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ABSTRACT 

A Bi-impulsive Transfer Trajectory Between the Earth and Moon 

Jay Mehta 

A Bi-impulsive transfer between Earth and Moon is examined in this paper. The 
trajectory simulation is done initially in MATLAB and then compared it with a NASA GMAT 
simulation. Initial conditions for the orbit are taken from a previously published data and validity 
of the MATLAB code is tested by comparing the simulation result with the previously published 
data and the GMAT simulation data. In GMAT the trajectory transfer is solved by using a B-
Plane transfer and certain design decisions are made to make GMAT simulation as close to a 
CR3BP.  
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Symbols 

Symbol Definition Unit (SI) 

Δ𝑉 Delta Velocity  𝑘𝑚
𝑠

 

𝛿  Phase Angle  𝑑𝑒𝑔 

𝜇 Gravitational Constant  𝑘𝑚!

sec" 	
 

m Mass  𝑘𝑔 

LEO Low Earth Orbit −−−− 

LMO Low Moon Orbit −−−− 

B-Plane Body plane −−−− 

ToF Time of Flight  𝑑𝑎𝑦𝑠 

CR3BP Circular Restricted 3 Body Problem −−−− 

Ω Angular Velocity  𝑟𝑎𝑑
𝑠𝑒𝑐

 

𝒓 Position vector  𝑘𝑚 

v Velocity vector  𝑘𝑚
𝑠

 

𝒂 Acceleration vector  𝑘𝑚
sec" 	
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1. Introduction 
 

NASA plans to send humans back on the Moon by 2024 [1]. This sparked an increased 
interest in the Lunar exploration missions. In order to send humans and robotic missions to the 
Moon efficiently, different optimal low and/or high thrust trajectory transfers are being studied. 
The most simple and fast but not energy efficient approach is the Hohmann transfer[2]. 
Hohmann transfer requires two burns, one at the perigee of the orbit and another at the apogee. 
Spacecraft are placed at perigee while in Earth parking orbit and apogee is set at the desired 
Moon's orbit altitude. Another way to examine transfer of a spacecraft from Earth to Moon is by 
using the patched-conics method. The patched-conics approximation relies on the Keplerian 
decomposition of the solar system dynamics [3]. By carefully switching the SOI (Sphere of 
Influence) along the orbit, the spacecraft's motion is only governed by one primary body at a 
given time. For example, in the case of Earth to Moon transfer using patched conics, spacecraft 
will be in Earth's SOI for most of the transfer and by only the Moon during the final time. Both 
the Hohmann transfer, and patched conics are the simple, direct method of transfer in 2BP (2 
body problem). Some alteration of Hohmann and patched conics transfer was used in all lunar 
missions from the 1960s to the 1980s, including the Luna and Apollo mission. The 2BP transfer 
to the Moon is limited by the launch window and requires multiple corrections burns, increasing 
the total Δ𝑉 cost. In the case of Apollo 11, it had to perform two Lunar orbital Intersection burns 
and four midcourse corrections. The total Δ𝑉 required for Apollo 11 to be in orbit around the 
Moon was 13571.1 ft/s (4.136 km/s) [4].  

 below summarizes all the burn estimation to be performed by Apollo 11 Command Service 
Module (CSM) to get to the Low Moon Orbit (LMO). 
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Table 1.1- CSM burn schedule [4] 

 
 A trajectory calculated using CR3BP, a circular restricted three-body problem, can 
provide a more accurate trajectory. As the name suggests, the perturbation caused by the third 
body, for this project, Moon, is accounted in the motion of the spacecraft. A detailed derivation 
of Equation of Motion (EOM) for an Earth-Moon, Circular Restricted Three-Body Problem is 
developed in the later section of this paper. There are still assumptions made in a CR3BP, such 
as both Earth and Moon are orbiting each other in a circular orbit, but the trajectory designed 
using CR3BP provides accurate Δ𝑉	approximation over a 2BP (Two body problem).  

1.1 Problem Definition 
 

To design a Bi-impulsive transfer trajectory from Low Earth Orbit (LEO) to Low Moon 
Orbit (LMO) in CR3BP in MATLAB and simulate it also in NASA's GMAT (General 
Mission Analysis Tool). LEO altitude of 463 km and LMO altitude of 100 km is selected for 
the mission. Identical altitudes are also used in NASA GMAT. ODE45 function is used to 
integrate the EOMs in MATLAB. 
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2. Literature Review 
 

 Two body orbital mechanics have been shaped by Kepler's laws combined with Newton's 
law of motion. Two-body orbital mechanics have been studied and researched extensively and 
are also the foundation for 3-body and N-body problems.  

2.1 CR3BP orbit transfer between Earth and Moon 
 Belbruno carried out research for low energy transfer between Earth and Moon using a 
weak stability boundary. In his paper, he numerically demonstrated that the Δ𝑉 needed for the 
transfer was 18% less than that of the Hohmann transfer. The time of flight (TOF) for such a 
transfer was upwards of 3-5 months, not ideal for a manned mission but suitable for a robotic 
mission. Belbruno's weak stability ballistic boundary transfer has been successfully demonstrated 
by the Japanese spacecraft Hiten, which arrived at Moon on October 2, 1991 [5]. Belbruno's 
work laid the foundation for the ballistic transfer between Earth and Moon.   

 Bi-Impulsive transfer in the CR3BP is also studied extensively. The goal of the study 
has always been to find the minimal Δ𝑉 require for a permanent lunar capture. The study 
conducted by Qi and Xu, students at Beijing universities, compared the Δ𝑉 for Lunar transfer 
using the patched conics method and in CR3BP [6]. Table 2.1 below provides a summary of their 
result for Δ𝑉 needed for patched conics transfer vs. transfer done in CR3BP. 

Table 2.1 - Quick summary of Δ𝑉 needed for patched conics transfer vs. CR3BP [6] 

Semi Major Axis around Moon [km] Δ𝑉 [km/s] 
Patched Conics 23,300  
CR3BP 23,663 

 

3.453796 
3.099713 

 

Patched Conics 25,066 
CR3BP 25,268 

 

3.552857 
3.103431 

 

 

Qi and Xu also numerically optimized their CR3BP model to get an optimal Lunar transfer with 
minimum Δ𝑉. For the minimum theoretical Δ𝑉 they got a transfer time of infinite, so such a 
transfer is not realistically possible. Figure 2.1 below summarizes the integral Jacobi Constant 
for permanent Lunar orbit vs. the minimum Δ𝑉 needed for such a transfer.  
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Figure 2.1 - Jacobi constant vs ΔV [6] 

 Giovani Mengali and Alessandro Quarta, two researchers from the University of Pisa, 
also performed optimization of Bi-impulsive Trajectory in CR3BP for Earth-Moon transfer by 
constraining TOF (Time of Flight) [7]. Spacecraft was parked in a circular orbit of radius 6545 
km around the Earth and transferred to a circular orbit around Moon of radius1840 km. They 
took the mission data from Belbruno and Miller [5] and used it as an initial condition for their 
WSB (weak stability boundaries) approach in the CR3BP environment to validate their 3-body 
model. They found the almost equivalent Δ𝑉 and transfer time was obtained without using the 
sun perturbation. Table 2.2 below summarizes their result.  

Table 2.2. - Summary of performance of different optimal transfer from earth circular orbit to 
moon circular orbit [7] 

Transfer Type Δ𝑉 [km/s] TOF (days) 
Weak Stability Boundary 3.838 140 
Biparabollic 3.953 Infinite 
Hohmann (2body Problem) 3.991 5  
Bielliptic  4.148 90 
     

The optimal transfer done by Mengali and Quarta is ideal for robotics mission but are not 
suitable for human flights due to their long transfer time.  Optimization Study done by Miele and 
Mancuso accounts for flight time suitable for a human mission, thus providing a bit more 
realistic trajectories for the human Moon mission. They set up their problem in a simplified 
restricted three-body model and optimized it using the sequential gradient-restoration algorithm. 
The parameter to be optimized were the initial phase angle of the spacecraft with respect to Earth 
and Moon, flight time, and the velocity impulse at departure and the arrival. Phase Angle also 
referred as departure angle, is defined as the angle between 𝑣! of the spacecraft and the inertial 
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X-axis of the Earth [Figure 2.2]. Table 2.3 below summarizes their Earth-Moon transfer results. 
The critical thing to note is the transfer time, 4.5 days. 

Table 2.3 - Earth to moon flight, clockwise LMO arrival [8] 

Altitude LMO 
(km) 

Δ𝑉#$#%& (km/s) Δ𝑉'%(#) (km/s) Δ𝑉*$$+ (km/s) Phase Angle 𝛿 
(deg) 

TOF (days) 

100 3.882 3.068 0.814 -116.88 4.50 
200 3.868 3.068 0.800 -116.88 4.50 
 300 3.855 3.068 0.787 -116.88 4.50 
  

 
Figure 2.2 - Definition of phase angle 𝛿 

Building on Miele and Mancuso's research, Leonardi and Potani also perform a similar 
study in two- and Three-dimensional Earth-Moon orbit transfer [9]. For their 2-D CR3BP (Planer 
CR3BP) model, they use an LEO altitude of 463 km and LMO altitude of 100 km, similar to the 
initial conditions used by Miele. Unlike Miele, their results are slightly more accurate because 
they did not identify the center of Earth as the center of the entire system.  

 

Table 2.4 below summarizes their optimized two-dimensional LEO-LMO orbit transfer 
for clockwise arrival at Moon. Their paper does not explicitly state the time of flight, but it's a 
reasonable assumption to assume it is similar to TOF found by Miele and Mancuso.  The 
trajectory solved using MATLAB in this paper uses the initial condition provided by reference 9.   
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Table 2.4 - Globally optimal two-dimensional LEO-LMO orbit transfer [9] 

J- Jacobi Constant(km/s) Δ𝑉,'-  𝛿 deg 
3.885 3.069 -117.52 
 

2.2 NASA’s GMAT  
 

 NASA GMAT, General Mission Analysis Tool, is an enterprise, multi-mission 
opensource software system for space mission design, optimization, and Navigation [10]. It was 
developed by NASA engineers, private industry, and other public and private contributors. It has 
been used in real-world missions, most notably, Lunar Reconnaissance Orbiter (LRO), 
Transiting Exoplanet Survey Satellite (TESS), OSIRIS-Rex. Figure 2.3 below lists the NASA 
mission whose trajectory was designed using the GMAT. Some key features of GMAT are, 

• Dynamic and Environmental Modeling: GMAT contains high fidelity dynamics models 
including gravity, drag, tides, Solar Radiation Perturbation (SRP). It also includes 
information on the constellation, high fidelity ephemerides data, and a rich set of 
coordinate systems such as J2000, ICRF, body fixed, body rotating, and many others. 

• Plotting, Reporting, and Product Generation: GMAT has tools like interactive 3-D 
graphics, customizable plots, and reports, post computational animation, which can be 
used to analyze data outside GMAT. 

• Optimization and Targeting: GMAT can be used to solve boundary value targets, 
nonlinear problems, and constrained optimization problems.  

• Programming Infrastructure: GMAT uses MATLAB syntax to define equations in its 
script. Users can define any variable, array, or string and solve it using the GMAT. It also 
has MATLAB and Python interfaces and can easily use those tools.  

• Orbit Determination Infrastructure: GMAT has a Batch estimator, extended Kalman 
Filter smoother, error modeling, process noise modeling, and many more incorporated to 
determine the ideal orbit and analyze the result.  
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 Figure 2.3 - List of NASA mission whose trajectory was optimized using GMAT [11] 

2.3 B-Plane 
 

  The B-Plane transfer is used in this project to transfer spacecraft from LEO to LMO in 
NASA GMAT. B-plane, also called a body plane, is an imaginary plane that contains the target 
body (Moon) and is orthogonal to the incoming asymptote of the spacecraft. A spacecraft 
approaching the target body is assumed to be in a hyperbolic orbit. In this case, the target 
insertion point is behind the target body, and the relationship between the target insertion point 
and the current velocity is nonlinear due to the gravitational attraction of the target body. 
Therefore, to adjust the miss distance caused by the perturbation forces, B-Plane targeting is 
adopted [11]. B-Plane targeting allows for a linear relationship between the target B-Vector and 
the instantaneous velocity of the spacecraft [12]. A simple B-Plane calculation is performed in 
the lesson learned section of this paper. 

 Figure 2.4 below illustrates the B-Plane and its vector. To describe the vectors on the B-
plane, unit vectors 𝑅- and	𝑇-	𝑎re used.  

𝑇8 =
𝑆; 	× 𝑁>

||	𝑆; 	× 𝑁>||
 

 
2.1 

Where, 𝑆0 is a unit vector parallel to the spacecraft excess velocity from the C.G. (center of 
gravity) of the target body and 𝑁2 is a normal unit vector of the target planet's equatorial plane. 𝑅- 
vector can be defined using the right-hand rule, i.e. 
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R> = 𝑆; 	×	T> 2.2 

By using these vectors, B-Vector can be defined as follows 

B> = 𝐵.T> 	×	B/R>	  2.2 

 

 
Figure 2.4 - B-plane definition 

The complete derivation of B-Plane can be found in the appendix of reference 13. GMAT 
adopted Kizner works, and the following two conditions need to be satisfied to set up a B-plane 
project in GMAT [13]. Figure 2.5 below shows the geometry of the B-Plane as seen from the 
viewpoint perpendicular to the B-plane.  

• GMAT should know r and v in 𝐹"coordinate (GMAT default coordinate frame) 
• 𝐹# is the coordinate system GMAT will perform the B-plane calculation in. GMAT will 

place the T in the XY-plane of 𝐹# and 𝐹# should have a gravitational body at its origin. If 
GMAT fails to find the gravitational body at its origin, it will error.  
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Figure 2.5 - Geometry of the B-Plane as seen from a viewpoint perpendicular to the B-plane 
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3. Methodology 
 

 This section discusses the methodology used to simulate the orbital trajectory using 
MATLAB and GMAT, starting with getting the equation of motion in CR3BP.  

3.1 Circular Restricted 3-body Problem Equation of Motion 
 This section derives the equation of motion in CR3BP for Earth and Moon. Consider the 
mass of Earth as 𝑚$ and mass of Moon as 𝑚%. The constant scalar distance from the Earth to 
Moon is 𝑟$% as shown in Figure 3.1. Let's also consider a non-Newtonian reference frame at the 
barycenter of Earth and Moon, 𝐵!, such that the x-axis,	𝒃2𝒙,  is directed towards Moon, as shown 
Figure 3.1. The Y-axis,	𝒃2𝒚, lies in the orbital plane to which the z-axis,𝒃2𝒛, is perpendicular. The 
angular velocity of B around the barycenter as seen from a Newtonian reference frame N (Sun 
reference frame) is given by, 

 

 3.1 

Where,  																																																							Ω =
2𝜋
𝑇

 3.2 

And T is the period of the orbit,  

𝑇 =
2𝜋
√𝜇

× 𝑟'*
!
"  

3.3 

Therefore,  

Ω = G
𝜇
𝑟'*!

		 
3.4 

 

Where,   

𝜇 = 𝐺𝑀 = 𝐺(𝑚' +𝑚*) 3.5 

For a planer CR3BP, Earth and Moon lie in the orbit plane; hence their y and z coordinates are 
zero. To determine their location on the x-axis, let's use the center of mass equation.  

𝑚'𝑥' +𝑚*𝑥* = 0 3.6 

Since 𝑟'* is known, 	  

𝑥* = 𝑥' + 𝑟'* 3.7 

From equation 9 and 10  

𝑥' = −
𝑚*

𝑚' +𝑚*
𝑟'* 3.8 
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And   

𝑥* =
𝑚'

𝑚* +𝑚'
𝑟'* 3.9 

 

Now to fully set up a Three-Body problem, let's introduce the third body, i.e., the spacecraft of 
mass 𝑚). Since the 𝑚*, ≪ 𝑚$ , 𝑚%, spacecraft mass does not affect the motion of the primary 
body, but the Earth and Moon govern spacecraft motion. Unlike the 2-Body problem, spacecraft 
motion in the 3-Body problem has no general, closed-form solution. By setting up the Equation 
of Motion (EOM) and integrating it over time, spacecraft trajectory in the three-body problem 
can be calculated.  

 
Figure 3.1- Earth-moon 3 body set up 

In a barycenter frame, the position of the spacecraft w.r.t the Earth is given by, 

   

= (𝑥0 − 𝑥')	𝑏81 + 𝑦0	𝑏82 +	𝑧0	𝑏83  3.10 

= Q𝑥0 +
𝑚*

𝑚' +𝑚*
𝑟'*R 𝑏81 + 𝑦0𝑏82 + 𝑧0𝑏83	 

3.11 

Spacecraft position w.r.t. Moon,  

= S𝑥0 −
4!

4!54"
𝑟'*T 𝑏81 + 𝑦0	𝑏82 + 𝑧0	𝑏83 3.12 

And the position of the spacecraft w.r.t. the barycenter  

= 𝑥6	𝑏81 + 𝑦6	𝑏82 + 𝑧0	𝑏83 3.13 

The inertial velocity of the spacecraft can be found by taking the time derivative of equation 3.13 
w.r.t the Newtonian reference frame 𝑁+, from the center of Sun.  



12 
 

= (!-)
-/

+ × = + ×   3.14 

and,   

= 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑤. 𝑟. 𝑡	𝑡ℎ𝑒	𝑏𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑟𝑒	 = �̇�6𝑏81 + �̇�6𝑏82 + �̇�0𝑏83 3.15 

 

And the acceleration of the spacecraft can be calculated by taking the time derivative of equation 
3.14.  

= (#8)
8#

+ ×  

= 	+�̇� × + 𝛀 × b𝛀 × c + 2𝛀 ×  

 3.16 

The rotational velocity of the barycenter is constant, thus �̇�=0   

= 𝛀 × b𝛀 × c + 2𝛀 × +   3.17 

= 𝑥0̈𝑏81 + 	𝑦0̈𝑏81 + 𝑧0̈𝑏81 3.18 

Substituting equation 3.14,3.15 in 3.16,   

= Ω𝑏83 × eΩ𝑏83 × b𝑥6𝑏81 + 𝑦6𝑏82 + 𝑧0𝑏83cf + 2bΩ𝑏83c × b�̇�6𝑏81 + �̇�6𝑏82 + �̇�0𝑏83c + 𝑥0̈𝑏81
+ 	𝑦0̈𝑏81 + 𝑧0̈𝑏81 

 3.19 

= −Ω" × (𝑥6𝑏81 + 𝑦6𝑏82) + 2Ω	�̇�𝑏81 − 2Ω�̇�𝑏81 + 𝑥0̈𝑏81 + 	𝑦0̈𝑏82 + 𝑧0̈𝑏83 3.20 

Reorganizing all the terms  

= (�̈� − 2Ωẏ − Ω"𝑥)𝑏81 + (�̈� + 2Ω�̇� − Ω"𝑦)𝑏82 + �̈�𝑏83  3.21 

The force acting on the satellites are gravitational forces caused by the Earth and Moon. 
Therefore, by Newton's second law  

𝐹 = 𝑚𝑎 = 𝐹' + 𝐹*	 
 

 3.22 

𝐹' = 𝐺 ∗
𝑚'𝑚0

𝑟0→'	! 𝒓𝑺→𝑬 

 

3.23 

𝐹* = 𝐺 ∗
𝑚*𝑚0

𝑟0→*	! 𝒓𝑺→𝑴 3.33 

Let,  
𝜇' = 𝐺𝑚' 	𝑎𝑛𝑑	𝜇* = 𝐺𝑚* 

 
3.34 

= (�̈� − 2Ωẏ − Ω"𝑥)𝑏81 + (�̈� + 2Ω�̇� − Ω"𝑦)𝑏82 + �̈�𝑏83 = 

−
𝜇'
𝑟0→'	! jQ𝑥0 +

𝑚*

𝑚' +𝑚*
𝑟'*R 𝑏81 + 𝑦0𝑏82 + 𝑧0𝑏83k −

𝜇*
𝑟0→*

Q𝑥0 −
𝑚'

𝑚' +𝑚*
𝑟'*R 𝑏81 + 𝑦0𝑏82

+ 𝑧0𝑏83 
 

3.35 
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Taking dot product of equation 3.35 w.r.t 𝑏81   

(�̈� − 2Ωẏ − Ω2𝑥) = −
𝜇𝐸
𝑟𝑆→𝐸	
3 @𝑥𝑆 +

𝑚𝑀

𝑚𝐸 + 𝑚𝑀
𝑟𝐸𝑀A −

𝜇𝑀
𝑟𝑆→𝑀

@𝑥𝑆 −
𝑚𝐸

𝑚𝐸 + 𝑚𝑀
𝑟𝐸𝑀A 

 

 3.36 

Taking dot product of equation 3.35 w.r.t 𝑏82  
 

(�̈� + 2Ω�̇� − Ω"𝑦) = −
𝜇'
𝑟0→'	! 𝑦0 −

𝜇*
𝑟0→*

𝑦0 
 
3.37 

Taking dot product of equation 3.35 w.r.t 𝑏83  
 

−
𝜇'
𝑟0→'	! 𝑧0 −

𝜇*
𝑟0→*

𝑧0 
 
 
 3.38 

  
 

The equation of 3.36, 3.37, and 3.38 will be integrated using ODE45 to plot the spacecraft's 
trajectory under the gravitational force of Earth and Moon.  

3.2 Trajectory simulation using MATLAB 
 

 Initially, the orbit transfer is numerically solved using MATLAB and its native ODE45 
function. To identify the successful LEO-LMO transfer in two dimensions, having the proper 
initial condition is essential. For this project, the optimal conditions needed for the two-
dimensional transfer are taken from the paper published by Leonardi and Pontani [9]. The 
optimal transfer velocity, Δ𝑉 and the phase angle 𝛿 calculated by Leonardi in his paper are 
extremely close to the values found by Miele and Mancuso [8]. Error! Reference source not f
ound. below illustrates the relationship between the Δ𝑉 and 𝛿 calculated by Leonardi. In plot the 
J=Δ𝑉0$1 + Δ𝑉0%1 . Table 3.1 summaries the Δ𝑉0$1 and 𝛿 phase angle used for this project.  

Table 3.1 - Initial condition used for MATLAB trajectory 

 Δ𝑉,'- [km/s] 𝛿[deg] 
Clockwise 3.069 -117.52 
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Figure 3.2 - Contour plot of the objective function [9] 

Following assumptions are also made to investigate the LEO-LMO transfer. 

• The Spacecraft trajectory lies entirely on the Moon orbital plane, i.e., it's a planar Circular 
Restricted Three-Body Problem. 

• The third body perturbation in LEO and LMO is neglected. 
• Two impulsive burns will complete the transfer, the initial one at LEO called Δ𝑉0$1 and 

the second one at LMO to circularize the orbit called Δ𝑉0%1 
• Spacecraft attitude at LEO is selected at 453 km, 
• Spacecraft altitude at LMO is chosen at 100 km. 
• EOM is numerically solved using the engineering units (km, km/s, kg) and not in 

canonical forms (D.U., T.U.). 

The position of the spacecraft where the tangential Δ𝑉0$1 burn takes place is calculated using the 
following equation. 

𝑥0 = 𝑥' + 𝑅,'-𝑐𝑜𝑠𝛿 
 

3.39 

𝑦0 = 𝑅,'-𝑠𝑖𝑛𝛿 3.40 
Where,  

𝑅,'- = 𝑅'%(#) + 𝑆𝑝𝑎𝑐𝑒𝐶𝑟𝑎𝑓𝑡	𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒	𝑎𝑡	𝐿𝐸𝑂	
	

3.41 

�̇�0 = (Ω𝑅,'- − 𝑣D) × 𝑠𝑖𝑛𝛿 
 

3.42 

�̇�0 = (𝑣D − Ω𝑅,'-)cosδ 3.43 
Where   

𝑣D = G
𝜇'
𝑅,'-

+ Δ𝑣,'- 
3.44 
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The initial velocity of the spacecraft at LEO is calculated using equation 3.44 Table 3.2 below 
summarizes other constants used to solve the trajectory using MATLAB numerically. 

Table 3.2 - Initial condition used in MATLAB 

Constant Value Units 
Gravitational Constant 6.67 × 10E"D 𝑘𝑚!

𝑘𝑔 sec" 	
 

Radius of Earth 6378 𝑘𝑚 
Radius of Moon 1737 𝑘𝑚 

Distance between Earth and Moon 384400 km 
Mass of Earth 5.9724 × 10"F kg 
Mass of Moon 0.07346 × 10"F kg 

𝜇'%(#) 398600 𝑘𝑚!

sec" 	
 

𝜇*$$+  4903.02 𝑘𝑚!

sec" 	
 

 

The EOM of motion listed in equations 28.1 and 28.2 is integrated using ODE45 until the orbital 
parameter 𝑦23456=-1837 km is achieved. Once the desired altitude around Moon is achieved, the 
spacecraft's velocity w.r.t barycenter is converted to the velocity of spacecraft w.r.t. Moon. The 
angle 𝜃 between the 𝒓*→8 and the x-axis is given by, 

𝑠𝑖𝑛	𝜃 =
𝑦GH+%&
𝑅,*-

 3.45 

𝑐𝑜𝑠𝜃 =
𝑥GH+%& − 𝑥*$$+

𝑅,*-
 3.46 

  
Where,	𝑥23456𝑎𝑛𝑑	𝑦9:456 are final spacecraft position numerically integrated using ODE45. The 
velocity of the spacecraft required for the circular orbit at LMO is calculated using the equation 
listed below, 

�̇�,*- = G
𝜇4$$+
𝑅,*-	

sinθ + ΩyIJKLM 
3.47 

�̇�,*- = −G
𝜇*$$+
𝑅,*-

𝑐𝑜𝑠𝜃 − Ω(𝑥GH+%& − 𝑥*--N) 
3.48 

Thus,  

Δ𝑉,*- = �(�̇�,*- − �̇�GH+%&)" + (�̇�,*- − �̇�GH+%&)" 3.49 

3.3 GMAT Simulation 
 NASA GMAT is also used to simulate similar transfer orbit. Spacecraft is parked in the 
circular orbit around the Earth at an altitude of 463 km, and the GMAT problem is set up such 
that it uses B-Plane transfer to reach 100 km altitude above Moon. Later another problem is set 
up in GMAT to achieve a circular orbit at 100 km altitude around Moon. GMAT uses Rung-
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Kutta 89 solver to solve the boundary value problem. This section shows users how the problem 
is set up in GMAT, design decisions made while selecting specific settings, and a brief 
explanation of certain GMAT features.  

 The first step in GMAT is to set up the spacecraft's circular parking orbit around the 
Earth. To define the orbit around the Earth, a modified Keplerian state type is selected. The 
radius of perigee and radius of apogee is inputted as 6840 km, and the inclination of the orbit is 
kept at 25°. RAAN, AOP and TA are kept at 0°. Moon orbit around the Earth has an inclination 
of 18.28°-28.58° [14]; thus, providing an initial inclination of 25° to the satellite is kept inplane 
with Earth-Moon. Figure 3.3 below summarizes the initial spacecraft property.  

 
Figure 3.3 - Initial spacecraft property as defined in GMAT 

 

The next step in GMAT is to define the two impulsive burns needed for the Earth-Moon transfer. 
They are named TOI (Transfer Orbit Insertion) and MOI (Moon Orbit Insertion) for this project. 
To rename the burns just right click on the burn and click rename or select the burn and click F2 
key. The burns are impulsive burns, and the axes are set as VNB, which stands for Velocity-
Normal-Binormal [15]. The origin is set at Earth for TOI burn, while for MOI burn, the origin is 
set at Luna (Moon). The initial value for the burns is zero because GMAT will find the optimal 
value for that transfer. The mass change section is untouched cause the goal of this project is to 
simulate the optimal transfer using GMAT.  
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Figure 3.4 - TOI and MOI burn setup in GMAT 

  

The next step is to model the propagator. A propagator is the GMAT component used to model 
spacecraft motion [16]. For this project, a numerical integrator-type propagator with a force 
model is used. Three propagators, NearEarth, EarthMoon, and NearMoon prop, are added to the 
GMAT project. As the name suggests, NearEarth propagator is used to model the spacecraft 
motion in LEO and only accounts for Earth gravitational force as a point mass. EarthMoon prop 
is used to find the ideal transfer trajectory between LEO to LMO, and spacecraft is subjected to 
both the Earth and Moon gravitational forces. And lastly, the NearMoonProp only accounts for 
Moon gravitational force on spacecraft and simulates orbit around LMO. Earth and Moon are 
modeled as point mass because by doing that, it allows users to only account for Earth and Moon 
gravitational attraction and not the perturbation caused by the gravity of Earth and Moon. The 
primary body are kept empties for all three propagators as a point mass model is implemented. 
(Figure 3.5) The integrator type to solve for the spacecraft's motion is selected as RungeKutta89 
with an accuracy of 9.99e-12.  
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Figure 3.5 – NearEarthProp – GMAT properties only accounting for earth’s gravity 

 
Figure 3.6 – NearMoonProp – GMAT properties only accounting for moon’s gravity 
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Figure 3.7 – EarthMoonProp – GMAT properties accounting for earth and moon gravity 

To be able to visualize the transfer using GMAT, a couple of coordinate systems and orbit views 
are added. The first two coordinate systems added to GMAT are, EarthMoon rotation systems, 
and MoonEarth rotation system. An object referenced axis system is used to define this reference 
frames. An object referenced axis system is defined by the motion of one object with respect to 
another object. The Figure 3.8 defines six principal direction of an Object referenced axis 
system. One is the relative position of the secondary object with respect to the primary object, 
denoted by r which is expressed in the inertial frame. Second is the velocity of the secondary 
object w.r.t the primary expressed in the inertial frame by v. The third vector, n, normal to the 
direction of the motion which is calculated by n=r x v. [10] 
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Figure 3.8 Visual representation of object referenced frame 

 

 Figure 3.9 below displays the axes type and primary and secondary bodies selected for the 
EathMoon and MoonEarth rotational frames.  

 
Figure 3.9 - EarthMoon and MoonEarth rotation frame as setup in GMAT 

MoonMJ2000Eq and MoonInertial frame is also added to this project. Moon MJ2000 is used to 
solve the B-Plane problem, while the Moon inertial is used to visualize the orbit around the 
Moon.  
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Figure 3.10 - MoonMJ2000EQ and MoonInertial reference frame as setup in GMAT 

In addition to the Earth's inertial orbit view, two new orbit views are added for this project. One 
of which is ‘EarthMoonRotationalView’ rotation orbit view allows the user to see the whole 
transfer trajectory in Earth Moon rotational frame as.it uses ‘EarthMoonRotational’ coordinate 
frame. Figure 3.11 below shows the other orbit view parameter,  

 
Figure 3.11 - EarthMoon rotational orbit view as setup in GMAT 

‘MooninertialOrbitalView’ orbit view allows the user to see the spacecraft's orbit around the 
Moon. ‘MoonInertial’ coordinate system is used for this viewer and point of reference is defined 
as Moon. Figure 3.12 below displays other properties for the orbit viewer.  
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Figure 3.12 - Moon inertial orbit viewer as setup in GMAT 

Spacecraft property, burns, propagators, outputs, and coordinate systems are all the GMAT 
components defined in the resources tab for this project. The mission tab contains the two target 
commands and the final orbit propagation around the Moon. ‘Target’ and ‘EndTarget’ 
commands in GMAT are used to solve condition(s) by varying one or more parameters. A Target 
sequence numerically solves a boundary value problem to determine the control variable's value 
required to satisfy the constraints. Control variables are defined using Vary commands, and 
constraints variables are defined using Achieve commands [16].  

 The first Target sequence is used to solve for the Δ𝑉0$1 needed to get to the 100km 
altitude above Moon. The problem is set up such that B-Plan target, B.R, and B.T are set as 
constrain variables (achieve variable), and spacecraft RAAN, AOP, and TOI element one is set 
as the control variable (vary variable). Since GMAT is a hi-fidelity trajectory simulator, by 
varying the RAAN and AOP, the Earth to Moon transfer is converted into a 2-D problem similar 
to the MATLAB simulation. The key thing to note is the spacecraft motion at LEO is not 
simulated in GMAT, and because of that, RAAN and AOP variation does not cost any additional 
Δ𝑉 since GMAT varies the initial condition of the orbit. If the spacecraft orbit is simulated at 
LEO, changing the spacecraft trajectory to the ideal RAAN and AOP will add to the Δ𝑉0$1	. TOI 
Element1, also known as the vector component (tangential) of the velocity, is allowed to be 
varied for this target sequence.  B.R and B.T are set to 5090 km and 0 km, respectively. The 
values for which are found by trial and error and by examining the spacecraft altitude around the 
Moon. Then, the spacecraft is propagated to the desired radius around the Moon using the 
‘EarthMoonProp’. ‘EarthMoonProp’ accounts for both Earth and Moon effects on the spacecraft 
motion and finds the ideal trajectory based on the boundary value problem at hand. In summary, 
the following are the steps taken to set up the first Target sequence (Figure 3.21)  
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• Create a Target Sequence: Right click on ‘Mission Sequence’ à Append and à 
Target. Rename the target by right clicking or by pressing F2 to ‘FindLunarTarget’ 

• Vary RAAN: Setup a first control variable. Modify the lower and upper value and max 
step. To RAAN as an option click on Edit and select spacecraft. 

 
Figure 3.13 Initial step to setup RAAN as variable in GMAT  

 

 

Figure 3.14 – Final parameter setup for varying RAAN 
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• Vary AOP: Similar to Figure 3.13, set up a control variable for AOP and update the 
upper and lower values and max step as shown below  

 

Figure 3.15 - Final parameter setup for varying AOP 

• Vary TOI Element1: Setup a control variable for element 1 of TOI burn and update the 
upper and lower limit for the control variable.  

 
Figure 3.16 Final parameter setup for varying TOI element 1 

• Apply TOI: Add a maneuver and select TOI burn and spacecraft name.  
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Figure 3.17 - Apply TOI maneuver to the spacecraft 

• Propagate to the Moon: Add a propagator and propagate the spacecraft to the periapsis 
of the spacecraft in orbit around the Moon. ‘EarthMoonProp’ is selected as the 
propagator, and the stopping condition parameter is set at ‘Luna.Periapsis’.  

 
Figure 3.18 – GMAT propagate properties to propagate to moon periapsis 

Figure 3.19, shows the steps needed to get Luna Periapsis.  

 
Figure 3.19 Initial Steps to get luna periapsis as GMAT propagate parameter 
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• 𝐁.𝐑LLLLLLL⃗  and 𝐁. 𝐓LLLLLLL⃗  Constrain variable: Two constrain variables are added to achieve desired 
transfer. The B.R and B.T are defined using the MoonMJ2000EQ coordinate system, and 
the default tolerance is kept for these two constrained variables.  

 
Figure 3.20 - B.R and B.T constrain variables 

 
Figure 3.21 – Overview of find lunar target sequence 

 The second target sequence is set up to find the Δ𝑉0%1 needed to circularize the orbit 
around Moon. This burn takes place at the periapsis radius since the last propagator stops once 
the spacecraft reaches the periapsis radius around the Moon. Unlike the previous target, this one 
only has one control variable, the MOI burn's tangential velocity (element 1). There are two 
constraints, achieve the radius of apoapsis of 1837 km (similar apoapsis radius as the MATLAB) 
and achieve 0 eccentricities around Moon. Moon has an equatorial radius of 1738.1 km and polar 
radius of 1736.0 km  [14], and since GMAT accounts for that radial fluctuations, the tolerance 
for ‘AchieveRapo’ is kept at 2 km while eccentricity is maintained at 0.001. Following are the 
steps are taken to set up the second target, ‘CircularOrbitAroundMoon’.  

• Create a Target Sequence: Right click on ‘Mission Sequence’ à Append and à 
Target. Rename the target by right clicking or by pressing F2 to 
‘CircularOrbitAroundMoon’ 

• Vary MOI: Vary element 1 of the MOI burn. A key thing to note is to vary MOI initial 
value is kept at -1, and this is because GMAT is throwing an unknown error when the 
initial value is kept at zero. Upper and lower limits are also updated. For this control 
variable, upper value can be kept at zero since it's known that the burn has to be 
retrograde burn, but it's kept at a positive infinity for consistency.  
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Figure 3.22 – Final variable setup to vary MOI element 1 

• Apply MOI: The next step is adding the maneuver by selecting the MOI burn and the 
correct spacecraft. 

 
Figure 3.23 - Apply the MOI maneuver 

• PropToApoapsis: A propagator is added to propagate the spacecraft to the apoapsis of 
the Moon. ‘NearMoonProp’ is used to propagate the spacecraft, and the stopping 
parameter is set to Luna. Apoapsis.  
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Figure 3.24 -GMAT propagator setup to propagate to moon apoapsis 

• Achieve Radius of Apoapsis: The first constrain is set to achieve the radius of Apoapsis 
of 1837 km, i.e., approximately 100 km orbit around the Moon. The key thing to note is 
the tolerance is set to 2 km because of the difference in radius between Moon's equator 
and Moon's poles.  

• Achieve Eccentricity: The second constrain is set to achieve the eccentricity of 0, i.e., a 
circular orbit around the Moon.  

 
Figure 3.25 – GMAT setup to achieve desired moon orbit 

 Lastly, the spacecraft orbit around the Moon is simulated for another day using a 
NearMoon propagator to visualize the circular orbit at LMO. Figure 3.27 summarizes the 
CircularOrbitAroundMoon target sequence and final LMO orbit propagator.  
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Figure 3.26 – Another day of moon orbit view setup 

 
Figure 3.27 - Mission sequence for circularization orbit around moon 
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4. Results 
 

This section covers the result for MATLAB simulation, GMAT simulation and compares 
them to the previously published data.  

4.1 MATLAB Result 
 

 Equations 28.1 and 28.2 are integrated using the native MATLAB ODE45 function to 
plot the spacecraft's trajectory. Constants used for these scripts are listed in Table 3.1 The 
Δ𝑉0$1 = 3.069 ;8

*
 and phase angle 𝛿 = −117.52° used for this problem are taken from 

reference 9. The ODE function is integrated until the following orbit condition is met.  

Spacecraft Final position,   
𝑥GH+%& = 𝑥4$$+ + 𝑟*$$+ + 𝑆𝑝𝑎𝑐𝑒𝑐𝑟𝑎𝑓𝑡𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 4.1 

 

To find 𝑥%++4 equation 12 is used and 𝑟%++4 is a constant defined in Table 3.1, and spacecraft 
altitude is defined as 100 km above the surface of the Moon. Figure 4.1 shows the overall orbit 
trajectory as seen from the Z-axis of the Earth-Moon rotational frame.  

 
Figure 4.1 - Spacecraft trajectory calculated using MATLAB 
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Figure 4.2 - Spacecraft approach at Moon using MATLAB 

 

Δ𝑉0%1 is calculated using equation 4.2. The total Δ𝑉<+/56 cost for the transfer between LEO to 
LMO is calculated, 

Δ𝑉.$#%& = Δ𝑉,'- + Δ𝑉,*- 4.2 

Δ𝑉.$#%& = 3.069 + 0.7718 = 3.8408
𝑘𝑚
𝑠

  

 

The transfer for LEO to LMO calculated using MATLAB takes 4.41 days.  

4.2 GMAT Results 
 

 GMAT is used to simulate a similar trajectory from LEO to LMO. Instead of inputting 
initial Δ𝑉0$1 and a phase angle 𝛿, the trajectory is solved using the GMAT native RungKutta89 
solver by setting up a boundary value problem using the GMAT Target sequences. Overall orbit 
trajectory seen from the Z-axis of the Earth-Moon rotational frame is shown in Figure 4.3. The 
trajectory seems to follow a similar shape as displayed in Figure 4.1.  
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Figure 4.3 - GMAT Satellite overall trajectory 

Δ𝑉0$1 calculated by GMAT to transfer to spacecraft from LEO to ~100 km altitude above Moon 
is 3.0681, very close to the Δ𝑉0$1	value used in the MATLAB simulation.  

 
Figure 4.4 - Solver window for TOI (Transfer Orbit Insertion) 

Δ𝑉0%1 calculated using GMAT to circularize the orbit at LMO is 0.8436 ;8
*
	. The Δ𝑉<+/56 

calculated using GMAT is, 

Δ𝑉.$#%&O*P. = Δ𝑉QRSTUVW + Δ𝑉,*-O*P. 4.3 
Δ𝑉.$#%&O*P. = 3.0681 + 0.8436 = 3.9117  
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Figure 4.5 - Solver window for MOI (Moon Orbit Insertion) 

 
Figure 4.6 - Orbit insertion and orbit around the moon 

The transfer time needed to send the spacecraft from circular LEO to circular LMO is 4.1 days.  

4.3 Result Summary and Comparison 
 

 Table 4.1 below summarizes the LEO to LMO transfer result between MATLAB 
simulation, GMAT simulation, and Leonardo and Pontani published data [9]. 

Table 4.1 - LEO-LMO result summary 

Variable MATLAB GMAT  Published 
Data 

Note 

Δ𝑉,'-
𝑘𝑚
𝑠

 
3.069 3.0681 3.069 For the Matlab Simulation Δ𝑉,'- is 

used as an initial condition 

Δ𝑉,*-
𝑘𝑚
𝑠

 0.7718 0.8436 0.8160  
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TOF 
(days) 

4.41 4.1 4.5 Published data do not explicitly state 
their TOF is 4.5 days but hints that 
the result is similar to the published 
data in reference 8 

  

 Percent error between each result is calculated in Table 4.2. Since GMAT is the hi-
fidelity simulation, data calculated using GMAT is considered as the most accurate result, and 
percent error is calculated as follows, 

%𝐸𝑟𝑟𝑜𝑟 =
|𝐺𝑀𝐴𝑇	𝑅𝑒𝑠𝑢𝑙𝑡 − 𝑀𝐴𝑇𝐿𝐴𝐵	𝑅𝑒𝑠𝑢𝑙𝑡|

𝐺𝑀𝐴𝑇	𝑅𝑒𝑠𝑢𝑙𝑡
× 100 

4.4 

And   

%𝐸𝑟𝑟𝑜𝑟 =
|𝐺𝑀𝐴𝑇	𝑅𝑒𝑠𝑢𝑙𝑡 − 𝑃𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑	𝑅𝑒𝑠𝑢𝑙𝑡|

𝐺𝑀𝐴𝑇	𝑅𝑒𝑠𝑢𝑙𝑡
× 100 

 

4.5 

 

Table 4.2 - Simulation percentage error 

Variable MATLAB %Error Published Result %Error 

Δ𝑉,'-
𝑘𝑚
𝑠

 0.029 % 0.029 % 

Δ𝑉,*-
𝑘𝑚
𝑠

 9.30 % 3.57 % 

TOF (days) 7.56 % 9.75 % 
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5. Lesson Learned 
 

 The following section covers the lesson learned while working on the project.  

5.1 MATLAB Simulation /Canonical Form 
 

 The orbit trajectory in MATLB is numerically solved in the engineering units and not in 
canonical form. Since the orbital parameter are in high order numbers i.e.  10= or more, minor 
fluctuations cause a drastically different answer. For example, the orbit simulation in MATLAB 
is done by using 𝜇$5>/?=398600	;8

"

@AB# 	
  which provides a pretty accurate trajectory when 

compared with the previously published data and GMAT. But if the same simulation is run with 
the 𝜇$5>/? = 𝐺 ∗ 𝑚$ = 3.9836 × 10= ;8"

@AB# 	
 the result is much different. Figure 5.1 below 

displays the spacecraft motion under both initial conditions. Using the Canonical unit system 
mitigates these problems since constants are no longer huge numbers.   

 
Figure 5.1 - Difference in result because of minor difference in 𝜇$5>/? variable 

5.2 Calculating initial B.R and B.T value 
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 For this project, B.R and B.T values used in GMAT simulation for the B-Plane transfer is 
assessed using trial and error. The values were constantly edited until the desired altitude around 
the moon is achieved. This section covers how to calculate the initial B.R and B.T value 
mathematically by knowing desired position and velocity vector. To calculate the B-Plane values 
the orbit position and velocity needs to be in 3-dimensions and in body centric inertial frame, 
MCI (Moon Centric Inertial) for this transfer. Figure 5.2 below defines the MCI coordinate 
systems. 𝑍%D: passing through Lunar north pole, 𝑋%D: passing through the vernal equinox and 
𝑌%D: passing through the Lunar equator such that it satisfy the right hand rule.  

 
Figure 5.2 Moon centered inertial frame 

 

5.2.1: Sample Calculation 
 

 Following position and velocity vector are used, 

 

[rx, ry, rz] = [0, 1.837,-689] km 
 

5.1 

[vx, vy, vz] = [0, 1.2970,2.007] km/s 5.2 
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Both position and velocity vector initial guess are taken from the CR3BP MATLAB code. Since 
the CR3BP is solved in 2-D, following assumption is made, 

X position in CR3BP= Y position in MCI frame 

Y position in CR3BP = Z position in MCI frame 

And X position in MCI frame = 0 = Spacecraft is in Polar orbit with inclination =90° and RAAN 
= 90° 

ℎL⃗ = 𝑟 × �⃗� = [4.5689, 0	, 0]
𝑘𝑚E

𝑚  
5.3 

Semiparameter  

𝑝 =
ℎE

𝜇 = 4257.8	𝑘𝑚 
5.4 

Semimajor axis  
𝑎 =

𝑟

2 − 𝑟𝑣
E

𝜇

= −7135.0	𝑘𝑚 5.5 

Eccentricity,  

𝑒 = d1 −
𝑝
𝑎 = 1.2636 

5.6 

True anomaly (cosine and sine)  
𝑐𝑜𝑠𝜃 =

𝑝 − 𝑟
𝑒 ∗ 𝑟 = 0.9260	𝑟𝑎𝑑 5.7 

𝑠𝑖𝑛𝜃 =
�̇�ℎ
𝑒 ∗ 𝜇	 = 0.3774	𝑟𝑎𝑑 

5.8 

B-Plane magnitude   
𝑏 = j𝑝 ∗ |𝑎| = 5511.7	𝑘𝑚 5.9 

Fundamental unit vectors  

�̂� =
𝑟�⃗� − �̇�𝑟

ℎ = [0	, 0.3512	, 0.9363] 
5.10 

�̂� = 𝑐𝑜𝑠𝜃	�̂� − 𝑠𝑖𝑛𝜃	�̂� = [0	, 0.7345	, −0.6786] 5.11 
𝑞o = 𝑠𝑖𝑛𝜃	�̂� + 𝑐𝑜𝑠𝜃	�̂� = [0, 0.6786, 0.7345] 

 
5.12 

where,  

�̂� =
𝑟
|𝑟| 𝑎𝑛𝑑	�̇� =

𝑟. �⃗�
|𝑟|  

5.13 

S Vector  

𝑆 = −
𝑎

√𝑎E + 𝑏E
�̂� +

𝑏
√𝑎E + 𝑏E	

𝑞o = [0	, 0.9961,−0.0880] 
5.14 

B- Vector   

𝐵L⃗ =
𝑏E

√𝑎E + 𝑏E
	 �̂� +

𝑎𝑏
√𝑎E + 𝑏E

	𝑞o = [0	, −485.0 − 5490.3]	𝑘𝑚 
5.15 

T – vector  
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𝑇 =
b𝑆2", −𝑆1"	, 0c

.

�𝑆1" + 𝑆2"
= [1, 0, 0] 

5.16 

R -Vector  
 

𝑅�⃗ = 𝑆 × 𝑇�⃗ = [0	, −0.0880,−0.9961] 5.17 
𝐵�⃗ . 𝑇�⃗ = 0	𝑘𝑚 5.18 

𝐵�⃗ . 𝑅�⃗ = 5511.7	𝑘𝑚 5.19 
 

The 𝐵L⃗ . 𝑅L⃗ 	calculated mathematically is 9% higher than the one estimated using the trial-and-error 
method on GMAT. This is because the initial value of position and velocity used for the 
calculation came by solving the equation motion in CR3BP. Mathematically calculated 𝐵L⃗ . 𝑅L⃗  and 
𝐵L⃗ . 𝑇L⃗  still can be used as the initial guess on the GMAT. 
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6. Conclusion 
 

 Bi-Impulsive LEO-LMO transfer is examined in this paper. Trajectory is generated using 
both MATLAB and NASA GMAT. GMAT simulation result is than compared with the 
MATLAB result and previously published data for the similar trajectory. Percent error between 
the GMAT and the MATLAB simulation for the Δ𝑉0%1 is less than 10% and the Δ𝑉0$1 is less 
than 0.03%. Similarly, percent error between the GMAT and published data is 0.03% and 3.57% 
for Δ𝑉0$1 and Δ𝑉0%1respectively. Trajectory in MATLAB is simulated using engineering units 
which could be a possible source of the error as minor fluctuation in constant values, such as 
gravitational constant of the Earth, can cause a large integral error.  
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Appendix  A. Three Body problem using MATLAB 
 

AE 295B - Earth to Moon transfer using a 3 body Equation of Motion 

Jay Mehta Advisor: Jeanine Hunter AE 295B 

clear all 

close all 

clc 

Global Variables 

global x_Earth x_Moon mu_Earth mu_Moon mu_System omega Ratio_Earth Ratio_Moon DistanceEarthMoon 

RadiusMoon 

Constants 

GConstant=6.67e-20; % Gravitational constant km^3/kg*sec^2 

RadiusEarth=6378;   %Radius of Earth in Km 

RadiusMoon=1737;    %Radius of Moon in Km 

DistanceEarthMoon=384400; %Distance of Moon from Earth in km 

MassEarth=5.9724e24;        %Mass of Earth in Kg 

MassMoon=0.07346e24;         %Mass of Moon in Kg 

TotalMass=MassEarth+MassMoon; %Total mass of the system since spacecraft mass is negligible in Kg 

Ratio_Earth=MassEarth/TotalMass; %Dimensionless Mass of the Earth 

Ratio_Moon=MassMoon/TotalMass; %Dimensionless Mass of Moon 

mu_Earth=GConstant*MassEarth;  %Gravitational Constant of Earth 

%mu_Moon=GConstant*MassMoon;    %Gravitational Constant of Moon 

mu_Moon=4903.02; 

mu_Earth=398600;  %Gravitational Constant of Earth 

 

mu_System=mu_Earth+mu_Moon;    %Gravitational Constant of whole system 

omega=sqrt(mu_System/DistanceEarthMoon^3); %Angular velocity of Earth and moon around its 

barycenter 

x_Earth=-Ratio_Moon*DistanceEarthMoon; % distance of Earth from the barycenter in km 

x_Moon=Ratio_Earth*DistanceEarthMoon;  %distance of Moon from the barycenter in Km 

 

%Initial Condition 

SpacecraftAltitude=463; %Altitude of the spacecraft around the Earth in km 

delta_ang=-117.52; %Phase Angle; Value chosen from previously published Data 

deltaV=3.069; % Delta V applied at LEO, value chosen from previously published Data 

 

SpaceCraftRadius=RadiusEarth+SpacecraftAltitude; %LEO Orbit Radius 

v0=sqrt(mu_Earth/SpaceCraftRadius)+deltaV; %Inital Velocity at LEO 

t0=0; %Intial Time 

tf=5*24*60*60; %Max Time for ODE 45 solver 

x0=SpaceCraftRadius*cosd(delta_ang)+x_Earth; 

y0=SpaceCraftRadius*sind(delta_ang); 
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vx0 = (omega*SpaceCraftRadius-v0)*sind(delta_ang); 

vy0 = (v0-omega*SpaceCraftRadius)*cosd(delta_ang); 

 

IC=[x0;y0;vx0;vy0]; %Inital Condition passed to ODE45 solver 

 

options = odeset('AbsTol', 1e-29, 'RelTol', 1e-29,'Events',@events) %Eventfunction sets a 

stopping condition for the ODE solver 

[t,f] =ode45(@EOM, [t0 tf], IC,options); 

xSpaceCraft = f(:,1); 

ySpaceCraft = f(:,2); 

vxSpaceCraft = f(:,3); 

vySpaceCraft =f(:,4); 

xFinal = xSpaceCraft(end); 

yFinal = ySpaceCraft(end); 

vxFinal = vxSpaceCraft(end); 

vyFinal = vySpaceCraft(end); 

df = norm([xFinal - x_Moon, yFinal - 0]) - RadiusMoon; 

vf = norm([vxFinal, vyFinal]); 

 

options =  

 

  struct with fields: 

 

              AbsTol: 1.0000e-29 

                 BDF: [] 

              Events: @events 

         InitialStep: [] 

            Jacobian: [] 

           JConstant: [] 

            JPattern: [] 

                Mass: [] 

        MassSingular: [] 

            MaxOrder: [] 

             MaxStep: [] 

         NonNegative: [] 

         NormControl: [] 

           OutputFcn: [] 

           OutputSel: [] 

              Refine: [] 

              RelTol: 1.0000e-29 

               Stats: [] 

          Vectorized: [] 

    MStateDependence: [] 

           MvPattern: [] 

        InitialSlope: [] 

 

Warning: RelTol has been increased to 2.22045e-14.  

CoastingArch Plots 
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figure, 

plot(xSpaceCraft, ySpaceCraft) 

%Set plot display parameters 

xmin = -20.e3; xmax = 4.e5; 

ymin = -20.e3; ymax = 1.e5; 

axis([xmin xmax ymin ymax]) 

axis equal 

xlabel('x, km'); ylabel('y, km') 

grid on 

hold on 

earth = circle(x_Earth, 0, RadiusEarth); 

moon = circle(x_Moon, 0, RadiusMoon); 

orbit=circle(x_Moon,0,RadiusMoon+100); 

fill(earth(:,1), earth(:,2),'b'); 

fill( moon(:,1), moon(:,2),'g'); 

%plot(orbit(:,1),orbit(:,2),'r'); 

 

Orbit of the Moon 

theta=asind(yFinal/1837) 

theta2=acosd((xFinal-x_Moon)/1837); 

 

xdot=sqrt(mu_Moon/1837)*sind(theta)+omega*yFinal 

ydot=-sqrt(mu_Moon/1837)*cosd(theta2)-omega*(xFinal-x_Moon) 



45 
 

deltaVLMP=sqrt((xdot-vxFinal)^2+(ydot-vyFinal)^2) 

V=norm([vxFinal,vyFinal]) 

V-deltaVLMP 

 

j=deltaV+deltaVLMP 

 

theta = 

 

  -22.0582 

 

 

xdot = 

 

   -0.6154 

 

 

ydot = 

 

   -1.6386 

 

 

deltaVLMP = 

 

    0.7718 

 

 

V = 

 

    2.3843 

 

 

ans = 

 

    1.6125 

 

 

j = 

 

    3.8408 

 

Published with MATLAB® R2016b 

 

Appendix  B. GMAT three body script  
 

%General Mission Analysis Tool(GMAT) Script 

%Created: 2021-11-12 18:14:37 
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%---------------------------------------- 

%---------- Spacecraft 

%---------------------------------------- 

 

Create Spacecraft MoonSat; 

GMAT MoonSat.DateFormat = UTCGregorian; 

GMAT MoonSat.Epoch = '15 Jul 2022 01:07:06.978'; 

GMAT MoonSat.CoordinateSystem = EarthMJ2000Eq; 

GMAT MoonSat.DisplayStateType = ModifiedKeplerian; 

GMAT MoonSat.RadPer = 6840.99999999999; 

GMAT MoonSat.RadApo = 6840.999999999995; 

GMAT MoonSat.INC = 25.00000000000002; 

GMAT MoonSat.RAAN = 199.9999999999999; 

GMAT MoonSat.AOP = 0; 

GMAT MoonSat.TA = 8.537699999999958; 

GMAT MoonSat.DryMass = 850; 

GMAT MoonSat.Cd = 2.2; 

GMAT MoonSat.Cr = 1.8; 

GMAT MoonSat.DragArea = 15; 

GMAT MoonSat.SRPArea = 1; 

GMAT MoonSat.SPADDragScaleFactor = 1; 

GMAT MoonSat.SPADSRPScaleFactor = 1; 

GMAT MoonSat.NAIFId = -10000001; 

GMAT MoonSat.NAIFIdReferenceFrame = -9000001; 

GMAT MoonSat.OrbitColor = Red; 

GMAT MoonSat.TargetColor = Teal; 
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GMAT MoonSat.OrbitErrorCovariance = [ 1e+70 0 0 0 0 0 ; 0 1e+70 0 0 0 0 ; 0 0 1e+70 0 0 0 ; 
0 0 0 1e+70 0 0 ; 0 0 0 0 1e+70 0 ; 0 0 0 0 0 1e+70 ]; 

GMAT MoonSat.CdSigma = 1e+70; 

GMAT MoonSat.CrSigma = 1e+70; 

GMAT MoonSat.Id = 'SatId'; 

GMAT MoonSat.Attitude = CoordinateSystemFixed; 

GMAT MoonSat.SPADSRPInterpolationMethod = Bilinear; 

GMAT MoonSat.SPADSRPScaleFactorSigma = 1e+70; 

GMAT MoonSat.SPADDragInterpolationMethod = Bilinear; 

GMAT MoonSat.SPADDragScaleFactorSigma = 1e+70; 

GMAT MoonSat.ModelFile = 'aura.3ds'; 

GMAT MoonSat.ModelOffsetX = 0; 

GMAT MoonSat.ModelOffsetY = 0; 

GMAT MoonSat.ModelOffsetZ = 0; 

GMAT MoonSat.ModelRotationX = 0; 

GMAT MoonSat.ModelRotationY = 0; 

GMAT MoonSat.ModelRotationZ = 0; 

GMAT MoonSat.ModelScale = 1; 

GMAT MoonSat.AttitudeDisplayStateType = 'Quaternion'; 

GMAT MoonSat.AttitudeRateDisplayStateType = 'AngularVelocity'; 

GMAT MoonSat.AttitudeCoordinateSystem = EarthMJ2000Eq; 

GMAT MoonSat.EulerAngleSequence = '321'; 
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%---------------------------------------- 

%---------- ForceModels 

%---------------------------------------- 

 

Create ForceModel EarthMoonProp_ForceModel; 

GMAT EarthMoonProp_ForceModel.CentralBody = Earth; 

GMAT EarthMoonProp_ForceModel.PointMasses = {Earth, Luna}; 

GMAT EarthMoonProp_ForceModel.Drag = None; 

GMAT EarthMoonProp_ForceModel.SRP = Off; 

GMAT EarthMoonProp_ForceModel.RelativisticCorrection = Off; 

GMAT EarthMoonProp_ForceModel.ErrorControl = RSSStep; 

 

Create ForceModel NearMoonProp_ForceModel; 

GMAT NearMoonProp_ForceModel.CentralBody = Luna; 

GMAT NearMoonProp_ForceModel.PointMasses = {Luna}; 

GMAT NearMoonProp_ForceModel.Drag = None; 

GMAT NearMoonProp_ForceModel.SRP = Off; 

GMAT NearMoonProp_ForceModel.RelativisticCorrection = Off; 

GMAT NearMoonProp_ForceModel.ErrorControl = RSSStep; 

 

Create ForceModel NearEarthProp_ForceModel; 

GMAT NearEarthProp_ForceModel.CentralBody = Earth; 

GMAT NearEarthProp_ForceModel.PointMasses = {Earth}; 
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GMAT NearEarthProp_ForceModel.Drag = None; 

GMAT NearEarthProp_ForceModel.SRP = On; 

GMAT NearEarthProp_ForceModel.RelativisticCorrection = Off; 

GMAT NearEarthProp_ForceModel.ErrorControl = RSSStep; 

GMAT NearEarthProp_ForceModel.SRP.Flux = 1367; 

GMAT NearEarthProp_ForceModel.SRP.SRPModel = Spherical; 

GMAT NearEarthProp_ForceModel.SRP.Nominal_Sun = 149597870.691; 

 

%---------------------------------------- 

%---------- Propagators 

%---------------------------------------- 

 

Create Propagator EarthMoonProp; 

GMAT EarthMoonProp.FM = EarthMoonProp_ForceModel; 

GMAT EarthMoonProp.Type = RungeKutta89; 

GMAT EarthMoonProp.InitialStepSize = 60; 

GMAT EarthMoonProp.Accuracy = 9.999999999999999e-12; 

GMAT EarthMoonProp.MinStep = 0.001; 

GMAT EarthMoonProp.MaxStep = 160000; 

GMAT EarthMoonProp.MaxStepAttempts = 50; 

GMAT EarthMoonProp.StopIfAccuracyIsViolated = true; 

 

Create Propagator NearMoonProp; 

GMAT NearMoonProp.FM = NearMoonProp_ForceModel; 

GMAT NearMoonProp.Type = RungeKutta89; 

GMAT NearMoonProp.InitialStepSize = 60; 

GMAT NearMoonProp.Accuracy = 9.999999999999999e-12; 

GMAT NearMoonProp.MinStep = 0.001; 
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GMAT NearMoonProp.MaxStep = 160000; 

GMAT NearMoonProp.MaxStepAttempts = 50; 

GMAT NearMoonProp.StopIfAccuracyIsViolated = true; 

 

Create Propagator NearEarthProp; 

GMAT NearEarthProp.FM = NearEarthProp_ForceModel; 

GMAT NearEarthProp.Type = RungeKutta89; 

GMAT NearEarthProp.InitialStepSize = 60; 

GMAT NearEarthProp.Accuracy = 9.999999999999999e-12; 

GMAT NearEarthProp.MinStep = 0.001; 

GMAT NearEarthProp.MaxStep = 2700; 

GMAT NearEarthProp.MaxStepAttempts = 50; 

GMAT NearEarthProp.StopIfAccuracyIsViolated = true; 

 

%---------------------------------------- 

%---------- Burns 

%---------------------------------------- 

 

Create ImpulsiveBurn TOI; 

GMAT TOI.CoordinateSystem = Local; 

GMAT TOI.Origin = Earth; 

GMAT TOI.Axes = VNB; 

GMAT TOI.Element1 = 0; 

GMAT TOI.Element2 = 0; 

GMAT TOI.Element3 = 0; 

GMAT TOI.DecrementMass = false; 

GMAT TOI.Isp = 300; 

GMAT TOI.GravitationalAccel = 9.81; 
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Create ImpulsiveBurn MOI; 

GMAT MOI.CoordinateSystem = Local; 

GMAT MOI.Origin = Luna; 

GMAT MOI.Axes = VNB; 

GMAT MOI.Element1 = 0; 

GMAT MOI.Element2 = 0; 

GMAT MOI.Element3 = 0; 

GMAT MOI.DecrementMass = false; 

GMAT MOI.Isp = 300; 

GMAT MOI.GravitationalAccel = 9.81; 

 

%---------------------------------------- 

%---------- Coordinate Systems 

%---------------------------------------- 

 

Create CoordinateSystem EarthMoonRotation; 

GMAT EarthMoonRotation.Origin = Earth; 

GMAT EarthMoonRotation.Axes = ObjectReferenced; 

GMAT EarthMoonRotation.XAxis = R; 

GMAT EarthMoonRotation.ZAxis = N; 

GMAT EarthMoonRotation.Primary = Earth; 

GMAT EarthMoonRotation.Secondary = Luna; 

 

Create CoordinateSystem MoonEarthRotation; 

GMAT MoonEarthRotation.Origin = Luna; 

GMAT MoonEarthRotation.Axes = ObjectReferenced; 

GMAT MoonEarthRotation.XAxis = R; 
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GMAT MoonEarthRotation.ZAxis = N; 

GMAT MoonEarthRotation.Primary = Luna; 

GMAT MoonEarthRotation.Secondary = Earth; 

 

Create CoordinateSystem MoonInertial; 

GMAT MoonInertial.Origin = Luna; 

GMAT MoonInertial.Axes = BodyInertial; 

 

Create CoordinateSystem MoonMJ2000EQ; 

GMAT MoonMJ2000EQ.Origin = Luna; 

GMAT MoonMJ2000EQ.Axes = MJ2000Eq; 

 

Create CoordinateSystem LunaFixed; 

GMAT LunaFixed.Origin = Luna; 

GMAT LunaFixed.Axes = BodyFixed; 

 

%---------------------------------------- 

%---------- Solvers 

%---------------------------------------- 

 

Create DifferentialCorrector DefaultDC; 

GMAT DefaultDC.ShowProgress = true; 

GMAT DefaultDC.ReportStyle = Normal; 

GMAT DefaultDC.ReportFile = 'DifferentialCorrectorDefaultDC.data'; 

GMAT DefaultDC.MaximumIterations = 150; 

GMAT DefaultDC.DerivativeMethod = ForwardDifference; 

GMAT DefaultDC.Algorithm = NewtonRaphson; 
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%---------------------------------------- 

%---------- Subscribers 

%---------------------------------------- 

 

Create OrbitView EarthMoonRotationView; 

GMAT EarthMoonRotationView.SolverIterations = Current; 

GMAT EarthMoonRotationView.UpperLeft = [ 0.1708253358925144 0.1523341523341523 ]; 

GMAT EarthMoonRotationView.Size = [ 0.6301983365323096 0.6904176904176904 ]; 

GMAT EarthMoonRotationView.RelativeZOrder = 5; 

GMAT EarthMoonRotationView.Maximized = false; 

GMAT EarthMoonRotationView.Add = {MoonSat, Earth, Luna}; 

GMAT EarthMoonRotationView.CoordinateSystem = EarthMoonRotation; 

GMAT EarthMoonRotationView.DrawObject = [ true true true ]; 

GMAT EarthMoonRotationView.DataCollectFrequency = 1; 

GMAT EarthMoonRotationView.UpdatePlotFrequency = 50; 

GMAT EarthMoonRotationView.NumPointsToRedraw = 0; 

GMAT EarthMoonRotationView.ShowPlot = true; 

GMAT EarthMoonRotationView.MaxPlotPoints = 20000; 

GMAT EarthMoonRotationView.ShowLabels = true; 

GMAT EarthMoonRotationView.ViewPointReference = Earth; 

GMAT EarthMoonRotationView.ViewPointVector = [ 0 0 30000 ]; 

GMAT EarthMoonRotationView.ViewDirection = Earth; 

GMAT EarthMoonRotationView.ViewScaleFactor = 20; 

GMAT EarthMoonRotationView.ViewUpCoordinateSystem = EarthMoonRotation; 

GMAT EarthMoonRotationView.ViewUpAxis = Y; 

GMAT EarthMoonRotationView.EclipticPlane = Off; 

GMAT EarthMoonRotationView.XYPlane = Off; 

GMAT EarthMoonRotationView.WireFrame = Off; 
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GMAT EarthMoonRotationView.Axes = Off; 

GMAT EarthMoonRotationView.Grid = Off; 

GMAT EarthMoonRotationView.SunLine = Off; 

GMAT EarthMoonRotationView.UseInitialView = On; 

GMAT EarthMoonRotationView.StarCount = 7000; 

GMAT EarthMoonRotationView.EnableStars = On; 

GMAT EarthMoonRotationView.EnableConstellations = On; 

 

Create OrbitView MoonInertialView; 

GMAT MoonInertialView.SolverIterations = Current; 

GMAT MoonInertialView.UpperLeft = [ 0.0671785028790787 0.343980343980344 ]; 

GMAT MoonInertialView.Size = [ 0.7485604606525912 0.5651105651105651 ]; 

GMAT MoonInertialView.RelativeZOrder = 21; 

GMAT MoonInertialView.Maximized = false; 

GMAT MoonInertialView.Add = {MoonSat, Earth, Luna}; 

GMAT MoonInertialView.CoordinateSystem = MoonInertial; 

GMAT MoonInertialView.DrawObject = [ true true true ]; 

GMAT MoonInertialView.DataCollectFrequency = 1; 

GMAT MoonInertialView.UpdatePlotFrequency = 50; 

GMAT MoonInertialView.NumPointsToRedraw = 0; 

GMAT MoonInertialView.ShowPlot = true; 

GMAT MoonInertialView.MaxPlotPoints = 20000; 

GMAT MoonInertialView.ShowLabels = true; 

GMAT MoonInertialView.ViewPointReference = Luna; 

GMAT MoonInertialView.ViewPointVector = [ 20000 20000 20000 ]; 

GMAT MoonInertialView.ViewDirection = Luna; 

GMAT MoonInertialView.ViewScaleFactor = 1; 

GMAT MoonInertialView.ViewUpCoordinateSystem = MoonInertial; 
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GMAT MoonInertialView.ViewUpAxis = Z; 

GMAT MoonInertialView.EclipticPlane = Off; 

GMAT MoonInertialView.XYPlane = On; 

GMAT MoonInertialView.WireFrame = Off; 

GMAT MoonInertialView.Axes = On; 

GMAT MoonInertialView.Grid = Off; 

GMAT MoonInertialView.SunLine = Off; 

GMAT MoonInertialView.UseInitialView = On; 

GMAT MoonInertialView.StarCount = 7000; 

GMAT MoonInertialView.EnableStars = On; 

GMAT MoonInertialView.EnableConstellations = On; 

 

Create OrbitView EarthInertialView; 

GMAT EarthInertialView.SolverIterations = Current; 

GMAT EarthInertialView.UpperLeft = [ 0.5310300703774792 0.1855036855036855 ]; 

GMAT EarthInertialView.Size = [ 0.5067178502879078 0.3525798525798526 ]; 

GMAT EarthInertialView.RelativeZOrder = 73; 

GMAT EarthInertialView.Maximized = false; 

GMAT EarthInertialView.Add = {MoonSat, Earth, Luna}; 

GMAT EarthInertialView.CoordinateSystem = EarthMJ2000Eq; 

GMAT EarthInertialView.DrawObject = [ true true true ]; 

GMAT EarthInertialView.DataCollectFrequency = 1; 

GMAT EarthInertialView.UpdatePlotFrequency = 50; 

GMAT EarthInertialView.NumPointsToRedraw = 0; 

GMAT EarthInertialView.ShowPlot = true; 

GMAT EarthInertialView.MaxPlotPoints = 20000; 

GMAT EarthInertialView.ShowLabels = true; 

GMAT EarthInertialView.ViewPointReference = Earth; 
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GMAT EarthInertialView.ViewPointVector = [ 0 0 30000 ]; 

GMAT EarthInertialView.ViewDirection = Earth; 

GMAT EarthInertialView.ViewScaleFactor = 1; 

GMAT EarthInertialView.ViewUpCoordinateSystem = EarthMJ2000Eq; 

GMAT EarthInertialView.ViewUpAxis = Z; 

GMAT EarthInertialView.EclipticPlane = Off; 

GMAT EarthInertialView.XYPlane = On; 

GMAT EarthInertialView.WireFrame = Off; 

GMAT EarthInertialView.Axes = On; 

GMAT EarthInertialView.Grid = Off; 

GMAT EarthInertialView.SunLine = Off; 

GMAT EarthInertialView.UseInitialView = On; 

GMAT EarthInertialView.StarCount = 7000; 

GMAT EarthInertialView.EnableStars = On; 

GMAT EarthInertialView.EnableConstellations = On; 

 

Create XYPlot XYPlot1; 

GMAT XYPlot1.SolverIterations = Current; 

GMAT XYPlot1.UpperLeft = [ -0.06845809341010876 0.2862407862407862 ]; 

GMAT XYPlot1.Size = [ 1.162507997440819 0.769041769041769 ]; 

GMAT XYPlot1.RelativeZOrder = 15; 

GMAT XYPlot1.Maximized = false; 

GMAT XYPlot1.XVariable = MoonSat.ElapsedDays; 

GMAT XYPlot1.YVariables = {MoonSat.Luna.Altitude}; 

GMAT XYPlot1.ShowGrid = true; 

GMAT XYPlot1.ShowPlot = true; 

 

%---------------------------------------- 
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%---------- Arrays, Variables, Strings 

%---------------------------------------- 

Create Variable RAAN AOP; 

GMAT RAAN = 0; 

GMAT AOP = 0; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

%---------------------------------------- 

%---------- Mission Sequence 

%---------------------------------------- 

 

BeginMissionSequence; 

Target 'FineLunarTarget' DefaultDC {SolveMode = Solve, ExitMode = DiscardAndContinue, 
ShowProgressWindow = true}; 

   Vary 'Vary RAAN' DefaultDC(MoonSat.RAAN = 200, {Perturbation = 0.0001, Lower = -
9.99e300, Upper = 9.99e300, MaxStep = 2, AdditiveScaleFactor = 0.0, 
MultiplicativeScaleFactor = 1.0}); 
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   Vary 'Vary AOP' DefaultDC(MoonSat.AOP = 0, {Perturbation = 0.0001, Lower = -9.99e300, 
Upper = 9.99e300, MaxStep = 2, AdditiveScaleFactor = 0.0, MultiplicativeScaleFactor = 1.0}); 

   Vary 'Vary TOI' DefaultDC(TOI.Element1 = 1.337030302898004, {Perturbation = 0.0001, 
Lower = -9.99e300, Upper = 9.99e300, MaxStep = 0.2, AdditiveScaleFactor = 0.0, 
MultiplicativeScaleFactor = 1.0}); 

   Maneuver 'Apply TOI' TOI(MoonSat); 

   Propagate 'Prop To Moon' EarthMoonProp(MoonSat) {MoonSat.Luna.Periapsis, OrbitColor = 
[33 222 37]}; 

   Achieve 'Achieve BdotR' DefaultDC(MoonSat.MoonMJ2000EQ.BdotR = 5090, {Tolerance = 
0.1}); 

   Achieve 'Achieve BdotT' DefaultDC(MoonSat.MoonMJ2000EQ.BdotT = 0, {Tolerance = 
0.1}); 

EndTarget;  % For targeter DefaultDC 

Target 'CircularOrbitAroundMoon' DefaultDC {SolveMode = Solve, ExitMode = 
DiscardAndContinue, ShowProgressWindow = true}; 

   Vary 'VaryMOI' DefaultDC(MOI.Element1 = -1, {Perturbation = 0.1, Lower = -9.9e300, 
Upper = 9.9e300, MaxStep = 0.2, AdditiveScaleFactor = 0.0, MultiplicativeScaleFactor = 1.0}); 

   Maneuver 'ApplyMOI' MOI(MoonSat); 

   Propagate 'PropToApoapsis' NearMoonProp(MoonSat) {MoonSat.Luna.Apoapsis, OrbitColor 
= [0 0 255]}; 

   Achieve 'AchieveRadApoapsis' DefaultDC(MoonSat.Luna.RadApo = 1837, {Tolerance = 2}); 

   Achieve 'AchieveEcc' DefaultDC(MoonSat.Luna.ECC = 0, {Tolerance = 0.001}); 

EndTarget;  % For targeter DefaultDC 

Propagate 'LMO' NearMoonProp(MoonSat) {MoonSat.ElapsedDays = 1, OrbitColor = [255 255 
0]}; 
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Appendix  C. MATLAB and GMAT code  
 

https://drive.google.com/drive/folders/1P8DQBbN-rm1elbiPrUkJHJ_Y49jB5vdM 


