Web Thickness, C-Section [cm] ogo  Engineering

Judgement

-Ri id-Secti Engineering

Length, O-Ring Mid-Section [cm] 2800 dgement

Thickness, Spherical Section Interface [cm] ~ 2.80  Cndineering

Judgement

Using the previous dimensions as the most reasonable estimates, the two-dimensional
sketch depicted in figure 3.13 was then developed. For clarity, figure 3.13-a shows only two
dimensions, the radial inner and outer distances from the origin, r;,, and r,,;. The space between
these two dimensions encloses the cylindrical pressure hull thickness. Figure 3.13-b includes the
remaining measurements: thickness of spherical section interface thgg;, length of the O-Ring
middle section 1,4, web thickness of the C-section tyep g, Width of the C-section wsge, and
thickness of the C-section tcse.. TO create the three-dimensional O-ring, the gray, enclosed area
was revolved 360 degrees about the x-axis. Starting from the top left, and moving clockwise, the
isometric, front, and top views are compiled in figure 3.14.
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Figure 3.13 - Two-dimensional sketch model of the Titanium Interface O-Ring.
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Figure 3.14 — Isometric, front, and top view of the Titanium O-ring Interface in SolidWorks ®.

3.2.3 Stern, Spherical Section

The general geometry of the stern and bow spherical directions is nearly identical. The
distinction between the two is the embedded observation window, which is only present at the bow
section, as can be observed in figure 3.15. The purpose of the stern spherical section was to store
mission-essential equipment for the survivability of humans at normal atmospheric conditions.
Among this equipment were soda lime pellets, required to remove the CO, from the cabin, and
electrical systems for navigation and control of the submersible [39]. Although no real-life pictures
of the stern spherical section were available, figure 3.16, representing the bow section [42],
provides three pieces of valuable insight into the geometry of this component. First is the
realization that surface meeting the O-Ring is slightly protruded in the radial direction to match
the outer diameter of the O-Ring. Second is the observation that the thickness of this protruded
surface is similar to the O-Ring section. Third is the visual confirmation that the section is, in fact,
spherical rather than ellipsoidal. This component is characterized by four dimensions: inner
diameter, wall thickness, thickness of O-Ring interface wall, and outer diameter of O-Ring
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interface wall. The first two values were extracted from Wikipedia [7], while engineering judgment
was used to determine the values of the last two, as summarized in table 3.4, below.

Spherical
Section

Cylindrical

Bow, Section
Spherical
Section

Observation
Window

Interface
O-Rings

Figure 3.15 — Stern, Spherical Section and additional components of the Titan Submersible.
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Figure 3.16 — Bow, Spherical Section (in lieu of the Stern, Spherical Section) [42].

Table 3.4 - Stern, spherical section dimensions and information source.

Inner Diameter [m] 1.4022 W|I<[|$]ed|a
Thickness [cm] 8.26 W"}';’]ed'a
Stern _ .
Spherical ~ Thickness, O-Ring Interface Wall [cm] ~ 2.80 Engineering
i Judgement
Section
Outer Diameter, O-Ring Interface Wall Engineering
1.7762
[m] Judgement

The two-dimensional sketch based on the dimensions of table 7 was then developed and is
shown in figure 3.17. After revolving this enclosed surface once about the x-axis, its corresponding
three-dimensional profile was created. From the top left corner, proceeding clockwise, figure 3.18
shows the isometric, side, and back profiles of this component.
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Figure 3.17 - Two-dimensional sketch model of the Stern, Spherical Section.
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Figure 3.18 - Isometric, side, and front view of the Stern, Spherical Section in SolidWorks ®.
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3.2.4 Bow, Spherical Section

As signaled in the previous subsection, the bow spherical section has an embedded
observation window; this is illustrated by figure 3.19. In addition to providing access and the
structural connection to the observation window, this section was reported to be assigned as a
latrine area. The same procedure to develop the base sketch of the stern, spherical section was
followed at first, implementing the first four dimensions in table 3.5. Since the geometry of the
observation window was described to have an inner and outer diameter of 38 and 53 cm,
respectively [7, 38], the corresponding intersection coordinates were found, as shown in figure
3.20. Then, a revolved cut was performed, which led to the creation of its corresponding three-
dimensional profile. From the top left, moving clockwise, figure 3.21 shows the side, isometric,
and front profiles of this component.

Stern,
Cylindrical Spherjcal
Bow, Section Section
Spherical
Section

Observation
Window

Interface
O-Rings

Figure 3.19 — Bow, Spherical Section and additional components of the Titan Submersible.
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Table 3.5 - Bow, spherical section dimensions and information source.

Inner Diameter [m] 1.4022 Wikipedia [7]
Thickness [cm] 8.26 Wikipedia [7]
Thickness, O-Ring Interface Wall [cm] 2.80 ST
Bow Judgement
Spherical Outer Diameter, O-Ring Interface Wall [m] 1.7762 Englneerlng
Section Judgement

Base Diameter Intersection,

Observation Window [cm] el Bl o]
Outer Diameter Intersection, 53.0 ThinkReliability.com
Observation Window [cm] ' [38]
thORIout= 2.80

R[]

s
\

0

3 «Q

2 3 :
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Figure 3.20 - Two-dimensional sketch model of the Bow, Spherical Section.
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Figure 3.21 - Side, isometric, and front view of the Stern, Spherical Section in SolidWorks ®.

3.2.5 Observation Window

The observation window of the submersible provided the passengers with a direct access
port to observe the wreckage of the Titanic. It is labeled below, in figure 3.22. The most valuable
real-life image is shown in figure 3.23. This frame was taken from a video [37], where OceanGate
employees appear to carry the uninstalled PPMA observation window. Measurements provided by
Wikipedia [7] and ThinkReliability,com [38] appear to be in qualitative agreement: the base and
outer diameter of this component are recorded as 38.0 and 53.0 cm, respectively. While the radius
of curvature of the window was not included, engineering judgement strongly suggests that this
curvature is similar to that followed by the bow spherical section. Using SolidWorks ®, the
horizontal intersection coordinates of the window base and outer diameters were found to be 67.49
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and 73.75cm, while the radius of the spherical section was 78.37cm. These dimensions are
summarized in table 3.6, located below.

Stern,
Cylindrical Spherjcal
Bow, Section Section

Spherical
Section

Observation
Window

Interface
O-Rings

Figure 3.22 — Observation Window and additional components of the Titan Submersible.
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Figure 3.23 — Uninstalled Observation Window [37].

Table 3.6 - Observation window dimensions and information source.

Base Window Diameter [m] 38.0
Exterior Window Diameter [cm] 53.0
Base Window Diameter, x-intersection
67.49
PPMA [cm]
Observation
Window Exterior Window Diameter, x-

. : 73.75

intersection [cm]
Window Outer Radius of Curvature 78.37

[cm]

Wikipedia [7]

TinnkReliability.com
[38]

Engineering
Judgement

Engineering
Judgement

Engineering
Judgement

Implementing the previous dimensions, a two-dimensional base profile was then created,
as shown in figure 3.24. This enclosed area was revolved 360 degrees about the x-axis, which
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created a three-dimensional profile. From the top, moving clockwise, figure 3.25 shows the
isometric, side and front views of the observation window.
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Figure 3.24 - Two-dimensional sketch model of the Observation Window.
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Figure 3.25 - Side, isometric, and front view of the Stern, Spherical Section in SolidWorks ®.

3.2.6 Final Assembly

After the three-dimensional representation of each of the previous components was
developed, the assembly process followed. Creating a 3D representation of an object in
SolidWorks is also known, more informally, as a creating a part. In this context, the assembly
refers to the process of constructing a final, single 3D representation using a several parts. As a
result, the assembly of the five components developed in sections 3.2.1 to 3.2.5 led to the final
Titan Submersible model shown in figure 3.26. From the top left, moving clockwise, the isometric,
front, and side views are contrasted in figure 3.27.
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Figure 3.26 — Assembly of the Titan Submersible using its five main components.
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Figure 3.27 — Isometric, front, and side views of the final assembly of the Titan Submersible.

3.3 Assumptions and Limitations

The proposed, rapid three-dimensional prototype of the Titan Submersible was constructed
implementing a series of assumptions, for which there are associated limitations. One of these
principal assumptions is the component simplification in the geometry model. Components that
can be observed in footage of the operational Titan Submersible, such as those denoted in figure
3.28, are examples of exclusions from the presented geometry model. These are, for example,
electrical wiring cables, navigation thrusters, the outer white shell, and the landing skids. The
second chief assumption is the bonding between connecting components is unbreakable. During
the manufacturing process of the submersible [40], OceanGate collaborators were observed
applying adhesive to glue the CFRE pressure hull to the Titanium Interface O-Rings. Similarly,
footage shows that the bow hemisphere was attached to the O-Ring through bolts [42]. These two
characteristics can be visualized in figure 3.29. In third place is the adoption of a simplified
topology compared to that of the Titan Submersible. For example, the proposed model does not
include the fillets that can be observed in the O-Ring, or the protruded prismatic surfaces to connect
other components, as these were excluded from the analysis. The observation window seat is
another example. Because it was assumed to be perfectly bonded to the bow hemisphere, no bolts
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or connecting surface were modeled. These aspects can be observed in figure 3.30. Lastly, there is
unavoidable uncertainty in implementing dimensions from available resources, and the only way
to verify the veracity of these sources is by physically measuring these dimensions. All these
discussed assumptions and limitations are summarized in table 3.7, located below.

Navigation
Thrusters

Electrical
Wiring

Outer Shell
for
Streamlining

Landing
Skids

Figure 3.28 — Visualization of some components excluded from the simplified geometry model

[71

Application of adhesive to
join CFRE pressure hull and
Titanium O-Ring Interface

Bolt orifices to
seal the bow
hemisphere to
the Titanium
Interface O-
Ring

Figure 3.29 — Instances of component bonding in the operational Titan Submersible [42, 40].
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Possible fillet
in Interface O-
Ring and
protrusions for
additional
(excluded)
components

Observation
Window Seat

Figure 3.30 — Visualization of some components excluded from the simplified geometry model

Table 3.7 - Summarized assumptions and limitations with the proposed geometry model.

Assumption

Component
Simplification

Component
Bonding

Simplified
Topology

Uncertainty
in Dimensions

[40, 42].

Associated Limitation
Failure could have originated in the small, excluded components, such as
connecting bolts, cables, or corresponding orifices. This possibility is
excluded from this analysis.

Components are assumed to have a perfectly unbreakable bond. The
possibility of failure caused by the adhesive use to bond the CFRE pressure
full and the Titanium Interface O-Rings is not considered. The same is
assumed for the boding between the PPMA observation window and the
bow, Titanium spherical section.

Specific topological features, such as fillets in corners of the interface O-
Ring and the base collar of the observation window are not considered in
this stage of the analysis. This topology will be optimized in chapter XXXX.
Without physical confirmation of these dimensions, they are no more than
an approximation.
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4. Analytical Prediction of Displacement and Buckling Load of the
Cylindrical Laminated Composite Section of Titan Submersible

4.1 Mathematical Model: Introduction

In preparation to generate the FEM solution for the proposed problem using Ansys, a rapid
analytical approach was first implemented. Unlike isotropic materials, such as metals, the
mechanical properties of laminated composite structures are heavily dependent on the selected
constituents and orientation. This was previously identified in the literature review, conducted in
section 1.3. As a result, the cylindrical section of the Titan Submersible, composed of CFRE, was
selected to predict the displacements and buckling load using shell theory for laminated
composites. These properties are bulletized for convenience to the reader.

e Displacements: Axial, Radial, and Circumferential, in [mm].
e Buckling Load, in [N]

Although analytical solutions are limited and constricted under a set of assumptions, these
methods can provide three main advantages before the use of computer-aided engineering to
investigate a problem of interest. The first and most obvious advantage is to gain a fundamental
understanding of the physical phenomena being studied, identify properties of interest, and
understand the set of assumptions under which the mathematical model is valid. Another benefit
of analytical methods is the generation of benchmarking data which can then be compared to
numerical solutions produced through computer software. This can provide the engineering analyst
with an appropriate qualitative and quantitative judgement of the properties of interest, such as
magnitude of displacement and locations where stresses are the largest. Lastly, the dimensions of
the cylindrical component, estimated in section 3.2.1, can be easily corroborated by first assessing
the analytical results. This can save the analyst computational resources (available computational
time, electricity, wear-and-tear of computer equipment) before undertaking the task of developing
a FEA simulation.

To investigate the displacements and buckling of the laminated composite geometry of
interest, three different approaches were first considered, as reflected in Table 4.1. These were flat
plate theory, composite beam theory, and shell theory. As its name implies, flat plate theory is
limited to geometries with no significant curvature. While a cylindrical structure, such as the one
subject of this study, can be considered as a cylindrical beam, composite beam theory is not
intended to account for curvature effects. Moreover, shell theory is intended for inherently curved
structures, such as spheres and cylinders. As a result, this theory was adopted to develop the
analytical mathematical model and generate the properties of interest.
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Table 4.1 - Comparison of analytical methods for composite structures [43].

Composite Beam

Method Flat Plate Theory Theory
CI;ntended Thin, flat plates Long, slender beams
eometry
Used for beams
Brief Used for analysis of large, flat where axial and
Description panels with no curvature. flexural behaviors are

dominant.

Thickness is smaller
compared to other

e, Shear deformations

are neglected.

Strains vary linearly across
Main plate.
Assumptions

Axial, transverse, and
torque loads can be

Shear deformations are applied to the model.

negligible.
g9ilg Curvature effects are

The dominant stresses are in- not well accounted.

plane: oy, oy, Ty, >> 0,

Shell Theory

Cylindrical and
spherical shapes

Used for structures
with curvature.

Thin shells resist
loads by membrane
forces, which are
tangent to the
reference surface at
any point.

Bending moments are
neglected.

Results are
reasonable except
near supports and

areas of abrupt
changes in loading.

4.1.1 Shell Theory for Cylindrical Laminated Composites: Critical Assumptions

Unlike plates, which resist transverse loads through bending and transverse shear forces, thin
shells resist these loads through membrane forces. These membrane forces exist in the
corresponding plane tangential to the reference surface. The mathematical model associated to
determine these membrane forces is referred to as the membrane theory of shells by Kollar and
Springer [43], whose work and findings are developed in the entirety of this and the following two
subsections. They outlined the following assumptions and limitations to the proposed theory.

e The theory uses underlying assumptions of thin plate theory:
o The laminate undergoes small displacements.

Shear deformations are negligible.

o O O

the in-plane normal oy, oy, and shear T, stresses.
e Bending moments are neglected.

e Cylinder thickness, h, is small compared with all other dimensions.

Strains vary linearly across the thickness direction (out-of-plane).

Out-of-plane normal stress o, and shear stress t,, and t,, are small compared to

e Membrane forces are dependent on geometry, boundary conditions, and applied loads; they

are independent of material properties.
e Changes in curvature do not affect the stresses.
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e Results predicted through this theory are reasonable except near the supports and areas of
abrupt changes in loads.

As mentioned in the third series of assumptions, this analysis starts assuming that the thickness,
h, is smaller than other dimensions, so that the membrane forces can be determined according to
equations 4.1 to 4.4. Coordinates X, y, and z represent the local coordinates, where x and y exist in
the plane tangential to the reference point of interest, while z is perpendicular. This is better
visualized in figure 4.1, adapted from [43]. In the previous equations, Ny, Ny, N, and N, represent
the membrane forces acing at the reference surface of an infinitesimal element; R, and Ry, are the
local radii of curvature. The origin of the coordinate system is taken to be the midsurface, so that
the limits of integration h;, and h; correspond to the back coordinate and top distance of the shell
thickness. Implementing the assumption of a thin shell, so that z approaches 0, reduces equations
4.1 through 4.4 into 4.5t0 4.8

N, = f_h;b o, (1 + E) dz (4.1)
Ny = [ o (1+2)dz (4.2)
Nyy = J. _";lb Tay (1 + E) dz (4.3)
Nyw = [ Ty (1+ Ri) dz (4.4)
Ny = f_hlib o,dz (4.5)
Ny = f_h;b oydz (4.6)
Nyy = f_h;;b Tyydz (4.7
Nyx = f_h;lb Tyxdz (4.8)

Figure 4.1 — Representation of membrane forces in a shell [43].

Implementing the fourth critical assumption, namely the independence of membrane forces
on the material properties of the analyzed geometry, the equations of static equilibrium, 4.9, can
be used to determine the membrane forces. In more detail, the 6-by-6 matrix in equation 4.9 is
referred to as the ABD matrix, which can be understood as the stiffness response of a laminate to
in-plane forces and moments.
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Although the derivation of the ABD matrix is beyond the scope of this work, the details
leading to its development can be obtained in chapters 2 and 3 of [43]. Mathematically, the ABD
matrix of a laminate is defined by the stiffness matrices in equations 4.10 through 4.12, and are
defined by the elements i, j = 1, 6. Because [Q] is constant across each ply, these equations can
take the form of the summations in equations 4.13 through 4.15, where k reflects to each individual
ply number. For a laminate of an arbitrary number of layers, oriented at any angle, its ABD matrix
can be assembled by first developing the reduced stiffness coefficient matrix Q, which is expressed
by equation 4.16. The elastic modulus in the longitudinal and transverse directions are represented
by E; and E,, respectively, while the longitudinal Poisson’s ratio is denoted by v;,. The
longitudinal shear modulus is given by G;,, and the engineering constant D, is expressed by
equation 4.17, and created merely for convenience. This set of mechanical properties are
dependent on the composite structure constituents, namely the fiber and the matrix, and can be
determined mathematically through the “rules of mixture”, whose development is deferred to
section 4.2. Once the Q matrix has been built, the ABD matrix can be developed by considering
the contribution of each other laminate with respect to an arbitrarily defined reference plane, as
illustrated in figure 4.2. When a ply is oriented at a non-zero angle, like the reference Q matrix,
rotation matrices must be used to reflect the express the properties of that matrix in the original
frame of refence. To achieve this objective, the rotation matrices outlined by equations 4.18a and
4.18b must be built and later multiplied by Q, as expressed by 4.19. Letters ¢ and s denote the
cosine and sine of the corresponding fiber orientation of ply k, at angle theta, assumed to be
positive when measured from the +x to the +y axis.

[4] = [ [Q1dz = Ay = ff;;b Qijdz (4.10)
[B] = [ z[Q)dz = By = [’ 2Q;;dz (411)
[D] = f 22[Q)dz = Dyj = [y 72Qi;dz (412)
Al] k=1 (Ql])k (Zk - Zk—l) (4-13)
Bl} Ik<=1(Qij)k (ZI% - Zli—l) (4-14)
Dl] Ik<=1(Qij)k (Zli - Zli—l) (4-15)
ﬂ vz
D D
Q] = |2fz  E (4.16)
D D
0 0 Gy
D=1-— i—zvfz (4.17)
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c? s? 2¢cs
[To] =| g2 c? —2cs ] (4.188.)
=c¢s c¢s c?—s?
c? s cs
[Tl=| s ¢ —cs ] (4.18b)
—2cs 2cs c?—s?
[Q¥] = [[T]][Q][Tc] (4.19)

Reference Plane

Figure 4.2 — Visualization of the distances of other laminates with respect to the reference plane
[43].

Consequently, implementing the fifth assumption, the curvatures become 0, and 4.9
reduces to equation 4.20, where €, €7, and ygy, represent the strains of the reference surface. By
neglecting the variations of strains across the shells, the strains can be described by equation 4.21.
Finally, this implies that the stresses in each layer can be calculated by equation 4.22. These
fundamental assumptions are the base to develop the resulting mathematical models for composite
shells described in the next two sub-sections, 4.1.2 and 4.1.3.

€ [;111 Az Ag]t ((Na
A

& ¢ = A1z A Agg Ny (4.20)
Yy 16 Aze  Aee Nyy
€y €2
ley b= eg (4.21)
YXy ygy
Ox Q11 Q12 Q6] ( €x
19y ¢ = Q12 sz Q26 €y (4-22)
Txy Q16 Q26 Qeel Yxy
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4.1.2 Membrane Theory: Prediction of Displacements

The analyzed geometry is treated as a thin-walled cylinder with built-in ends, such as the
one in figure 4.3a. It can be subjected to a pressure P,, which may vary linearly along the radial
direction, and a constant axial load N and constant torque T. For these applied loads, the
corresponding forces and moments inside the wall of the cylinder are shown in figure 4.3b. The
uppercase letters M, N, and V represent the moments, forces, and shear forces, and the subindices
X, Y, and z denote the corresponding direction or plane where they occur. R represents the radial
distance from the main axis of the cylinder to its outer surface. Consequently, five equilibrium
relationships can now be established, as summarized by 4.23 through 4.27. The strains and
curvatures of the reference surface are then expressed by equations 4.28a through 4.29c. Axial,
circumferential, and radial displacements, the properties of interest for this subsection, are denoted
by u®, v°, and w®, respectively.

@ W0 ‘ ® Ay M,
db i ) N, 20y ™
o \ y, ) "
< Ml p e | \ = N
| M 19 L v
" A ‘.-+§l\ A i \1
L | s | ‘I -*‘ - V/\.l \\\i P
T o~ - -__?-~ : -
: 'r.'-:- ‘ o ! - \j \i _ g g
IR \\_.T___/ - ” . ’_‘
i ¥ li

Figure 4.3 — a) Cylinder model and its acceptable applied loads. b) Forces and moments inside

the wall [43].
dNy
o - 0 (4.23)
(RN + M) = 0 (4.24
N d?My
v o =P, (4.25)
Vy = d%{ (4.26)
= d—gy (4.27)
d
== (4.28a)
o_ w°
€0 =" (4.28b)
d 0
Yoy = 0 (4.28c)
d2 0
Ky = — d:z (4.29a)
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d2w?°

Ky = — 22 (4.29b)
2 dv°
Ky = == (4.29¢)

Chapter 8.2 of [43] provides specific details about the formulation of the results leading to
the development of the equations of interest to describe the axial, circumferential, and radial
displacements. The purpose of this section, however, is to provide a top-level overview of the
process leading to this result. The equations of equilibrium, 4.23 through 4.27, strain-displacement,
4.28 through 4.29, and force-strain, 4.9, provide relationships for all the forces, moments, and
displacements of the wall. Integration of the first two equilibrium equations leads to equations
4.30a and 4.30b, where D, and D, denote unknown constants. Substituting the force-strain
relationship, 4.9 into 4.27a-b leads to equation 4.31. For convenience and simplicity of terms, the
collection of matrices [a,] through [a,], [H], g, and elements f; through f- will be collected in
table 4.2. The derivatives of u®and v°, which appear on the second element of equation 4.31 can
then be expressed by 4.32; the internal forces N, and M, are then expressed as equation 4.33.
Substituting the strain and curvature relationships, equations 4.28a through 4.29c, into 4.33 leads
to equation 4.34. Additional substitution of equation 4.32 into 4.34 results in 4.35, which is then
re-expressed as equations 4.36a-b.

Dy = Ny + 2 (4.30b)
wo du®
D w_ au_
o =laal] £ ot +lasl] (4.31)
T ax? dx
du® Wo
au_ ) - D
&= —las el gy +lasl 432
dx T ax?
(€2
0
€
y
N A A A B B B ] 0
vl _ [A1z A2z Aze Biz B2z Bzl )y
= < Txy 4.33
{Mx} Bi1 Biz Big D11 D1z Digl |k, ( (4.33)
Ky
chy)
N wo awo
Lo =tad] & ot +lal]s (4.34)
X — —_—
dx? dx
N wo
yi _ R gl
{Mx} = [H] _d2w® + {gz} (4.39)
0 dx? 2,,,0
Ny = Hll%_le%-l-gl (4366.)
w0 da?w?®
My =Hy——Ha—7 7192 (4.36b)
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Table 4.2 - Parameters required for equations 4.31 - 4.36b.

B2 [ 2B1¢
[ ] AZZ - R BIZ [ ] All A16 - R
ai] = az] =
ol _bu 3174, 4 Bie 4 Bes _ 2D
12— % Du 16t Aee — % w2
[ Bi2 [ 2B3¢
(o] A== Bn (a] Az Aze ——
a-| = a.l =
2 Ay — e g Due Y7 B,, By — s
26 R2 16 R 11 16 R

1
f; = Hy, fo=—=(Hz + Hip) f3=— f4=Pz0—& fs =Py,

Inserting equations 4.36a-b into 4.25 leads to equation 4.37. The solution to this equation
yields the radial displacement of the reference surface, the first equation of interest, expressed by
4.38. The length of the cylinder is represented by L; A and £ denote the real and imaginary
components of the roots of the characteristic polynomial, as expressed in equations 4.40a-b and
4.39. The constant D; represents the membrane force component in the x-axis caused by the
magnitude of the axial force N, as in equation 4.41. D,, expressed by 4.43, is obtained by inserting
the total torque acting on the cylinder, 4.42, into 4.30b. Implementing the boundary conditions
outlined by 4.44a-b, the constants C; — C, leads to the equations summarized in 4.45. The terms
Y;; are summarized in table 4.3, for convenience.

A O 4 w0 = £+ xfs (4.37)
w® = e=*[C, cos(Bx) + C, sin(Bx)] + e~ 0[5 cos(B(L — x)) (4.38)
+Cysin(BL ~ D)} + [ (fa + xf5)]

—fot [fE-4fif:
i (4.39)

'Y:

2fy
A = Re(y) (4.40a)
B =Im(y) (4.40D)
N
Dl == Nx = ﬁ (441)
T = (NyyR)2%R + M,,2nR (4.42)
7
2 = nR? (443)
0_ dw® _ _
w’ =0 E‘O atx=0 (4.44a)
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0 — — = =
w0 =0 =0 atx =L (4.44b)
(L)
f3
1 = N3 Y006 fs
2 B Yoz Yu|)G(_) &
Y35 Y3, 1 01)C( < fatlfs ( (4.45)
Yoo Yoo A2 BI\G 13
fs
\ 7 /
Table 4.3 - Parameters in equation 4.45.
Y;3 = e * cos BL Y,, = e *sin L
Y,3 = e (AcosBL + B sinBL) Yo, = e * (=B cos BL + Asin BL)
Y31 = e * cosBL Ys, = e *sin SL
Y, = —e *(Acos SL + B sin BL) Y,, = e *(B cos fL — Asin BL)

Finally, integrating expressions 4.32 leads to the axial and circumferential displacements,
expressed by equation 4.46. These are the additional two properties of interest for this analysis.
The corresponding terms in this equation, namely the derivates and integral of w®, are summarized
in table 4.4, included below. The terms uJ and v denote the rigid-body motions, which will be
neglected in this analysis. The strains can then be calculated by using equation 4.28a — 4.29c.

[ wOdx

(o} = —tasltaa] 0+ xtat )+ 4] (@.46)

dx

Table 4.4 - Parameters in equation 4.46.
w0 = 2 (f, + xf5) + e cos(Bx) C; + e~ sin(Bx) C,
3
+e~ M0 cos(B(L — x)) C3 + e M sin(B(L — x)) C,

_dwo fs -Ax “Ax :
ax  f + e ¥ cos(fx) (—AC, + BCy) + e ¥ sin(Bx) (—BC, — ACy)
+e~ ) cos(B(L — x)) (AC3 — BC,) + e A ED sin(B(L — x)) (BCs — AC)
2 - - -_
Jwodx = = (fox + 5 f5) + e cos(Bx) i + e~ sin(Bx) S

+eH* cos(B(L — x)) A,i;;ﬁ? +e sin(A(L — x)) BACZS;;?
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4.1.3 Membrane Theory: Prediction of Critical Buckling Load

This analysis starts by considering a composite shell subjected to surface loads on the wall
and compressive and shear loads at the edges. Once this set of applied loads becomes larger than
a critical limit, the shell buckles, either locally or globally. For a small shell element exposed to
these loads, as the one in in figure 4.4a, the corresponding membrane forces acting on it can be
visualized in figure 4.4b. These relationships are expressed by equations 4.46a — 4.46¢. The load
parameter is denoted by A, which for some value causes local bucking and becomes A... As
mentioned in the previous section, the derivation leading to these results is reserved to chapter 8.4
of [43], but key results are outlined in this sub-section. First, in the region where the local buckling
occurs, the shell has constant curvatures, as expressed by equations 4.47a-c, and the reference
surface can be described in terms of two variables, as shown by 4.48. Various curvatures of typical
shells can be observed in figure 4.5 [43]. The radii of curvatures can then be expressed by 4.49a-
c. Implementing these assumptions, equation 4.50 can be formulated. The in-plane and out-of-
plane amplitude of the buckling waves are represented by uy, vy, u,, vy, and wy, and wy,
respectively. These wavelengths are assumed to be short. For convenience, the matrices [O], [L],
[J], and the parameters @, and &, are grouped in table 4.5.

a) '-_.___.-"_'-.E_-_-.."II':--.___ 3 ---“--H}---%I—“‘ b)
S > >
f.ilr < ,-*”} Vo= AN uxﬁk;_.----*'gi_.ﬁ;:f..- ~AN
"::.-;..ﬁ{x T N, = —AN,
T g =
'-#___,.,-'T F\.HR&

Figure 4.4 —a) Applied loads on the shell and the membrane forces. b) Membrane forces acting
on the shell element [43].
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Ny = —ANyg (4.46a)
N, = —AN,, (4.46b)
Nyy = —ANyy0 (4.46¢)
R, = constant (4.473)
R, = constant (4.47b)
R, = constant (4.47¢)
f(x,y) = (4.48)
L __%r

R_x = 502 (4493.)
1 __%f

1 209%f

Rey  0xdy (4.49c¢)
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Figure 4.5 — Various curvatures of typical shells [43].
Table 4.5 - Parameters in equation 4.50.
-a 0 p 0 0 0
[0] = 0 -8 « 0 0 0
Ri Ri 0 a?+p%c2 B?+a?c? —2aBf(1+ccy)
x %
Bc, 0 —ac 0 0 0
(L] = 0 ac —[icz 0 0 0
0 0 — —2afc; —2afc 2(cia? + ¢, p?
xy
A1 Az 0 By By 0
Ajp Ay 0 By By 0
0 0 Ag O 0 Bgg
M=
Mol =\, B, 0 Dy Dy 0
Biz Bz 0 Dy Dy O
0 0 Bg O 0 Dgg
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®; = Nyo = (@® + B%c3) + Nyyo2(a®cy + B%c5) + Nyo(a?c; + B?)

@, = —2aB(NyoCz + Nyyo(1 + ¢163) + Nyocq)

Notably, among the parameters required to solve equation 4.50 are four constants: «, £, ¢4,
and c,. These values describe the wave pattern of the buckled wave; an instance of buckling
pattern of a shell is shown in figure 4.6. Determining the eigenvalues presented by equation 4.50
correspond to the critical load parameters of interest, namely A... The finite, lowest value, greater
than zero, will be the solution of interest for the set of selected four constants. For short
wavelengths, consistent with the assumption made in the previous paragraph, real, positive, and
arbitrary values can be used to determine the critical buckling load.

e —_ B & T
. = ..\ o . 3 z
*’%‘{‘ \t> N e ‘

Figure 4.6 — Visualization of local buckling pattern.

4.2 Laminate Model, Material Properties and Loading Conditions

While no peer-reviewed study has corroborated the laminate composition of the Titan
Submersible, an available online source [44] cited the ply layout to be composed of 667 plies,
alternatingly aligned in the axial and circumferential direction. In other words, this stacking
sequence can be represented as follows: [(0,90);335 0]. It also identified the matrix and fiber
constituents to be Grafil 37-800 30K and Epoxy Resin 862. The mechanical properties of the resin
are highly dependent on the curing agent. Some of these chemicals can be Diethyltoluenediamine
(DETDA) epoxy curing agent and EPIKURE ™ Anhydride-based curing agent. In this stage of
the study, mechanical properties for the fiber and matrix were obtained from [43] and are outlined
in table 4.6, located below. As signaled in the fourth paragraph of subsection 4.1.1, the rules of
mixture for composite materials were then used to determine the final mechanical properties of
interest: Young’s Modulus in the longitudinal, E;, and transverse directions, E,, the longitudinal
shear modulus, G;,, and the longitudinal Poisson’s ratio v;, for a reference ply, oriented at a O-
degree angle. The derivation of these properties can be found in chapter 11 of [43], and the series
of equations to model these properties are summarized by 4.51 to 4.54. With these quantities, the
reduced stiffness coefficient matrix, Q, can then be formulated, as expressed by equation 4.16,
shown below again for convenience to the reader.
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_ (Ve 17Vy
E, = (Ef1 + Em) (4.52)
-1
_ (Ve 1—Vf)
Gz ( e (4.53)
Vi = vflz Vf + Vm(]. - Vf) (454)
Ey Vi2E; 0
D D
[Q] = [va2fz2 E (4.16)
D D
(E) 0 Gy
D=1-2vh (4.17)

Table 4.6 - Mechanical properties of matrix constituents [43].

Longitudinal Young’s Modulus Ef, GPa 231
Grafil 37-800 Longitudinal Shear Modulus Gy, GPa 91
(30k TOW) Longitudinal Poisson's Ratio Ve, - 0.27
Volume Fiber Fraction Ve - 0.7
. Matrix Young's Modulus En GPa 2.8
EpogGRzesm Matrix Shear Modulus G GPa 1
Matrix Poisson's Ratio Vim = 0.35

As previously identified, the pressure at the maximum operational depth of the Titan, 4 km
under the surface of the ocean, corresponds to 40.33 MPa. To determine the axial load, the cross-
sectional area of the cylindrical had to be considered, as visualized in figure 4.7. The inner radius
of the cylinder and its thickness are denoted by r; and h, and these values are 70.11cm and 12.7cm,
respectively. Since the pressure can be expressed by equation 4.55, solving for the force leads to
4.56. The cross-sectional area is then determined by 4.57, for which the corresponding magnitude
of the axial force is found to be 24.606+ 10°N. Following the convention established by figure
4.3a, a compressive force is negative. Table 4.7 summarizes the loading conditions implemented
to generate the displacements of interest.

Figure 4.7 — Cross-sectional view of the cylindrical section.
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P=—"" (4.55)
cross section

Faxial =P x Across section 5 (4-56)

Across—section = T[(rozuter - rinner) (4-57)

Foyial = 24.606 * 106N (4.58)

Table 4.7 - Implemented loading conditions.

Constant Pressure MPa 40.33
Axial Load N -24.606 x10°
Torque N*m 0

4.3  Algorithm Workflow and Implementation in MATLAB ®

The two algorithms developed by the author to predict the buckling load and displacements
of interest can be found in sections 2 and 3 of the appendix. Although the series of equations used
to generate the properties of interest were discussed in chapters 4.1 through 4.2, the purpose of this
subsection is to provide a visualization of this process to the reader. At this stage of the
investigation, interested readers can perform customized calculations by copy-pasting these scripts
into MATLAB and modifying the loading conditions, geometry, and laminate stacking sequence.
Once this is completed, results will be generated and stored accordingly. Comments have been
added to guide the reader in understanding the units, significance of the variables, and calculation
at hand.

The first section of the algorithm determines and plots the axial, circumferential, and radial
displacements. It achieves this objective by first gathering a series of inputs; these are the cylinder
geometry and loading conditions, ply layout, and mechanical properties of the fiber and matrix.
Consequently, the calculation of the engineering constants are performed to populate the reduced
stiffness matrix. With this information, the ABD matrix can be assembled. Along with the cylinder
geometry and loading conditions, the characteristic polynomial equation 4.39 can be built and its
roots solved. Once these values are known, the elements of equation 4.45 can be developed to then
invert the matrix and find the values of the constants in matrix “C”. After these computations are
completed, the axial, radial, and circumferential displacements can then be determined. This
process can be better visualized in figure 4.8.

Figure 4.9 describes the process followed in the script to investigate the buckling load.
Similar to the previous script, the ply layout and mechanical properties of the fiber and matrix are
half of the required inputs. The cylinder geometry and an array of positive and arbitrary values for
four constants, a, 3, ¢y, and c, represent the second half. With this information, the engineering
constants are calculated and the reduced stiffness matrix then assembled. After the ABD matrix is
developed, the second half of the inputs is used to develop the matrices My, M,,, and J;
consequentlty, the matrices OL, G, ®, and &, are assembled for each corresponding possible
combination of the four inputted constants. The eigenvalues are determined and stored for each
iteration. Finally, the lowest, finite, and positive eigenvalue is selected, along with the constants
used to achieve this, for reference. This value corresponds to the solution of interest, the critical
buckling load.
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- Assembly of characteristic
polynomial and calculation of
< Cylinder Geometry roots.
> Loading Conditions > Assembly of “Y” and “f”
matrices to solve for “C” matrix
(Eq. 4.45)

-> Assembly
of ABD Matrix

> Calculation of
Engineering Constants
> Assembly of Reduced
Stiffness Matrix

> Ply Layout
> Mechanical Properties
of Fiber and Matrix

-~ Assembly and
plotting of axial,
radial, and
circumferential
displacements
Ug, Vg, and wy.

Figure 4.8 — Workflow of MATLAB® script to find the displacements.

- Assembly of My, M,,, and )
> Cylinder Geometry matrices.

> Array with values of > Assembly of “OL” G, @4, and
o, B,cq, and c, @, matrices for each of
o, B, c;, and c, values.

> Assembly
of ABD Matrix

- Calculation of
Engineering Constants
- Assembly of Reduced
Stiffness Matrix

> Ply Layout
- Mechanical Properties
of Fiber and Matrix

> Calculation of
eigenvalues for each of
these four constants

> Determination of
lowest, finite, positive
eigenvalue and its four
solution constants.

Figure 4.9 — Workflow of MATLAB® script to find the buckling load.
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4.4 Results and Discussion

4.4.1 Critical Buckling Load

Although the author decided to first introduce the theory behind the calculation of
displacements in subsection 4.1.1, the first calculation performed to assess the results was the
critical buckling load. If the determined buckling load was very close to the applied axial load, the
displacements would be expected to be excessively large and exceed the fundamental assumptions
under classical laminate theory (CLT): small displacements are allowed only. In other words, if
the applied load neared 2 or 3 times the critical buckling load, CLT could not be soundly used to
predict the displacements, since the development of shell theory uses the CLT underlying
assumptions. The values of the four positive, arbitrary constants required to determine the critical
buckling load are summarized in table 4.8. The computed critical buckling load was found to be
292.7866481x 10° N; figure 4.10 is a screen capture once the calculations were executed with
MATLAB ®. This value is 11.9 times larger than the maximum operational axial load, at the
lowest sea depth, corresponding to 24.606« 10° N. As a result, the displacements are anticipated
to be acceptably small, and shell theory suitable for the prediction of the displacements.

Table 4.8 - Positive, arbitrary constants used in the calculation of the buckling load.

a 1 50 100
B 1 50 100
1 0 2 21
Ca 0 2 21

Minimum finite la:

Occurs at: =

Figure 4.10 — Calculated critical buckling load and its corresponding four constants.

4.4.2 Displacements: Axial, Radial, and Circumferential

Figures 4.11 through 4.13 show the predicted axial u,, circumferential v,, and radial w,
displacements. Conventionally, for applications not related to the depths of the ocean, the
magnitude of the displacements is typically in the range of the micro-meters (1 * 107°). The first
observation from these results is that the magnitude of the displacement is in the millimeters 1 *
1073, Most intuitively, since the cylinder is compressed by the axial load applied at its edges, the
radial displacements are positive and symmetrical throughout the axial distance of the cylinder,
graphed in the vertical axis for all figures. In other words, the material constituents displace away
from the axis of symmetry of the cylinder, by as much as 2.26mm. The thickness of a single US
dime measures 1.35mm [45]; consequently, the displacement of the material constituents is less
than that of two piled 10-cent coins. Although this might seem excessive, given the colossal
operational pressure, 40.33MPA, it is expected that this material geometry experiences such
displacement under this operating conditions. Similarly, the most drastic axial and circumferential
displacements approach the magnitude of 2.5mm. Since the theory assumes that the displacements
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are not accurate at the edges, this value is taken as a reasonable approximation. Unlike the radial
displacements, these two do not show a symmetrical variation, across the axial distance of the

cylinder, as is expected. This set of values will be used as a comparison for the FEM solution,
discussed in the next chapter.
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Figure 4.11 — a) Axial, b) Circumferential, and ¢) Radial displacements.

87



5. Execution of FEA in Ansys

5.1 General Overview

After the rapid analysis of the cylindrical CFRE section was conducted, as explained in
chapter 4, Ansys Static Structural was then used to develop a numerical solution through the FEM.
The implemented modeling strategy consisted of gathering the corresponding material properties,
discretizing the geometry model, applying boundary conditions and loads, evaluating results, and
making corrections as required. This process is shown in figure 5.1. Work presented in this section
includes the upper-half of the diagram, as results will be discussed in section 6.

Geometry
Model
Discretization

Boundary
Conditions
and Loads

Material
Properties

Input Model to
Ansys Static

Structural

G ti ; s
sl Satisfactory Compilation
and 2 Convergence =
Preliminary and Reporting

evaluation of e Study ‘ of Resuita J
results

Figure 5.1 — Problem modeling approach in Ansys Static Structural.

5.2  Geometry Model

5.2.1 Material Assignment and Properties

Three materials were identified during the early research stages of this project and outlined
in section 1.2. These were: Titanium Grade 3, Polymethyl Methacrylate (PMMA) and Carbon
Fiber Reinforced Epoxy (CFRE). The material assignment is summarized in table 5.1. For
convenience to the reader, the Titan Submersible drawing, labeled previously as Figure 3.26, is
juxtaposed, as shown in the third column of the table.
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Table 5.1 - Material assignment of the submersible’s components.

Component Matehel st
o ern,
p ASSlgnment Titanium
I ——————— Interface
- z O-Rings
Observation s
- PM MA X anium
Window "\”
Bow,
BOW and Titanium
Stern Titanium
Interface Grade 3
-Ri Observation Cylindrical
O ngs Window Section
PMMA CFRE
Cylindrical Section CFRE

Material properties are highly dependent on the manufacturing process, which may vary
by company. Manufacturing company A, for example, may have treatment processes that yield a
higher level of purity while minimizing voids and porosity, as compared to company B. These
factors will ultimately influence the mechanical properties of the processed material. As a result,
without knowledge of the actual material properties used in the design of the submersible, the best
reasonable approximation can be made by employing “average” properties from available sources.
Three resources were consulted to obtain the mechanical properties of the Titan Submersible. For
Titanium Grade 3, ASM Aerospace Specification Metals Inc. website [46] was consulted. In the
case of PMMA, a similar study found in the literature review [27] contained all the properties of
interest. Lastly, to obtain the properties of CFRE, the rules of mixture were used, employing the
typical material properties for Carbon Fiber and Epoxy, as included in [43]. All the properties of
interest are summarized in tables 5.2 through 5.4. To assess the soundness of these values, similar
values obtained from the Ansys’ material library were compared and are reflected in the third
column of each corresponding table. The used values, reflected in column 4, were subsequently
updated in the Ansys’s material library.

Table 5.2 - Material properties of titanium.

Ansys

Titanium Alloy LA
Density kg/m”3 4620 4500
Youngs Modulus Pa 9.60E+10 1.05E+11
Poisson's Ratio - 0.36 0.37
Tensile Yield Strength Pa 9.30E+08 4.49E+08 [46]
c°m';r:r’:;';’t‘:]v'eld Pa 9.30E+08 4.50E+08
Tensile Ultimate Strength Pa 1.07E+09 1.00E+09
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Table 5.3 - Material properties of PMMA.

Ansys Granite

Library Used
Density kg/m*3 1200 1190
Youngs Modulus Pa 3.00E+09 2.74E+09
Poisson's Ratio - - 0.38
Tensile Yield Strength Pa 6.40E+07 1.15E+08 [27]
C°m';rt‘::2’tiv'eld Pa 6.40E+07 1.15E+08
Tensile Ultimate Strength Pa 6.30E+10 -

Table 5.4 - Material properties of CFRE laminate.

Ansys Epoxy
Carbon
UD 365GP Prepreg
Typical Ply Property
Density kg/m"3 1540 1600 Graphite T300/Epoxy
[43], p. 486
o 2.09E+11 1.63E+11
direction
Young's y-
Modulus direction Pa 9.458+09 9.08E+09
Z-
direction 9.45E+09 9.08E+09 ques of
boisson xy plane 0.27 0.294 Mixture
0|ss9n S yz plane - 0.4 0.59 Calzulen
Ratio
xz plane 0.27 0.294
sh Xy plane 5.50E+09 3.25E+09
ear
Modulus yz plane Pa 3.90E+09 2.85E+09
Xz plane 5.50E+09 3.25E+09
x 1.98E+09 1.50E+09
. direction
Orthotropic
Stress Limit - y- Pa 5 60ELTT A.00E+07 Typical Ply Property
Tensile direction : ) Graphite T300/Epoxy
z- [43], p. 486
L 2.60E+07 4.00E+07
direction
X- i
direction 2 "8.93E+08 1.50E+09
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y_ -

Orthotropic -1.39E+08

LT N
Stress Limit - dlre;:_t|on 2.46F 08
Compressive direction -1.39E+08 2 46E+08
Xy plane 1.00E+08 6.80E+07 [43], p. 486
Assumed 50% of
Orthotropic yz plane 5.00E+07 3.40E+07 orthotropic
Stress Limit - Pa Stress Limit xy plane
Shear Typical Ply Property
Xz plane 1.00E+08 6.80E+07 Graphite T300/Epoxy
[43], p. 486
_x 0.0095 0.00947
. direction
Orthotropic i
StrainLimit- 0.0028 0.00275
. direction
Tensile ;
L 0.0028 0.00275
direction
dire)é' on -0.0043 -0.00427
Orthotropic _ > Calculated
StrainLimit- ) -0.0147 10.01471
. direction
Compressive .
S -0.0147 -0.01471
direction
Orthotropic Xy plane 0.0182 0.01818
Strain Limit - yz plane 0.0128 0.01282
Shear xz plane 0.0182 0.01818

5.2.2 Laminate Modeling Technique

As previously signaled, Ansys Composites PrePost (ACP) is the simulation tool to develop
composite structures. In the analytical approach outlined in chapter 4.2, the laminate was identified
to be composed of 667 alternatingly aligned in the longitudinal and circumferential directions:
[ [0,90]3355, 0]. To represent this topology in ACP, the thickness per ply was first determined by
dividing the thickness of the cylindrical section, hcyjinger, Oy the number of plies, npjes, as
reflected in equation 5.1. The corresponding thickness per ply was determined to be 0.1904mm.
Consequently, the 667 plies and their corresponding orientation were created. This implementation
can be visualized in figure 5.2. As intended, ACP calculated the total laminate thickness to be
0.127m; this can be observed at the bottom of figure 5.2 b). This process enabled the cylindrical
section to be represented and a shell, for a subsequent import to Ansys Static Structural, where the
meshing, boundary, and loading conditions are defined, as will be explained in the two proceeding
subsections.

hcylinder
toly = ——— 5.1
ply Nplies ( )
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# Fabric Properties a)
& Stackup Propertics Mame: UD_CarbonFiber
. ee—— I UD_CarbonFiber
ID: Laminatel i i i
General | Analysis | Solid Model Opt. | Draping
General | Analysis | Solid Model O
i General
Fabrics
Symmetry: No Symmetry Material: | Epoxy Carbon UD365GP - Modified
Layup Sequence: Bottom-U .
vip e erem e Thickness: 0.00019040000000000002
—
Fabric Angle I
1 UD_CarbonFiber 0.0
2 UD_CarbonFiber 0.0
3 UD_CarbonFiber 0.0
4 UD_CarbonFiber 0.0
Stackup Properties
0.126996799999993 b)

Figure 5.2 — a) Assignment of ply thickness and b) Creation of laminate with 667 plies.

Using this same module within ACP, once the laminate has been created, the ABD matrix
can be generated. A comparison between the ABD matrix generated by Ansys and the analytical
approach implemented with MATLAB is shown in figure 5.3. An acceptable agreement is
observed across the A and D matrices. Non-zero elements appear to differ by less than 1%.
Elements reflected as 0 in the analytical calculations, such as the first two elements in the last row
of the A matrix, appear to approach zero; these values, for example, are 2.2713e-10 and 6.0023e-
7. According to the Classical Laminate Theory, the values of the B matrix in a symmetric laminate
are 0. The small-valued elements reflected in the last 3 rows and last 3 columns, pertaining to the
B matrix calculated by Ansys, are observed to also approach zero. In the analytical approach, these
values are automatically assigned as O if the laminate is symmetric. Lastly, the corresponding ply
orientation was visually checked to ensure that the intended orientation was correctly assigned.
The odd-numbered plies were oriented in the longitudinal direction while the even-numbered
counterparts were positioned in the circumferential direction, as shown in figure 5.4.
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5.5473e+05

ABD

Figure 5.4 — Longitudinal and circumferential ply assignment in ACP.
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5.3 Geometry Model Discretization

While geometry discretization precedes laminate model creation in the Ansys workflow,
the author opted to discuss laminate development alongside material characteristics, as seen in
Section 5.2. The intent of this approach was to ensure that readers can first assess the mechanical
properties of both isotropic and orthotropic materials (composite structure) before addressing FEA
domain discretization.

The geometry model was discretized in terms of a three gradual augmentation of elements.
In other words, three meshes with incremental number of elements were developed: coarse,
medium, and fine. Increasing the number of nodes in a domain is a technique referred by Cook et
al [32] as a “weak patch test” to identify numerical convergence in a FEM solution. Creating a
mesh using a computational tool is an iterative process, during which a combination of various
methods, element sizes, and controls must be tested to generate a successful mesh. Once this is
achieved, additional refinements and modifications are then tested to produce the greatest number
of good-quality elements. Given the “regular” geometry of the submersible, three main types of
meshing methods were used: tetrahedrons, sweep, quadrilateral dominant, and automatic. As the
name implies, the tetrahedron method employs tetrahedron elements in areas with curved and
irregular topologies. This was implemented for the observation window. In contrast, the sweep
method is used for more regular shapes, such as the base of the bow and stern, the “body” of the
connecting O-Rings, which are cylindrical. The quadrilateral dominant method is similar to sweep
but it is recommended for shell models; as a result, it was implemented in the cylindrical section.
Lastly, in automatic meshing method, Ansys selects the best meshing method based on the
topology at hand. Primary elements can include a combination of tetrahedral and hexahedral
elements, for example. This method was used in the spherical sections: the bow and the stern. The
specific method and sizing by mesh resolution is summarized in table 5.5. The discussion of the
last column, whose element size is “ideal” is deferred to the next paragraph.

Table 5.5 - Meshing methods and element types per mesh resolution.

Coarse  Medium

Observation

Window Tetrahedrons 7.5 7.0 6 1.5
Bow Automatic Ansys Selected 21 19.5 18 3
Bow Base Sweep Quadrilaterals 7.125 6.0 5.25 1.5
0O-Ring .
Stern to Cyl. Sweep Quadrilaterals 7.125 6.0 5.25 1.5
Cvlindrical - Quadrilateral ) \iaterals  10.5 9.5 9.188 4
Section Dominant
O-Ring Swee Quadrilaterals ~ 7.125 6.0 5.25 1.5
Bow to Cyl. P ’ ’ ’ ’
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Stern Base Sweep Quadrilaterals 7.125 6.0 5.25 1.5

Stern Automatic Ansys Selected 9.0 8.5 7.875 2

To achieve a uniform mesh in a large structure, like the Titan Submersible, several
refinements and smaller element sizes would be expected. Nevertheless, since Ansys’ student
license limits the Static Structural solution to no more than 32,000 elements, the main constraint
was to select element sizes relatively close to each other without exceeding this node limit.
Unsurprisingly, the element quality would be compromised without being able to implement
smaller element sizes. An “ideal” eclement size was developed, but not executed due to Ansys
license limitations, to contrast the impact of implementing a smaller element size on the mesh
quality. The initial global target, minimum, and maximum element sizes are summarized in table
5.6, located below. These sizes were initially used to define the mesh resolution, but more specific
adjustments and refinements were developed, as can be seen in columns four through six of table
5.5. In the case of the coarse mesh, for example, a global target size of 7.125 cm was intended:;
however, this element size appeared to be inadequate for mesh quality in the bow and was relaxed
to 21cm. In the case of the medium-resolution mesh, the target element size of 6cm was also
relaxed to 9.5cm in the cylindrical section because good-quality elements could be obtained at this
size. Relaxing the number of elements without reducing the mesh quality is perceived as an
acceptable practice, as it will reduce the computational time required to obtain the FEM solution.
Isometric, front, and lateral views of the coarse, medium, fine, and ideal meshes can be observed
in figures 5.5a through 5.8c.

Table 5.6 - Global mesh settings per mesh type.

|

Target Element Size [cm)] 7.125 6.0 5.25 1.5
Minimum Element Size [cm] 0.007125 0.006 0.00525 0.0105
Maximum Element Size [cm] 7.125 6.0 5.25 1.5

Order Quadratic Quadratic Quadratic Quadratic
Growth Rate 1.2 1.2 1.2 1.1
Total Nodes 43,989 59,667 86,071 2,102,175

Total Elements 15,484 21,928 31,024 1,061,591
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Figure 5.5 — Coarse mesh: a) Isometric, b) Front, c) Side, and d) Back views.
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Figure 5.6 — Medium mesh: a) Isometric, b) Front, ¢) Side, and d) Back views.
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Figure 5.7 - Fine mesh: a) Isometric, b) Front, c) Side, and d) Back views.
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Figure 5.8 — Ideal mesh: a) Isometric, b) Front, ¢) Side, and d) Back views (not used due to
Ansys’s license limitations.

99



5.4 Boundary and Loading Conditions

A. Boundary Conditions.

Lastly, in preparation for generating the FEM solution, the boundary and loading
conditions were implemented. This step occurs in the Static Structural environment of Ansys. To
capture correctly the physical interactions between the structure and the simplified loading
conditions, its environment was first observed. The submersible used vertical and lateral thrusters
to guide its motion in the ocean, as can be seen in figure 5.9. In static conditions, the locations of
these thrusters can be simplified as simple points. Implementing fixed supports at four locations
would constraint the displacements of these four nodal locations to be zero, which might cause
undesirable stress concentrations near vicinities of these supports. As a result, only two nodal
locations were constrained with fixed supports. One of them was the node located at the
intersection of the xy and yz planes, as illustrated by the top figure 5.10. The second nodal location
corresponded to the node on the yz plane, at the edge of the axial location (x-axis), as in the bottom
figure 5.10.

Figure 5.9 — Location of vertical thrusters of Titan Submersible [6].
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Figure 5.10 — Implementation of Boundary Conditions: Fixed Supports.

B. Loading Conditions

As explained in section 1.1, at the lowest operating depth, corresponding to 4km, the
submersible was exposed to a pressure of 40.33 MPa. In Ansys, this loading condition was
represented with a hydrostatic pressure, which is determined according to equation 5.2. The fluid
density, gravitational acceleration, and depth of the geometry are represented by p, g, and h,
respectively. Consequently, implementing the density of sea water, acceleration due to gravity on
earth, and operational depth of the submersible, as summarized in table 5.7, led to the
corresponding hydrostatic pressure contours reflected in figure 5.11. Because the origin of the
global coordinate system was placed at the geometric center of the pressure hull, lower pressure
distribution is observed at the top of the hull than the bottom. At the top, the highest pressure is
calculated as 40.41MPa, while the lowest pressure is 40.39MPa at the bottom.

Phydrostatic = pgh (5.2)
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Table 5.7 - Hydrostatic pressure values applied in Ansys.

Variable Units Value
P kg/m3 1030
g m/s? 9.8066
h m 4000

Figure 5.11 — Loading Condition: Hydrostatic pressure contour generated by Ansys.
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6.0 Results and Future Work

6.1 Results

After implementing the previous boundary and loading conditions, results were generated
in Ansys. For convenience to the reader, these results are grouped by their mesh size, in the
subsections below, A through C. For each mesh size, three figures are presented in the following
order. First are the lateral and front views, capturing the xz and yz planes from both sides. Next is
the composite failure tool, showing whether failure occurred in any of the plies.

Three main observations can be made across all types of mesh resolution. First,
qualitatively, all results show that the largest displacement occurs at the edge of the joining O-
Ring, on the bow side. This can be observed in figures 6.1, 6.4, and 6.7. Similarly, is noticed that
the slightly bigger pressure gradient is “bending” the submersible upward, since there is a larger
stress concentration at the bottom of the submersible (negative z-axis) than the upper section, as
previously visualized in figure 5.11. Secondly, with this modelled layup, failure is predicted in
every mesh resolution. This is illustrated by figures 6.3, 6.6, and 6.9, where the safety margin of
one is exceeding, signaling material failure. In most cases, this occurs in the “red” areas, which
are observed to be the edges of the cylindrical section and the middle section. As a result, additional
reinforcement will be required in these sections by either increasing the shell thickness or
numerically testing different layups, possibly alternating +30, +45, +53, or +60 degrees. Lastly,
the acrylic window is observed to undergo significant deformation, as its original spherical shape
is observed to compress inward, consistent with its expected physical behavior. This can be
observed in the upper images of figures 6.1, 6.4, and 6.7.
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A. Coarse Mesh

0045362
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0015121
0 Min

0.015121
0 Min

Figure 6.1 — Displacement from lateral views of the xz plane.
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Figure 6.3 — Ansys’s failure composite tool.
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B. Medium Mesh

Figure 6.4 — Displacement from lateral views of the xz plane.
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C. Fine Mesh

Figure 6.7 — Displacement from lateral views of the xz plane.
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Figure 6.8 — Displacements from the front and back views of the yz plane.

Figure 6.9 — Ansys’s failure composite tool.
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6.2 Convergence Study

As previously signaled, at the time this work was conducted, Ansys’s solver limited the
solution to 32,000 elements. Consequently, the number of nodes and subsequent reductions had to
be closely tailored around this limit. Five different nodal locations were selected to investigate
numerical convergence within the nodal limits of Ansys’s student license. In more detail, these
nodal locations were extracted from the xy plane. One selection was made for the stern, one for
the stern-side O-Ring, two for the cylindrical section, flaking the origin, and one for the window.
They can be visualized in figure 6.10. The predicted displacements for each selected nodal
location, and its mesh resolution, are compiled in table 6.1. It can be observed that the
displacements are significantly larger for the coarse mesh. In the case of the maximum
displacement, for example, the computed magnitude was 13.61cm, while for the fine this value
reduced to 3.33cm. This is expected, as the assigned target element size of the coarse mesh was
7.125cm, while the fine mesh used 5.250cm to remain within Ansys’s element number limits.
Given the difference is displacement magnitude, the author wished he could execute additional
mesh refinements to observe further numerical convergence. For visualization, these values are
plotted in figure 6.11.

AN |

Nodal locations

Figure 6.10 - Selected nodal locations for numerical convergence.

Table 6.1 - Displacements at five nodal locations to observe convergence.

O-Ring,

Stern  Stern c::f': ’ (::;::’ Window
Side
Coarse 7.125 43,989 15,484 13.61 5.66 6.52 9.46 9.69 10.63
Medium 6.000 59,667 21,928 6.45 2.92 3.23 4.70 4.79 5.19
Fine 5.250 86,071 31,024 3.33 1.40 1.61 2.34 2.39 3.08
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Figure 6.11 — Convergence at selected nodal locations.

6.3  Failure of Isotropic Materials

Although a finer mesh is likely required to truly identify certain mesh resolution as the
converged solution, given Ansys’s student license limitations, the fine mesh was treated as the
solution. Consequently, the von-Mises and Tresca criteria were used to evaluate potential areas of
failure of isotropic materials, namely the Titanium components and PMMA observation window.
It can be observed that the rims of the Titanium O-Ring interfaces experience the lowest safety
factor by both von-Mises and Tresca theories. These numbers correspond to 0.10509 and
0.091568, respectively, suggesting that additional reinforcement, such as a bigger thickness, is
required to ensure structural integrity is maintained in these at-risk areas. Figures 6.12 and 6.13
illustrate the results obtain implementing both failure criteria.
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Figure 6.12 — Failure of Isotropic Materials in Ansys by von-Mises criteria.
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Figure 6.13 — Failure of Isotropic Materials in Ansys by Tresca criteria.

6.4  Comparison to Analytical Model

As indicated in the previous paragraph, additional mesh refinements are needed to further
investigate convergence. Given the trends observed in figure 6.11, the author suspects it is highly
likely to observe further decreases in predicted displacements for more refined mesh sizes. The
analytical model discussed in chapter 5.1 predicted a maximum radial displacement of 0.226cm
while the fine mesh reported 3.05cm. The analytical theory predicts the location to be at about 1/3
and 2/3 of the cylinder length, whereas the FEM solution identified two main failure areas: near
the edges of the cylindrical pressure hull and the middle-section, 1/2 location of the cylinder length.
As previously identified in subsection 5.2, the presented analytical approach was not valid near
the edges, where Kollar and Springer [43] asserted that different methods should be used. The
magnitude of the total displacements generated by the FEM solution is observed to be smaller in
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areas away from the edges. The analytical and numerical results are included in figure 6.14, located

below.

Table 6.2 - Comparison of maximum displacements in cylindrical pressure hull.
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Figure 6.14 — Analytical versus FEM solution predicted displacements.
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6.5 Concluding Remarks

Before formulating conclusions, the limitations and assumptions of this study must be
reconsidered. First, the geometry model used in this prototype was created from available online
resources and best-engineering judgement. Despite carefully investigating the dimensions and
material properties, without knowing the specific values used by the manufacturers, these efforts
remain, at best, and approximation to the “actual” predicted values conducted by the then active
OceanGate company. The connections between components, such as the window and bow, and O-
Rings to cylindrical and spherical sections were assumed to be perfectly bonded and unaffected by
water intrusion. This idealization might not be the case, as manufacturing practices can
dramatically affect porosity and imperfections between contact surfaces; consistent duty cycles are
also expected to further degrade these bonding interfaces. In other words, bonding degradation is
likely to exist and was not included in this study. Third, given the student license limitations of
Ansys, additional mesh refinements are required to visualize the true extent of convergence before
certain mesh resolution is assessed as “true”. The author urges the reading audience to maintain
these considerations in mind and is happy to provide drawings and higher-resolution (ideal)
meshing for additional studies with a full commercial Ansys license.

Nonetheless, using the highest resolution created mesh, under the 32,000 elements limit,
provides valuable qualitative information for future submarine vehicle prototyping and testing.
The middle and edge sections of the cylinder experience the greatest deformations, where
additional reinforcement should occur. Alternating layup orientations identified previously, such
as +30, +45, +53, or £60° could be implemented to better distribute the pressure loads across the
structure. Similarly, for the isotropic materials, the Titanium O-Ring interfaces were identified as
the areas experiencing the lowest safety factors, for which additional thickness can be added to
better withstand the working environment.

6.6 Future Work

Without a doubt, using additional resources, specifically a full-Ansys license, the author
would opt to further refine the mesh until numerical convergence is further explored. This will
enable the analyst to better understand the “converged” stress values experienced by the structure.
Additionally, since the submersible reportedly used an alternating layup of [(0,90)333s, 0], the
author proposes to explore the cases in table 6.3 and determine whether these configurations lead
to greater safety factors.

Table 6.3 - Potential continuation study cases for this investigation.

1.5x thickness increase in thickness in pressure hull and titanium hemispheres
3.0x thickness increase in thickness in pressure hull and titanium hemispheres
Nominal Thicknesses, ply layout [0, 30, 60, 90]s, ceteris paribus
Ply layout [0, 30, 60, 90]s; 1.5x global thickness increase
Ply layout [0, 30, 60, 90]s; 3.0x global thickness increase

o b~ W N -
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Appendix A: Calculations of Nodal Displacements using FEM with MATLAB
%% FEA of Bar with 5 elements
clear; close; clc;

% Known Values

d=0.3; % Bar Base Diameter [m]
If=1; % Total Bar Length [m]
E = 180e9; % Young's Modulus - Steel, stainless AISI 302 [Pa]

A0 = (pi/4)*d"2; % Base Area [m"2]
P =-100*%9.81; % Applied Load [N]

% Nodal Properties

li = linspace(0, If, 6); % Nodal Location of Each Element

| = If/5; % Length of Each Element

A = A0 - (1/(3*If))*(2*A0*1i); % Nodal Elements Area [m"2]

k = (E/).*A; % Stiffness of Each Element

% Global Stiffness Matrix

k =[k(1)+k(2) -k(2) 0 0 0 0;...
-k(2) k(1)+k(2) -k(2) 0 0 0;...
0 -k(2) k(2)+k(3) -k(3) 0 0;...
0 0 -k(3) k(3)+k(4)  -k(4) 0;...
0 0 0 -k(4) k(4)+k(5)  -k(5);...
0 0 0 0 -k(5) k(5)];

% Stiffness Matrix Before Reaction
kbr = k(2:end, 2:end); % Extracts 2nd to last row and 2nd to last column

% Force Vector Before Reaction
for =[0; 0; 0; O; P];
f = [0; fbr]; % Force vector to solve for reaction

% Displacements Before Reaction
ubr = kbr\fbr; % Displacements before solving for reaction force
u = [0; ubr]; % Displacements to solve for reaction

% Solving for Reaction Force
R=k*u-f;

% Analytical Solution
x = linspace(0, If, 1001); % Length of Rod for Analytical Solution
UAnN = ((3*If*P)/(2*E*A0))*log((3*If)./(3*If - 2*X));

figure,

plot(x, uAn)
grid on
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hold on

scatter(li, u, 25, 'filled")

legend('Analytical’, 'FEM, 5-Elements’)
xlabel('Bar Length [m]', FontWeight="bold")
ylabel('Displacement [m]', FontWeight="bold")
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Appendix B: Calculations of Displacements for Cylindrical Section of the Pressure Hull
%% Analytical Calculation of Displacements for Cylindrical Pressure Hull
% Based on Equations from Ch 8.1 (Mechanics of Composite Structures (p. 397)
% Developed by Ignacio Ramirez Romero
% General Commands
clear all; close all; clc;

% Cylinder Geometry

h=12.7e-2; % Thickness [m]

L =2.5298; % Length [m]

ri=70.11e-2; % Inner Radius [m]

x = linspace(0, L, 25299); % Displacement Array for Length

% Loading Conditions

Pz0 = 40.33e6; % Constant Pressure [Pa]

Pz1=0; % Constant Pressure 2, if Pressure Distribution is used [Pa/m]
N = -Pz0*(pi*((ri+h)"2 - ri*2)); % Axial Load [N]

T=0; % Torque [N*m]

% Ply Geometry and Computation of ABD Matrix ------------=--=-=--m-emnu-
hLa=h; % Lamina Thickness [m]

or = repmat([0, 90], 1, 333); % Array with Ply Orientation [[0, 90]_333s 0]
or = [or, 0]; % Adds 0 Ply to match Titan's Laminate

plyNu = 1:length(or); % Ply Number Assignment, Bottom to Top
hPly = hLa/(length(or)); % Thickness of Each Ply

zref = round(length(or)/2); % Reference plane (middle of laminate)

% Computation of Ply Properties using Rules of Mixture
% Properties of Fiber

Efl = 231e9; % Longitudinal Youngs Modulus of Fiber [Pa]
Gf12 = 91e9; % Longitudunal Shear Modulus of Fiber [Pa]
nufl2 = 0.27, % Longitudinal Poisson's Ratio of Fiber
Vf=0.7, % Volume Fiber Fraction

% Properties of Matrix

Em = 2.8e9; % Matrix Young Modulus [Pa]

Gm = 1e9; % Matrix Shear Modulus [Pa]

num = 0.35; % Matrix Poisson's Ratio

% Rules of Mixture Ply Properties
El = Ef1*Vf + Em*(1-VY);

E2 = (Vf/EfL + ((1-Vf)/[Em))"-1;
G12 = (VfIGf12 + ((1-Vf)/IGm))-1;
nul2 = nufl2*Vf + num*(1-Vf);

% Reduced Stiffness Matrix for reference ply at 0 deg
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D =1- (E2/E1)*nul2”2; % Engineering Constant [unitless]
QO = [E1/D, (nu12*E2)/D,  O0;...

(nul2*E2)/D, E2/D, 0;...

0, 0, G12];

% Calculation of Reduced Stiffness Matrix of All Other Plies
for i = 1:length(or)

%  Defining the current angle th

th = or(i);

% Checkingifth=0
if th ==
% If thl is O, create Qth variable with name Qthl, Qth2, ..., Qth5
eval(['Qth' num2str(i) ' = QO0;']);
else
%  Otherwise, compute Tsig and Teps based on the current angle (i)
Tsig = [cosd(th)"2,  sind(th)"2, 2*cosd(th)*sind(th);...
sind(th)"2, cosd(th)"2, -2*cosd(th)*sind(th);...
-cosd(th)*sind(th), cosd(th)*sind(th), cosd(th)*2 - sind(th)"2];

Teps = [cosd(th)*2,  sind(th)"2, cosd(th)*sind(th);...
sind(th)"2, cosd(th)"2, -cosd(th)*sind(th);...
-2*cosd(th)*sind(th), 2*cosd(th)*sind(th), cosd(th)*2 - sind(th)"2];

%  Computing Qth using the formula Qth = Tsig \ Q0 * Teps
eval(['Qth' num2str(i) ' = Tsig\Q0*Teps;');
end
end

A =0; % Initial value for loop summation
B = 0; % Initial value for loop summation
D =0; % Initial value for loop summation

for i = 1:length(or)
% Calculating z values (z0, z1, z2, ..., zn)
z_i=-(zref - 1) * hPly; % This automatically calculates z1, z2, ..., zn
z_prev = -(zref - (i-1)) * hPly; % Previous z value

%  Using previously computed Qth values
eval(['Qth_current = Qth' numa2str(i) ';']);

% Calculating A and B components

A=A+ Qth_current * (z_i - z_prev);

B = B + (1/2)*(Qth_current * (z_i*2 - z_prev”2)); % For B calculation

D =D + (1/3)*(Qth_current * (z_i"3 - z_prev"3)); % For B calculation
end
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% Finding if B is symetrical based on the ply orientation
% Check if A is mirrored (symmetric)
if isequal(or, fliplr(or))

B = zeros(size(B));

ABD =[A, B; B DJ;

disp('Layup is Symmetric; B=0.");
else

B =-B;

ABD =[A, B; B DJ;

disp('Layup is Symmetric; B is not 0.");
end

% End of Section where ABD Matrix is determined -------==========mcmeeeee-

% Re-assigning indices in A, B, and D matrices for consistency with book
A(1,6) = A(1,3);
A(2,6) = A(2,3);
A(6,6) = A(3,3);

B(1,6) = B(L,3);
B(2,6) = B(2,3);
B(6,6) = B(3,3);

D(1,6) = D(1,3);
D(2,6) = D(2,3);
D(6,6) = D(3,3);

% Computing the various values to find the constants f_i
R=ri+0.5%h; % Radius of Reference [m]

D1 = N/(2*pi*R); % Constant Required for Analysis, from loading
D2 = T/(2*pi*R"2); % Constant Required for Analysis, from loading

al =[A(2,2) - B(2,2)/R, B(1,2);...
B(1,2) - D(1,2)/R, D(L,1)];

a3 = [A(L,1), A(LB) - (2/R)*B(L,6):...
A(LB) + B(L,6)/R,  A(6,6) - B(6,6)/R - (2/R"2)*D(6,6)];

a2 =[A(L,2) - B(1L2)/R, B(L,1):..
A(2,6) - D(2,6)/R*2,  B(L,6) + D(1,6)/R];

a4 = [A(L,2), A(2,6) - (2IR)*B(2,6);...
B(1,1), B(L,6) - (2/R)*D(1,6)];
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H =al - (a4/a3)*a2;
g = (a4/a3)*[D1 D2];

f1 =H(2,2);

f2 = (-1/R)*(H(2,1) + H(1,2));
f3=H(1,1)/R"2;

f4 =Pz0 - g(1)/R;

f5 = Pz1,

% Roots of Characteristic Polynomial

ga = sqrt((-f2 + sqrt(f2"2 - 4*f1*£3))/(2*f1));
la = real(ga); % Real Component

be = imag(ga); % Imaginary Component

% Y-parameters from table 8.3 (p. 375)

Y13 = exp(-la*L)*cos(be*L);

Y23 = exp(-la*L)*(la*cos(be*L) + be*sin(be*L));
Y31=Y13;

Y41 =-Y23,

Y14 = exp(-la*L)*sin(be*L);

Y24 = exp(-la*L)*(-be*cos(be*L) + la*sin(be*L));
Y32=Y14;

Y42 = exp(-la*L)*(be*cos(be*L) - la*sin(be*L));

% Creating System of Matrices to Solve for the Constants, C1 - C4
Ymat=[1, O, Y13, Y14;.
-1, be, Y23, Y24;.
Y31, Y32, 1, 0;...
Y41, Y42, -la, be];
fmat = -[f4/f3; f5/f3; (1/f3)*(f4 + L*f5); f5/f3];
C = Ymat\fmat;
Cl=C();
C2=C(2);
C3=C(3);
C4=C(4);

% Generating radial w0, axial u0, and circumferential vO displacements
w0 = exp(-la.*x).*(C1*cos(be.*x) + C2*sin(be.*x)) + ...
exp(-la.*(L - x)).*((C3*cos(be.*(L - x))) + C4*sin(be*(L - x))) + ...
(1/£3)*(f4 + x.*f5); % Radial Displacements [m]

intw0dx = (1/3).*(f4.*x + 0.5.*%(x."2).*f5) + ...
exp(-la.*x).*cos(be.*x).*((-1a*C1 - be*C2)./(Ia"2 + be2)) + ...
exp(-la.*x).*sin(be.*x).*((be*C1 - la*C2)./(1a"2 + be”2)) + ...
exp(-la.*(L - x)).*cos(be.*(L - x)).*((la*C3 + be*C4)./(Ia"2 + be"2)) + ...

125



exp(-la.*(L - x)).*sin(be.*(L - x)).*((-be*C3 + la*C4)./(1a"2 + be"2));

dwOdw = f5/f3 + exp(-la.*x).*cos(be.*x).*(-1a*C1 + be*C2) + ...
exp(-la.*x).*sin(be.*x).*(-be*C1 - [a*C2) + ...
exp(-la.*(L - x)).*cos(be.*(L - x)).*(la*C3 - be*C4) + ...
exp(-la.*(L - x)).*sin(be.*(L - x)).*(be*C3 + la*C4);

% The elements of equation 8.37 are separated as follows for convenience:
el3 = [intw0dx./R; -dw0dw];

el6 = [D1; D2];

xArray = [x; X]'; % To make matrices agree with x values

uOv0 = -(a3\a2)*el3 + transpose(xArray*inv(a3)*el6);

% Extracting individual results
u0 = u0vO0(1,:); % Axial Displacements [m]
v0 = u0v0(2,); % Circumferential Displacements [m]

% Plotting Results

figure,

plot(wO, x)

grid on

ylabel('Axial Distance [m]', 'FontWeight'," bold’)
xlabel('Radial Displacements [m]', 'FontWeight'," bold")

figure(2),

plot(u0, x)

grid on

ylabel('Axial Distance [m]', 'FontWeight', bold’)
xlabel('Axial Displacements [m]', 'FontWeight'," bold")

figure(3),

plot(v0, x)

grid on

ylabel('Axial Distance [m]', 'FontWeight', bold’)
xlabel('Circumferential Displacements [m]', 'FontWeight'," bold")
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Appendix C: Calculations of Critical Buckling Load for the Cylindrical Pressure Hull
%% Buckling Analysis of Composite Cylinder, p. 407
% Based on Equations from Ch 8.4 (Mechanics of Composite Structures (p. 404)
% Developed by Ignacio Ramirez Romero
% General Commands
clear all; close all; clc;

% Cylinder Geometry and Other Constants

h=12.7e-2; % Thickness [m]

L =2.5298; % Length [m]

ri=70.11e-2; % Inner Radius [m]

Ry =ri + 0.5*%h; % Shell Radius

Rx = inf; % Analysis Constant

Rxy = RX; % Analysis Constant

% Loading Conditions

Nx0 =1; % Assumed Axial Load [N]

Ny0 =0; % Transverse Load [N]

Nxy0 = 0; % Membrane Load [N]

% Ply Geometry and Computation of ABD MatriX -----------==-mmnmmmmmmmuen
hLa = h; % Lamina Thickness [m]

or = repmat([0, 90], 1, 333); % Array with Ply Orientation [0, 90] 333
or = [or, 0]; % Adds 0 Ply to match Titan's Laminate

plyNu = 1:length(or); % Ply Number Assignment, Bottom to Top
hPly = hLa/(length(or)); % Thickness of Each Ply

zref = round(length(or)/2); % Reference plane (middle of laminate)

% Computation of Ply Properties using Rules of Mixture
% Properties of Fiber

Efl = 231e9; % Longitudinal Youngs Modulus of Fiber [Pa]
Gf12 = 91e9; % Longitudunal Shear Modulus of Fiber [Pa]
nufl2 = 0.27, % Longitudinal Poisson's Ratio of Fiber
Vi=0.7, % Volume Fiber Fraction

% Properties of Matrix

Em = 2.8e9; % Matrix Young Modulus [Pa]

Gm = 1e9; % Matrix Youngs Modulus [Pa]

num = 0.35; % Matrix Poisson's Ratio

% Rules of Mixture Ply Properties
El = Ef1*Vf + Em*(1-Vf);

E2 = (VI/EfL + ((1-Vf)/[Em))"-1,
G12 = (VfIGf12 + ((1-Vf)/IGm))"-1;
nul2 = nufl2*Vf + num*(1-Vf);
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% Reduced Stiffness Matrix for reference ply at 0 deg

D =1- (E2/E1)*nul2"2; % Engineering Constant [unitless]
Q0 =[E1/D, (nul2*E2)/D, 0;...

(nul2*E2)/D, E2/D, 0;...

0, 0, G12];

% Calculation of Reduced Stiffness Matrix of All Other Plies
for i = 1:length(or)

% Defining the current angle th

th = or(i);

% Checking ifth=0
if th ==
% If thl is O, create Qth variable with name Qthl, Qth2, ..., Qth5
eval(['Qth' num2str(i) ' = Q0;");
else
%  Otherwise, compute Tsig and Teps based on the current angle (i)
Tsig = [cosd(th)*2,  sind(th)"2, 2*cosd(th)*sind(th);...
sind(th)"2, cosd(th)"2, -2*cosd(th)*sind(th);...
-cosd(th)*sind(th), cosd(th)*sind(th), cosd(th)*2 - sind(th)"2];

Teps = [cosd(th)*2,  sind(th)"2, cosd(th)*sind(th);...
sind(th)"2, cosd(th)"2, -cosd(th)*sind(th);...
-2*cosd(th)*sind(th), 2*cosd(th)*sind(th), cosd(th)"2 - sind(th)"2];

% Computing Qth using the formula Qth = Tsig \ Q0 * Teps
eval(['Qth' num2str(i) ' = Tsig\Q0*Teps;]);
end
end

A = 0; % Initial value for loop summation [N/m]
B = 0; % Initial value for loop summation [N]
D = 0; % Initial value for loop summation [N*m]

for i = 1:length(or)
% Calculating z values (z0, z1, z2, ..., zn)
z_i=-(zref - i) * hPly; % This automatically calculates z1, z2, ..., zn
z_prev = -(zref - (i-1)) * hPly; % Previous z value

%  Using previously computed Qth values
eval(['Qth_current = Qth' num2str(i) ';']);

% Calculating A and B components
A=A+ Qth_current * (z_i - z_prev);
B =B + (1/2)*(Qth_current * (z_i"2 - z_prev”*2)); % For B calculation
D =D + (1/3)*(Qth_current * (z_i"3 - z_prev”"3)); % For B calculation
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end

% Finding if B is symetrical based on the ply orientation
% Check if A is mirrored (Symmetric)
if isequal(or, fliplr(or))

B = zeros(size(B));

ABD =[A, B; BD];

disp(‘Layup is Symmetric; B=0.");
else

B =-B;

ABD =[A, B; BD];

disp(‘Layup is Symmetric; B is not 0.");
end

% End of Section where ABD Matrix is determined --------=========eemeeeevv

% Re-assigning indices in A, B, and D matrices for consistency with book
A(1,6) = A(1,3);
A(2,6) = A(2,3);
A(6,6) = A(3,3);

B(1,6) = B(L,3);
B(2,6) = B(2,3);
B(6,6) = B(3,3);

D(1,6) = D(L,3);
D(2,6) = D(2,3);
D(6,6) = D(3,3);

% Generating MO, Mn, and J matrices

MO =[A(1,1), A(L,2), O, B(1,1), B(1,2), O;..
A(1,2), A(2,2), O, B(1,2), B(2,2), O;..
0, 0, A(6,6), O, 0, B(6,6);...
B(1,1), B(1,2), 0, D(1,1), D(1,2), 0;..
B(1,2), B(2,2), 0, D(1,2), D(2,2), 0;...
0, 0, B(6,6), 0, 0, D(6,6)];

Mn = ABD - MO;
J=10,0,0;...

0,0,0;..

0,0, 1J;
% Defining parameter ranges

al = linspace(1, 50, 100);
be = linspace(1, 50, 100);
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cl = linspace(0, 2, 21);
c2 = linspace(0, 2, 21);

%

Preallocating storage for results

la = struct();

%

Iterating over all possible combinations

for i = 1:length(al)

for j = 1:length(be)
for k = 1:length(cl)
for m = 1:length(c2)

% Extracting current parameter values
all = al(i);

bel = be(j);

cll = c1(Kk);

c21 = c2(m);

% Generating O and L matrices
O=[-al1, O, bel, O, 0, 0;...
0, -bel, all, O, 0, 0;...
1/Rx, 1/Ry, O, al172+((bel”2)*c21"2), bel"2+((all”2)*c1172), -

2*all*bel*(1+c11*c21)];

L = [bel*c21, O, -all*cl1, O, 0, 0;...
0, all*cll, -bel*c21, 0, 0, 0;...
0, 0, 1/Rxy, -2*all*bel*c21, -2*all*bel*cll, 2*(cll*all”2 +

c21*bel”2)];

% Computing OL, G, Phl, Ph2, PhJ
OL=[O,L; L, 0],
G =OL * [MO0, Mn; Mn, MO0] * transpose(OL);

% Computing Phi matrices

Phl = al172 + bel"2*c21"2;

Ph2 = -2*all1*bel*c21;

PhJ = [Ph1*J, Ph2*J; Ph2*J, Ph1*J];

% Solving eigenvalue problem
eigenVals = eig(G, PhJ);
la_min = min(eigenVals);

% Storing result with dynamic field naming
field_name = sprintf(‘'la_al%d_be%d_c1%d_c2%d, i, j, k, m);
la.(field_name) = la_min;

end
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end
end
end

% Extracting Results

% Extracting field names and corresponding values
fields = fieldnames(la);

values = struct2array(la);

% Filtering the infinite values

finite_indices = ~isinf(values) & (values > 0) & isreal(values); % Ensure values are finite,
positive, and real

finite_values = values(finite_indices);

finite_fields = fields(finite_indices);

% Ensuring there are valid finite values before proceeding
if isempty(finite_values)

error('No finite values found in the dataset.");
end

% Finding the minimum finite value
[la_result, min_idx] = min(finite_values);

% Extracting the corresponding field name
min_field = finite_fields{min_idx};

% Parsing the field name to extract indices
tokens = regexp(min_field, 'la_al(\d+)_be(\d+) c1(\d+)_c2(\d+)', 'tokens");
tokens = str2double(tokens{1}); % Convert extracted strings to numbers

% Extracting indices
i_res = tokens(1);
j_res = tokens(2);
k_res = tokens(3);
m_res = tokens(4);

% Retrieving actual parameter values
al_res = al(i_res);

be_res = be(j_res);

cl res =cl(k_res);

c2_res = c2(m_res);

% Displaying results

fprintf('Minimum finite la: %.6A\n", la_result);
fprintf('Occurs at: al = %.2f, be = %.2f, c1 = %.2f, c2 = %.2f\n’, al_res, be_res, c1 _res, c2_res);
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