

Deep Learning Neural Network

Based Convergence Criteria for

Computational Fluid Dynamics

a project presented to

The Faculty of the Department of Aerospace Engineering

San José State University

in partial fulfillment of the requirements for the degree

Master of Science in Aerospace Engineering

by

Joshua F. Diaz

December 2022

D. Dalle, PhD[1], P. Papadopoulos, PhD[2]
Industry Advisor [1], Faculty Advisor [2]

ii

© 2022

Joshua F. Diaz

ALL RIGHTS RESERVED

iii

ABSTRACT

Determining if a computational fluid dynamics (CFD) solution has converged is critical to the

quality of the solution. Assuming the grid and solver settings for a CFD simulation are adequate

then the CFD simulation will conclude when a solution satisfies specified convergence criteria.

This paper presents a comparison between convergence classification based on simple

convergence criteria and a supervised machine learning model. The machine learning model

utilizes the open-source artificial intelligence (AI) framework TensorFlow paired with the

hyperparameter optimizer KerasTuner. The CFD simulations were conducted using the NASA

developed viscous flow solver, FUN3D. The training and validation dataset consist of 300 cases

covering an ascent trajectory of a near axisymmetric rocket. Each case is classified as either

converged or not converged by an expert user based on the iterative history of three force

coefficients and one moment coefficient. A comparison between the simple algorithms and the

training data shows monitoring physical quantities of interest for asymptotic behavior, both with

and without feature smoothing, are not able to achieve satisfactory accuracy; 67.3% and 71.3%

respectively for a threshold of ±0.0005 over 500 iterations. Two datasets were created to test each

method’s performance: an ascent trajectory comprised of 25 cases, and 50 high supersonic cases

respectively. For the high supersonic dataset, each model achieved on average within 1% of the

user’s results. For the ascent trajectory dataset, a machine learning model which sampled 2000

iterations achieved on average between 1.82-2.94%; a machine learning model which sampled

1000 iterations achieved between 2.21-4.57%; the asymptotic criteria achieved on average

between 3.26-4.31%; and the asymptotic with smoothing criteria achieved on average between

3.25-4.33%. For each test dataset, a substantial decrease in computational resources was observed

relative to the user.

iv

Acknowledgements

First, I would like to thank the Dr. Dalle for his initial insight of the application of machine

learning for convergence criteria, as well as his guidance and support of the project. I am also

grateful to my entire team at NASA Ames Research Center Computational Aerosciences Branch

for their contributions to the project and their patience throughout the completion of my degree.

Second, I would like to thank my faculty advisor Dr. Papadopoulos for his support in both

my career development and project. His experience and guidance have been invaluable for opening

doors and creating the opportunity to pursue this project.

Last, but not least, I want to thank my fiancé for her tremendous patience and support over

the past two years. You have truly helped make a difficult journey feel easy.

v

Contents
1. Introduction ... 1

2. Background ... 2

2.0 CFD Convergence ... 2

2.1 Deep Learning ... 3

2.1.1 Shallow Learning Representation ... 3

2.1.2 TensorFlow API .. 6

2.1.3 Applied TensorFlow ... 6

3. Binary Classification Model Development ... 8

3.0 Split Input Data ... 8

3.1 Single Feature Variable Sequential Model ... 11

3.2 Multi-Feature Variable Sequential Model .. 12

3.3 Multi-Input Functional Model .. 13

3.4 Hyperparameter Optimization .. 15

3.5 Model Sensitivity to Number of Features ... 16

4. Simple CFD Convergence Criteria ... 18

4.0 Asymptotic Criterion .. 18

4.1 Asymptotic Criterion with Feature Smoothing ... 18

5. Final Machine Learning Model .. 20

5.0 Training and Validation Dataset ... 20

5.1 Final Model Architecture .. 20

5.2 Test and Validation Dataset Results ... 21

6. Results for Test Datasets ... 26

6.0 High Supersonic Dataset Results .. 26

6.1 Ascent Dataset Results .. 29

7. Conclusion .. 33

References ... 34

Appendix A – Model Script .. 36

Appendix B – Model Modules .. 41

vi

List of Figures

Figure 2.1 single hidden layer neural network.. 3
Figure 2.2. ReLu activation function graphed. ... 4
Figure 2.3. sigmoid activation function graphed. ... 5
Figure 2.4. TensorFlow API hierarchy [15].. 6
Figure 3.1 common Launch Vehicle ... 9
Figure 3.2. comparison between label data for CA .. 9
Figure 3.3 comparison between label data for CY ... 10
Figure 3.4 comparison between label data for CN ... 10
Figure 3.5 comparison between label data for CLM .. 11
Figure 3.6 Validation Binary Accuracy of Models during Hyperparameter Optimization 16
Figure 3.7 Validation Binary Accuracy of Models during Hyperparameter Optimization 17
Figure 4.1 Feature Smoothing of an Oscillatory Iterative History ... 19
Figure 5.1. Multi-Input Binary Classification Model Structure ... 21
Figure 5.2. Classification Results ... 22
Figure 5.3. PASS labels unique to machine learning model... 23
Figure 5.4. PASS labels unique to asymptotic without feature smoothing. 24
Figure 5.5. PASS labels unique to asymptotic with feature smoothing.. 25
Figure 6.1. Difference in iterations taken to be classified as PASS. .. 27
Figure 6.2. Difference in CA. ... 28
Figure 6.3. Difference in CY. ... 28
Figure 6.4. Difference in CN. ... 29
Figure 6.5. Difference in CLM. .. 29
Figure 6.6. Difference in iterations taken to be classified as PASS. .. 30
Figure 6.7. Difference in CA. ... 31
Figure 6.8. Difference in CY. ... 31
Figure 6.9. Difference in CN. ... 32
Figure 6.10. Difference in CLM. .. 32

List of Tables

Table 3-1. Multi-Feature Variable Binary Classification Model Summary 12
Table 3-2. Example of hyperparameter combination when beginning Bayesian optimization. ... 15
Table 5-1. Disagreements between Labels .. 22
Table 6-1. Summary of each classification model’s performance for high supersonic CFD cases.

... 27
Table 6-2. Summary of each classification model’s performance for ascent CFD cases. 30

vii

Symbols

Symbol Definition Units (SI)

CA Axial Force Coefficient -------

CY Side Force Coefficient -------

CN Normal Force Coefficient -------

CLM Pitching Moment Coefficient -------

Acronyms

AI Artificial Intelligence -------

API Applications Program

Interface

CFD Computational Fluid

Dynamics

CLV Common Launch Vehicle -------

CNN Convolutional Neural

Network

ML Machine Learning -------
MNIST Modified National Institute of

Standards and Technology

RANS Reynold’s Averaged Navier-

Stokes

ReLu Rectified Linear Unit -------

RMS Root-Mean-Squared -------

SLS Space Launch System -------

1

1. Introduction

As most undergraduate engineers taking their first fluid mechanics course learn, the

Navier-Stokes equations are non-linear and through analytical restrictions, an iterative approach

can be utilized to achieve a solution. As they continue their education and begin to resolve full

flow fields using computational fluid dynamics (CFD) simulations, one of the first questions asked

is, “How do we know when it is done?”. They are usually provided an answer about the residuals

dropping a few magnitudes and leveling out[1]. Although looking to observe asymptotic behavior

in either the properties of interest or residuals can be a good guide, simulation outputs may never

exhibit this ideal behavior. Noise or oscillations in the solutions may result from poor grid quality,

solver settings, or unsteady flow phenomena[2]. When an ideal output cannot be achieved, it is

often left to “engineering judgement” to determine if a case has sufficiently converged on a

solution.

 For large scale databases, leaving each CFD case to be judged by a user can not only be

time consuming, but introduces inconsistency given differences in each contributing user’s

convergence criteria. Looking to resolve these hindrances is NASA Ames Research Center’s

Computational Aerosciences Branch. The branch is responsible for creating large scale databases

for the three versions of the Artemis Program’s Space Launch System (SLS)[3]. Each database

consists of tens of thousands of CFD cases covering either ascent or booster separation. Currently,

each case is judged on two pages of outputs. The first page consists of approximately nine plots

depicting force and moment coefficients and residuals. The second page consist of flow

visualization for various views. Each time a case completes its specified iteration count, a case

report is compiled and judged for convergence. If the case is deemed not yet converged, either the

solver settings are altered, or additional iterations are specified.

 To reduce the manual oversight of this workflow, automated convergence criteria can be

implemented. In the past, simple algorithms have been insufficient for the many flow solvers, such

as Cart3d and FUN3D. Machine learning models offer a more complex approach through pattern

recognition. The machine learning models presented in this paper seek to classify each CFD case

as either converged, given the label “PASS”, or not yet converged, given the label “EXTEND”.

The methodology and implementation of these models, along with the data used to train and

validate the models, will be discussed in subsequent chapters.

2

2. Background

 The two fields of machine learning and CFD both have their roots in the early 20th century.

Two dimensional CFD calculations were first performed in the 1940’s. In the 1960’s, a more

modern approach of discretizing a surface was implemented. However, it was not until the 1970’s

as computational power increased that there was a shift from solving the linearized potential

equations to the non-linear, or full potential equations[4]. Similarly, machine learning theory was

developed in the 1940’s, evolving to a computer program for playing checkers in the 1950’s. The

field continued to advance into the 1970’s, but was limited by inefficiencies of both the algorithms

and computational power[5]. It wasn’t until the 1990’s that both fields exploded with the rapid

advancement of computer technology.

Machine learning presents wonderful opportunities in CFD, and numerous applications of

machine learning techniques have already been identified. Machine learning techniques have been

utilized to guide the development of run matrices[6], optimize grid generation[7], predict physical

quantities[8], and even develop new Reynolds Averaged Navier-Stokes (RANS) models[9].

2.0 CFD Convergence

 Developing an adequate convergence criterion is a crucial step in any iterative method.

CFD simulates complex physical processes, ranging from natural convection to multi-component,

non-equilibrium hypersonic flows. A model is thought to be converged when the error in the

physical quantity of interest has decreased below the required precision. An indicator of the current

error is a residual value which measures the local imbalance of a conserved variable

[https://www.engineering.com/story/3-criteria-for-assessing-cfd-convergence]. Since each cell of

a grid will have its own residual, the root mean square (RMS) is often used to output a single value

per iteration. Throughout the iterative process, the residuals are expected to progressively decay

to smaller values up until they level out and substantial changes stop occurring[10]. As a rule of

thumb, a drop of three orders of magnitude in the RMS residuals is the minimum level of

convergence required for useful results[11].

 Although tracking residuals can provide valuable insight, physical properties can also be

important convergence indicators. One text book giving an example of biomass combustion

modeling is Ansys Fluent recommends net flux imbalance should end in a result inferior to 1% of

the smallest flux through the smallest inlet/outlet result[10]. Another conference journal

investigating the efficiency of vaned diffuser of centrifugal compressor used a convergence

criteria of mass flow rate discrepancy at the stage inlet equal to 0.001 kg/s, and temperature

discrepancy at the exit equal to 0.1ºC[12]. For a more complete list of convergence criteria

recommendations, see chapter 7 of [13].

3

2.1 Deep Learning

For CFD simulations that cannot automate termination of a case using the convergence

criteria provided in section 2.1, it is often left to the practitioner’s judgement. The simulation

outputs may be too noisy or complex and thus require more complex algorithms. To classify a

CFD case with more complex outputs, a deep learning model can be implemented. Deep learning

is a type of machine learning that employs multiple layers of processing to extract higher level

features in data. As a deep learning model is trained, it automatically detects features, also known

as feature learning or representation learning, and can then classify each case.

2.1.1 Shallow Learning Representation

A shallow learning representation is utilized to provide a mathematical look under the hood

of the deep learning model presented in this paper. A shallow learning model consist of an input

layer, a single hidden layer, and an output layer, whereas deep learning models can be comprised

of multiple inputs and hidden layers, forming the basis of a neural network. Figure 2.1 visualizes

the shallow learning model discussed in the subsequent paragraphs.

Figure 2.1 single hidden layer neural network.

 The input layer is comprised of a vector of elements 𝑥1 to 𝑥𝑛. For this paper’s purposes,

the input vector is the iterative history for a single aerodynamic coefficient from a single simulation.

4

The super script denotes which layer is being referenced, layer 0, 1, 2 corresponding to input,

hidden, and output layer.

𝑥[0] = (𝑥1, 𝑥2, … , 𝑥𝑛−1,𝑥𝑛) (2.1)

Each neuron in the hidden layer takes the full input vector as an input, performs two

operations, and outputs a single value. The first operation is each input element multiplied by a

corresponding weight plus a corresponding bias. The second operation is an activation function,

which determines the output of the neuron. For this example, the hidden layer utilizes a rectified

linear unit (ReLu) activation function. These two steps for the hidden layer are presented in

vectorized form in questions 2.2 and 2.3. A depiction of the ReLu activation function is presented

in Figure 2.2.

𝑧[1] = �⃑⃑⃑⃑�[1]�⃑�[0] + �⃑⃑�[1] (2.2)

�⃑�[1] = 𝜙(𝑧[1]) (2.3)

𝑊ℎ𝑒𝑟𝑒, 𝜙(𝑧) = {
0 𝑖𝑓 𝑧 ≤ 0
𝑧 𝑖𝑓 𝑧 > 0

(2.4)

Figure 2.2. ReLu activation function graphed.

 The number of neurons in the output layer will correspond to the number of classes.

Therefore, a binary classification problem utilizes a single neuron. For this example, the single

neuron implements a sigmoid activation function is used to return values between 0 and 1. Like

the hidden layer, the inputs of the output layer are first multiplied by the weights in the output

layer. A depiction of the sigmoid activation function is presented in Figure 2.3.

5

𝑧[2] = �⃑⃑⃑⃑�[2]�⃑�[1] + �⃑⃑�[2] (2.5)

�⃑�[2] = 𝜎(𝑧[2]) (2.6)

𝑊ℎ𝑒𝑟𝑒, 𝜎(𝑧) =
1

1 + 𝑒−𝑥

(2.7)

Figure 2.3. sigmoid activation function graphed.

 For a binary classification problem, one label would correlate to outputs greater than 0.5,

while the other label would correlate to values less than or equal to 0.5.

{
𝐿𝑎𝑏𝑒𝑙𝑎 𝑖𝑓 𝜎(𝑧[2]) ≤ 0.5

𝐿𝑎𝑏𝑒𝑙𝑏 𝑖𝑓 𝜎(𝑧[2]) > 0.5

(2.8)

 A loss function is used to ascertain how close the output layer’s output was to the correct

answer. It does so by comparing the output to the correct label. Equation 2.9 presents the binary

cross-entropy loss function. In this equation, 𝑦 represents the true value, 0 or 1, and 𝑝 represents

the neural network output.

𝐻 = −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝))

(2.9)

 Training a neural network often refers to adjusting the weights and biases to minimize the

loss function. This can be done through optimization methods such as gradient descent.

6

2.1.2 TensorFlow API

 TensorFlow[14] is an end-to-end, open-source artificial intelligence (AI) framework

which provides high level application programming interfaces (API). Machine learning models

built with TensorFlow use a hierarchy of APIs. Low-level APIs perform the bulk of mathematical

operations and are implemented behind the scenes in high-level APIs. Mid-level APIs are the

building blocks of a model, such as data transformations, neuron layers, and loss functions. High

level APIs contain many of the tools needed for building models[15].

Figure 2.4. TensorFlow API hierarchy [15]

The high-level API, Keras, specializes in deep learning, and is therefore employed in each

model. Within Keras, there are two main APIs for building models. First is a sequential API, which

as the name may imply, each layer is built in a sequence one atop another. This is a more intuitive

API, and only takes a single input and gives a single output. The second method is a functional

API. The functional API is more flexible and allows branching and merging of layers, allowing

for multi-input models.

2.1.3 Applied TensorFlow

 TensorFlow is a powerful and popular machine learning framework that has been widely

adopted in industry. Although machine learning algorithms have not previously been applied to

classifying CFD convergence, there are similar model types and structures that can suggest best

practices.

 The Modified National Institute of Standards and Technology (MNIST) dataset consists

of 70,000 28x28 pixel images of handwritten digits 1 through 10 and is commonly used as an

introduction to machine learning. A multi-class convolutional neural network (CNN) is used to

extract feature data from each image and properly classify the digit. A study seeking to demonstrate

TensorFlow’s capabilities examined six different activation functions for the MNIST dataset. An

7

activation function defines the output of a neuron and can be thought of as the on and off switch

for a single neuron. For 60,000 training samples and 10,000 testing samples, the ReLu activation

function provided the best accuracy, 98.43%[16].

 Similarly, another study sought to use a CNN to classify 3670 224x224 RGB images into

five classes: rose, daisy, dandelion, sunflower, and tulip. The models utilized the Keras application

MobileNet, a general architecture designed to maximize CNN accuracy while limiting

computational resources. This study achieved greater than 90% classification accuracy for each

flower, and demonstrated that model size influences accuracy[17].

 Lastly, a study used a TensorFlow deep learning neural network to predict asthma severity

in patients. The HCUP National Inpatient Sample 2011 Database and the Medical Information

Mart for Intensive Care III database were used for training the model. The key features included

the patient’s age, number of chronic conditions, admission month, length of stay, and number of

comorbidities. Using a three-layer deep learning neural network, the national database achieved

an accuracy of 86%, and the local hospital database achieved in the lower 90’s. The same model

was used for both datasets, and differences in accuracy are attributed to local environmental

influences being better features in the hospital dataset[18].

8

3. Binary Classification Model Development

It is important to first define the terms associated with the model and its architecture. Each

model is a supervised binary classification deep learning model with either single or multiple

inputs depending on the Keras API. Breaking each part of the description down, supervised

learning is when feature data comes with an associated label, meaning the model is training while

knowing the correct answer. Binary classification requires that each sample can only be labeled as

one of two groups. Deep learning refers to a multi-layer, iterative machine learning model that

uses back propagation to adjust internal parameters to minimize a loss function. In TensorFlow,

the number of iterations a model implements are known as epochs. Finally, clarification is needed

when discussing model inputs. The sequential API takes a single input tensor, where each

dimension above two is a feature variable. The functional API has multiple input branches, where

each input is a single feature variable tensor.

Three models were created to initially develop best practices and model architecture: a

single feature variable sequential API model; a multi-feature variable sequential API model; and

a multi-feature variable function API model. The KerasTuner[19] framework is implemented on

the third model to demonstrate hyperparameter optimization.

3.0 Split Input Data

The dataset used to initially determine best practices is different form the input data used

to train the implemented model. Because the quality of the input data is crucial, the proper labeling

was determined by surveying a professional practitioner. The survey is quite time intensive and

therefore initial model development was performed in parallel with a pseudo dataset. The results

of the survey and the final model are discussed in chapter 5.

The pseudo dataset used to train and validate each deep learning model consists of 600

samples, 300 converged cases and 300 not yet converged cases. Each coefficient from a sample

represents a feature variable and the input features are the iterative history for each coefficient.

The coefficients used as feature variables are the axial force coefficient (CA), side force coefficient

(CY), normal force coefficient (CN), and pitching moment coefficient (CLM). 300 cases varying

Mach number and angle of attack were run using the CFD software FUN3D. Each case used a

simplified geometry, slightly reminiscent of the Atlas V-401, referred to as the common launch

vehicle (CLV). The geometry is depicted in figure 3.1.

9

Figure 3.1 common Launch Vehicle

Each of the 300 cases are assumed to be correctly labeled as PASS. The last 1000 iterations

of each case are used as features and labeled “PASS”. To create the not yet converged cases,

iterations 800 to 1800 were extracted and given the label “EXTEND”. This assumption is sufficient

for comparing model architectures, but, after further inspection of the input data, and confirmed

later in the survey results, this assumption would have been inappropriate for the training the final

model. The features for five cases are depicted for each feature variable in Figures 3.2 through 3.5.

Figure 3.2. comparison between label data for CA

10

Figure 3.3 comparison between label data for CY

Figure 3.4 comparison between label data for CN

11

Figure 3.5 comparison between label data for CLM

Each force coefficient depicts less variation in the feature data associated with the PASS

label, particularly in the latter half of the case features. For cases 0 and 50, their local mean

continues to drift in the latter iterations, and an argument can be made that these cases have not

yet converged. Alternatively, cases 100 and 150’s features for the EXTEND label appear more

similar to converged cases.

3.1 Single Feature Variable Sequential Model

The simplest of the three models is the single feature variable binary classification model

using the Keras sequential API. This model takes a single tensor input containing only one force

coefficient. Given the relatively low number of training parameters (summation of layer input

features multiplied by neuron density), this model completes training for epochs on the order of

101. To train and validate the model, 80% of the dataset was devoted to training, with the other

20% being used for validation. The model summary and validation results are provided in figure

3.6.

The first dense layer is the input layer, and its output shape is the number of neurons

contained within that layer. The next two layers are referred to as hidden layers and are where

neurons receive weighted inputs and output values according to activation functions. A rectified

linear activation function (ReLu) is implemented in each hidden layer. The ReLu activation

function returns the input as is if the input is positive and returns zero if the input is negative and

is the most popular activation function for deep neural networks. The final layer is the output layer

and uses the sigmoid activation function to produce a single output value between 0 or 1. A

threshold of 0.5 determines if the sample is classified as either PASS or EXTEND.

12

Table 3-1. Multi-Feature Variable Binary Classification Model Summary

Model: "single feature variable sequential API"

__

Layer (type) Output Shape Param #

===

 dense_0 (Dense) (None, 50) 75050

 dense_1 (Dense) (None, 25) 1275

 dense_2 (Dense) (None, 10) 260

 dense_3 (Dense) (None, 1) 11

===

Total params: 76,596

Trainable params: 76,596

Non-trainable params: 0

__

CA: validation loss, validation accuracy: [0.3647, 0.9167]

Execution time in seconds: 9.77

CY: validation loss, validation accuracy: [0.3928, 0.9000]

Execution time in seconds: 9.37

CN validation loss, validation accuracy: [0.4053, 0.8667]

Execution time in seconds: 11.10

CLM validation loss, validation accuracy: [0.5372, 0.7500]

Execution time in seconds: 10.10

How far the output value is from either 0 or 1 influences the output of the model’s binary

cross entropy loss function. The objective function for this model is binary accuracy. The general

structure of ReLu hidden layers followed by a sigmoid output layer, with a binary cross entropy

loss function and binary accuracy cost function is consistent across all three models.

3.2 Multi-Feature Variable Sequential Model

 The multi-feature binary classification model is constructed very similar to the single-

feature model. Instead of an input tensor containing only a single feature variable, now its

dimensionality has increased to pass through four feature variables: CA, CY, CN, CLM. The

trainable parameters correlate linearly with the number of feature variables. To cope with this

added complexity, epochs are needed on the order of 103.

13

Table 3-2. Multi-Feature Variable Binary Classification Model

Model: "multi-feature variable sequential API"

__

Layer (type) Output Shape Param #

===

 dense_0 (Dense) (None, 64) 256,000

 dense_1 (Dense) (None, 32) 2080

 dense_2 (Dense) (None, 16) 528

 dense_3 (Dense) (None, 8) 136

 dense_4 (Dense) (None, 1) 9

===

Total params: 258,753

Trainable params: 258,753

Non-trainable params: 0

__

test loss, test acc: [0.0258, 1.0]

Execution time in seconds: 335.94

The test accuracy of this model exemplifies the need for multiple feature variables. The

highest accuracy achieved by the singe feature variable sequential model was 91.67%; whereas

100% accuracy was achieved by the multi-feature variable sequential model. The tradeoff comes

in the greater execution time of the multi-feature variable sequential model.

3.3 Multi-Input Functional Model

Keras functional API allows for network branches, which take single feature variable

tensors as inputs, processes the features through multiple hidden layers, and then merges the

outputs back into a single tensor prior to the output layer.

 The multi-feature variable functional model outperformed the multi-feature variable

sequential model in every metric. Available in figure 3.9, the multi-feature variable functional

model similarly achieved perfect accuracy, but in half the time for the same epochs and achieved

a test loss two orders of magnitude less than the multi-feature variable sequential model. For these

reasons, the function API is implemented for further model optimization

14

Table 3-3. Multi-Input Binary Classification Model Summary

Model: “multi-input functional API "

__

Layer (type) Output Shape Param # Connected to

===

CA (Input Layer) [(None, 1000)] 0 []

CY (Input Layer) [(None, 1000)] 0 []

CN (Input Layer) [(None, 1000)] 0 []

CLM (Input Layer) [(None, 1000)] 0 []

dense (Dense) (None, 128) 128128 ['CA[0][0]']

dense_4 (Dense) (None, 128) 128128 ['CY[0][0]']

dense_8 (Dense) (None, 128) 128128 ['CN[0][0]']

dense_12 (Dense) (None, 128) 128128 ['CLM[0][0]']

dense_1 (Dense) (None, 40) 5160 ['dense[0][0]']

dense_5 (Dense) (None, 40) 5160 ['dense_4[0][0]']

dense_9 (Dense) (None, 40) 5160 ['dense_8[0][0]']

dense_13 (Dense) (None, 40) 5160 ['dense_12[0][0]']

dense_2 (Dense) (None, 64) 2624 ['dense_1[0][0]']

dense_6 (Dense) (None, 64) 2624 ['dense_5[0][0]']

dense_10 (Dense) (None, 64) 2624 ['dense_9[0][0]']

dense_14 (Dense) (None, 64) 2624 ['dense_13[0][0]']

dense_3 (Dense) (None, 8) 520 ['dense_2[0][0]']

dense_7 (Dense) (None, 8) 520 ['dense_6[0][0]']

dense_11 (Dense) (None, 8) 520 ['dense_10[0][0]']

dense_15 (Dense) (None, 8) 520 ['dense_14[0][0]']

concatenate (Concatenate) (None, 32) 0 ['dense_3[0][0]',

 'dense_7[0][0]',

 'dense_11[0][0]',

 'dense_15[0][0]']

dense_16 (Dense) (None, 36) 1188 ['concatenate[0][0]']

dense_17 (Dense) (None, 15) 555 ['dense_16[0][0]']

dense_18 (Dense) (None, 9) 144 ['dense_17[0][0]']

dense_19 (Dense) (None, 12) 120 ['dense_18[0][0]']

dense_20 (Dense) (None, 1) 13 ['dense_19[0][0]']

===

Total params: 547,748

Trainable params: 547,748

Non-trainable params: 0

__

test loss, test acc: [0.0009, 1.0]

Execution time in seconds: 170.20

15

3.4 Hyperparameter Optimization

 Each of the three models previously presented were constructed through a heavily manual

iterative process of educated tinkering. To better optimize a TensorFlow model, the KerasTuner

optimization framework should be utilized. The KerasTuner framework introduces

hyperparameters, allowing for internal model parameters, such as number of hidden layers or

activation functions, to become variables. Eleven hyperparameters were given a small range of

two to four values. Given many hyperparameters, an optimization study with adequate spatial

resolution is extremely computationally expensive.

To mitigate computational cost, a Bayesian optimization approach is used to optimize the

set of hyperparameters. Bayesian optimization is a probabilistic approach that considers already

tested combinations to sample the next combination. Randomly generated samples can be used as

initial training data for Bayesian optimization. If no amount of initial random seeds is specified,

TensorFlow will randomly generate samples 3 times the dimensionality of the hyperparameter space.

An example of a set of hyperparameters in presented in table 3.1. The best performing model is

tracked as trials progress.

Table 3-4. Example of hyperparameter combination when beginning Bayesian optimization.

Search: Running Trial #1

Value Best Value so Far HyperParameter

192 ? input density

3 ? n_layers_branch

24 ? input_merge_density

3 ? n_layers_merge

40 ? dense_0_units_branch

8 ? dense_1_units_branch

24 ? dense_2_units_branch

12 ? dense_0_units_merge

12 ? dense_1_units_merge

18 ? dense_2_units_merge

0.001 ? learning_rate

Each trial run is stored in event files that can be viewed with TensorBoard. TensorBoard

is a visualization tool for tracking metrics and evaluating sampling coverage, and was used to

confirm sufficient epochs. The Python code for this model can be found in Appendix D.

16

3.5 Model Sensitivity to Number of Features

Determining the number of features and feature variables is a difficult question. To offer a

brief insight in this problem, a study was performed to evaluate the sensitivity of the model’s

performance to the number input features per feature variable. Three feature amounts are compared

in Figures 3.10 and 3.11. The final 500, 1000, 1500 consecutive iterations for each force coefficient

comprise PASS cases, while iterations 800:[1300,1800,2300] comprise EXTEND cases. For each

amount of input features, 75 hyperparameter combinations were evaluated using Bayesian

optimization. To ensure each model converged, an additional 200 training epochs were used for each

additional 500 features. 300 training epochs were used for the initial 500 features. Increasing the

number of epochs results in the computational time required for training a single hyperparameter

combination more than doubles between the 500 and 1500 features.

Figure 3.6 Validation Binary Accuracy of Models during Hyperparameter Optimization

17

Figure 3.7 Validation Binary Accuracy of Models during Hyperparameter Optimization

 As seen in Figures 3.6 and 3.7, each feature number variation achieved excellent validation

accuracy and on average excellent validation loss. As the number of input features increase, the

validation loss increases for more model architectures. This study insinuates that for this training and

validation dataset an optimized model is not particularly sensitive to the number of input features.

However, this result can be attributed to the split input data referenced in ection 3.0. Splitting each

CFD case introduces unique differences that may not exist in a higher quality training dataset.

Knowledge pertaining to the nature of the CFD cases and the physical quantities of interest should

guide the type of input feature variables and number of features per feature variable. Half of the 300

cases are below Mach 1.10 and contain unsteady behavior in their iterative history. Considering this,

500 iterations may be insufficient for capturing the transient frequency.

18

4. Simple CFD Convergence Criteria

A common convergence criterion is to monitor physical quantities of interest for

asymptotic behavior. If the quantity of interest does not change by a specified amount over a

specified number of iterations, then the simulation has converged on a solution. The criteria can

be expanded to track multiple quantities of interest with varying required precision.

 Two simple convergence criteria are developed in this chapter and are later used as a

comparison against an optimized multi-feature variable functional model in chapter 6. The first is

a standard algorithm determining the maximum change across a specified number of iterations.

The second algorithm also checks for asymptotic behavior, but first smooths the iterative history

to account for oscillations.

4.0 Asymptotic Criterion

Although one of the simplest CFD convergence criteria, checking for asymptotic behavior

is one of the most widely implemented algorithms. Both industry giants, Siemen’s STAR-CCM+

and Ansys Fluent have integrated the monitor into their respective programs. To check for

asymptotic behavior, simply determine the maximum and minimum values in the desired iteration

range. If the difference between these values exceeds the required precision, then the simulation

continues.

A change of less than 0.001 over the last 500 iterations for every force coefficient is deemed

sufficient for classifying a solution as converged.

{
𝑃𝐴𝑆𝑆

 𝐸𝑋𝑇𝐸𝑁𝐷

𝑖𝑓 |max(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑔𝑒) − min(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑔𝑒)| < 0.001

𝑖𝑓 |max(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑔𝑒) − min(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑛𝑔𝑒)| ≥ 0.001
(4.1)

 The precision and iteration window were chosen to roughly match the PASS/EXTEND

ratio of the survey results.

4.1 Asymptotic Criterion with Feature Smoothing

For subsonic and transonic Mach numbers, force coefficient plots produced in FUN3D can

contain oscillations as a result of actual physical unsteadiness. These oscillations can have a

relatively constant mean and be classified as converged solutions, but the large amplitude of the

oscillations prevent a standard asymptotic algorithm from being applied. To remedy this, the

iterative history is smoothed to allow for an asymptotic algorithm to be applied. An example of

feature smoothing is depicted in Figure 4.1.

19

Figure 4.1 Feature Smoothing of an Oscillatory Iterative History

 The feature smoothing was performed by stepping though averaging windows of 100

iterations. The first value would be the average of iterations 0 to 100, the second value would be

the average of iterations 1 to 101, and so on and so forth. Potential limitations of this method are

if the frequency is greater than the specified window, then the smoothed features could be

oscillatory. Once the features have been smoothed, simply apply the previous asymptotic check.

20

5. Final Machine Learning Model

Referencing the best practices learned and studies performed in chapter 3, a multi-input

functional model which samples 1000 iterations was selected. The following sections describe the

training and validation dataset, the final model architecture, and preliminary convergence criteria

comparisons using the training and validations dataset.

5.0 Training and Validation Dataset

To create the training and validation dataset, an expert practitioner of FUN3D was

surveyed via a dash app hosted by Heroku. The survey consists of the 300 CFD cases referenced in

section 3.0. Each coefficient’s iterative history can be viewed interactively using the Python graphing

library Plotly. This interface allowed the expert full control to ensure a presented range or scale

would not bias their decision. No information about the case was provided. The full survey can be

found at https://jacket-sculpture-silica-g8mp.herokuapp.com/. Based on the expert’s classification,

117 out of the 300 cases were labeled as PASS. From the first half of the cases, where the Mach

number is 1.10 or less, 38 cases were labeled as PASS. A random 80% of the dataset was used for

training, and 20% was used for validation and optimizing the hyperparameters.

5.1 Final Model Architecture

The final model architecture was selected from the model sensitivity study conducted in

section 3.5 and is depicted in figure 5.1. The model selected achieved the lowest validation loss

while tuning the hyperparameters. Although this was expected to be the final model, for reasons

discussed in chapter 6, a second model that considered a range of 2000 iterations was trained and

optimized. The most notable change between these two models was an increase in the input dense

layer from 192 neurons to 500 neurons. The second model was added later in the project, and

results in chapter 5 do not depict the second model. Therefore, all subsequent references to

machine learning model in this chapter refer to the machine learning model which samples 1000

iterations.

https://jacket-sculpture-silica-g8mp.herokuapp.com/

21

Figure 5.1. Multi-Input Binary Classification Model Structure

5.2 Test and Validation Dataset Results

For results below, the machine learning model was asked to make a prediction for 100% of

the 300 cases used for training and validation. This was done to provide a full comparison between

the machine learning model and the simple algorithms.

22

Figure 5.2. Classification Results

 Although the bar plot may infer that the models have similar predictions, table 5-1 tells

otherwise. The expert disagreed with the machine learning model on 4% of cases and the asymptotic

model on 33% of cases. Even the asymptotic model and the asymptotic model with feature

smoothing disagreed on 17% of cases. The bottom row of the table states how many cases were

labeled PASS by only that model.

Table 5-1. Disagreements between Labels
 Expert ML Model Asymptotic Asymptotic w/Smoothing

Expert 0 12 98 86

ML Model 12 0 92 88

Asymptotic 98 92 0 52

Asymptotic w/Smoothing 86 88 52 0

Accuracy % N/A 96.0% 67.3% 71.3%

Unique PASS 0 2 6 10

Below is a case example for each of the predictive models’ unique PASS label.

23

Figure 5.3. PASS labels unique to machine learning model.

24

Figure 5.4. PASS labels unique to asymptotic without feature smoothing.

25

Figure 5.5. PASS labels unique to asymptotic with feature smoothing.

26

6. Results for Test Datasets

Prior to this chapter, all results presented pertained to the training and validations dataset

discussed in section 5.0. These 300 cases were used to train and tune the machine learning

modules. To test the performance of the final model, two datasets were constructed. The first

dataset is comprised of 50 cases with Mach Numbers [2.6, 2,7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5],

total angles of attack [0.0, 4.0], and roll angles [0.0, 90, 180, 270]. The high Mach numbers

associated with this dataset allow the simulations to converge quite well and quickly. The second

dataset is comprised of 25 cases with Mach Numbers [0.5, 0.95, 1.10, 1.75, 2.5], angle of attacks

[0.0, 4.0], and roll angles [0.0, 90, 180, 270]. These cases take considerably longer to converge, with

the final few thousand iterations of Mach numbers 0.5, 0.95, and 1.10 being time averaged. Of these

25 cases, three cases experienced errors while running and are not included in the results.

6.0 High Supersonic Dataset Results

During the development of the code used to produce the results in this chapter, an unexpected

occurrence was observed. When sampling batches of iterations from a case, a machine learning

model may PASS a case only to then suggest extending the case in later samples. This means if only

the last iterations of the case were used to pass judgement, then a converged case may be incorrectly

labeled as EXTEND. Although more computationally expensive, stepping through batches of 1000

or 2000 iterations, 50 iterations at a time, proved successful for catching the “sweet spot” or regions

that are more representative of the training and validation dataset).

Six cases were not classified as PASS by the machine learning model referenced in section

5.1. which considers a range of 1000 iterations. These cases were not debatable, and clear failures

on the part of the machine learning model. To check if this was a cause of the iterations sampled, a

second machine learning model which considered a range of 2000 iterations was trained and

optimized. The new model which considered 2000 iterations only failed to PASS one case. Cases

that were not passed by the machine learning model were given NaN’s and not presented within the

results below. The absence of these cases is why the total number of iterations provided in the third

column of table 6-1 for both machine learning models are given an asterisk.

Columns 4 through 7 of table 6-1 provide the average normalized delta between the

coefficient at the last iteration of the window with which the case was classified PASS. Meaning if

the asymptotic convergence criteria labeled the case as pass by looking at the iterative history range

3000-3500, then the coefficient used corresponds to iteration 3500. The user could judge if a case

had converged every 500 iterations, while the automated methods could judge every 50 iterations

starting at 2500. The difference between the convergence predictive method and the user was

normalized by the difference between the maximum and minimum coefficient value from iteration

800 to the final iteration.

27

Table 6-1. Summary of each classification model’s performance for high supersonic CFD cases.

 PASS EXTEND ∑ 𝑰𝒕𝒆𝒓𝒔 ∆𝑪𝑨̅̅ ̅̅ ̅̅

[%]
∆𝑪𝒀̅̅ ̅̅ ̅̅

[%]
∆𝑪𝑵̅̅ ̅̅ ̅̅

[%]
∆𝑪𝑳𝑴̅̅ ̅̅ ̅̅ ̅̅

[%]
User 50 0 161,500 - - - -

ML Model –

1000 Iterations
44 6 110,200* 0.49 0.69 0.70 0.81

ML Model –

2000 Iterations
49 1 123,300* 0.50 0.75 0.71 0.77

Asymptotic 50 0 126,000 0.51 0.74 0.73 0.76

Asymptotic

w/Smoothing
50 0 125,350 0.51 0.75 0.74 0.78

 As seen in table 6-1, there is little to differentiate each classification method from another.

Each model achieved a normalized difference in coefficient of less than 1%, and only differs from

every other method a few hundredths of a percent. The main difference is the cases the machine

learning models did not correctly label as PASS. Even if these cases had been included, as a

collective, the models not only achieved solutions on average within 1% of the user but did so in

roughly 23% fewer iterations.

Figures 6.1-6.5 depict the individual cases which makeup the values in Table 6-1. For

figure 6.1, positive values in the difference between the number iterations required to label a case

as PASS correlate to a lesser number than the user. Although the x-axis simply labels the cases 0

through 49, they are also ordered so that every five cases the Mach number increases. This is also

true for the figures presented in section 6.1.

a) b)

Figure 6.1. Difference in iterations taken to be classified as PASS.

a) 1000 iteration range ML model. b) 2000 iteration range ML model

28

a) b)

Figure 6.2. Difference in CA.

a) 1000 iteration range ML model. b) 2000 iteration range ML model

a)

b)

Figure 6.3. Difference in CY.

a) 1000 iteration range ML model. b) 2000 iteration range ML model

29

a)

b)

Figure 6.4. Difference in CN.

a) 1000 iteration range ML model. b) 2000 iteration range ML model

a)

b)

Figure 6.5. Difference in CLM.

a) 1000 iteration range ML model. b) 2000 iteration range ML model

6.1 Ascent Dataset Results

The ascent dataset was expected to challenge both the simple algorithms and machine

learning models. Cases with a Mach number 1.10 or below can contain iterative histories

displaying patterns indicative of transient flow features. Although half of the training and

validation data consisted of simulations where the Mach number was 1.10 or below, only 38 of the

150 cases were labeled as PASS.

30

Table 6-2. Summary of each classification model’s performance for ascent CFD cases.

 PASS EXTEND ∑ 𝑰𝒕𝒆𝒓𝒔 ∆𝑪𝑨̅̅ ̅̅ ̅̅

[%]
∆𝑪𝒀̅̅ ̅̅ ̅̅

[%]
∆𝑪𝑵̅̅ ̅̅ ̅̅

[%]
∆𝑪𝑳𝑴̅̅ ̅̅ ̅̅ ̅̅

[%]
User 22 0 243,750 - - - -

ML Model –

1000 Iterations
18 4 43,050* 2.21 4.28 4.57 3.81

ML Model –

2000 Iterations
21 1 60,550* 2.94 3.73 1.92 1.82

Asymptotic 22 0 59,650 3.41 3.42 4.31 3.26

Asymptotic

w/Smoothing
22 0 57,300 3.38 3.43 4.33 3.25

As seen in table 6-2, the machine learning model which samples 2000 iterations achieved

better coefficient deltas than the machine learning model which samples 1000 iterations and the

samples algorithms. Like the high supersonic dataset, the machine learning model which samples

1000 iterations failed to classify four cases, and the machine learning model which samples 2000

iterations failed to classify one case. As a collective, the models decreased the total iterations by

roughly 75%.

Figures 6.6-6.10 depict the individual cases which makeup the values in Table 6-2. Similar

to section 6.0, positive values in the difference between the number iterations required to label a

case as PASS correlate to a lesser number than the user. Additionally, every five cases the Mach

number increases. Cases 0 to 14 represent the subsonic and transonic regime, and are responsible

for the significant decrease in iterations, and the increase in deltas between coefficients.

a)

b)

Figure 6.6. Difference in iterations taken to be classified as PASS.

a) 1000 iteration range ML model. b) 2000 iteration range ML model

31

a)

b)

Figure 6.7. Difference in CA.

b) 1000 iteration range ML model. b) 2000 iteration range ML model

a)

b)

Figure 6.8. Difference in CY.

b) 1000 iteration range ML model. b) 2000 iteration range ML model

32

a)

b)

Figure 6.9. Difference in CN.

b) 1000 iteration range ML model. b) 2000 iteration range ML model

a)

b)

Figure 6.10. Difference in CLM.

a) 1000 iteration range ML model. b) 2000 iteration range ML model

33

7. Conclusion

Machine learning is often looked to as a tool for automating complex processes. In the field

of computational fluid dynamics, properly classifying if a simulation has converged or not is one

such problem. In this paper, two deep learning neural networks, trained on either 1000 or 2000

iterations per force coefficient, were compared to expert judgement and monitoring for asymptotic

behavior with and without feature smoothing. A run matrix comprised of 50 supersonic cases and

a run matrix comprised of 25 cases simulating an ascent trajectory were used to test each

classification method. All methods achieved on average within 1% of the expert user’s results for

the supersonic run matrix and did so in fewer iterations for every case. For the ascent trajectory

matrix, the machine learning model which sampled 2000 iterations achieved on average between

1.82-2.94%; a machine learning model which sampled 1000 iterations achieved between 2.21-

4.57%; the asymptotic criteria achieved on average between 3.26-4.31%; and the asymptotic with

smoothing criteria achieved on average between 3.25-4.33%. Each method had their largest

differences for time accurate cases below Mach 1.10. For the machine learning models, this is

mostly likely due to the disproportionate percent of PASS cases below Mach 1.10 in the training

and validation dataset. One thing to note in the results is that the expert user’s values were accepted

as the baseline to compare each of the other methods. One of the purposes of pursing machine

learning models is to reduce the inconsistences between practitioners. Comparing test case results

for multiple expert users or running each test case for many more iterations could offer a more

suitable baseline.

These results exemplify a distinction for implementing convergence criteria for steady and

time accurate CFD cases. It is difficult to implement simple convergence methods across multiple

regimes, whereas a unique machine learning model can be trained and utilized for a specific

regime. Depending on the geometry of the flight vehicle being simulated, a steady solution may

be satisfactory for certain cases in the subsonic and transonic regimes. A multi-class machine

learning model could be capable of not only extending or passing cases but switching from a steady

solver to time accurate. Additionally, more complex analyses such as a Fast Fourier Transform or

Power Spectral Decomposition can be utilized to inform a machine learning framework on the

number of iterations to consider.

34

References

[1] Valueva, M. V., Nagornov, N. N., Lyakhov, P. A., Valuev, G. V., and Chervyakov, N. I.

“Application of the Residue Number System to Reduce Hardware Costs of the

Convolutional Neural Network Implementation.” Mathematics and Computers in

Simulation, Vol. 177, 2020. https://doi.org/10.1016/j.matcom.2020.04.031.

[2] Is Your CFD Simulation Misbehaving? A Troubleshooting Checklist for Challenging

Problems | Computational Fluid Dynamics (CFD) Blog – LEAP Australia & New

Zealand. https://www.computationalfluiddynamics.com.au/cfd-troubleshooting-checklist/.

Accessed Jun. 25, 2022.

[3] Rogers, S. E., Dalle, D. J., and Chan, W. M. “CFD Simulations of the Space Launch

System Ascent Aerodynamics and Booster Separation.” AIAA, Vol. 0778, 2015.

[4] Khalil, E. E. CFD History and Applications. CFD Letters. 2. Volume 4.

[5] Draelos, R. The History of Convolutional Neural Networks. towardsdatascience.com.

https://towardsdatascience.com/a-short-history-of-convolutional-neural-networks-

7032e241c483. Accessed Jun. 25, 2022.

[6] Li, X., Ao, Y., Guo, S., and Zhu, L. “Combining Regression Kriging With Machine

Learning Mapping for Spatial Variable Estimation.” IEEE Geoscience and Remote

Sensing Letters, Vol. 17, No. 1, 2020, pp. 27–31.

https://doi.org/10.1109/LGRS.2019.2914934.

[7] Wackers, J., Visonneau, M., Serani, A., Pellegrini, R., Broglia, R., and Diez, M. “Multi-

Fidelity Machine Learning from Adaptive-and Multi-Grid RANS Simulations.” 2020, pp.

18–23.

[8] Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Brenner, M. P., and Hoyer, S. “Machine

Learning–Accelerated Computational Fluid Dynamics.” Proceedings of the National

Academy of Sciences of the United States of America, Vol. 118, No. 21, 2021.

[9] Zhao, Y., Akolekar, H. D., Weatheritt, J., Michelassi, V., and Sandberg, R. D. “RANS

Turbulence Model Development Using CFD-Driven Machine Learning.” Journal of

Computational Physics, Vol. 411, 2020. https://doi.org/10.1016/j.jcp.2020.109413.

[10] Silva, V. B. R. E., and Cardoso, J. Chapter 3 - Overview of Biomass Combustion

Modeling: Detailed Analysis and Case Study. In Computational Fluid Dynamics Applied

to Waste-to-Energy Processes (V. B. R. E. Silva and J. Cardoso, eds.), Butterworth-

Heinemann, 2020, pp. 87–121.

[11] Cummings, R. M., Mason, W. H., Morton, S. A., and McDaniel, D. R. Applied

Computational Aerodynamics: A Modern Engineering Approach. Cambridge University

Press, 2015.

[12] Obukhov, O., Smirnov, A., and Gysak, O. Numerical and Experimental Investigation of

the Efficiency of Vaned Diffuser of Centrifugal Compressor. In 8th International

Conference on Compressors and their Systems, Woodhead Publishing, 2013, pp. 649–658.

[13] Hassan, Y. 12 - An Overview of Computational Fluid Dynamics and Nuclear

Applications. In Thermal-Hydraulics of Water Cooled Nuclear Reactors (F. D’Auria, ed.),

Woodhead Publishing, 2017, pp. 729–829.

[14] Martín~Abadi, Ashish~Agarwal, Paul~Barham, Eugene~Brevdo, Zhifeng~Chen,

Craig~Citro, Greg~S.~Corrado, Andy~Davis, Jeffrey~Dean, Matthieu~Devin,

Sanjay~Ghemawat, Ian~Goodfellow, Andrew~Harp, Geoffrey~Irving, Michael~Isard, Jia,

35

Y., Rafal~Jozefowicz, Lukasz~Kaiser, Manjunath~Kudlur, Josh~Levenberg,

Dandelion~Mané, Rajat~Monga, Sherry~Moore, Derek~Murray, Chris~Olah,

Mike~Schuster, Jonathon~Shlens, Benoit~Steiner, Ilya~Sutskever, Kunal~Talwar,

Paul~Tucker, Vincent~Vanhoucke, Vijay~Vasudevan, Fernanda~Viégas, Oriol~Vinyals,

Pete~Warden, Martin~Wattenberg, Martin~Wicke, Yuan~Yu, and Xiaoqiang~Zheng.

{TensorFlow}: Large-Scale Machine Learning on Heterogeneous Systems.

[15] Bisong, E. TensorFlow 2.0 and Keras. In Building Machine Learning and Deep Learning

Models on Google Cloud Platform: A Comprehensive Guide for Beginners, Apress,

Berkeley, CA, 2019, pp. 347–399.

[16] Ertam, F., and Aydın, G. Data Classification with Deep Learning Using Tensorflow. 2017.

[17] Abu, M. A., Indra, N. H., Rahman, A. H. A., Sapiee, N. A., and Ahmad, I. “A Study on

Image Classification Based on Deep Learning and Tensorflow.” International Journal of

Engineering Research and Technology, Vol. 12, No. 4, 2019, pp. 563–569.

[18] Do, Q., Son, T. C., and Chaudri, J. “Classification of Asthma Severity and Medication

Using TensorFlow and Multilevel Databases.” Procedia Computer Science, Vol. 113,

2017, pp. 344–351. https://doi.org/https://doi.org/10.1016/j.procs.2017.08.343.

[19] O’Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H., Invernizzi, L., and others.

KerasTuner.

36

Appendix A – Model Script

train-optimize-multifeature-fun.py

"""

This script imports features and label data, preps the data for

use, builds the model architecture, and optimizes the

hyperparameters of said model. These tasks are completed with

the help of three modules:

1) importdata.py

2) prepdata.py

3) buildmodel*.py

"""

Standard library modules

import os

import sys

import time

TensorFlow modules

from tensorflow import keras

from keras_tuner import tuners

from keras.callbacks import TensorBoard

Local modules

from modules import importdata

from modules import prepdata

from modules import buildmodel_binary_funAPI as bm

Add module folder to system path

module_path =

os.path.join(os.path.dirname(os.path.abspath(__file__)),'modules

')

print(module_path)

sys.path.insert(0, module_path)

37

Track run time

startTime = time.time()

time_tracker = int(time.time())

Training method

train_method = "import" # options ["import", "split"]

Define Basic Model Parameters

iters_conv = 1000 # Iteration count to consider

iters_start = 800 # Iterations to start from for EXTEND case

asym_threshold = 0.0015 # Max difference between values for

classification

iters_asym = 50 # Number of iterations to consider for

asymptotic

epochs_num = 10 # Number of training iterations

comb_num = 1 # Number of hyperparameter combinations

init_rand = 1 # Number of random searches prior to Bayesian Opt

train_vs_test = 0.80 # Percent of data devoted to training

Define up one of file directory

current_path =

os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

Define where data lives

feature_path = 'data/sls/run/10000/f3_dac0'

Label path

label_path = 'survey/results/clv-survey-results-ddalle.csv'

Files to load. Change the function 'update_graph' to match

files_coeff = ['CA','CY','CN','CLM'] # number of branches

dependent on coeff

Load coefficient data

38

coeffs, cases_num = importdata.features_mat(current_path,

feature_path, files_coeff)

if train_method == "split":

 '''Train based on splitting the iterative history'''

 # Convert features and labels into TF dataset

 dataset_train, dataset_test = prepdata.split(coeffs,

cases_num, iters_start, iters_conv, train_vs_test)

elif train_method == "import":

 '''Train based on surveyed labels'''

 # Import labels

 labels = importdata.labels_csv(current_path, label_path)

 # Import features

 features = prepdata.features(coeffs, cases_num, iters_conv)

 # Convert features and labels into TF dataset

 dataset_train, dataset_test = prepdata.dataset(features,

labels, train_vs_test)

else:

 print(

 'Invalid section. Choose either "import" or "split"'

)

 raise

Name of tensorboard log folder

NAME = "TF-FunAPI-{}FV-{}iters-{}-{}comb-

{}".format((len(files_coeff)),iters_conv,train_method, comb_num,

time_tracker)

For tracking and visualization

tb_path = "logs/{}".format(NAME)

tb = TensorBoard(log_dir=tb_path)

39

my_hyper_model = bm.MyHyperModel(iters_conv=iters_conv,

files_coeff=files_coeff)

BayesianOptimization - probabilistic approach that takes into

account already tested combinations to sample the next

combination

tuner = tuners.bayesian.BayesianOptimization(

 hypermodel=my_hyper_model, # model-building function

 objective='val_loss', # diff btwn true and predicted values

 num_initial_points=init_rand, # Randomly generated samples

for training

 max_trials=comb_num, # number of combinations to test

 executions_per_trial=1, # number of times to run each

combination

 directory=tb_path, # where to store optimization history

)

Equivalent to model.fit

tuner.search(

 dataset_train, # training dataset

 epochs = epochs_num, # training iterations

 validation_data = dataset_test, # test dataset

 callbacks=[tb], # TensorBoard callback to visualize results

 verbose=2, # verbose=2 is recommended when not running

interactively

)

Print results and save best model

print(tuner.results_summary()) # displays top 10

print(tuner.get_best_models()[0].summary()) # displays best

model

model = tuner.get_best_models(num_models=1)[0] # get best model

Save best performing model

model.save(

40

 os.path.join(

 current_path,

 "models/optimized/",

 NAME

),

 overwrite=True,

)

Save figure of model. Requirements: brew install

[svn/graphviz]

keras.utils.plot_model(

 model,

 os.path.join(

 current_path,

 "code/figs/{}.png".format(NAME)

),

 show_shapes=True

)

#Run Time

executionTime = (time.time() - startTime)

print('Execution time in seconds: ' + str(executionTime))

41

Appendix B – Model Modules

importdata.py

import os

import json

import scipy.io as sio

import pandas as pd

import numpy as np

from collections import defaultdict

def features_mat(current_path, file_path, files_coeff):

 """

 Import each coefficient's associated mat file. Compile into

 a list of dictionaries. [iterations, case] addition of nan

 since varying number of iterations.

 """

 file_ext = '.mat' # currently must be mat files

 # Load Data as list of dictionaries

 # [iterations, case] addition of nan since varying number of

 iterations

 coeffs = []

 for each in files_coeff:

 # loads each force coefficient as a dictionary

 coeffs.append(sio.loadmat(os.path.join(current_path,

file_path, each + file_ext)))

 # Determine sample size

 cases_num = len(coeffs[0][files_coeff[0]][0,:])

 return coeffs, cases_num

def labels_csv(current_path, label_path):

 # Initiate object

 labels = []

 # Combine path

42

 path = os.path.join(current_path, label_path)

 # Read in csv with labels

 labels_csv = pd.read_csv(path)

 for row in labels_csv['PASS (1 == PASS, 0 == EXTEND)']:

 labels.append(row)

 return labels

Full genericity

def makehash():

 return defaultdict(makehash)

def trials_json(current_path, metrics, trials):

 """

 Read each trial json and assign specified metrics to a

 nested dictionary.

 """

 # Grab metrics and save as nested dict

 trial_dict = makehash()

 for trial in trials:

 # Count number of trial

 totalDir = 0

 for base, dirs, files in

os.walk(os.path.join(current_path,'logs/{}/untitled_project'.for

mat(trial))):

 # print('Searching in : ',base)

 for directories in dirs:

 totalDir += 1

 dir_range = np.arange(0,totalDir,1)

43

 for dir in dir_range:

 # Define path to optimization logs

 if dir < 10:

 json_path =

'logs/{}/untitled_project/trial_0{}'.format(trial,dir)

 else:

 json_path =

'logs/{}/untitled_project/trial_{}'.format(trial,dir)

 # json file name

 json_file = 'trial.json'

 # open json file

 f =

open(os.path.join(current_path,json_path,json_file))

 # load json

 data = json.load(f)

 for metric in metrics:

 trial_dict[trial][dir][metric] =

data["metrics"]["metrics"][metric]["observations"][0]["value"]

 return trial_dict

44

prepdata.py

from math import nan, isnan

import numpy as np

import tensorflow as tf

def features(coeffs, cases_num, iters_conv, iters_consider =

None):

 """

 Removes nan from each case's coefficients. Take last group

 of specified iterations. Returns a list of feature variables

 and their features.

 """

 # Initialize data set inputs

 features = []

 # For each coefficient

 for count, coeff in enumerate(coeffs):

 # Get dict keys

 coeff_name = []

 for key in coeff.keys():

 coeff_name.append(key)

 # Initiate feature array

 feature = np.zeros((cases_num,iters_conv,len(coeffs)))

 # For each case, remove nan's and save coefficient

history

 for colm in range(len(coeff[coeff_name[3]][0,:])):

 # Remove nan per case

 coeff_colm =

coeff[coeff_name[3]][:,colm][~np.isnan(coeff[coeff_name[3]][:,co

lm])]

 # Save features and associated label

 if iters_consider == None:

45

 feature[colm,:,count] = coeff_colm[

 -iters_conv : iters_consider

]

 else:

 feature[colm,:,count] = coeff_colm[

 iters_consider-iters_conv : iters_consider

]

 features.append(feature[:,:,count])

 return features

def dataset(features, labels, train_vs_test):

 """

 Combines prepped features and imported labels into two

 tensorflow datasets. One for training and one for

 validation.

 """

 # Number of cases

 cases_num = np.size(features[0][:,0])

 # tf.data.Dataset API supports efficient input pipelines

 dataset = tf.data.Dataset.from_tensor_slices(

 (

 tuple(features),

 labels

)

)

 # Shuffle data

 dataset = dataset.shuffle(10000)

 # Allocate portion of data to either training or testing

46

 train_size = int(cases_num * train_vs_test)

 # Everything up to train_size

 dataset_train = dataset.take(train_size).batch(20)

 # Everything after train_size

 dataset_test = dataset.skip(train_size).batch(10)

 return dataset_train, dataset_test

def split(coeffs, cases_num, iters_start, iters_conv,

train_vs_test):

 """

 Remove nan from each case's coefficients. Split coefficient

 history into extend and pass cases based on beginning and

 end iterations. Returns features and associated labels as

 tensorflow datasets.

 """

 # Initialize data set inputs

 labels = []

 features = []

 # For each coefficient

 for count, each in enumerate(coeffs):

 # Get dict keys

 coeff_name = []

 for key in each.keys():

 coeff_name.append(key)

 # Initiate feature array

 feature = np.zeros((2*cases_num,iters_conv,len(coeffs)))

 # For each case, remove nan's and save coefficient

history

 for colm in range(len(each[coeff_name[3]][0,:])):

 # Remove nan per case

47

 coeff_colm =

each[coeff_name[3]][:,colm][~np.isnan(each[coeff_name[3]][:,colm

])]

 # Save features and associated label

 feature[colm,:,count] = coeff_colm[-iters_conv:]

 # Assign label

 if count == 0:

 labels.append(1)

 else:

 pass

 # delete this section

 for colm in range(len(each[coeff_name[3]][0,:])):

 # Remove nan per case

 coeff_colm =

each[coeff_name[3]][:,colm][~np.isnan(each[coeff_name[3]][:,colm

])]

 feature[cases_num+colm,:,count] =

coeff_colm[iters_start:iters_start+iters_conv]

 # Assign label

 if count == 0:

 labels.append(0)

 else:

 pass

 features.append(feature[:,:,count])

 # tf.data.Dataset API supports efficient input pipelines

 dataset = tf.data.Dataset.from_tensor_slices(

 (

 tuple(features),

 labels

)

)

48

 # Shuffle data

 dataset = dataset.shuffle(10000)

 # Allocate portion of data to either training or testing

 train_size = int(2*cases_num * train_vs_test)

 # Everything up to train_size

 dataset_train = dataset.take(train_size).batch(20)

 # Everything after train_size

 dataset_test = dataset.skip(train_size).batch(10)

 # Return tensorflow datasets

 return dataset_train, dataset_test

def smooth_features(files_coeff, cases_num, features):

 '''

 Account for oscillations in the coefficient iterative

 history by smoothing the features. Walks through features

 and averages across the interval range. Returns identical

 formatting as prepdata.features.

 '''

 # Initialize list

 features_smoothed = []

 for count,coeff in enumerate(files_coeff):

 # for coefficients

 holder = []

 for case in range(cases_num):

 # for number of cases

 x_del = 0

 avg_np = []

 for scan in range(100):

 # how many steps to walk

 x = -np.size(features[count][case,:])

49

 x = x + x_del

 average = []

 for interval in range(20):

 y = x + 100

 if y == 0 and x_del == 0:

 tmp =

np.average(features[count][case,x:])

 elif x > -100:

 tmp = np.nan

 else:

 tmp =

np.average(features[count][case,x:y])

 x += 100

 average.append(tmp)

 avg = np.array(average)

 avg_np.append(avg)

 x_del += 1

 holder.append(avg_np)

 coeff_smooth = []

 for case in range(cases_num):

 a = []

 for each in range(np.size(holder[0][0])):

 for every in range(9):

 a.append(holder[case][every][each])

 coeff_smooth.append(a)

 features_smoothed.append(coeff_smooth)

 for count,coeff in enumerate(files_coeff):

 for case in range(cases_num):

 features_smoothed[count][case] = [x for x in

features_smoothed[count][case] if isnan(x) == False]

50

 features_tmp = []

 for count,coeff in enumerate(files_coeff):

 features_tmp.append(np.array(features_smoothed[count]))

 features_smoothed = features_tmp

 return features_smoothed

51

predict.py

"""

This script is capable of two prediction types.

 1) Using a pre-trained machine learning model.

 2) By checking for asymptotic behavior

"""

import os

import numpy as np

import tensorflow as tf

def labels_model(model_name, features):

 '''

 Make prediction based on a pre-trained TensorFlow model.

 Returns list of predictions.

 '''

 # Define up one of file directory

 current_path =

os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(

__file__))))

 # Load tensorflow model

 model = tf.keras.models.load_model(

 os.path.join(

 current_path,

 "models/optimized/{}"

).format(model_name)

)

 # Continue training

 prediction = np.round(

 model.predict(

 features, # input sample

)

52

)

 return prediction

def labels_asymptotic(files_coeff, cases_num, features,

asym_threshold,iters_asym):

 '''

 Determine if the difference between the maximum and minimum

 coefficient values in the last specified iterations is below

 the asym_threshold argument. Return a list of labels based

 on the criteria

 '''

 # Number of coefficients

 coeff_num = np.size(files_coeff)

 # Initialize numpy array

 coeff_diff = np.zeros([cases_num,coeff_num])

 # For each coefficient

 for count,coeff in enumerate(files_coeff):

 # For each case

 for i in np.arange(cases_num):

 # max value

 coeff_max = np.max(features[count][i,-iters_asym:])

 # min value

 coeff_min = np.min(features[count][i,-iters_asym:])

 # difference between max and min

 coeff_diff[i, count] = (np.abs(coeff_max-coeff_min))

 # Initialize list

 diff_max = []

 # For each case

53

 for i in np.arange(cases_num):

 # Max value between coefficients

 diff = np.max(coeff_diff[i,:])

 diff_max.append(diff)

 # Initialize list

 labels = []

 # For each case

 for i in np.arange(cases_num):

 # Assign PASS if below threshold

 if diff_max[i] <= asym_threshold:

 labels.append(1)

 # Assign EXTEND otherwise

 else:

 labels.append(0)

 # Return list of labels

 return labels

54

buildmodel_binary_funAPI.py

import tensorflow as tf

from tensorflow import keras

from kerastuner.engine.hyperparameters import HyperParameters as

hp

from kerastuner import HyperModel

class MyHyperModel(HyperModel):

 def __init__(self, iters_conv, files_coeff):

 # Additional model arguments

 self.iters_conv = iters_conv

 self.files_coeff = files_coeff

 def build(self, hp):

 ''' Constructs the model's architecture. Includes a

 branch for each coefficient consisting of an input

 layer, hidden layers, and an output layer. Ends with a

 trunk which merges the branches and consist of an input

 layer, hidden layers, and an output.'''

 # hyperparameters

 # input layer density

 input_density = hp.Int(

 "input_density",

 min_value=128,

 max_value=192,

 step=32,

)

 # number of hidden layers in each branch

 n_layers_branch = hp.Int("n_layers_branch", 3,3)

 # input layer density when merging branches

 input_merge_density = hp.Int(

55

 "input_merge_density",

 min_value=18,

 max_value=36,

 step=6,

)

 # number of hidden layers after merge

 n_layers_merge = hp.Int("n_layers_merge",3,3)

 # Initialize layer input and output holders

 coeff_output = []

 coeff_input = []

 for coeff in self.files_coeff:

 coeff = coeff.lower()

 # define two sets of inputs

 input_coeff = keras.Input(shape=(self.iters_conv,),

name=coeff)

 # Define input layers

 dense_input_coeff = keras.layers.Dense(

 input_density,

 activation="relu",

 name='Branch-Hidden_Layer-0-{}'.format(coeff)

)

 # Branch for each input

 locals()[coeff] = dense_input_coeff(input_coeff)

 for i in range(n_layers_branch):

 # Define Hidden Layer

 dense_hidden = keras.layers.Dense(

 hp.Int(

 "dense_{}_units_branch".format(i),

 min_value=8,

 max_value=64,

 step=8,

56

),

 activation="relu",

 name='Branch-Hidden_Layer-{}-

{}'.format(i+1,coeff)

)

 locals()[coeff] = dense_hidden(locals()[coeff])

 locals()[coeff] = keras.Model(

 inputs=input_coeff,

 outputs=locals()[coeff]

)

 coeff_output.append(locals()[coeff].output)

 coeff_input.append(locals()[coeff].input)

 # combine the output of the two branches

 combined = keras.layers.concatenate(

 coeff_output

)

 # combined layers

 # Define Hidden Layer

 dense_merge = keras.layers.Dense(

 input_merge_density,

 activation="relu",

 name='Trunk_Hidden_Layer-0'

)

 m = dense_merge(combined)

 for i in range(n_layers_merge):

 # Define Hidden Layer

 dense_merge_hidden = keras.layers.Dense(

 hp.Int(

 "dense_{}_units_merge".format(i),

 min_value=9,

 max_value=21,

57

 step=3,

),

 activation="relu",

 name='Trunk_Hidden_Layer-{}'.format(i+1)

)

 m = dense_merge_hidden(m)

 m = keras.layers.Dense(1, activation="sigmoid",

name='Trunk-Output_Layer-Sigmoid')(m)

 # then output a single value

 model = keras.Model(

 inputs=coeff_input,

 outputs=m,

 name="Multi-Feature_Variable-Binary_Classification-

Functional_API"

)

 # Define optimizer

 opt = keras.optimizers.Adam(hp.Choice("learning_rate",

values=[1e-2,1e-3,1e-4]))

 # Configure model for training

 model.compile(

 # True if no activation function is used in final

layer

 # True may be more numerically stable. Applies own

sigmoid transformation

loss=keras.losses.BinaryCrossentropy(from_logits=False),

 optimizer=opt,

 metrics=[tf.keras.metrics.BinaryAccuracy()]

)

58

 return model

	1. Introduction
	2. Background
	2.0 CFD Convergence
	2.1 Deep Learning
	2.1.1 Shallow Learning Representation
	2.1.2 TensorFlow API
	2.1.3 Applied TensorFlow

	3. Binary Classification Model Development
	3.0 Split Input Data
	3.1 Single Feature Variable Sequential Model
	3.2 Multi-Feature Variable Sequential Model
	3.3 Multi-Input Functional Model
	3.4 Hyperparameter Optimization
	3.5 Model Sensitivity to Number of Features

	4. Simple CFD Convergence Criteria
	4.0 Asymptotic Criterion
	4.1 Asymptotic Criterion with Feature Smoothing

	5. Final Machine Learning Model
	5.0 Training and Validation Dataset
	5.1 Final Model Architecture
	5.2 Test and Validation Dataset Results

	6. Results for Test Datasets
	6.0 High Supersonic Dataset Results
	6.1 Ascent Dataset Results

	7. Conclusion
	References
	Appendix A – Model Script
	Appendix B – Model Modules

