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ABSTRACT 

 

The Design of Compact 0.5U Altitude Determination Control Systems 

Khiem Huu Gia Nguyen 

 

The current stat of the art of small satellite must meet high pointing requirements while 

operating under high constraint size, weight and power limitations. This paper’s purpose is to 

present a possible introduction of consumer electronics into creating end-to-end design hardware 

implementation and preliminary performance of a compact 0.5U Ventura ADCS module that fit 

inside of TechEdSat.  

 The tetrahedral quadrant of brushless DC motor is integrated with two MEMS IMUs , 

fluxgate magnetometer and  6 sun sensors laying out on 6 faces of the CubeSat. The electronics 

are distributed over a four-layer 95 mm x 89 mm printed circuit board assembly. The connectors 

interface used are Pico-Lock connectors as well as 28 AWG PTFE wire harness for space grade 

resiliency. 

 The hardware in the loop models was created in MATLAB/Simulink with the 

implantation of 3 Degrees of Freedom simulation of the dynamics of spacecraft IMU modeling, 

disturbances modeling and sensor fusion modeling. The hardware in the loop test bench shows 

that the module can deliver 1.2 mN*m peak torque and  2.2 x 10e-3 N*m*s wheel momentum. 

This would create a slew rate at around 17 minutes with a 0.2 degrees steady state error.  
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1. Introduction 

 

1.1 Motivation 

 

The current state of the art of the altitude determination control systems composed of 

actuators such reaction wheels, sensors such as gyroscopes, accelerometers, star tracker and sun 

sensor. These systems combined would allow extreme fine control for optical and 

communications pointing application. As satellite orbits Earth, there are several disturbances 

torques that are applied within its atmospheric, magnetic and gravitational conditions. A well-

qualified ADCS systems is capable of stabilizing and detumbling the spacecraft according to its 

mission profile. For large spacecraft bus in the geosynchronous orbit applications these elements 

tend to be distributed from several spaces In the spacecraft since the size of the components are 

too big.  

 However, smaller CubeSat application under 12U needs elements to be more compacted 

and extremely reliable for the environment of space. The same approach of building and tailoring 

CubeSat’s ADCS systems has been proven to be too expensive for its desired profile which make 

the mission more expensive. The power requirements of these extremely reliable approach have 

required too much power consumption which lead to high power systems budget for the attitude 

determination and control system (ADCS) especially the actors and the inertial measurement unit 

(IMU).  

 Several Attitude Determination and Control System (ADCS) configurations are currently 

being explored to optimize the control feedback mechanisms and reduce the overall mass of the 

subsystems. Configurations under consideration include tetrahedral, pyramidal, and skew 

arrangements of reaction wheels. Each of these designs is evaluated for its potential to enhance 

stability, control precision, and minimize the mass properties, which are critical factors in small 

satellite missions. There have been consideration to use high grade consumer electronics 

components to also cut down the cost [1]. 

To further compact the system, sun sensors could be integrated in near proximity to the actuators. 

This integration not only streamlines the ADCS architecture but also enhances the accuracy of 

attitude determination by reducing the time delay between sensor measurements and actuator 

response. 

Previous design of 0.5U compact systems need to go through a more through trade study as well 

as optimization for reliability. This approach necessitates that the CubeSat’s chassis be designed 

around the ADCS, with particular attention to the coupling between the control system and the 

optical or instrument payload that the CubeSat carries. By doing so, the structural design would 

inherently support the dynamic requirements of the ADCS while also ensuring that the payload 

remains stable and properly aligned during the mission. This holistic design strategy would 

potentially lead to a more efficient, compact, and lightweight CubeSat, maximizing both its 

functionality and performance in space. 
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1.2 Literature Review 

 

The overview of the literature review will be involved in a big picture subsystem of 

subsystems architecture decomposition of the Attitude Determination Control Systems. This 

includes the aspect of attitude determination of sun sensor, inertial measurement unit, and 

magnetometer. For attitude control aspect will cover reaction wheel/motor, hardware in the loop 

integration/testing, and the electronic reliability research have been performed on cost off the 

shelfs components. This literature review will attempt to cover the current subsystem component 

level challenges and identified the possible roadmaps as well as reliable existing 

components/systems. There will also be past critical design technical review report to be 

analyzed for operational feasibility.  

1.2.1 Attitude Determination Aspect 

 

The scheme of attitude determination are defined by multiple onboard sensors that make 

up the process of navigating the location and states of the vehicle during operations. 

1.2.1.1 Digital/Analog Sun Sensors 

 

Sun sensors are implemented to estimate and provide feedback of the direction of the Sun 

with respect to the spacecraft’s body frame for attitude determination. Modules of sun sensors 

are used for mission in LEO CubeSat instead of star tracker since they tend to be less expensive 

and more reliable. Sun sensors are detectors of infrared lights or within any other visible light 

spectrum with the function of measuring more than one to two sets of mounting bases and the 

incident incoming sunlight. The architecture of the sun sensor essentially uses photodiodes to 

detect light rays or photons from the sun where it the convert to digital or analog based signal for 

intensity presentation. The challenges of current design of sun sensor for CubeSat to meet the 

less than 5 degrees requirement is that they are very expensive to manufacture. So, one of the 

current techniques to make it cheaper to make an array of photodiodes with multiple cells to 

make it cheap despite sacrificing the mass [2]. 

 



2 

 

Figure 1.1. Analog vs digital Sun sensor [3]. 

 

There are two main types of miniature sun sensors configuration such are cosine 

detectors and quadrant detectors. To solve the compact issue and achieve low-cost quadrant 

detectors are much preferred in the current state of art. The main difference of quadrant detectors 

and cosine detectors is that quadrant sensors operate through a 2x2 array of photodiodes. While 

the cosine photocells use the current generated by the cell which is proportional to the cosine of 

the angle of incident of Sun rays. This means that they would need 4 suns sensors to obtain 

accurate coverage. As for specifications of CubeSat payload the desired sun sensor would have 

an accuracy of less than 5 degrees.  

As for the modeling and the algorithm computation of the sensor, the only challenge is 

the placement of the sensor such that it will follow the design of the array of photodiodes [4]. 

The incident angle can be calculated by processing the output detection or using a co-planar 

array. Filter can also be added to improve the characteristic of the Field of view and transfer 

function as well as reduce the electromagnetic interference by adhering to a good electronics 

packaging standard [5]. 

1.2.1.2 Inertial Measurement Unit 

 

The current state of art of IMU measures and reports on the spacecraft’s positions and 

acceleration by using the gyroscope and accelerometers micro-electromechanical systems 

(MEMS). Their readout rate is driven by the parameters of acceleration, angular velocity and 

magnetic field strength if magnetometer is involved to create a 9 Axis unit. It is part of the 

critical control systems feedback to maintain or change the orientation for operation commands. 

The current challenge for IMU in CubeSat especially for 9-Axis module is the extreme size of 

miniaturization and integration. Such problem for 9 axes come into the minimal power drawn 

and still be able to achieve accurate data and cost of precision. During integration process, the 

modularity of IMU is extremely important since they must be able to do unit test then 

immediately plug into the systems for the systems level test. Another challenge during operation 

launches the IMU experience shock and significant vibration therefore IMU packaging need to 

be robust to manage this force without constant calibration [6]. 
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 Current state of the art of IMU addressing the noise problem is to implement a technique 

called sensor fusion which means carrying multiple redundant IMUs as well as magnetometer on 

a different board to reduce coupling interference. Such filter also must be implemented in the 

algorithm to be surely and well calibrated at the unit test level. The MEMS packaging technique 

involved in semiconductor manufacturing process reduce the power consumptions and include 

more transistors than ever before which make bias stability metric extremely reliable [7]. 

1.2.1.3 Magnetometer  

 

Magnetometer is an essential element of the CubeSat’s orientation determination respect 

to the Earth’s magnetic field where the formation precision is critical for operation such as 

instruments and antennas telecommunications. Many missions use magnetic field mapping to 

prepare for the mission profile and trajectory. Magnetometer is critically used in sensor fusion to 

eliminate the error of drifting if using IMU as a sense of redundancy. One of the biggest 

challenges is the magnetic shielding interference from other on-board electronics such concerns 

are isolation  which tend to reduce the accuracy of magnetometer which desensitize the accuracy 

of the sensor fusion process [8]. 

This challenge can be addressed by using onboard magnetic packaging shielding such 

that the clipping architecture will cover the entire integrated circuits to prevent leakage of 

magnetic signal at MHz operation. There can also be a time-varying bias be corrected by 

compensation methods during hardware I the loop testing. There are also techniques used called 

ferromagnetic materials to account for distortion known as soft and hard iron effects to help 

compensate the readings. This therefore would couple with the location of the arranged in the 

compact ADCS systems where magnetometer would be placed as far from the mechanism or fast 

switching mechanism as possible. Such location can be found in the middle of the printed circuit 

board [9]. 

1.2.1.4 Attitude Control Aspect 

 

 Attitude determination and navigation allow the spacecraft the objectives within its 

concept of operation to feedback to the controller maneuvering operation of the spacecraft to the 

desired directions. This is where attitude control aspect comes into play with multiple methods 

for different applications. Many modern control techniques require fine or coarse pointing due to 

the type of payloads the spacecraft is carrying.  

1.2.1.5 Reaction Wheels and Motors 

 

 The reaction wheels subsystems are devices that provide active attitude control and serve 

as stabilization torque on the spacecraft. Depending on the moments of inertia from the design, 

they will have a peak momentum and maximum torque. By adding current to the motor which 

alternate the revolution per minutes allowing different axis to rotate assuming the reaction wheel 

fully align on the axis center coordinate frame [10]. The wheels can spin at different speed by 

digital pulse wave modulation form provide by the brushless direct current motor. This is one of 

the biggest challenges for CubeSat since the manufacturing tolerance and the redundancy won’t 

be as high due to cost saving compared to advanced big bus spacecraft. Therefore, having only 3 
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reaction wheels for each axis is a risk to be mitigated. Fortunately, the cheapest and most reliable 

solution that the industry is heading toward is to implement the four reaction wheels 

configuration for fault tolerance. Such configuration can be described as tetrahedral or skewed 

configuration in Figure 1.2. 

 

Figure 1.2. Four reaction wheels configuration [11]. 

 These arrangements of not aligning on the principal axes of the CubeSat main serve to 

create cross-coupling of x, y, and z components of the control dynamics scheme. The tradeoffs 

are that more power would need to be drawn to maintain same torque desired since the reaction 

wheels would all need to work together to perform spins [12]. This also reduce the torque on a 

single access as it allows redundancy for all three axes.  Many of current state of the art use 

extremely tight electronics packages such as Blue Canyon Technologies reaction wheel where 

their mass is quite heavy however producing good peak torque and high momentum capacity 

[13]. 

 Another challenge for motor miniaturization and compact integration is that the 

vibrations of four reactions wheel create significant interference when different modes of 
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operations are being switched. This occur when microcontroller send different signal to four 

motors with digital waveform producing electromagnetic interference to multiple sensors on 

board. This therefore require an Emi coating for isolation. For motors reliability the most 

concerning challenge is the wear and tear of the mechanical bearings with friction. Therefore, 

even though it is preferrable to used Brushless DC Motor there still need to be space lubricants 

for vacuum environment to prevent outgas that might condense on the payload which will 

jeopardize the mission. Another reason why Brushless DC motor is preferred is that it uses a 

three stages driving coils along with hall sensor or optical encoder to determine the rotor position 

when activating the coil phases [14]. 

 Mounting the wheel on the miniaturized motor’s shaft for CubeSat manufacturing and 

integration process is the biggest mechanical challenges due to its coupling to vibration effects. 

The alignment and balance must be perfectly balanced during rotation and the securing of the 

wheel must not offset and move along the shaft’s axis which will change the moment of inertia of 

the systems. To solve the issue of integration there has been several proven methods of using 

press fit and interference fit to fully secure the wheel. This provides accurate and solid 

connection without additional fasteners which decrease the mass. Another method is to use a set 

screw or gur hub to hold it in place however that will not be able to use for high torque 

application. Therefore, interference fit is the most viable option as well as laser welding to 

enhance the rigidity of the assembly [15]. 

1.2.1.6 Hardware-in-the-loop and Control 

 

 Hardware-in-the-loop simulation testing and control is a crucial part to verify/validate the 

embedded systems within the desired controlled environment. For any ADCS systems the testing 

involves at the systems level to seek responses under realistic conditions before deployment. The 

current development of cheap hardware in the loop (HIL) topology is a challenge since the 

expenses of equipment are quite high to capture everything within the real time operating 

systems. Thus, modeling a high-fidelity test stands and imitating the exact conditions of orbit is 

immensely challenging for small CubeSat project. The most notable subsystems that is 

challenging to perform HIL testing is the magnetorquer as well as reaction wheel since they 

required Helmholtz cage as well as air bearing fixtures which are very expensive to manufacture.  

A cheap current state of the art of a reaction wheel test systems is to introduce a gravity free 

systems and non-friction system through an air compressor. That air compressor must be filtered 

by an air dryer, air filter and air particle filter to reduce the moisture and fine particle which 

might turn int external forces or disturbances interfering with the results. The air in which are 

being blown into the hemispherical air bearing below the satellite ADCS mounted platform in 

Figure 1.3 [16]. 
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Figure 1.3. Reaction wheel HIL systems [16]. 

 As of the control of the hardware, the commands are generated by the main board 

microcontroller which defines a set of torque with the respective quaternion inputs of desired 

attitude into the controller where the plants are the reaction wheels with introduction of 

disturbances torques that loop to the IMU sensors as well as determination algorithm such as 

Kalman filters. There can also be sensor fusion as part of the hardware control loop.  The rotation 

of the module can be measured through standstill location. While the magnetometer and sun 

sensor can be integrated with each other. Triad technique to form a vector to verify the current 

position. After an intermediate position is determined, the magnetic vector and sun vector can be 

computed and passed to Kalman filter to resolve an accurate state estimation in noisy conditions.  

Often there will be a set of numerical simulations that feed to the simulated models the need into 

the hardware to complete the loop. However, such models requires very accurate depiction of the 

state as well as fine characteristics. The visualization and collection of telemetry will be 

displayed on application such as Grafana or Telemetry viewer since they are able to be accessed 

by serial ports communications [17]. 

 

Figure 1.4. Topology of hardware feedback loop [17]. 
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1.2.2 Electronics Packaging 

 

 Despite Miniaturization and compact design of space hardware saved mass and space 

usage, the effects is that it leads to increase in power density which makes thermal management 

become much more challenging. Due to limited surface area for heat dissipation passive cooling 

is essentially less effective and need the inference of active cooling. There is also a concern of 

thermal expansion which jeopardized the integrated circuit structural integrity over a wide 

temperature range from -40 degrees Celsius to 125 degrees Celsius. The most effective cooling 

methods that doesn’t add mass is to use high performing thermal interface material to distribute 

heats more evenly and will also focus on the designer of the printed circuit board that host these 

components. The junctions of the integrate circuit interface with the circuit board or to a heatsink 

that use radiative cooling which maximize the surface area exposed to space environment to 

radiate heat away from the electronic components [18]. 

 

Figure 1.5. Topology of avionics card stack [18]. 

Such examples of usage of thermal interface material and heat spreader can be depicted 

in Figure 1.2.3.  The TIM material in this cased are used to fill the microscopic air gaps between 

surfaces improving thermal conductivity between the card and the heat spreader.  

 Compact miniaturization concept also posed a vibration during launch which might 

create creeps or voids of the solder package. This is essentially display as a risk toward the 

photodiode sun sensor board. As the electronics are compact, the power density increases which 

couple into fatigue which also lead to cracks within the solder joints. One of the key methods is 

to use a dampening material as well as determine the load paths for PCB mounting. This would 

go hands in hands with the current industry proposed fasteners selections. Many of past research 

have leveraged FEA to predict the resonances to iterate their design much faster. The common 

suggested architecture has been to not place heavy components near the edge of PCB which can 

amplify the vibrations as well as to spread the weights of components to be even as much as 

possible. Achieving proper torque and preload will also be able to secure the PCB on the 

electronics chassis. Certain tests that need to be simulated are random vibrations, sinusoidal and 

shock vibrations according to the GEVS standard [18]. 
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1.3 Project Proposal 

 

The proposed project is to complete and optimize the development and integration of the 

custom compact attitude determination control systems. The project objective is to bring proof of 

concept of low cast and highly reliable electro0mechanical electronics architecture into the 

reaction wheel systems. There will also be a sun sensor board and magnetometer electronics 

board to complete the fundamentals of the ADCS control feedback loop systems. There will be 

three phrases to the projects which are hardware physical and model-based development, 

hardware in the loop control implementation, and verification & validation. 

1.3.1 Hardware and Model-Based Development 

 

 Model based architecture of the design is going to be captured in both Activity and 

Sequencing diagrams. The goal is to conduct a detailed analysis and thorough design parameters 

to come up with proper specifications require which is angular momentum and torque output 

with reference of minimizing power input. The modeling of sensors such as internal 

measurement unit, sun sensor, and temperature sensors are very critical for sensor fusions 

methodology control.  

 

Figure 1.6. Electrical topology of the tetrahedral board. 
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Figure 1.7. Electrical topology of sun sensor host board. 

As shown in Figure 1.2. Electrical Topology of Tetrahedral Board and Figure 1.3. 

Electrical Topology of Sun Sensor Host Board; both boards are connected to a UART and a 

Power rail to talk with the main CubeSat bus. There will be a model to dive deep into the 

definition of each component and their interfaces. The design of the physical hardware will 

follow the tetrahedral configuration mounting for controls redundancy as shown in Figure 1.2.1. 

The sun sensor board will compose of photodiodes quadrants using digital process output 

of intensity. Tetrahedral reaction will board will provide the control as well as the IMU host to 

feedback into the brushless direct current motor.  

1.3.2 Hardware -in-the-loop (HIL) and Control Implementation 

 

 The objective is to develop and control algorithms for reaction wheel systems with the 

emphasis of PID control schemes. The inputs and model will be based on quaternions for 

precision control. Sensor fusion and Kalman Filter implementation is also one of the goals to 

enhance the accuracy of the feedback data.  

1.3.3 Verification and Validation 

 

 The performance evaluation will be based on the angular and torque output as the 

specification of the project. There is also other specifications such as mass, power consumption 

and reliability as an acceptance criteria for the production. Thermal reliability of the electronic 
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components and architecture are evaluated under multiple printed assembly configuration. The 

vibration analysis will need to be performed as a qualification criterion for the product across 

with simulation analysis.  

1.4 Methodology 

 

1.4.1 Model Based Hardware Development  

 

 The Model Based systems architecture will be done on Cameo Systems Modeler. The 

block definition diagram are composed of major and minor components with their stereotypes 

and properties. Such attributions to the architectures are accuracy, range, power consumptions, 

mass, and thermal range. The second component will also be established to display the 

association of each block dependencies as well as the high-level flow down. The 

internal/interface block diagrams will contain the ports and systems activity that contain the data 

packages for each of the operation. 

 The electrical components such as the reaction wheel central printed circuit board and 

sun sensor circuit board host will be created in and Electronic Design Automation software 

called KiCad and will be fabricated through PCBWay. For the mechanical mounts and structures 

will be 3D printed with thermoplastics such as Nylon for prototype purposes. Fasteners and 

joints will be traded on threaded inserts assembly.  

1.4.2 Hardware-in-the-loop Control Implementation 

 

 The hardware in the loop scheme will be implemented in Matlab and Python. There are 

telemetry Viewer and Grafana applications as visualization of the telemetry output connected to 

the main hardware. There will be controls libraries leveraged to input quaternions model for 

hardware parameters evaluation both units test and systems test.    

1.4.3 Verification & Validation 

 

 For thermal reliability, a full model will be model and simulated in SolidWorks to 

simulate burn in conditions of the integrated circuit on the circuit board. Ansys or SolidWorks 

will be used to simulate the random vibration, shock and possible sine sweep operational 

conditions. Hand Calculations will also be used to verify and validate the results convergence 

[19]. 
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2. Attitude Determination and Control Subsystems Design 

 

2.1 Electrical Hardware 

 

 The electrical hardware architecture of the Ventura ADCS systems are composed of two 

independent printed circuit board assemblies which are the reaction wheel control wheel board 

and sun sensing determination board. 

2.1.1 Microcontroller 

 

 The microcontroller unit is a motorized integrated circuit to command, control and handle 

operations in an embedded system. A lower-level decompositions of a microcontroller includes a 

processor, input/output[I/O], peripherals and memory on a single chip. It is like a computer 

where it can connect to multiple sensors and collect data for a certain desired application. In this 

usage, the microcontroller is used to capture telemetry feedback for the feedback control loops. 

 Conducting trade studies involving understanding several parameters include: 

• Mass: The physical weight derived from the dimension of microcontroller which is 

sensitive for CubeSat applications  

• Power Consumption:  The amount of power required which affect systems efficiency and 

on-board battery 

• Operating frequency: The speed at which microcontroller unit execute and handle 

instructions which typically measured in MHz or GHz which also impact power drawn. 

• Memory Size: The amount of available of RAM and Flash memory for the uploaded 

embedded firmware code 

• Independent Watchdogs: The mechanism that help radiation tolerancing 

• Debugging features:  The feature of JRAG that help with troubleshooting and debugging 

• Interfaces drivers: I2C, SPI and UART application to communicate with another 

peripheral. 

• Clock speed: The rate in which how quickly the controller can process instructions.  
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Figure 2.1. Arduino Nano IOT33 [20]. 

Considering the trade parameters, the table below has been created for component down 

selection.  

Table 2.1. Specifications for the Arduino Nano Iot33 and STM32F103C8T6 (Blue Pill) 

microcontrollers. 

Parameters Arduino Nano Iot33 Blue pill 

Mass 7 grams 20 grams 

Operating Frequency 48Mhz 32Mhz 

Flash Memory 256kB 64kB 

Operating Voltage 3.3V-5.0V 3.3V-5.0V 

Analog Pins 8 10 

Digital I/O Pins 14 29 

I2C Buses 1 2 

SPI Buses 1 2 

Form Factor 18x45mm 23x53mm 

  

From the table, it is clear to see that the Arduino Nano offer much better mass and form 

factor for the miniaturization purposes. Despite, the Arduino nano offer fewer pins compared to 

the blue pills, the Ventura ADCS control systems utilize the exact 14 pins on the platform which 

is extremely efficient for the bs communications. It is important to note that it is required to 

operate on both I2C and SPI communications protocol since high speed and sensitive component 

such as the inertial measurement unit needed a good isolation line commonly preference would 

be SPI protocol.  

2.1.2 Inertial Measurement Unit 

 

 The IMU is a micro-electromechanical systems that obtain the telemetry and attitude data 

foe the ADCs. The subcomponents include accelerometers, gyroscope and sometimes 

magnetometer. Accelerometers monitor the velocity and acceleration of the body. Gyroscope 
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determine the rotation and rotational angular velocity rate. Magnetometers find the cardinal 

direction which sensing the Earth Magnetic field. These devices would often be used together to 

correct fot bias drift during operations. IMU’s weakness during operation is that it often 

accumulates error which create dtft since I<U constantly monitor changes relative to itself, so it 

consistently computes rounding errors within its computation which accumulate over time.  A 

common method algorithm is sensor fusion technique to mitigate the offset problem.  

 On the Ventura ADCS board, there are two IMUs. ADIS16460 which are from Analog 

Devices is being used as a primary IMU. LSM6DS3 from TDKVsense is the secondary 

redundancy IMU in case the primary IMU malfunction.  

 

Table 2.2. Specifications for the ADIS16460 and LSM6DS3 IMUs. 

Parameters ADIS16460 LSM6DS3 

ARW( Angular Random 

Walk) 

0.015-0.023 deg/sec/Hz 0.015-0.023 deg/sec/Hz 

Bias Instability 16 deg/hour 5 deg/hour 

Vibration Rejection 0.01/sec/g 8g 

Temperature Range  -25C – 85C -40C-85C 

Operating Voltage 3.15V 3.3V 

 

 

Figure 2.2 ADIS16460 IMU [21]. 

 The ADIS16460 was chosen to be the primary IMU since it offers very high ARW and 

bias instability which makes it very resilient for the mission profile up to 7 months. The way the 

electronics packing of MEMS of the ADIS16460 is extremely more ruggedized to operate in a 

harsh environmental condition. LSM IMU will be used as backup and operate at much lower 

voltage. This is to help AIS16460 with the cross-reference data readings before feeding into the 

control loop. Both IMUs, are leveraged with sensor fusion techniques to process sensor data to 

the microprocess MCU for quaternions formation as well as Euler vector rates in a very fast and 

accurate manner.  
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 It is critical to quantify the bias error noises and source such that it is a non-zero output 

for a zero input rate and an offset in output rate from the input rate which has the unit of 

(degree/hour). The bias instability parameter o the other hand are random variation in bias or 

offset over time which has the unit of (degree/hour). The angular random walk represents the 

drift rate and angular error due to White noise I the angular rare which has  the unit of 

(degree/ℎ𝑜𝑢𝑟1/2). The scale factor error is another parameter that shows a deterministic error in 

the measured angle of rotation linearly proportional to the angle of rotation (ppm). The 

difference in the measured angle of rotation in the CW and CCW directions are linearly 

proportional to the angle of rotation.  

2.1.3 Magnetometer 

 

 Magnetometer on the Ventura ADCS systems is selected and required to provide 

detection and sensitivity on XY and Z axis. They are controlled and riven by the MagI2C 

controller connected to the coil sensors provided by Pni manufacturer.  

 

Figure 2.3. RM3100 breakout board [22]. 

Table 2.3. RM3100 specifications. 

Sensitivity 13 nT 

Noise 15 nT 

Sensitivity Sampling Rate  300 Hz 

Voltage  3.3 V 

Operating Temperature -40°C to 85°C 

 

 The main reason why RM3100 is needed is for the sensor fusion heading direction of the 

ADCS algorithm. It offers very high precision magnetic field measurement which high 

sensitivity where small magnetic field fluctuations are hard to detected in this case is Earth. The 

current challenge Ventura is facing is the electronics packaging for the magnetic field isolation 

away from components such as IMU and high switching devices. Therefore, the RM3100 will 

not be hosted on the Ventura PCB board, instead it will be on an isolated EMI shielding 
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compacted mounted feature on the 6U TechEd Sat bus where there is minimal electronics 

presence.  

 The magnetic reference algorithms provide coarse spacecraft attitude knowledge via 

magnetometer with the algorithm compares the measured magnetic field with a predicted B-field 

from the on-board Earth magnetic field model. There is an instantaneous 3-axis attitude 

knowledge that can be derived from this B-field comparison. Magnetometer measurements are 

used for magnetic momentum management, typically external torque source actuating of the 

middle. The torque rods use do to dissipate excess systems momentum by impairing tan external 

torque of the spacecraft. 

2.1.4 Sun Sensor 

 

 The selected sun sensor to be used is BH1730FVC. BH1730FVC is a digital ambient 

light sensor that has a very wide detection range for the sun position vector. It offers very low 

power consumptions. Arranging this in an array platform provide the incident of sunlight with 

respect to the spacecraft’s body. This also increase the field of view wider angular range. The 

goal is to simulate the 4 quadrants just like the ADCS reaction wheel tetrahedral mounting 

configuration. This designed is proved to cover the full hemisphere allowing the spacecraft to 

detect the sun intensity even when the spacecraft is performing its operation at an oblique angle.  

 Since this is a consumer electronics grade components there need to be reliability and 

redundancy. This is where the arrays come in, where if one photodiode fails, the rest of the array 

can still function across the quadrant of the spacecraft. The design to hope to also represent the 

intensity by varying the LEDs on the printed circuit board as a form of verification/validation 

method.  

 

Figure 2.4. BH1730FVC sun sensor [23]. 
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Table 2.4. BH1730FVC specifications. 

Sensitivity 13 nT 

Detection Range 0.001 Ix to 100k Ix 

Sensitivity Sampling Rate  300 Hz 

Voltage  3.3 V 

Operating Temperature -40°C to 85°C 

 

This is simply a photovoltaic cell that produces an output current when illuminated by 

sunlight. The current is proportional to cosine of the sun angle (projection of area to sun is the 

cosine function like in Eq. (2.1). The cell produces no polarity or directional information. All 

directions with same half-cone angle produce same output current.  

 

 𝐼 =  𝐼𝑜 ∗ cos (𝜙) 

 
(2.1) 

Where 𝜙 is the sun angle of incidence, and 𝐼𝑜 is the max cell output current. 

2.1.5 Temperature Sensor 

 

The down selected temperature sensors that exist on bot Ventura ADCS and Sun Sensor 

board is MCP9808. The MCP9808 has been used in various CubeSat mission such as AcubeSAT 

in Greece. The main reason is the very low power consumption which allow active power shutoff 

mode. Placing this very versatile in conjunction with the chassis and on PCB allow for 

traceability of heat sources/sink which enhance the process of anomaly detection. The usage of 

MCP is also used to help compensate for Sensor drift in case the IMU experience drift due to 

their temperature changes. The placement of the temperature sensor need to be strategically 

placed near heat sensitive component where it is sensitive to heat fluctuation.  

 

Figure 2.5. MCP98089 temperature sensor board [24]. 
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Table 2.5. MCP9808 specifications. 

Sensing Range -40C – 125C 

Precision  0.0625 Degrees 

Voltage Operation 3.3V 

Current  200uA 

Form Factor 21mm xx 13mm x 2mm 

2.1.6 Electromechanical Motor 

 

 There are four motors mounted on the tetrahedral configurations of the ADCS module. 

Each are capable of controlling two axes for redundancy purposes. This means that there are a 

certain distribution of torque to rotate the entire CubeSat as well as to respond to the external 

disturbances.  

 There are two types of motors in the cost of the shelfs market which are Brushed DC 

motors and Brushless DC motor. The Brushed DC motor contain mechanical commutation 

through the brushes and a commutator that acts as a two-pole magnet. As the motor operates, the 

brushes conduct current to the armature windings via the commutator creating the magnetic field 

producing torque along the stator’s magnet. The directions of the motor can be changed due to its 

polarity of the electromagnet in the armature. On the other hand, the brushless DC motor does 

not use mechanical commutator by using a speed controller. It contains three stages of coil as a 

driver as well as containing hall sensor to measure the exact rotor position.  

 There are many advantages and disadvantages that can be conducted via the following 

trade study ranking matrix: 

 

Table 2.6. BLDC trade card specifications. 

Parameter Brushed DC Score BLDC Score Justification 

Efficiency Lower [70%] 2 High [90%] 5 Brushless are 

significantly more 

efficient due to 

less friction and 

better energy 

conservation 

Torque Medium-High 

Initiating Torque 

5 Consistent 

Torque 

4  

Speed 

Control 

Simple Phase 3 Precise Control 5 Brushless DC offer 

finer precision 

control over wide 

speed range 
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Lifetime 

Reliability 

Lower 2 Higher with less 

mechanical part 

wear/tear 

5 Brushless DC is 

more reliable since 

it doesn’t contain 

many wear/tears 

mechanism 

Cost Lower initial cost 5 Higher initial 

cost with internal 

electronics 

2 Brushed motor is 

more affordable 

since brushless 

contain more 

advanced 

electronics 

EMI Higher emission 2 Minimal 

emission 

5 Brushless motors 

produce less EMI 

due to no 

commutative coil 

Thermal More hear 

generated 

2 Better thermal 

performance 

4 Brushless motor 

generates less heat 

since they have 

higher efficiency 

Power 

Consumption 

Power 

consumptions 

2 Lower 

consumption 

5 Brushless conserve 

energy which 

draws more 

current 

Total Score  23  35  

 

 The down selected motor for the Ventura ADCS module is Faulhaber 2610C [20]. This is 

a brushless DC motor that has an integrated speed controller within the housing to reduce the 

printed circuit board footprint. The aim of the torque budget is to have at least one mNm per axis 

contribution of rotation. Therefore, the essential parameter to focus on is the output and stall 

torque. The following table portrays the characteristic of the motor: 
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Figure 2.6. BLDC FB2610 Motor [24]. 

 

Table 2.6. FB2610 specifications. 

Voltage Range 4-18 V DC 

Nominal Voltage 6V 

No Load Speed 6700 – 13,000 RPM 

No Load Current 0.02A 

Maximum Efficiency 95% 

Maximum Efficiency Speed 400-13300 RPM 

Stall Torque 17.6 mNm 

Stall Current 0.53 A 

Mass 20.1 g 

 

The concept of back EMF is the voltage generated across the motor; s terminals as the armature 

moves though the motor’s magnetic field. The back EMF opposes the drive voltage and is 

proportional to the motor speed velocity such that: 

 𝑉𝐸𝑀𝐹 = 𝐾𝐸𝑀𝐹 ∗ 𝜔 

 

(2.2) 

As the wheel speed increases the 𝑉𝐸𝑀𝐹 increases decreasing the voltage across the motor with the 

following impacts if there is not enough bus voltage overhead. Decreasing the voltage across the 

moto decrease the torque until torque =0. The wheel can no longer accelerate limiting maximum 

wheel speed.  

2.2 Connectors and Harnesses 

 

2.2.1 Connectors 

 

 Connectors are the crucial interface points or nodes for every electrical power and signals 

between the Ventura or Sun Sensor Board to their respective peripherals as well as the main on 

board computer. These components need to be able to withstand all sort of mechanical shock, 

vibration and thermal load for mission reliability.  

Table 2.7. Connectors and applications on the circuit board. 

Specification Molex Pico-

Lock Connector 

Molex Picoblade 

1.25mm 

Connector 

SMT Right-

Angle Tin-Plated 

Connector 

Phoenix 

Terminal Block 

Connector 

Pitch[mm] 1.5 1.25 1.5 COMBUCON 

Current Rating 

[A] 

3A 1A 2A 15A 

Number of 

Position 

6 6 6 5 
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Operating 

Temperature 

(Celsius) 

-40 C to 105C -40C to 85C -55 C to 125C -40C to 105C 

Mounting Type SMT SMT SMT Through Hole 

Usage 

Application 

Power/Signal 

Motor 

Power/Signal 

Motor + 

Magnetometer  

Power/Signal Power/UART 

 

 The Pico-Lock Connectors were selected for their compact form factor and reliable 

electrical power and signal performance. These connectors offer locking mechanism in a low-

profile design which has proven to survive launch and low earth orbit environment. The secure 

mating allow the risk of mechanical shock as well as very integrated friendly by surface mount 

technology for rapid production. The Molex PicoBlade connector of 1.25 mm on the other hand 

is mainly for the electrical signal connections that require smaller pitch and lower current rating. 

This allow the versatile of different configurations and enhanced quickness in early development 

phase. For Surface Mount Right Angle Connectors, this is utilizing the temporary through hole as 

well as tin plating for sufficient corrosion resistance for the intended operational environment 

 The Phoenix Terminal Block connector is integrated for the stability of power connection 

that require higher current handling and robust mechanical attachment during testing phase. The 

current of the terminal block is up to 10A which is valuable for the over current rating test. This 

also allow modularity where the blocks can be easily configured in different number of positions 

for design changes.   

2.2.2 Wire Harness 

 The wire harness selection is crucial for routing of electrical signals and power between 

each subsystem and components within the spacecraft. The unfirm selection of the ADCS is 28 

AWG wire based on the current-carrying capacity, mechanical flexibility as well as power drop. 

The current capacity as shown in the following table is up to 1.4 A which is enough for low 

power connections between the motors as well as magnetometer breakout board. 28AWG offers 

thinner wires which lead to weight reduction. The signal integrity of high frequency and twisted 

pair technique of 28AWG is also implemented to mitigate EMI and crosstalk.  

 The wire is insulated by PTFE for space graded environment with the specification of 

10x cable diameter.  

Table 2.8. Copper wire specifications. 

Parameter Value 

Conductor Material  Copper [Cu] 

 

Conductor Diameter 

Cross sectional Area 

0.32mm 

0.08mm^2 

Resistance @20C 212 Ohm/km 

Current Carrying Capacity 1.4A 

Voltage Rating 300V 

Insulation Material PTFE 
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Operating Temp -65C to 200C 

 

2.3 PCB Design 

 

2.3.1 Ventura ADCS Board 

 

 Following the architecture, a schematic was developed in KiCad 8.0 to capture the 

interface between the microcontroller as well as all of the peripherals and components to make 

up the ADCS Ventura board. The Ventura Board has a dimension of 95.2 mm x 89.0 mm. This is 

the formfactor of TechEdSat bus requirement. Therefore, all of the components being placed 

with the board must comply with the requirements.  

 

Figure 2.7. PCB populated component (left) and unpopulated (right). 

 In Figure 2.7, the PCB is designed with the copper path separation width of 0.2 mm and 

pad with of 0.5 mm for the design of manufacturing to mitigate the appearance of short circuits. 

The PCB is made by four layers which allow for isolation of signal lines such that I2C and SPI 

communication lines are on different copper plane. The choice of 4 layer PCB board also help 

dissipate heat by incorporating thermal vias across the board. The PCB is also made of the FR-4 

materials between two thing later of copper which has the woven glass reinforced epoxy resin. 

The prepreg layer sandwiched between the cores allow food strength and water/humidity 

resistance allow them to be a food insulator in PCB application.  

 After the layout process, a Gebrer files containing ASCII vector files was sent to 

PCBWay for manufacturing for the production of five PCB unpopulated modules like in the 

figure below.  
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Figure 2.8. Unpopulated PCB. 

 The board was then manually soldered to create the fully finished board as shown in 

Figure 2.8. 
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Figure 2.9. Ventura ADCS board. 

The Ventura Board random vibration analysis was conducted via Ansys Mechanical. The 

methodology can be referenced in Figure 2.8. such that the modal analysis was conducted to 

populate the natural frequencies as an in put for the random vibration analysis.  

 

Figure 2.10. Random vibration analysis of Ventura PCB 

 The materials defined in the PCB are FR4 which is a glass fiber epoxy laminate which is 

known for its high strength and good electrical insulated and resistance to moisture. This material 
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is used to bring down the cost of hardware but does not compromise the reliability of the 

electronics systems.  

 For the geometry this is a thin 2mm four layers board with the dimensions of 92.5mm x 

88.9mm in which the platform resides at the structural center and the mounting PCB attachment 

would slide within the Cubesat holding/mating rails. 

 The constraint of the PCB body would be at the 4 mounting holes to simulate the natural 

frequency as well as acceleration mode.  

 

Figure 2.11. PCB constraints at four mounting holes. 

 The boundary condition consist of a Power Spectral Density acceleration load input 

profile shown in Table 2.9. and Figure 2.12. The entire profile sweep from 20 to 2000 Hz. The 

rising and falling slopes of the profile are from 20 to 80 z which are the power spectral density 

ramps up. Once the peak is reached, which is around 350 Hz it decreases down to 0.02 by 

2000Hz domain.  

Table 2.9. PSD Profile. 
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Figure 2.12. Graph of the PSD profile. 

 In Figure 2.13 10 modes of natural frequencies of the modal analysis re extracted which 

range from 583 Hz to 4000 Hz. The first mode which is at 538 Hz shows the out of plane 

bending in the Z direction in which there is a global bending located directly at the center in the 

Z direction. Since it is at the lowest frequency it is to be concluded that it can be easily excited in 

a random vibration frequency range. For the second mode of 1347 Hz there are two local lobes at 

the positive and negative side quadrant near the PCB connectors as well as the IMU location to 

be shown. This help to inform PCB design and components placements to be considered. The 

last mode which is near the 2000 Hz random vibration would be at 2301 Hz. This is essentially 

300 Hz above the excitation of the random vibration where there are presences of multi-lobes in 

all 4 quadrants. This mode can be very concern for local stress and concerning features of the 

design constraints. 
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Table 2.13. PCB modal analysis mode. 

 In Figure 2.14 shows the directional displacement of the random vibration results of the 

PCB. The interesting point in this analysis are the tree holes mounting features for the IMU 

where the legend shows that the displacement is around 9 micrometers at 1 sigma probability 

which is 68%. This means that at 68 percent of the time the instantaneous displacement due to 

random load will occur within that magnitude. The 3-sigma regime shows that there are 27 

microns around the z ais. This means that the IMU still experiences very small displacement of 

under random vibration load. However, since the system is carrying a very sensitive MEMS 

IMU, it would mean that we need to avoid the center mounting as much as possible to reduce the 

deflection which might induce solder fatigue.   
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Figure 2.14 PCB random vibration analysis. 

 

Figure 2.15.  Final assembly stack up. 
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 Figure 2.15 shows the entire stackup of the Ventura ADCS systems. The assembly is used 

with the rods mounted techniques where there would be a shoulder screw to run through the 

entire assembly and hex nut to lock in at least two threads at the bottom of the assembly. 

2.3.2 Sun Sensor Board 

 

 Similar to the Ventura ADCS board, the sun sensor board was made in KiCad 8.0. 

However, the sun sensor carries very small little photodiodes in the middle which make the 

breakout board very small which is 22.8 mm x 15.5mm. The requirement of small sun sensor 

board must be complied with due to the fact that there need to be four of them on each quadrant 

of the CubeSat for sun sensing operation.  

 Since the footprint and the board is only digital and does not interface with other 

aggressor EMI electronics or components, the layout was only compiled of two layers for 

simplicity and cost saving. There are features of debugging pings and test points for early 

development and prototype purposes. 

 

Figure 2.10. Sun sensor board (left) and sun sensor integration (right). 

 Figure 2.10 shows the individual board on the picture on the left with the sun sensor 

being in the middle. The picture on the right shows the sun sensor board being mounted in a 

pyramidal configuration for sun presence monitoring. The concept of sun monitoring confirm 

that the sun vectors are detected as well as the sun’s position respect to the body frame should be 

where it should be. A set of three or more cosine sun sensors can determine the sun vector where 

each radius of the circle indicate half cone angle sensed by each sensor. The sun sensor location 

is intersection of three circle. The error in the knowledge of the sensor max current I0 prevent the 

circles from intersecting at a single point. 
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Figure 2.11. Pyramidal configuration (45 degrees). 

 Figure 2.11 shows the common sun sensor configuration which is the arrangement of four 

individual cosine sun detectors  ells in all faces of the spacecraft to project toward the sun and 

detect the sun’s intensity. The tilted angle of pyramidal configuration is 45 degrees. This 

provides 2-axis sensing with respect to the sun-line vector. Quadrant one and Quadrant three 

determines the sun Azimuth angle which is the rotation α about the y-axis in the figure. Quadrant 

two and four determines sun elevation angle which is rotation ‚  𝛽 about the x axis. 

The sun azimuth angle α is calculated from quadrant 1 and Quandrant 3 currents such that: 

 (𝐼1) = 𝐼0 ∗ cos(45 + 𝛼 ) =  𝐼0[cos(45) 𝑐𝑜𝑠𝛼 − sin(45) sin𝛼] 
(𝐼3) = 𝐼0 ∗ cos(45 − 𝛼 ) =  𝐼0[cos(45) 𝑐𝑜𝑠𝛼 + sin(45) sin𝛼] 

 

 

(2.3) 

(2.4) 

Therefore, the sensor output is constructed as the ration of the current difference divided by the 

current sun: 

 

 𝐼3 − 𝐼1
𝐼3 + 𝐼1

=
𝐼0 ∗ √2𝑠𝑖𝑛𝛼

𝐼0 ∗ √2𝑐𝑜𝑠𝛼
= tan (𝛼) 

 

 

(2.5) 

The same calculation can be applied to quadrant 2 and 4.  
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3. ADCS Budgeting and Dynamics Modeling 

 

3.1 Attitude Dynamics with Reaction Wheels 

 

The rigid body dynamics is the derivative of angular momentum equal to the torque applied. 

 
𝜏 =  

𝑑

𝑑𝑡
𝐻 

 

(3.1) 

Where H is the angular momentum, and 𝜏 is the torque being applied. If the rigid body 

dynamic which is the CubeSat under no external torques such that 𝜏 = 0, it is said to have 

angular momentum to be constant.  

However, the equations of motions for an spacecraft with only reaction wheels as the 

actuators, the total angular momentum of the satellite in the body frame 𝐻𝑠𝑎𝑡
𝑏  to be: 

  

𝐻𝐵 = (𝐼𝐵 + 𝐼𝑤)𝜔𝐵 + ℎ𝑤 

 

 

(3.2) 

Where ℎ𝑤 is the momentum of the wheels relative to the spacecraft body frame. 

The derived angular momentum established can be also used from the Euler moment 

equations such that 

 

 𝑑

𝑑𝑡
(𝐻𝐵) = 𝜏𝐵 − 𝜔𝐵 𝑥 𝐻𝐵 

 

 

(3.3) 

Adding in the reaction wheels expression yield 

 

 𝑑

𝑑𝑡
((𝐼𝐵 + 𝐼𝑤)𝜔𝐵 + ℎ𝑤) = 𝜏𝐵 − 𝜔𝐵  ×  ((𝐼𝐵 + 𝐼𝑤)𝜔𝐵 + ℎ𝑤)   

                    

(3.4) 

 

The expression can be rearranged to yields 

 

 (𝐼𝐵 + 𝐼𝑤)
𝑑

𝑑𝑡
(𝜔𝐵) = 𝜏𝐵 − 

𝑑

𝑑𝑡
(ℎ𝑤) − 𝜔𝐵  ×  ((𝐼𝐵 + 𝐼𝑤)𝜔𝐵 + ℎ𝑤)                   (3.5) 

 

The term 
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 𝜔𝐵 𝑥 ((𝐼𝐵 + 𝐼𝑤)𝜔𝐵 + ℎ𝑤) 

 

(3.6) 

 

Represents the Coriolis effect, 
𝑑

𝑑𝑡
(ℎ𝑤) is the net torque on the reaction wheels by the 

spacecraft body and −
𝑑

𝑑𝑡
(ℎ𝑤) is the net torque on the spacecraft body by the reaction wheels.  

Therefore, the derivatives of the angular velocity can also be derived to be : 

 

 𝑑

𝑑𝑡
(𝜔𝐵) =

1

(𝐼𝐵+𝐼𝑤)
[𝜏𝐵 − 

𝑑

𝑑𝑡
(ℎ𝑤) − 𝜔𝐵 𝑥 ((𝐼𝐵 + 𝐼𝑤)𝜔𝐵 + ℎ𝑤)] 

 

 

(3.7) 

The spacecraft dynamics and attitude control method using reaction wheel actuators can 

be done by Eulers approach or Quaternions approach. The angular velocity and angular 

momentum equations from the body frame need to be be translate to the quaternion’s 

representation. Quaternions is a better preferable option since they avoid singularities (gimbal 

lock) which Euler has. Quaternions also is much more computationally efficient for feedback 

controls.  

 

The quaternion q can be represented as  

 

 𝑞 = [𝑞0, 𝑞1, 𝑞2, 𝑞3] (3.8) 

 

Where 𝑞0 is the scalar component and 𝑞1, 𝑞2, 𝑎𝑛𝑑 𝑞3 are vector components. 

The quaternion is used to update the angular velocity such that 

 

 
𝑞̇ =

1

2
𝑞 ×  𝛺(𝜔) 

 

 

(3.9) 

Where 𝑞̇ is the time derivative of the quaternion rate of change of attitude, and 𝛺(𝜔) is 

the quaternion form of the angular velocity 𝜔 = [𝜔𝑥 , 𝜔𝑦, 𝜔𝑧]. 

 

 

𝛺(𝜔) =

[
 
 
 
 

0 −𝜔𝑥 −𝜔𝑦, −𝜔𝑧

𝜔𝑥 0 𝜔𝑧 −𝜔𝑦,

𝜔𝑦, −𝜔𝑧 0 𝜔𝑥

𝜔𝑧 𝜔𝑦, −𝜔𝑥 0 ]
 
 
 
 

  

(3.10) 
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3.2 Momentum Budget 

 

The requirement is to perform an angular position change for all x,y and z axis. Such that the 

ADCS subsystem must be able to execute a 180 degree slew maneuver. This will constitute the 

rigid body dynamics and their vector mechanics principals projecting the reaction wheel pyramid 

configuration o the CubeSat’s principal axes.  

The reaction wheels subsystems are made up of 4 brushless DC motors Faulhaber 2610 B 

SC which provides max torque of 6mNm and no-load max speed of 6700 revolution per minute. 

The reaction wheel made from aluminum 6063 has the moment of inertia around 

3.11.34 𝑥 10−9𝑘𝑔 ∗ 𝑚2. 

The assumption of most 6U CubeSat’s moment of inertia to be about: 

 

 
𝐼𝐵 = [

0.1 0 0
0 0.1 0
0 0 0.2

] 𝑘𝑔 ∗ 𝑚2  

 

 

 

(3.11) 

The CubeSat is arranged with the pyramidal configuration where the wheels are angled to 

45 degrees angles to the x-y plane. This means that each rection wheel contributes angular 

momentum to the CubeSat’s x y, and z axes. The projection for the reaction wheel’s angular 

momentum to each axis is governed by the following equations: 

 

 𝐻𝑅𝑊 = 𝐼𝑅𝑊 ∗   𝜔𝑟𝑤  
 

𝐻𝐵 = 𝐻𝑅𝑊 ∗  cos(45) 

 

𝐻𝐵 = 𝐻𝑅𝑊 ∗ 0.707 

 

(3.12) 

 

(3.13) 

 

(3.14) 

This means that each wheel contributes about 70.7% to its total angular momentum of the 

CubeSat’s body axis.  

Since the assumptions made to not model external torque disturbance, the symmetric 

configuration allows for equation contributions along all axes and their angular momentum can 

be written as follows: 

 𝐻𝑥 = 2 ∗  𝐻𝑅𝑊 ∗ 0.707 

 

𝐻𝑦 = 2 ∗  𝐻𝑅𝑊 ∗ 0.707 

 

𝐻𝑧 = 2 ∗  𝐻𝑅𝑊 ∗ 0.707 

 

(3.15) 

 

(3.16) 

 

(3.17) 

To calculate and estimate  the maximum angular velocity and angular acceleration with 

the information given above the following  equations are used. 
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 𝐻𝑚𝑎𝑥 =  𝐼𝑅𝑊 ∗  𝜔𝑅𝑊 (3.18) 

 

The substitute of the reaction wheel moment of inertia of Irw = 311.34 𝑥 10−9𝑘𝑔 ∗ 𝑚2 

and  𝜔𝑅𝑊 = 6700 𝑟𝑝𝑚 yields 

 𝐻𝑚𝑎𝑥 = 2.18 𝑥 10−4𝑘𝑔 ∗ 𝑚2/𝑠 

 

 𝐼𝐵𝑥 ∗  𝜔𝑥 = 2 ∗  𝐻𝑅𝑊 ∗ 0.707 

 

𝜔𝑥 = 
2 ∗ 2.18 𝑥 10−4  ∗ 0.707

0.1
= 3.08 𝑥 10−3

𝑟𝑎𝑑

𝑠
= 0.176 𝑑𝑒𝑔/𝑠𝑒𝑐 

 

(3.19) 

 

(3.20) 

 

(3.21) 

Substitute the value above into angular acceleration formula as below  

 

 𝛼𝑚𝑎𝑥 = 
𝜏𝑚𝑎𝑥

 𝐼𝐵𝑥
= 

6 𝑥 10−3

0.1
 = 0.06 rad/sec = 4.87 deg/𝑠2 

 

 

(3.22) 

 

Using the calculations above the maneuver profile can then be calculated. Such that the 

acceleration phase would occur first then constant velocity y phase then deceleration phase to 

nominal mode.  

 
 𝑡𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 

𝜔𝑚𝑎𝑥

𝛼𝑚𝑎𝑥
=

0.176

4.87
 = 0.036 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

(3.23) 

 

 

The angular displacement during acceleration can also be calculated to be 

 

 
𝜃𝑎𝑐𝑐 =

1

2
∗  𝛼𝑚𝑎𝑥 ∗  𝑡𝑎𝑐𝑐

2 =
1

2
∗ 4.87 ∗ (0.361)2 = 0.032 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

 

 

(3.24) 

 

The remaining angular displacement for the constant velocity can be shown as  

 

 𝜃𝑐𝑜𝑛𝑠𝑡 = 180 − 2 ∗ 𝜃𝑎𝑐𝑐 = 180 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

 

 

(3.25) 

 

Therefore, the total 180 degrees slew maneuver will takes: 

 

 𝑡𝑡𝑜𝑡𝑎𝑙 = 2 ∗  𝑡𝑎𝑐𝑐 +  𝑡𝑐𝑜𝑠𝑛𝑡𝑎𝑡 = 1022.77 𝑠𝑒𝑐𝑠 = 17 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 

 

(3.26) 
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3.3 Environmental Disturbances 

 

In the low earth orbit domain there are four types of disturbances that need to be considered 

when designing the control systems for the ADCS subsystems. These include aerodynamic drag, 

solar radiation pressure, gravitational torque and geomagnetic torque. 

3.3.1 Aerodynamic Drag 

 

Within the low earth orbit domain, the external torque generated by the number of air 

particles present is the most significant compared to gravity gradient disturbance. As the altitude 

of the orbit get closer to the Earth, the magnitude of aerodynamic torque increases. The 

aerodynamic drag effect is presence for Earth orbits to the 600 km range which is where most 

CubeSat mission operates in. The equation [25] for aerodynamic torque can be calculated by the 

following equation: 

 

 
𝜏 =

1

2
𝜌𝐶𝑑𝐴𝑉2(𝑢𝑣 x (𝐶𝑝𝑎 − 𝐶𝑚)) 

 

 

(3.27) 

 

Where 𝜌 is the atmospheric density, V is the satellite linear velocity, 𝑢𝑣 is the satellite 

unit linear velocity vector, and A is the affected surface area defined by the projected to the plan 

vector perpendicular to 𝑢𝑣. 𝐶𝑝𝑎 represents the center of pressure on the CubeSat platform which 

can be calculated as: 

 

 
𝐶𝑝𝑎 =

∫𝑥 𝑃(𝑥)𝑑𝑥

∫𝑃(𝑥)𝑑𝑥
 

 

 

(3.28) 

 

Where x represents the distance from the CubeSat body reference frame’s origin and P is 

the function of x which represents the pressure magnitude. This takes into the assumptions that P 

is constant at every single point on the CubeSat’s surface area A . This distribution of torque 

produced by the satellites span is small to the torque output by the reaction wheel systems but 

not to be negligible. 
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Figure 3.1. Aerodynamic drag simulation. 

  In Figure 3.1, Matlab was used to compute the simulation of the torque varies over time 

due to the gravitational torque in low earth orbit effect. The spacecraft had a initial condition of 6 

rad/sec on all principal spin axes and the as the aerodynamic torque acts on it changes the 

angular velocity very minute. Since draft is a dissipative force, the expectation would be for the 

spacecraft to slowly dampen out he disturbance.  

3.3.2 Solar Radiation Pressure 

 

The solar radiation pressure comes from the Sun angle of radiation beam incident on the 

spacecraft that cause the torque about the spacecraft’s mass properties. This would also couple 

into the albedo effect where the reflection of the solar radiation from the Sun and the infrared 

emission from Earth body affect the spacecraft’s torque [26]. The albedo effect can simply be 

predicted with advanced simulation tools built from MATLAB [27] or NASA TOMS project to 

predict the compensation torque and sun sensor modeling. Light has momentum such that the 

change in momentum generates a radiation gradient pressure on the spacecraft that depends on 

geometry and optical surface properties. The offset between the center of solar pressure and the 

center of mass results in the solar torque. 

The NASA’s Space Vehicle Design Criteria provides an estimation on the worst-case scenario of 

the radiation force that illuminated on the surface area of the CubeSat. The assumption is that all 

the incident radiation operates on absorption, reflection and diffusion with a negligible scattering 

mode such that: 

 𝑑𝐹𝑆𝑅𝑃 = 
𝐼𝑆𝑅𝑃

𝑐
{− [(1 + 𝑐𝑟𝑠) cos(𝛼) +

2

3
𝑐𝑟𝑑] 𝑛̂ + (1 − 𝑐𝑟𝑠) sin(𝛼) 𝑠̂} cos 𝛼  𝑑𝐴 

 

(3.29) 
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Where 𝐼𝑆𝑅𝑃 is the energy flux per unit of time through a cross sectional area., c is the speed of 

light in vacuum, 𝑐𝑟𝑑 is the coefficient of diffusion, 𝑐𝑟𝑠 is the coefficient of the diffuses reflection, n 

is the vector unit perpendicular to the incident surface dA, s is the unit vector perpendicular to n 

vector of the incident ray. 𝛼 is the angle between the incident ray and vector n in Figure [3.1]. 

 

 

 

Figure 3.2. Absorption, reflection and diffusion mode on a surface area [28]. 

Taking the integral on the equation (3.3.2.1) yields: 

 
𝜏𝑆𝑅𝑃 =  

𝐹𝑠

𝑐
𝐴𝑠(1 + 𝑞) cos(𝛼) ∗ (𝑢𝑠𝐶𝑝𝑎) 

 

(3.30) 
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Figure 3.3. Solar disturbance plot.  

 Using MATLAB script where a simulation of torque vs time can be simulated by the sun 

where the inputs are the spacecraft center of mass and reflectance factor. There is also a 

definition of how fast the spacecraft orate and how the Sun’s position chances. For the algorithm, 

at each time step the current rotation angle and the rotation matrix are computed. The sun vector 

got updated in the orbit frame. Then use a transformation matrix of sun vector ot convert the Sun 

vector into the specified spacecraft body frame. Then the computed surface area was computed 

to see how each face the solar force would be exerted by taking the cross product of the force 

with the lever arm. In this simulation, the spacecraft is rotating around the Z axis for nadir 

pointing.  

3.3.3 Gravitational Torque 

 

All and any non-symmetrical object with rigid body dynamics are subject to gravitational 

torque due to the variance in Earth’s gravitational force on the object. The inverse square law 

rule is a contributor to the gravity gradient torque in a constant gravitational field. Newton’s law 

dictate that the gravitational force decreases with the square root of 1/r^2 [29]. Therefore, the 

gravitational torque can be calculated as: 

 

𝜏𝑔 = ( 
3𝐺𝑆𝑅𝑃

||𝑟||
3 ) [𝑟 × (𝐼𝑠𝑎𝑡 ∗ 𝑟)] =  ( 

3𝜇𝐸𝑒𝑎𝑟ℎ

||𝑟||
3 ) [𝑟 × (𝐼𝑠𝑎𝑡 ∗ 𝑟)] 

 

(3.31) 
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Where 𝜇𝑒𝑎𝑟ℎ is the Earth gravitational constant, r is the position of the satellite center of 

mass with respect to the earth center of mass, and 𝐼𝑠𝑎𝑡 is the satellite’s moment of inertia three by 

three matrix. 

 

Figure 3.4 Gravitational torque simulation. 

 As observed in Figure 3.4 There is a sinusoidal wave in the component Z spin axis where 

the period of these oscillations is related to the spin rate as well las the inertia axe. There is also a 

torque component cross zero where the vector position liens up in a way for the cross product to 

become significantly small approaching zero. The amplitude can be seen to be affected by the 

orbital rate as well as the principal moment of inertia of the spacecraft. The gravity gradient 

torque shows the align the spacecraft so that the largest moment of inertia points away from 

Earth .  

3.3.4 Geomagnetic Torque and Residual Magnetic Torque 

 

In the spacecraft, all of the electronics that have current and voltage pass through their 

transmission line or traces on the PCB produce magnetic dipole that interacts with the Earth’s 

magnetic field generating torque disturbances. Other source of magnetic field can also come 

from eddy currents and hysteresis of the magnetorquer. The model of the Earth; s geomagnetic 

field can be found by Wertz such that: 

 

𝐵𝐸𝑎𝑟𝑡ℎ = ( 
𝑅𝐸𝑎𝑟𝑡ℎ

3 ∗ 𝐻0

r3
) [3(𝑚𝑛𝑜𝑟𝑡ℎ ∗  r)r − 𝑚𝑛𝑜𝑟𝑡ℎ] 

 

 

(3.32) 
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Where 𝑅𝐸𝑎𝑟𝑡ℎ
3 ∗ 𝐻0 represents the strength of the geomatic moment and r is the position 

of the satellite the Earth coordinate frame reference frame, 𝑚𝑛𝑜𝑟𝑡ℎ is the normal vector of the 

position of the geomagnetic pole and Rearth is the radius of Earth.  

The torque created by the residual magnetic moment is: 

 

𝜏𝑟𝑖𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑀𝑠𝑎𝑡  × 𝐵𝐸𝑎𝑟𝑡ℎ  
 

 

(3.33) 

 

Where 𝑀𝑠𝑎𝑡 is the satellite local magnetic induction and 𝐵𝐸𝑎𝑟𝑡ℎ is the Earth magnetic 

field. This applies ot permanent magnets, electromagnets or any closed current loop.  

One of the main benefits for operating in low earth orbit with the induced geomagnetic torque is 

that there is a redundancy introduction of a magnetorquer subsystem using magnetic to dump 

momentum. This allows minimal interference with mission ops and has much lower mass tan 

thruster-based systems. However, the disadvantage is that it trap electron belts.   

3.4 Sensor Modeling 

 

3.4.1 Gyroscope Modeling 

 

In Fundamentals of Spacecraft Attitude Determination and Control, the gyroscope 

measurement model can be written as follow [21]: 

  

𝜔(𝑡) = (1 + 𝐴)𝜔𝑡𝑟𝑢𝑒(𝑡) + 𝛽𝑡𝑟𝑢𝑒(𝑡) + 𝜂𝜐 (3.34) 

 

 

Where 𝜔 is the observed and measured angular velocity in the gyroscope reference frame, 𝜔𝑡𝑟𝑢𝑒 

is the real angular velocity within the same corresponding frame, A is the misalignment rotation 

matrix, I is the identity matrix, 𝛽𝑡𝑟𝑢𝑒 represent the drifting  bias of the gyroscope, 𝜂𝜐 represents 

the independent zero mean Gaussian white added noise. This can also be used for scale factors 

and misalignments. 
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Figure 3.5. Common gyro input/Output error types [22]. 

 In Figure 3.5, graph (a) shoes the bias error which outline the shifted of the output line 

parallel to the input axis indicating that there is a consistent offset. Thid occurs when the 

gyroscope produces a non-zero output respect to the zero input. Graph(b) shoes the a response 

with scale factor error in which the output slope start to drift or deviate from the ideal condition. 

A nominal response should have a proportional correlation between the input and output.  Graph 

(c) shows the nonlinearity error such that the output function response deviates from a straight 

line after certain ideal inputs response. This is due to sensor manufacturing imperfection or 

design error. Graph (d) shows the asymmetry error which leads to the uneven response on the 

angular velocities rate in the true opposite direction. Graph ( e ) shows the hysteresis error 

response with a “dead-zone”. This happens due to the current input and previous input history 

are interfering with the output. Graph (f) represents the quantization error which acts a s a step 

function instead of a continuous ideal line. This occurs when there is a limitations of digital 

resolution where digital gyroscope have quantized into finite steps.  

 The bias instability and white Gaussian noise can be presented by the Markley methods. 

The first component of the bias instability (Random Walk Noise) came from the slow variations 

and differences in the gyroscope’s bias over time due to the architecture of the sensor. The model 

can be built on a bias at step k+1 depends on the previous bias k with additional small random 

perturbation which can be shown in this equation below. The symbol 𝜎𝑛 reperesnet the bias 

instability standard deviation, and N(0,1) is the standard simulated Gaussian random walk 

variable noise.  

 

𝑏𝑖𝑎𝑠𝑛𝑒𝑤 = 𝑜𝑙𝑑𝑏𝑖𝑎𝑠 + 𝜎𝑛√𝑑𝑡 ∗ 𝑁(0,1) 

 

(3.35) 

 

The white noise is essentially a high frequency  noise arising from the electronic disturbances n 

the sensor. This is dictated by a normal distribution and is independent of the previous values. 

The noise of the signal can be modeled by the equation below where 𝜎𝑢
2 is the white noise 

standard deviation. 
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𝑛𝑜𝑖𝑠𝑒𝑡𝑜𝑡𝑎𝑙 = 0.5 ∗ (𝑏𝑖𝑎𝑠𝑜𝑙𝑑 + 𝑏𝑖𝑎𝑠𝑛𝑒𝑤) + √
𝜎𝑣

2

𝑑𝑡
+

𝜎𝑢
2 ∗ 𝑑𝑡

12
∗ 𝑁(0,1) 

(3.36) 

 

 

 

 

 

Figure 3.6. Bias random walk over time plot (top). Gyro noise and drift over time plot (bottom). 

       The figure 3.6 illustrates the bias random walk for all three spin axes overtime. This is a 

stochastic process vehicle where the sensor bias drift appears to be slow and smooth which is a 

characteristic of medium to high frequency bias instability. The amplitude of the drift remains 

within the specs of the operation baseline. However, as time goes on the correlation of the bias 

noise is being stretched out which mean that long term data might not be accurate but short-term 

data will be accurate. 

 The noise is the Gaussian distributed variation around the bias mean value. Such noise 

can be reduced and mitigated by high pass filtering to reduce the fluctuation. The white noise 

also seem to exhibit a flat power spectrum where the bias instability contributes to 1/f noise. The 

Allan Variance analysis curve can be used to demonstrate the noise sources where the white 

noise is dominant at short term timescale while bias instability is an important metric for long 

term timescale.  

3.4.2 Sun Sensor Modeling 

 

The spacecraft is hosting 6 sensors where each of the six sensors needs to be modeled 

separately. This means that each of the sensors would have six framed to be defined. Out of the 

six, four frames are defined by the rotation of body frame around the Y axis and the other two 

frames are around the Z axis. Albedo radiation is also assumed to come from the nadir such that 

the vector is acquired in the body frame. This is doable by allowing the rotation of satellite 

position vector in the ECI frame with the ECI to body quaternion. The current induced within the 
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coarse sun sensors is again to be proportional to the cosine of the angle between the vector 

perpendicular to the sensor and the incident light presented in 3.3.5.1.  

 

𝑐𝑜𝑠(𝜃) = 𝑆𝑒𝑛𝑠𝑜𝑟 ∗ [1 0 0]𝑇 

 

(3.37) 

 

In the case that 𝑐𝑜𝑠(𝜃) is lesss than 0, the sensor does not detect any light from the source. 

As for Albedo affect the currents of each sensor are calculated by summing up the currents 

of each sensor collected by sun rays and Earth Albedo. However, the albedo percentage must be 

scaled due to the Poisson noise. 

𝑖𝑠𝑢𝑛 = 𝑆𝑒𝑛𝑠𝑜𝑟 ∗ [1 0 0]𝑇 

 

𝑖𝑠𝑢𝑛 = 𝑎𝑙𝑏𝑒𝑑𝑜𝑆𝑒𝑛𝑠𝑜𝑟 ∗ [1 0 0]𝑇  
 

𝑖𝑡𝑜𝑡𝑎𝑙 = 𝑖𝑠𝑢𝑛 + 𝑖𝑎𝑙𝑏𝑒𝑑𝑜 [1 + 0.01𝑤𝑘] 

(3.38) 

 

(3.39) 

 

(3.40) 

 

 

To obtain the sun vector the following equation can be used where the currents in quadrants pair 

(opposite) can be subtracted to get the normalized vector in the body frame: 

 

𝑆𝑢𝑛𝑣𝑒𝑐 =
(𝑖1 − 𝑖4 ,𝑖6 − 𝑖5, 𝑖2 − 𝑖3)

‖(𝑖1 − 𝑖4 ,𝑖6 − 𝑖5, 𝑖2 − 𝑖3)‖
 

(3.41) 

   

  

The digital coarse sun sensor noise modeling contains the electronic noise, albedo effect, 

quantization noise and poison noise. Electronics noise comes from the random fluctuation in the 

sensor’s current output due to thermal effects and electronics. The Albedo Effect comes from the 

unwanted reflections from Earth’s surface by the Sun ‘rays affecting its readings. Since this is a 

digital sensor, quantization noise is heavily affected on the analog to digital conversation 

processing. Poison noise is essentially a variation in the number of detected photons of the sin 

sensor.  

 Using a MATLAB script a simulation was set up from 0 to 6000 seconds with a time step 

of 10 seconds for  sun-position vector extraction modeling. The orbit assumption is to be a 

simple Low Earth Circular orbit in the equatorial plane. The sun position is computed from the 

Sun’s ECI coordinate in each of the time step. The Albedo script inject noise into Earth reflects 

sunlight in the sensor’s field of view this can be show in a tiny shift of near day-night transition. 

The periodic variation can be seen in Figure 3.5 with sinusoidal behavior across 3 spin axes. The 

X-spin axis of the sun vector has more significant impact of fluctuations compared to the other 

two axes, On the other hand, the Posin noise causes jitter in the sun estimate vector such can be 

seen in Figure 3.5. This clearly shows the need to apply Kalman Filtering to estimate and correct 

for the Sun Vector deviations.  
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Figure 3.7. Sun sensor simulation with noises. 

 

3.5 Open Loop Monte Carlo Modeling 

Using the equation 3.1.7 with addition of disturbance torque yields the following equation:  

 

𝑑

𝑑𝑡
(𝜔𝐵) = 𝐼−1[−𝑤(𝑡)𝑥 (𝐼𝑤 + 𝐻𝑟𝑤) + 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒(𝑡) + 𝜏𝑠𝑎𝑡 

 

 

 

(3.42) 

 

   

Where 𝑤(𝑡) is the initial satellite body frame angular velocity I is the satellite moment of inertia, 

H is the reaction wheel angular momentum, 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙,𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 is external disturbances torque 

due to gravity, aerodynamics, and geomagnetic  disturbances, and 𝜏𝑠𝑎𝑡 is satellite control torque. 

Using the constants in the following table  

Table 3.1 Hardware constants 

Parameter Value Description 

𝐼𝑠𝑎𝑡 [1, 1, 0.4] 𝑘𝑔 ∗ 𝑚2 Moment of inertia of 

the satellite 

 
 

𝐼𝑥𝑥(𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒) 1 Satellite moment of 

inertia about the x-

axis 
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𝐼𝑦𝑦(𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒) 1 Satellite moment of 

inertia about the y-

axis 

 
 

𝐼𝑧𝑧(𝑆𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒) 0.4 Satellite moment of 

inertia about the z-

axis 

 
 

𝐼𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑤ℎ𝑒𝑒𝑙 diag([1.11×10−7,2.04×10−7,1.11×10−7]) 

𝑘𝑔 ∗ 𝑚2   
Moment of inertia of 

the reaction wheels 

(diagonal matrix) 

 
 

𝐼𝑥𝑥(𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙) 1.11×10−7 𝑘𝑔 ∗ 𝑚2   Reaction wheel 

moment of inertia 

about the x-axis 

𝐼𝑦𝑦(𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙) 2.04×10−7 𝑘𝑔 ∗ 𝑚2   Reaction wheel 

moment of inertia 

about the y-axis 

 
 

𝐼𝑧𝑧(𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑊ℎ𝑒𝑒𝑙) 1.11×10−7 𝑘𝑔 ∗ 𝑚2   Reaction wheel 

moment of inertia 

about the z-axis 
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Figure 3.8. Monte Carlo simulation of satellite angular velocity with environmental torque 

disturbances (open loop). 

 The angular velocity drift was observed in 1000 runs of simulation for all 3 axes as time 

increase, this is due to the absence of control torque algorithm where the environmental 

disturbance cause satellite to accumulate randomized angular momentum reading to angular 

velocity drift. There is great variability across the simulation where increasing number of runs 

will have more uncertainty. The biggest factor that can be observed lays in the dominance of 

magnetic disturbances since this in low earth orbit.  

 As for the trend, the roll angular velocity increase spread and magnitude over time this 

could be that the roll axis mass property is coupled to certain disturbances . For the pitch angular 

velocity, it is very similar to roll. For yaw angular velocity, this shows significant variability 

which can be explained by the satellite’s asymmetrical inertia. Since the lower moment of inertia 

in yaw axis lead to much faster angular acceleration.  
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4. Motor Modeling and Control Planning 

 

4.1 Motor Wheel Modeling 

 

DC and BLDC motors are typically modeled by electro-mechanical concepts that can be 

shown in Figure 4.1. 

 

 

 

 

 

 

 

 

Figure 4.1. DC motor modeling [30]. 

 From Figure 4.1 the amateur circuit is used to model the DC motor such that the passive 

elements of resistor and induct are lumped element for the resistance and inductance 

characteristic of the harnessing and the wire within the motor. Lowercase e represents the back 

EMF force generated by a motor which opposes the input applied voltage. The magnetic field 

interacts with the motor’s permanent magnet or field winding then cause the rotor to spin. As the 

rotor of shaft is spinning the winding cuts through the B field of the magnetic flix line which 

induce a voltage. This induced in voltage which is opposite of the polarity y to the applied input 

voltage therefore called by EMF.  

 On the mechanical side the motor’s rotational motion {K} with damping {b} represents 

the friction or resistive force to the dynamic motion. To derive the transfer function of the model, 

torque equations back emf and Kirchhoff’s voltage law are used.  

 Torque Equation in term of current and torque constant of the motor  

 

𝜏 = 𝐾𝑡  × i  
 

(4.1) 

 

 

 Back EMF force can be represented the angular velocity of shaft and the motor torque 

constant in eq. 4.2: 

𝑒 = 𝐾𝑖  ×  𝜃̇   
 

(4.2) 
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  Equations of motor dynamics are represented by the rotor inertia, the angular 

acceleration, angular velocity and the motor damping torque.  

J𝜃̈ + b𝜃̈ = 𝐾 × i    
 

(4.3) 

 

  

 To solve for the circuit using the Kirchoff Voltage law which yield a relationship of V 

which is the input voltage, Ldi/dt is the voltage across the inductor, Ri is the voltage drop across 

the resistance and the is back emf in the equation 4.4.  

 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 𝑉 − 𝐾𝜃̇ 

 

 

(4.4) 

 

 After applying the Laplace transform of the dynamics and the electrical models yield 

equations 4.5 and 4.6 in term of variable s.  

 

𝑠((𝐽𝑠 + 𝑏)Θ(𝑠) = 𝐾𝐼(𝑠) 
 

(𝐿𝑠 + 𝑅)𝐼𝑠((𝑠) = 𝑉(𝑠) −  𝐾𝑠Θ(𝑠) 
 
 

(4.5) 

 

(4.6) 

       

 Combining 4.5 and 4.6 would yield the open loop equation 4.7 where the relation is to 

evaluate the angular velocity per the applied input voltage.  

 

Θ̇(𝑠)

𝑉(𝑠)
=

𝐾

𝐾𝑠 + 𝑏)𝐿𝑠 + 𝑅) + 𝐾2
 

 

 

(4.7) 

 

For the Faulhaber 2610 BLDC motor such constant can be used to evaluate the open loop 

performance of the motor in table 4.1. 

 

The transfer function can also be further expressed in start space form in equations 4.8 and 4.9 

where the output are the rotational angular velocity. 

𝑑

𝑑𝑡
[𝜃̇
𝑖
] =  

[
 
 
 
−𝑏

𝐽

𝐾

𝐽
−𝐾

𝐿

−𝑅

𝐿 ]
 
 
 
[𝜃̇
𝑖
] + [

0
1

𝐿

] 𝑉 

 

𝑦 = [1 0 ] [𝜃̇
𝑖
]  

(4.8) 

 

 

 

 

(4.9) 
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Table 4.1. Parameters of FB2610 Motor 

Symbol Description Value 

Js 
Moment of 

inertia of the 

rotor 

0.01 kg·m^^2 

b 
Motor viscous 

friction 

constant 

0.1 N·m·s 

Ke 
Electromotive 

force constant 
5 V/rad/sec 

Kt 
Motor torque 

constant 
8.8 mN·m/Amp 

R 
Electric 

resistance 
1 Ohm 

L 
Electric 

inductance 
0.5 H 

 

Using MATLAB to model the state space equations as well as table 4.1 the Figure 4.3 and 

Figure 4.4 represent the step response of the motor open loop. 

 

Figure 4.2 Open loop step response 
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Figure 4.3 Open loop  49yquist diagram and pole zero map. 

 Figure 4.3 shows the system’s output angular velocity over time of the 1V input where 

the maximum angular velocity is 0.085 radian/seconds. The DC output motor response gradually 

increased eventually reaching the steady state after around 2.6 seconds. In ideal virtually a good 

system would need to have a less than 1 second’s overshoot for a stable system with first-order 

reaction.  

 Figure 4.4 of the Nyquist plot diagrams show the system responds to different input 

frequencies regarding stability and the resonance of the motor. There is a a small loop in the near 

real region axis which suggests a system’s frequency response to be stable without any 

oscillatory behavior . The pole-zero map indicates the location of the pole to be -2+/-0.0557i 

where -2 value is the real part laying I the negative region which confirm the system is table 

where the imagery part indicates the systems to show very small oscillatory behavior which 

confirms the finding of Figure 4.3. 

 In Figure 4.5 a system simulation of dynamic with the Brushless DC motor with a double 

control signal with feedback and without current feedback. The double signal composed of two 

domains where a first positive pulse equates to a command to increase the rotational velocity of 

the wheel and the negative pulse is a command to decrease the rotational velocity. This captures 

the short time scale around 20 millisecond which is a fast electrical transient. The first row graph 

presents wheel angular velocity where it responds immediately to the torque input. While the 

right column with the current feedback has a slower initial acceleration due to the back EMF 

electrical lag and small overshoot. Fort the electrical state which is the second row the current 

feedback motor show every high frequency transient meaning it increases then drop back due to 

control feedback. For the motor torque graph which is the third row. The current feedback shows 

that the torque does not immediately apply due to electrical inertia. This is very helpful in 

modeling a precise control system where the systems doesn’t want to be extreme overshoot in an 

extreme critical earth pointing mission critical maneuver.  
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Figure 4.4. Doublet with and without current feedback from current sensor. 

4.2 Configuration Modeling 

 

To map the torque distribution on the x,y and z axes of the pyramidal configuration. There 

must be an established relationship of the 4 wheels respect to the spin axes.  

Such distribution of each wheel can be represented by a 1x3 matrix with cosine and sine for 

magnitude distribution shown the equations 4.10 4.11, 4.12 and 4.13 which represents wheel 

12,3 and 4 respectively. The rection wheel contributes opposite torque to its unit vector in the 

body frame.  

𝐵𝑧1 = [
sin 𝛼 ∗ cos 𝛽1

sin 𝛼 ∗ cos 𝛽1

cos 𝛼

] 

 

 

𝐵𝑧2 = [
sin 𝛼 ∗ cos𝛽2

sin 𝛼 ∗ cos𝛽2

cos 𝛼

] 

 

𝐵𝑧3 = [
sin 𝛼 ∗ cos𝛽3

sin 𝛼 ∗ cos𝛽3

cos 𝛼

] 

 

 

(4.10) 

 

 

 

(4.11) 

 

 

 

 

(4.12) 

 

 

 

 

    (4.13) 
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𝐵𝑧4 = [
sin 𝛼 ∗ cos 𝛽4

sin 𝛼 ∗ cos 𝛽4

cos 𝛼

] 

 

𝛽 = [0, 90 180, 270]𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

 

 

 

Beta vector is the angle distribution of 1 through 4 in the order and 𝛼 would be the tilt angle 

of 54.74 degrees from the XY plane (horizontal). The reason is to maximize the torque 

generation in three axis so the sum of all nit vectors would need to be symmetric about the z axis. 

The azimuth angle would be 120 degrees to prevent bas in one direction and maintain the XY 

plane symmetry.  

Using MATLAB the Figure 4.5 can be modeled to be shown of th 4 reaction wheels motor 

modules to be placed on the spacecraft. This would mean that each of the wheel will have affect 

on x,y and z axes therefore creating redundancies systems.   
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Figure 4.5. MATLAB visualization of the wheel distribution in pyramidal configuration. 

 

 The torque on the spacecraft from the 4-reaction wheel can also be modeled in equation 

4.14. 

𝜏 = [

𝜏𝑥

𝜏𝑦

𝜏𝑧

] = − [
sin 𝛼 0 − sin 𝛼

0 sin 𝛼 0
cos 𝛼 cos 𝛼 cos𝛼

    
0

− sin 𝛼
cos 𝛼

] [ 

𝜏1

𝜏2

𝜏3

𝜏4

𝐵  ]  

 

 

(4.14) 
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4.3 Three Axes Control Algorithm 

 

Each axis has a PID controller where the systems would reference a desired quaternions 

input and a measured current quaternion from sensor. The quaternions would then be 

multiplied to produce a small angles error. This proportional integration differential 

controller generates a per axis acceleration demand to each of the plant subsystem which is 

the rection wheel motor. This then is multiplied with the inertia matrix of the body satellite 

to produce a torque command. If the systems contain thruster, there would be a pulse width 

command using linear programming for simplex algorithm. However, if there are no thruster 

the default state would be the reaction wheel command. This would essentially convert to 

current and voltage feedback into the reaction wheel. Such flow diagram can be shown in 

Figure 4.6. 

 

 

Figure 4.6. Three axes control algorithm. 

 

 Without using any PID controller the following graph can be obtained to visualize  the 

tracking vs targeting quaternions of the spacecraft’s body state. Figure 4.7 shows that the 

spacecraft starts with an target 60 degrees rotation about the Z-axis. The quaternion PD 

controller drives the spacecraft dynamic from initial to target orientation. The reaction wheel 

generates torque to correct for the quaternion error by using matrix multiplication fo quaternions 

to obtain error. The quaternions contain 1 scalar and 3 spin components. The q1 plot shows that 

q1 starts a t a large value but since the target is rotating about Z q1 must decrease toward 0. This 

indicates the spacecraft is reducing its rotation around X axis as it approaches the Z axis rotation. 

The q2 represent y axis spin rotation. The systems initially has 0 y axis component so q2 stays 

close to 0 at all time. Q3 shows increasing in value meaning that the spacecraft is rotating around 

the Z -axis. Q0 is basically the most important indicator where it can tell the mission control if 

the desired quaternion is approaching rapidly or not.  
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Figure 4.7. PD  systems of 45 degrees command around the x- axis. 

4.4 Torque and Momentum Control Loop 

 

The torque control loop can be modeled by using a unified modeling language (UML) 

shown in Figure 4.9.  The input of the script uses a simple forward Euler integrator with a time 

step of 0.1 seconds over a simulation period of 50 seconds. The spacecraft has inertia of diagonal 

matrix of I = diag[10, 14, 8] where the reaction wheel has a spin axis inertia of 0.06 kg*m^2. 

Since there are no cross product of the inertia such that there are no diagonal terms within the 

inertia matrix, the rotational cross-coupling only comes through the reaction wheel and not from 

the spacecraft’s inertia itself.  

The reaction wheel configuration and arrangement once become a 3x4 matrix such that there 

is a no unique solution for any 3-dimentionsal torque demand. A function of Moore-Penrose 

called pseudo-inverse to find a best fit set of wheel torques.  

The control gains function use a simple PID on the attitude error and rate error such that the 

current Kp = 5 and Kd = 3. This essentially accumulates the term of the quaternion vector error.  

For initial condition the is no angular velocity. The spacecraft starts with a 32 degrees 

rotation about the x-principal axis and a nonangular velocity of w0 = [0.1, -0.05, 0.005]. This 

would also bring four reactions wheel to at nulling spinning speed.  
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 For the main loop computation, the code ensure that the current quaternion is normalized 

to avoid the floating drift of a point. The attitude error calculation is applying the matrix 

multiplication of the desired quaternion with the conjugate of the current quaternion. The PID 

control then takes over to accumulate the integral of the attitude. Then a torque function is called 

to produce a quaternion vector error. The wheel torque allocation essentially utilize pseudo 

inverse and then angular momentum is updated using the Euler’s equation. The current sensor is 

also being used to get the current feedback to determine the exact torque being produced as well 

as power being drawn from all of the actuators.  

 



56 

 

Figure 4.8 UML diagram of torque control code. 
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Figure 4.9 Spacecraft simulations based on the control UML code blocks. 

 In Figure 4.9, the spacecraft is clearly to be at a 30 degrees roll offset with a little 

perturbation of body-rate offset. As time goes on the PID controller is attempting to drive the 

system back toward zero Euler angles since there is no external damping of motion as the Kp and 

Kd increase. There is no energy being dissipated where the system can continue to exhibit 

sinusoidal oscillations in three axes near 0.  

 The angular velocity graph shows a oscillations where the gain factor is overshooting 

which cause the controller to correct in each axis. The red curves show the greatest amplitude 

where the 30 degrees is initial roll offset. However, there can also be observed cross coupling 

appearance within pitch and yaw due to the quaternion control law within the tetrahedral wheel 

configuration. 

 The reaction wheel speed graph also shows the sinusoidal behavior as the wheel speed up 

and slow down as the response to the body’s rotation. The total angular momentum is also 

conserved since there are no external torques where the wheels and the spacecraft effectively 

exchange momentum back and forth. Since there is a positive and negative amplitude there is no 

saturation that occur within this maneuver.  

4.5 B-dot controller for Detumbling 
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The principle B-dot controller is use to control the detumbling nd reduce angular momentum 

by generate a magnetic torque from the rate of change of the measured magnetic field of the 

body frame. The principle can be shown as: 

 

                            𝑀 = −
𝑘

𝑑𝑏𝑏𝑜𝑑𝑦

𝑑𝑡

||𝑏𝑜𝑑𝑦||
 𝑎𝑛𝑑 𝑇 = 𝑀 𝑥 𝑏𝑏𝑜𝑑𝑦  

 

(4.15) 

 

                                   

 A Matlab script is written such that the B-inertial can be representative in micro tesla of 

1x4 matrix. The discrete B-dot should be computed as equation 4.16 such that it represents the 

step size. 

                            𝑏𝑏𝑜𝑑𝑦 =
𝑏𝑏𝑜𝑑𝑦(𝑡+∆𝑡)− 𝑏𝑏𝑜𝑑𝑦(𝑡)

∆𝑡
 

 

(4.16) 

 

 

 The command dipole can be formed by  

                          𝑀 = −𝑔𝑎𝑖𝑛 ∗
𝑘

𝑑𝑏𝑏𝑜𝑑𝑦

𝑑𝑡

||𝑏𝑜𝑑𝑦||
  

 

(4.17) 

 

 

The Euler rigid body equation would need to be integrated to update the quaternion after. 
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Figure 4.10 Angular velocity in body frame with high gain 

 In Figure 4.10 an the angular velocity in Body Frame show an ideal B plot in detumbling 

would show a decay however, there shown to be extreme injection of rotational energy than 

damping it. This is prove to show that the critical gain factor is super important in these early 

orbit operation. This also indicate eh tenet roque has a sign error or wrong polarity within the 

hardware. There can also be an unrealistic assumption such that causing a large gain which 

oversaturates the system.  

 The magnetic field plot in Figure 4.12 and 4.13 show the variance from 3x10^-5 Tesla to 

-3 x 10^-5 Tesla in the Bz axis where it is a quick spinning axis. As the satellite speeds up the 

body changes more rapidly so the derivative will become larger as the amplitude shown. The 

command dipole also showing a ramp up in amplitude such that the magnetorquer rods will have 

a strict current and voltage limit to prevent such large dipole command.  

 A possible solution for this problem will be to simplify the Eci and use small angle 

approximation as well as ensuring the M x b calculation is an opposition rotation for the sign 

convention. There can also be some damping being used such as internal friction to be modeled 

which can always subtract energy from the body.  

 

Figure 4.11 B-dot derivative. 
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Figure 4.12 Magnetic field in body frame. 

 

Figure 4.13 Magnetic dipole command. 
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5. Mission Mode Simulation 

 

The attitude control mode so used to control the various GNC process and transitions during 

the life of the TechEdSat spacecraft’s mission. The attitude control mode is a configuration of the 

GNC bus flight software subsystem for a particular mission phase. The following table can be 

used to describe such modes. 

Table 5.1 GNC Mode  

Mode Name Sub-Mode Description 

Standby  The state of the vehicle at standby mode allow for 

flight software initialization. 

 

1. The spacecraft onboard computer as well as 

ground operator has the ability to disable 

attitude control in which the disabling 

momentum adjust, initialize the torque 

filtering, zero torque command and attitude 

error and rate error.  

2. Spin up and perform wheel self-test enabling 

current and proper wheel ID being tested 

3. Spin up test  

4. Open the options for the ascent deployment 

and recovery contingency  

Detumbling  The detumbling mode objective is to fully 

autonomously reduce and dampen the satellite’s 

angular velocity.  Using the b-dot algorithm from the 

magnetorquer of the iMTQ board to fully 

established.  

Inertial Slew  After the adjustment of the detumbling the 

spacecraft shall align on a specific body axis 

nominally the Z axis which is nadir. The target 

vector shall rotate at the commanded rate to be 0.5 

rad/sec. 

 

The spacecraft then shall rotate to maintain at the 

rate over the inertial frame. 

Nominal  The nominal control mode consists of the torque and 

scientific quaternion input to drive a specific 

spacecraft to point. The attitude control drives the 

vehicle to closely follow the commanded 

quaternion. This will also control solar array to track 

the sun. 

 

This will also support the mission operation orbit 

management and momentum control rate. 
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 Calibration 

[Built in Self-

Test] 

The sub-nominal mode of calibration with built in 

self-test for every single sensor and actuator on 

board will carry out set of basic test to check the 

telemetry and health before enabling command for 

slew. 

 

Gyroscope will have certain electrostatic force being 

applied to each of the spin axis to enable the 

readings.  

 

The magnetometer will have x-y  and Z sensor 

magnetic field be calibrated before the sensor fusion.  

 

 

 Scientific 

Pointing 

The scientific mode will take in a very specific 

quaternion commanded input to plug into the PID 

loop from the torque control loop to use the 4 ADCS 

reaction wheel to point to a very specific target. 

Sun 

Acquisition 

 The sun acquisition mode is enabled to maintain the 

sun safe attitude and rates with the digital sun sensor 

array and reaction wheel assembly. 

 

The spacecraft shall not be stowed which means the 

solar array must always point at the sun. The 

deployed sun acquisition align to the body target 

which also slew the solar array to sun by using the 

sun finding mode.  

 Sun Finding The sun defined mode execute a rotation to search 

the sequence of the body Y axis rate of 2 rad/sec to 

locate the sun 

 Sun Maneuver Once the sun is found the spacecraft shall slew down 

to sun safe that is dependent on the solar array 

deployment state matrix. 

 Sun Wait  If the spacecraft and the course digital array cannot 

find the sun, then loop back in the command to find 

it again . 

Safe Mode  During safe mode command and detect the failure. 

The OBC has the option to enter recovery and 

configure the GNC mode to enter sun acquisition 

where the solar array are fully deployed and sync 

with the spacecraft. There is also a stowed safe 

mode to tug in the solar array for further safety. 

Once the solar array is tugged in there will not be 

any slew rate commanding enable.  
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Figure 5.1. State machine diagram of ADCS operation. 

 

The state transition starts off with the initialization of the bus to enable communications with 

the OBC to switch to detumbling mode after spacecraft separation. The detumbling mode uses 

the B-dot controller to stabilize the angular velocity of the spin axes. The OBC then tell the 

ADCS board out switch to the nominal operation of the spacecraft such that self-tests and self-

calibration occur for all sensors and electromechanical on board. If the sensor fails to meet the 

passing self-test criteria, the ADCS board will run diagnostic check and go back to standby mode 

for 1 minute. If it cannot get out of safe mode, the board will go into safe mode until the onboard 

data handling unit response to the recovery operation. The recovery operation includes all of the 

safe mode stowed as well as sun search operation. 

However, if the diagnostic list is checkout the nominal trigger is activated and the ADCS 

board will enter nominal mode. The nominal mode can now be simply receiving a quaternions 

command to position the spacecraft to a direction using the PID torque control loop. 
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Figure 5.2 TechEdsat ADCS nadir pointing Mode [31] 

 This Simulink model is generating eternal output that can be described in a table 5.2 

below: 

Table 5.2. Parameters Definition 

Parameter Reference/Frame Description 

Position (ECEF) 
Earth‐Centered Earth‐

Fixed (ECEF) 

The satellite’s position relative to Earth’s center, 

which is expressed in a frame that rotates with 

Earth. This is sed for ground‐track calculations 

and helping with allocating and determining the 

local vertical (nadir) direction for pointing. 

Velocity (ECEF) 
Earth‐Centered Earth‐

Fixed (ECEF) 

The satellite’s velocity to be respected in the 

rotating ECEF frames. This is crucial for orbital 

propagation and many attitude‐control algorithms. 

Acceleration 

(ECEF) 

Earth‐Centered Earth‐

Fixed (ECEF) 

This is Acceleration due to gravity and other in 

ECEF coordinates which is to be used to integrate 

the orbit or simulate onboard sensors (like an 

IMU, Magnetometer). 

Quaternion 

(ECI→Body) 

Earth‐Centered Inertial 

(ECI) → Body 

The spacecraft’s orientation with respect to an 

inertial Earth‐centered frame. Useful for inertial 

pointing (e.g., star trackers or sun sensors) and 

general 3D attitude knowledge. 
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Parameter Reference/Frame Description 

Quaternion 

(ECEF→Body) 
Earth‐Fixed → Body 

The spacecraft’s orientation relative to Earth’s 

rotating frame. Critical for nadir‐pointing, as it 

defines how the local vertical maps into the body 

axes. 

“Earth (Nadir) 

Pointing” 
ADCS Mode Setting 

An operational mode in which the CubeSat keeps 

a specific face (e.g., +Z axis) aligned with Earth’s 

center. Uses ECEF data to track the nadir 

direction. 

Environment 

Model Outputs 

ECEF (and possibly 

others) 

Earth orientation parameters, and other orbital 

dynamics. The CubeSat block consumes these to 

propagate its orbit and attitude. 

Visualization 

Inputs 

ECEF/Body/Quaternion 

Data 

The 3D animation and scope blocks receive the 

updated states (position, velocity, quaternions) to 

display real‐time orbit and attitude plots. 

 

 

Figure 5.3 Orbit parameter tab 

 Notable parameters would be the Keplerian orbit elements which is defined by classical 

parameters such as semi major axis, eccentricity, and inclination. The semi major axis would be 
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6786km where this is in the low earth orbit regime. The eccentricity is 0.0010 which is a nearly 

circular orbit for TechEdsat. The inclination would be 977 degrees which is a near polar or sun-

synchronous orbit. The Right ascension of the ascending node is 294 degrees and Argument of 

Periapsis is 57.3 degrees; True anomaly would be 303.03 degrees such that it defines the orbit’s 

orientation in space and satellite’s potion within that orbit.  

 

 

 

Figure 5.4. Control input parameter 

Table 5.3. Orbital parameters 

Parameter 
Explanation 

Importance for CubeSat 

Orbit/Attitude 

Start Date (Julian Date) 

This essential defines the 

reference start date for 

simulation, here set as 

March 23, 2025. 

This is essential to 

synchronize the simulation 

with real-world time. 

Epoch of ECI Frame 

Defines the reference frame 

epoch for orbital 

calculations (January 1, 

2020, at 12:00 UTC). 

Establishes initial 

conditions for the 

spacecraft’s orbit model 

relative to Earth-Centered 

Inertial (ECI) coordinates. 
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Semi-major Axis (m) 

Average distance from the 

spacecraft to Earth center ( 

which is approximately 

6786 km). 

Determines orbital period 

and energy of the CubeSat’s 

orbit. 

Eccentricity 

This is  the orbit shape 

indicator, near-zero means 

near-circular orbit. 

Influences orbital velocity 

and altitude variations 

during an orbit. 

Inclination (deg) 

The angle of orbit plane 

with Earth's equatorial 

plane (97.168°), where it 

shows the sun synchronous 

orbit  

Crucial for mission 

coverage, Earth 

observation, and solar 

exposure as well as pointing 

to celestial 

RAAN (deg) 

Right Ascension of 

Ascending Node, 

(294.763°), describes 

orientation of the orbital 

plane relative to celestial 

coordinates. 

This defines the total orbital 

plane positioning for 

coverage planning and 

sunlight incidence. 

Argument of Periapsis 

(deg) 

This specifies the overall 

orientation of orbit's closest 

approach point of 

(57.3189°). 

This is important for 

mission timing related to 

orbit points where remote 

sensing is critical 

True Anomaly (deg) 

Initial angular position of 

(303.0301°) along orbit at 

epoch frame. 

This is to determine initial 

location of CubeSat on its 

orbit path respect to a full 

cycle at simulation start. 

Initial Euler Angles (deg) 

Initial attitude orientation 

(roll, pitch, yaw), set to [0 0 

0]. For stable and passive 

Provides starting spacecraft 

orientation for attitude 

simulation. This would later 

be used for DCM 

Initial Body Angular 

Rates (deg/s) 

Initial rotational velocity of 

the spacecraft, given as [0 0 

-0.6]. 

Establishes initial rotational 

dynamics of spacecraft in 

simulation. 

Pointing Mode (Earth 

Nadir) 

Attitude control targeting 

Earth’s center (Nadir). 

Defines spacecraft's 

operational pointing 

orientation towards Earth. 

Alignment and Constraint 

Vectors 

This define spacecraft 

orientation references 

relative to body axes and 

inertial frames. 

Crucial for ensuring correct 

spacecraft pointing/tracking 

and orientation with respect 

to Earth and Sun frame.  
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Figure 5.5 TechEdsat in MATLAB STK orbit simulation 

 Figure 5.5 shows the satellite orbit track, which is the blue line. The yellow line would be 

the orbit path which it will take per the burn/slew maneuver.  
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Figure 5.6 TechEdsat sun pointing mode 

 Figure 5.6 shows the sun pointing mode where the satellite needs to be pointed to the sun 

for battery re-conditioning. This would also show the sun sensor cone shaped region to be 

extended from the side. This is directly to gather the sunlight intensity as well as re-calibrate for 

every 6 months.  

 

 

Figure 5.7 TechEdsat nadir pointing mode 

 This describes the Nadir Pointing Mode such that it means straight down to the earth 

from the positive Z axis for kept aligned with the line of sight from the ground station. The 

purpose is to provide earth observation and communication instruments as well as cameras. The 

satellite calculates the local vertical vector of Xecef and transforms it into body coordinate then 

an attitude controller will command the spacecraft actuators which are the reaction wheel to 

vertical align with the body axis.  
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Figure 5.8 TechEdSat with custom coordinate pointing mode 

 Figure 5.8 shows the Simulink model where a certain coordinate being sent in as a target 

geography and the block essential contains quaternion conversions to produce torque commands 

for the spacecraft dynamics. The attitude controller is used and within that is a PD controller. The 

spacecraft dynamic block receives the control torque which moves around here principally axes 

Mb in the body frame. External torque is not applied as they are not significantly impacting the 

spacecraft in nadir pointing. The spacecraft dynamic block also propagates the satellite’s 

translation state and rotational state. This would also output spacecraft body position, velocity 

linear and angular acceleration for visualization. 

 The  quaternion q_icrf2ff , q_icrf2b and X_icrf are the inputs to animate the orbit state of 

the satellite. Such that the q_icrf2ff is the orientation of the local vertical and local horizontal 

LVLH frame relative to the inertial frame. This essential is just used for animation background 

reference frame. The q_icrf2b is a 4x1 quaternions where is the orientation of the body frame 

with respect to the inertial frame. This is the spacecraft’s current attitude. The Vector X_icrf 3x1 

matrix Is the position of the spacecraft I the Earth-centered inertial coordinates in 3D space. 
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Figure 5.9 Slew rate maneuver 

Table 5.4 State timeline 

Event Time Behavior Observed 

~0–1000 s Initial condition stabilization right after tumbling 

~1900 s 
First slew — visible angular spike (blue axis dominant) 

such that pointing at nadir. 

~2900 s 
Second slew — possibly targeting 2nd ground station in 

fast track mode. 

~4000 s 
Third significant attitude change (orange spike) indicate 

a fast transient sun tracking mode 

~9000 s 

Final and largest slew maneuver which has all axes 

involved; exhibits overshoot and damping due to the 

back to nadir pointing mode 
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Figure 5.10. Live command sequence 

Figure 5.10 is showing the live commanding sequence of the spacecraft. The first command 

sequence is at point to ground station after detumbling such that it points at NASA AMES 

ground station. There can be observed of body rate changing in the x, y, and z axis sch that the 

orange Z axis and blue z axis show positive angular velocity indicating ECEF frame.  

The second sun pointing after 4400 seconds causing spikes in all axes especially the x axis 

as it now is pointing toward the earth. The velocity eventually dampens out over 26 seconds for a 

smooth operation that does not introduce shock to any component.  

       The third maneuver is to attempt to deorbit the spacecraft for end-of-life simulation where it 

spins out of control. This would mean that safe mode is automatically being entered and sending 

a command down to ground segment to ask to recover or not.  
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6. Hardware in the Loop 

 

6.1 Testbed Setup  

 

The testbed setup is composed of two major parts which are the Simulink dynamics model 

and the electrical ground support testbed. The unit under test can be shown in figure 1 which is 

the Ventura ADCS board. The power distributed to the board will be via the power supply as well 

as hooking up to a debugging oscilloscope to capture the waveform of the SPI/I2C signal 

communication. The ADCS module sit on a 6 axis gimbal control bed which can be shown in 

Figure 6.2 and Figure 6.5.

 

 

Figure 6.1. ADCS electrical plant interconnection 

 In Figure 6.2 the testbed setup show an electrical ground support equipment providing 

power as well as debugging interface to the on-board electronics. The flight computer is being 

treated as the model on Simulink such that the Ventura ADCS is the plant that is being 

controlled. The simulant essentially provides the power distribution model dynamics model 

attitude control signal model IMU model and the 6 DoF model. The controllers receive the 

model to create registers command passing at 46 Mhz clock rate. Despite not using real time 

operating systems, the logic loop remained a stacked queue command. The 6 axis gimbal 

controller for azimuth and elevation will be an independently have its own power supply; 

however, will share the feedback for verification into the Ventura’s IMU model.  
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Figure 6.2 Testbed setup 

 Figure 6.3 shows the unit testing of the sun sensor such that it collects the luminance of  

the sun sensor in the infrared and visible light spectrum. The two magnitudes were combined to 

perform self-test as well as entering the control loop. The graph below demonstrates a unit test of 

85 seconds of light exposure. The initial phase around 45 to 55 seconds, the lux increases rapidly 

which indicates a high fluctuation and the turn on command of the sun sensor. The mid phase 

indicates a drop in lux which is due by the algorithm image filtering and simulating the sun 

moving away if the satellite is over in safe mode. The final phase is the re-exposure phase to 

simulate the sudden increase with more sharp peaks followed by another stabilization mode at a 

250 lux nominal mode. 

 Each of the peak corresponds to a exposure event where the sensor are being commanded 

to rotate toward the light source. The decreasing slope is a simulated path to see how much 

pointing loss the sun sensor would lose. The safe mode profile make sure that the sun sensor is 

always pointed to the sun to continue providing power with a patch solar array while the main 

solar array being stowed. 
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Figure 6.3 Unit test of digital sun sensor setup 

 Figure 6.4 provide the unit test setup of the RM3100 magnetometer sun sensor. The 

magnetometer will be separately mounted on the Cubesat but will still be routed to the ADCS 

Ventura board for feedback and control. The reason is that placing RM3100 near high-speed 

electronics causing signal integrity as well as magnetic flux to enter the sensor which introduces 

noises and more complex filtering techniques required.  

 The characterization of the sun sensor is collected at the systems level to observed the 

sensor fusion between the IMU and magnetometer in figure 6.7 
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Figure 6.4 RM3100 magnetometer unit test 
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Figure 6.5. Testbed motion simulator 3 degree of freedoms 

 The unit under test would be the entire ADCS systems shown in Figure 6.5 such that the 

clamp on two sides are clamping on the two narrow features of the baseplate subsystem which 

hold the motors. The structure of the motion simulator is made up of rigid arms where ach rung 

allow independent rotation about one axis. There is a high precision rotary bearing with low 

friction which increases the smoothness of the operation. The stand is manually adjustable with 

kinematics screws adopted from optomechanical concepts/ The position feedback consists of a 

rotary encoder on each axis for a closed loop control. The range of motion would be 180 degrees 

for yaw pitch , 360 degrees for roll. For the control interface, the data will be through serial and 

Serial Peripheral Interface [SPI] interface with real time command input and feedback logging. 

The cable management would need to be wrapped to prevent tangling when there are mutli-turn 

rotation.  

 

 

 

6.2 Controlling Loop 
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The control loop of the Hardware in the loop starts with reading the true spacecraft motion 

from the reaction wheels actuating the body. As for the gimbal integration it reads the real 

motion as the gimbal rotate in response to the ADCS commands. The script also use the date to 

update the orientation of the spacecraft’s orientation in quaternion form. Then it integrates the 

gyro rate over time. Then it also normalize quaternions to prevent drifting effect. 

 For the Q-ref which is the desired orientation it is calculated based on the mission mode 

state machine such as a point to earth, point to Sun or pointing at a coordinate on earth. It also 

calculates the quaternion error by multiplying matrix of the current operations and the desired 

orientation to see the error as an output to feed into the PD controller. At this point the IMU also 

measures the reaction rate as the gimbal rotates the ADCS board.  

 The PD controller then generates torque commands of Tx Ty and Tz to individual wheel 

commands. It also uses pseudo inverse math to distribute the torque among multiple 3x4 reaction 

wheels. The scaling factor of the hardware must also be accounted for PWM operation. The 

motor output will be made up of speed and direction. Such speed and directions will be captured 

as feedback from the internal hall sensor. INA219 current sensor also collects the current drawn 

by each motor to convert into th actual torque’s constant for feedback and monitoring. This 

essentially completes the closed for loop Hardware in the loop interface.  
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Figure 6.6 Control loop 
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6.3 Data Collection/Display 

 

 The data collection of the HWIL is streamed by telemetry viewer on a hosted local 

machine. Telemetry viewer is an app written in JavaScript to serve as a GUI interface. That GUI 

interface allows the user to set baud rate speed streamline the type of data type of the telemetry 

about to collect as well as the screen display for streaming telemetry.  

 Figure 6.7 contains 3x3 subplots of all sampling data vs their respective units. In position 

row one column number one, IMU ADIS16460’s gyro data is plotted which can be observed to  

be nominal when gimbling the ADCS. The row one column 2 subplot is the verification of the 

redundant IMU on the Arduino. This IMU along with the RM3100 magnetometer and 

ADIIS16460 complete the sensor fusion. The IMU temperature are the average of both functions 

from the MCP9809 and the ADIS16460;s internal temperature sensor. Position row 2, column 1 

displays the ADIS16460 IMU where it is nudged manually for acceleration. Z acceleration 

remains 1 m/s^2 due to the uncalibrated factor on testing day. Only 3 motors were being used 

that day/ This can be observed when torque B remains at 0 for all of the sampling. This was the 

test to run compensation from other reaction wheel.  

 This maneuver was performed when trying to point at the sun to simulate that reaction 

wheel B has voltage spike and forced it to shut down. So, torque demands from motor A was 

defaulted to be the one to compensate for torque B.  

 The bottom first two graphs are the output from the RM3100 magnetometer, The first one 

shows the individual axis output in micro Tesla. The second graph shows the magnitude 

combination of all 3 axis commands. As observed by the first 4100 samples, the RM3100 was 

being put closer to the digital Ventura board causing a spike in the magnetic detection field. To 

solve this problem, the decision was to isolate the sun sensor on the solar array where magnetic 

field from electronics would not interfere with the collection of data.  

 The last subplot is the total power consumed and drawn from the reaction wheel. This 

subplot also verify that motor B was off and not running to simulate anomaly. Motor A also 

consumed the most voltage as its duty cycle increased to compensate for motor B’s failure.  
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Figure 6.7. ADCS Command Dashboard via Telemetry Viewer 

 The IMU data was also collected and streamed online via an app called Grafana. The 

workflow of Grafana allows the user to collect and store database in InfluxDB, this can then be 

queried into displaying the data via Wi-Fi protocol. In the middle of the screen shows the “RSSI 

Plot” such that the higher the number the better the connections of the local Wi-Fi that is being 

communicated to the Arduino. The temperature collected from IMU also matches the local 

HWIL setup on the tester’s machine host. The angular velocity around the principal axes were 

aggressively moved around to simulate the detumbling of the satellite in the worst-case scenario. 

The limits thresh hold, anything above 4000 mm/s linear velocity resulted in a declaration of 

losing the spacecraft.  
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Figure 6.8. IMU Command Dashboard via Grafana 

 Overall, the hardware in the loop experiment ran smoothly many troubleshooting efforts. 

One effort to troubleshoot was the voltage drop of the cable when changing the setup. This 

causes the motor to not pass self-test which declare the anomaly of the ADCS wheel. This is a 

single point of failure that was fixed by doing configuration management and properly labeling 

the hardware and connectors before integration of every test case and test scenarios. There was 

also a problem collecting the sun sensor data in which it also self-test because it did not receive 

enough lux at 80 degrees off boresight. This was fixed by introducing bias and making an 

adaptive threshold and lowering the specifications for the self-test to passed.  
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Appendices 

Appendix A: ADCS Ventura Schematic/Layout 

A.1 Top Half of Schematic Drawing 

 

A.2 Bottom Half of Schematic Drawing 
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A.3 Schematic Overall 
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Appendix B: BLDC Motor 

B.1 Mechanical Interface 

 

 

B.2 Specifications Parameters 
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Appendix C : Intergation and Manufactuuring 

C.1 Nylon 12 Motor Cap 

 

C.2 Baseplate 

 

 

 

C.3 M1.6 Class 6H Brass Threadcerts 
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C.4 Motor Integration Screw 
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Appendix D : Telemtry Code 

D.1 Main File to Call other files 

#include <Arduino.h> 
#include "ADIS16460m.h" 
#include "INA219m.h" 
#include "LSMm.h" 
#include "Motor_ALVm.h" 
#include "RM3100_Officialm.h" 
#include "MCP9808.h" 
 
// put function declarations here: 
 
void setup() { 
  // put your setup code here, to run once: 
  ADIS16460_setup(); 
  INA219_setup(); 
  LSM_setup(); 
  //Motor_ALV_setup(); 
  RM3100_setup(); 
  MCP9808_setup(); 
} 
 
void loop() { 
  // put your main code here, to run repeatedly: 
  ADIS16460_loop(); 
  INA219_loop(); 
  LSM_loop(); 
  //Motor_ALV_loop(); 
  RM3100_loop(); 
  MCP9808_loop(); 
} 

 

D.2 ADIS16460 Code 

#include <SPI.h> 
/*Connection 
 
Arduino Nano ESP32     -->        ADIS16460 
VCC 3.3V Out           -->        VDD (11) 
GND                    -->        GND (9) 
RST(RST)                -->        RST (1) 
SCK(D13)               -->        SCK  (2) 
CS(D10)                -->        CS(3) 
CIPO/MISO (D12)        -->        DOUT(4) 
COPI/MOSI (D11)        -->        DIN (6) 
DR(D8)                 -->        DR(13)  
*/ 
 
// ADIS16460 Register Definitions 
#define FLASH_CNT   0x00  //Flash memory write count 
#define DIAG_STAT   0x02  //Diagnostic and operational status 
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#define X_GYRO_LOW  0x04  //X-axis gyroscope output, lower word 
#define X_GYRO_OUT  0x06  //X-axis gyroscope output, upper word 
#define Y_GYRO_LOW  0x08  //Y-axis gyroscope output, lower word 
#define Y_GYRO_OUT  0x0A  //Y-axis gyroscope output, upper word 
#define Z_GYRO_LOW  0x0C  //Z-axis gyroscope output, lower word 
#define Z_GYRO_OUT  0x0E  //Z-axis gyroscope output, upper word 
#define X_ACCL_LOW  0x10  //X-axis accelerometer output, lower word 
#define X_ACCL_OUT  0x12  //X-axis accelerometer output, upper word 
#define Y_ACCL_LOW  0x14  //Y-axis accelerometer output, lower word 
#define Y_ACCL_OUT  0x16  //Y-axis accelerometer output, upper word 
#define Z_ACCL_LOW  0x18  //Z-axis accelerometer output, lower word 
#define Z_ACCL_OUT  0x1A  //Z-axis accelerometer output, upper word 
#define SMPL_CNTR   0x1C  //Sample Counter, MSC_CTRL[3:2]=11 
#define TEMP_OUT    0x1E  //Temperature output (internal, not calibrated) 
#define X_DELT_ANG  0x24  //X-axis delta angle output 
#define Y_DELT_ANG  0x26  //Y-axis delta angle output 
#define Z_DELT_ANG  0x28  //Z-axis delta angle output 
#define X_DELT_VEL  0x2A  //X-axis delta velocity output 
#define Y_DELT_VEL  0x2C  //Y-axis delta velocity output 
#define Z_DELT_VEL  0x2E  //Z-axis delta velocity output 
#define MSC_CTRL    0x32  //Miscellaneous control 
#define SYNC_SCAL   0x34  //Sync input scale control 
#define DEC_RATE    0x36  //Decimation rate control 
#define FLTR_CTRL   0x38  //Filter control, auto-null record time 
#define GLOB_CMD    0x3E  //Global commands 
#define XGYRO_OFF   0x40  //X-axis gyroscope bias offset error 
#define YGYRO_OFF   0x42  //Y-axis gyroscope bias offset error 
#define ZGYRO_OFF   0x44  //Z-axis gyroscope bias offset factor 
#define XACCL_OFF   0x46  //X-axis acceleration bias offset factor 
#define YACCL_OFF   0x48  //Y-axis acceleration bias offset factor 
#define ZACCL_OFF   0x4A  //Z-axis acceleration bias offset factor 
#define LOT_ID1     0x52  //Lot identification number 
#define LOT_ID2     0x54  //Lot identification number 
#define PROD_ID     0x56  //Product identifier 
#define SERIAL_NUM  0x58  //Lot-specific serial number 
#define CAL_SGNTR   0x60  //Calibration memory signature value 
#define CAL_CRC     0x62  //Calibration memory CRC values 
#define CODE_SGNTR  0x64  //Code memory signature value 
#define CODE_CRC    0x66  //Code memory CRC values 
#define ADIS16460_CS   2  // Assuming Chip Select is connected to pin 10 
#define ADIS16460_DR   8 
 
const float GYRO_SCALE = 0.005;   // degrees per second per LSB 
const float ACCEL_SCALE = 0.00025; // g's per LSB 
const float deltaD = 0.005; // Multiply by delta angle scale (0.005 degrees/LSB) 
const float deltaV = 2.5; // Multiply by velocity scale (2.5 mm/sec/LSB) 
 
SPISettings adisSettings(1000000, MSBFIRST, SPI_MODE3);  // 1MHz, MSB first, mode 
3 
 
// Function declarations 
int16_t readRegister(uint8_t regAddress); 
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int regWrite(uint8_t regAddr, int16_t regData); 
 
void ADIS16460_setup() { 
  Serial.begin(19200); 
  while(!Serial); 
 
  SPI.begin(); 
  delay(100); 
  pinMode(ADIS16460_CS, OUTPUT); 
  pinMode(ADIS16460_DR, INPUT); 
  digitalWrite(ADIS16460_CS, HIGH); 
  digitalWrite(ADIS16460_DR, HIGH); 
   
  // Additional initialization if necessary... 
  regWrite(MSC_CTRL, 0xC1);  // Enable Data Ready, set polarity 
  delay(20);  
  regWrite(FLTR_CTRL, 0x500); // Set digital filter 
  delay(20); 
  regWrite(DEC_RATE, 0), // Disable decimation 
  delay(20); 
} 
 
void ADIS16460_loop() { 
  int16_t x_gyro, y_gyro, z_gyro; 
  int16_t x_accel, y_accel, z_accel; 
  int16_t x_dangle, y_dangle, z_dangle; 
  int16_t x_dvel, y_dvel, z_dvel; 
  int16_t temp; 
   
  x_gyro = readRegister(X_GYRO_OUT); 
  y_gyro = readRegister(Y_GYRO_OUT); 
  z_gyro = readRegister(Z_GYRO_OUT); 
   
  x_accel = readRegister(X_ACCL_OUT); 
  y_accel = readRegister(Y_ACCL_OUT); 
  z_accel = readRegister(Z_ACCL_OUT); 
 
  x_dangle = readRegister(X_DELT_ANG); 
  y_dangle = readRegister(Y_DELT_ANG); 
  z_dangle = readRegister(Z_DELT_ANG); 
 
  x_dvel = readRegister(X_DELT_VEL); 
  y_dvel = readRegister(Y_DELT_VEL); 
  z_dvel = readRegister(Z_DELT_VEL); 
 
  temp = readRegister(TEMP_OUT); 
 
  Serial.print(x_gyro*GYRO_SCALE); Serial.print(","); 
  Serial.print(y_gyro*GYRO_SCALE); Serial.print(","); 
  Serial.print(z_gyro*GYRO_SCALE); Serial.print(","); 
  Serial.print(x_accel*ACCEL_SCALE); Serial.print(","); 
  Serial.print(y_accel*ACCEL_SCALE); Serial.print(","); 
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  Serial.print(z_accel*ACCEL_SCALE); Serial.print(","); 
  Serial.print(x_dangle*deltaD); Serial.print(","); 
  Serial.print(y_dangle*deltaD); Serial.print(","); 
  Serial.print(z_dangle*deltaD); Serial.print(","); 
  Serial.print(x_dvel*deltaV); Serial.print(","); 
  Serial.print(y_dvel*deltaV); Serial.print(","); 
  Serial.print(z_dvel*deltaV); Serial.print(","); 
 
  //Serial.println((temp*0.05)+25); 
  Serial.print((temp*0.05)+25); Serial.print(","); 
 
  //delay(10);  // delay for 1 seconds 
} 
 
int16_t readRegister(uint8_t regAddress) { 
 
  SPI.beginTransaction(adisSettings); 
   
  digitalWrite(ADIS16460_CS, LOW); 
  SPI.transfer(regAddress);  // Shift left to accommodate the R/W bit 
  SPI.transfer(0x00); 
  digitalWrite(ADIS16460_CS, HIGH); 
   
  delayMicroseconds(40); 
 
  digitalWrite(ADIS16460_CS, LOW); 
 

    
  uint8_t msbData = SPI.transfer(0x00); // Send (0x00) and place upper byte into 
variable 
  uint8_t lsbData = SPI.transfer(0x00); // Send (0x00) and place lower byte into 
variable 
  digitalWrite(ADIS16460_CS, HIGH); 
 
  delayMicroseconds(40); // Delay to not violate read rate (16 us) 
 
  SPI.endTransaction(); 
 
  int16_t dataOut = (msbData << 8) | (lsbData & 0xFF); // Concatenate upper and 
lower bytes 
   
  return (dataOut); 
} 
 
int regWrite(uint8_t regAddr, int16_t regData) { 
 
  // Write register address and data 
  uint16_t addr = (((regAddr & 0x7F) | 0x80) << 8); // Toggle sign bit, and check 
that the address is 8 bits 
  uint16_t lowWord = (addr | (regData & 0xFF)); // OR Register address (A) with 
data(D) (AADD) 
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  uint16_t highWord = ((addr | 0x100) | ((regData >> 8) & 0xFF)); // OR Register 
address with data and increment address 
 
  // Split words into chars 
  uint8_t highBytehighWord = (highWord >> 8); 
  uint8_t lowBytehighWord = (highWord & 0xFF); 
  uint8_t highBytelowWord = (lowWord >> 8); 
  uint8_t lowBytelowWord = (lowWord & 0xFF); 
 
  // Write highWord to SPI bus 
  digitalWrite(ADIS16460_CS, LOW); // Set CS low to enable device 
  SPI.transfer(highBytelowWord); // Write high byte from low word to SPI bus 
  SPI.transfer(lowBytelowWord); // Write low byte from low word to SPI bus 
  digitalWrite(ADIS16460_CS, HIGH); // Set CS high to disable device 
 
  delayMicroseconds(40); // Delay to not violate read rate (16 us) 
 
  // Write lowWord to SPI bus 
  digitalWrite(ADIS16460_CS, LOW); // Set CS low to enable device 
  SPI.transfer(highBytehighWord); // Write high byte from high word to SPI bus 
  SPI.transfer(lowBytehighWord); // Write low byte from high word to SPI bus 
  digitalWrite(ADIS16460_CS, HIGH); // Set CS high to disable device 
 
  return(1); 
} 
 

 

D.3 INA219 Code 

#include <Wire.h> 
#include <Adafruit_INA219.h> 
 
//Motor Specifications 
#define TORQUE_CONSTANT 8.8 // Torque constant in mNm/A 
#define RATED_VOLTAGE 6     // Rated voltage in volts 
#define SUPPLY_VOLTAGE 8    // Supply voltage in volts 
 

#define PWM1 5 
#define PWM2 6 
#define PWM3 9 
#define PWM4 10 
 
#define DIR1 14 
#define DIR2 15 
#define DIR3 16 
#define DIR4 17 
 
Adafruit_INA219 ina219_A(0x40); 
Adafruit_INA219 ina219_B(0x41); 
Adafruit_INA219 ina219_C(0x42); 
Adafruit_INA219 ina219_D(0x43); 



99 

 
void displaySensorData(Adafruit_INA219& sensor, const String& label); 
void setMotorDirection(bool direction); 
void stopAllMotors(); 
void runAllMotors(int speed); 
 

void INA219_setup() { 
  //Serial.begin(9600); 
  while (!Serial) { 
    delay(1); // Wait for serial port to connect 
  } 
   
  //Serial.println("Hello!"); 
 
  // Initialize the INA219 sensors 
  if (!ina219_A.begin()) { 
    Serial.println("Failed to find INA219 chip A"); 
    while (1) { delay(10); } 
  } 
  if (!ina219_B.begin()) { 
    Serial.println("Failed to find INA219 chip B"); 
    while (1) { delay(10); } 
  } 
  if (!ina219_C.begin()) { 
    Serial.println("Failed to find INA219 chip C"); 
    while (1) { delay(10); } 
  } 
  if (!ina219_D.begin()) { 
    Serial.println("Failed to find INA219 chip D"); 
    while (1) { delay(10); } 
  } 
 
  //Serial.println("Measuring voltage and current with INA219 sensors ..."); 
 
  // Initialize motor control pins 
  pinMode(PWM1, OUTPUT); 
  pinMode(DIR1, OUTPUT); 
  pinMode(PWM2, OUTPUT); 
  pinMode(DIR2, OUTPUT); 
  pinMode(PWM3, OUTPUT); 
  pinMode(DIR3, OUTPUT); 
  pinMode(PWM4, OUTPUT); 
  pinMode(DIR4, OUTPUT); 
} 
 
void INA219_loop() { 
  // Display sensor data for all INA219 sensors 
  displaySensorData(ina219_A, "Sensor A"); 
  displaySensorData(ina219_B, "Sensor B"); 
  displaySensorData(ina219_C, "Sensor C"); 
  displaySensorData(ina219_D, "Sensor D"); 
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  // Spin motors clockwise for 5 seconds 
  setMotorDirection(HIGH); 
  runAllMotors(250); 
  //delay(5000); 
 
  // Spin motors counterclockwise for 2 seconds 
  //setMotorDirection(LOW); 
  //runAllMotors(100); 
  //delay(2000); 
 
  // Stop all motors 
  //stopAllMotors(); 
  //delay(2000); 
} 
 
void displaySensorData(Adafruit_INA219& sensor, const String& label) { 
  float shuntvoltage = sensor.getShuntVoltage_mV(); 
  float busvoltage = sensor.getBusVoltage_V(); 
  float current_mA = sensor.getCurrent_mA(); 
  float power_mW = sensor.getPower_mW(); 
  float loadvoltage = busvoltage + (shuntvoltage / 1000); 
 
    // Calculating torque in mNm 
  float torque = TORQUE_CONSTANT * current_mA / 1000; // Convert current from mA 
to A 
 
  // Calculating true RPM 
  float trueRPM = (busvoltage / RATED_VOLTAGE) *6700; // n0 is the no-load speed 
at rated voltage 
 
  Serial.print(torque); Serial.print(","); 
  Serial.print(trueRPM); Serial.print(","); 
   
   
  //Serial.print(label); Serial.print(" Bus Voltage: ");  
  Serial.print(busvoltage); Serial.print(","); 
  //Serial.println(" V"); 
  //Serial.print(label); Serial.print(" Shunt Voltage: ");  
  Serial.print(shuntvoltage); Serial.print(","); 
  //Serial.println(" mV"); 
  //Serial.print(label); Serial.print(" Load Voltage: ");  
  Serial.print(loadvoltage); Serial.print(","); 
  //Serial.println(" V"); 
  //Serial.print(label); Serial.print(" Current: ");  
  Serial.print(current_mA); Serial.print(","); 
  //Serial.println(" mA"); 
  //Serial.print(label); Serial.print(" Power: ");  
  Serial.print(power_mW); Serial.print(","); 
  //Serial.println(" mW"); 
  //Serial.println(""); 
} 
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void setMotorDirection(bool direction) { 
  digitalWrite(DIR1, direction); 
  digitalWrite(DIR2, direction); 
  digitalWrite(DIR3, direction); 
  digitalWrite(DIR4, direction); 
} 
 
void runAllMotors(int speed) { 
  analogWrite(PWM1, speed); 
  analogWrite(PWM2, speed); 
  analogWrite(PWM3, speed); 
  analogWrite(PWM4, speed); 
} 
 
void stopAllMotors() { 
  analogWrite(PWM1, 0); 
  analogWrite(PWM2, 0); 
  analogWrite(PWM3, 0); 
  analogWrite(PWM4, 0); 
} 
 

 

D.4 MCP9808 Code 

/**************************************************************************/ 
/*! 
This is a demo for the Adafruit MCP9808 breakout 
----> http://www.adafruit.com/products/1782 
Adafruit invests time and resources providing this open source code, 
please support Adafruit and open-source hardware by purchasing 
products from Adafruit! 
*/ 
/**************************************************************************/ 
 
#include <Wire.h> 
#include "Adafruit_MCP9808.h" 
 
// Create the MCP9808 temperature sensor object 
Adafruit_MCP9808 tempsensor = Adafruit_MCP9808(); 
 
void MCP9808_setup() { 
  Serial.begin(9600); 
  while (!Serial); //waits for serial terminal to be open, necessary in newer 
arduino boards. 
  //Serial.println("MCP9808 demo"); 
   
  // Make sure the sensor is found, you can also pass in a different i2c 
  // address with tempsensor.begin(0x19) for example, also can be left in blank 
for default address use 
  // Also there is a table with all addres possible for this sensor, you can 
connect multiple sensors 
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  // to the same i2c bus, just configure each sensor with a different address and 
define multiple objects for that 
  //  A2 A1 A0 address 
  //  0  0  0   0x18  this is the default address 
  //  0  0  1   0x19 
  //  0  1  0   0x1A 
  //  0  1  1   0x1B 
  //  1  0  0   0x1C 
  //  1  0  1   0x1D 
  //  1  1  0   0x1E 
  //  1  1  1   0x1F 
  if (!tempsensor.begin(0x18)) { 
    Serial.println("Couldn't find MCP9808! Check your connections and verify the 
address is correct."); 
    while (1); 
  } 
     
   //Serial.println("Found MCP9808!"); 
 
  tempsensor.setResolution(3); // sets the resolution mode of reading, the modes 
are defined in the table bellow: 
  // Mode Resolution SampleTime 
  //  0    0.5°C       30 ms 
  //  1    0.25°C      65 ms 
  //  2    0.125°C     130 ms 
  //  3    0.0625°C    250 ms 
} 
 
void MCP9808_loop() { 
  //Serial.println("wake up MCP9808.... "); // wake up MCP9808 - power 
consumption ~200 mikro Ampere 
  tempsensor.wake();   // wake up, ready to read! 
 
  // Read and print out the temperature, also shows the resolution mode used for 
reading. 
  //Serial.print("Resolution in mode: "); 
  Serial.print(tempsensor.getResolution()); Serial.print(","); 
  float c = tempsensor.readTempC(); 
  float f = tempsensor.readTempF(); 
  //Serial.print("Temp: ");  
  Serial.print(c, 4); Serial.print(","); 
  //Serial.print("*C\t and ");  
  Serial.println(f, 4);  
  //Serial.println("*F."); 
   
  //delay(2000); 
  //Serial.println("Shutdown MCP9808.... "); 
  tempsensor.shutdown_wake(1); // shutdown MSP9808 - power consumption ~0.1 mikro 
Ampere, stops temperature sampling 
  //Serial.println(""); 
  //delay(200); 
} 
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D.5 Motor BLDC2610 Command Code 

#include <Wire.h> 
#include <Adafruit_INA219.h> 
 
Adafruit_INA219 ina219_A_ALV(0x40); 
Adafruit_INA219 ina219_B_ALV(0x41); 
Adafruit_INA219 ina219_C_ALV(0x48); 
Adafruit_INA219 ina219_D_ALV(0x4c); 
 
const int motorSpeedPin = 6; // The PWM pin for motor speed control 
const int motorDirectionPin = 14; // The digital pin for motor direction control 
 
void Motor_ALV_setup() { 
  //Serial.begin(9600); 
  while (!Serial) { 
    delay(1); // Wait for serial port to connect 
  } 
   
  //Serial.println("Hello!"); 
 
  // Initialize the INA219 sensors 
  if (!ina219_A_ALV.begin()) { 
    Serial.println("Failed to find INA219 chip A"); 
    while (1) { delay(10); } 
  } 
  if (!ina219_B_ALV.begin()) { 
    Serial.println("Failed to find INA219 chip B"); 
    while (1) { delay(10); } 
  } 
 
  //Serial.println("Measuring voltage and current with INA219 sensors ..."); 
 
  // Initialize motor control pins 
  pinMode(motorSpeedPin, OUTPUT); 
  pinMode(motorDirectionPin, OUTPUT); 
} 
 
void displaySensorData_ALV(Adafruit_INA219& sensor, const String& label) { 
  float shuntvoltage = sensor.getShuntVoltage_mV(); 
  float busvoltage = sensor.getBusVoltage_V(); 
  float current_mA = sensor.getCurrent_mA(); 
  float power_mW = sensor.getPower_mW(); 
  float loadvoltage = busvoltage + (shuntvoltage / 1000); 
   
  //Serial.print(label); Serial.print(" Bus Voltage: ");  
  Serial.print(busvoltage); Serial.print(","); 
  //Serial.println(" V"); 
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  //Serial.print(label); Serial.print(" Shunt Voltage: ");  
  Serial.print(shuntvoltage); Serial.print(","); 
  //Serial.println(" mV"); 
  //Serial.print(label); Serial.print(" Load Voltage: ");  
  Serial.print(loadvoltage); Serial.print(","); 
  //Serial.println(" V"); 
  //Serial.print(label); Serial.print(" Current: ");  
  Serial.print(current_mA); Serial.print(","); 
  //Serial.println(" mA"); 
  //Serial.print(label); Serial.print(" Power: ");  
  Serial.print(power_mW); Serial.print(","); 
  //Serial.println(" mW"); 
  //Serial.println(""); 
} 
 
void Motor_ALV_loop() { 
  // Display sensor data 
  displaySensorData_ALV(ina219_A_ALV, "Sensor A"); 
  displaySensorData_ALV(ina219_B_ALV, "Sensor B"); 
 
  // Motor control logic 
  digitalWrite(motorDirectionPin, HIGH); 
  analogWrite(motorSpeedPin, 50); // Set motor speed to maximum 
  delay(5000); 
 
  analogWrite(motorSpeedPin, 0); // Stop the motor 
  delay(5000); 
 
  digitalWrite(motorDirectionPin, LOW); 
  analogWrite(motorSpeedPin, 50); // Set motor speed to maximum again 
  delay(5000); 
 
  analogWrite(motorSpeedPin, 0); // Stop the motor 
  delay(5000); 
} 
 

 

 

D.6 RM3100 Command Code 

#include <Arduino.h> 
#include <SPI.h> 
 
//pin definitions 
#define PIN_DRDY 8 //Set pin D9 to be the Data Ready Pin 
#define PIN_CS 4 //Chip Select (SS) is set to Pin 10 
 
//internal register values without the R/W bit 
#define RM3100_REVID_REG 0x36 // Hexadecimal address for the Revid internal 
register 
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#define RM3100_POLL_REG 0x00 // Hexadecimal address for the Poll internal 
register 
#define RM3100_CMM_REG 0x01 // Hexadecimal address for the Continuous Measurement 
Mode internal register 
#define RM3100_STATUS_REG 0x34 // Hexadecimal address for the Status internal 
register 
#define RM3100_CCX1_REG 0x04 // Hexadecimal address for the Cycle Count X1 
internal register 
#define RM3100_CCX0_REG 0x05 // Hexadecimal address for the Cycle Count X0 
internal register 
 
//options 
#define initialCC 200 // Set the cycle count 
#define singleMode 0 //0 = use continuous measurement mode; 1 = use single 
measurement mode 
#define useDRDYPin 1 //0 = not using DRDYPin ; 1 = using DRDYPin to wait for data 
 
/*********************************************** 
Arduino Nano ESP32/IOT33     -->        ADIS16460 
 
SCK (D13)                -->        SCK (1) 
MISO/COPI (D12)                  -->        MISO/CIPO (2) 
MOSI/COPI (D11)                -->       MOSI/COPI (3) 
CS (D10)              -->        SSN  (4) 
DRDY (D)               -->        DRDY(5) 
 
Power supply           -->  DVDD(12), AVDD(13) 
Power Supply GND       -->  DVSS(14), AVSS(7) 
****************************************************/ 
 
// Function definitions 
uint8_t readReg(uint8_t addr); 
void writeReg(uint8_t addr, uint8_t data); 
void changeCycleCount(uint16_t newCC); 
 
uint8_t revid; 
uint16_t cycleCount; 
float gain; 
 
void RM3100_setup() { 
 // pinMode(PIN_DRDY, INPUT);   
  pinMode(PIN_CS, OUTPUT); 
  digitalWrite(PIN_CS, HIGH); 
  SPI.begin(); // Initiate the SPI library 
  SPI.beginTransaction(SPISettings(1000000, MSBFIRST, SPI_MODE0));   
  //Serial.begin(9600); //set baud rate to 9600 
  delay(100); 
 
  revid = readReg(RM3100_REVID_REG); 
   
  //Serial.print("REVID ID = 0x"); //REVID ID should be 0x22 
  //Serial.println(revid, HEX); 
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  changeCycleCount(initialCC); //change the cycle count; default = 200 (lower 
cycle count = higher data rates but lower resolution) 
 
  cycleCount = readReg(RM3100_CCX1_REG); 
  cycleCount = (cycleCount << 8) | readReg(RM3100_CCX0_REG); 
 
  //Serial.print("Cycle Counts = "); //display cycle count 
  //Serial.println(cycleCount); 
 
  gain = (0.3671 * (float)cycleCount) + 1.5; //linear equation to calculate the 
gain from cycle count 
 
  //Serial.print("Gain = "); //display gain; default gain should be around 75 for 
the default cycle count of 200 
  //Serial.println(gain); 
 
  if (singleMode){ 
    //set up single measurement mode 
    writeReg(RM3100_CMM_REG, 0); 
    writeReg(RM3100_POLL_REG, 0x70); 
  } 
  else{ 
    // Enable transmission to take continuous measurement with Alarm functions 
off 
    writeReg(RM3100_CMM_REG, 0x79); 
  } 
} 
 
void RM3100_loop() { 
  long x = 0; 
  long y = 0; 
  long z = 0; 
  uint8_t x2,x1,x0,y2,y1,y0,z2,z1,z0; 
 
  //wait until data is ready using 1 of two methods (chosen in options at top of 
code) 
  if(useDRDYPin){  
    while(digitalRead(PIN_DRDY) == LOW); //check RDRY pin 
  } 
  else{ 
    while((readReg(RM3100_STATUS_REG) & 0x80) != 0x80); //read internal status 
register 
  } 
   
  //read measurements 
  digitalWrite(PIN_CS, LOW); 
  delay(100); 
  SPI.transfer(0xA4); 
  x2 = SPI.transfer(0xA5); 
  x1 = SPI.transfer(0xA6); 
  x0 = SPI.transfer(0xA7); 
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  y2 = SPI.transfer(0xA8); 
  y1 = SPI.transfer(0xA9); 
  y0 = SPI.transfer(0xAA); 
   
  z2 = SPI.transfer(0xAB); 
  z1 = SPI.transfer(0xAC); 
  z0 = SPI.transfer(0); 
   
  digitalWrite(PIN_CS, HIGH); 
 
  //special bit manipulation since there is not a 24 bit signed int data type 
  if (x2 & 0x80){ 
      x = 0xFF; 
  } 
  if (y2 & 0x80){ 
      y = 0xFF; 
  } 
  if (z2 & 0x80){ 
      z = 0xFF; 
  } 
 
  //format results into single 32 bit signed value 
  x = (x * 256 * 256 * 256) | (int32_t)(x2) * 256 * 256 | (uint16_t)(x1) * 256 | 
x0; 
  y = (y * 256 * 256 * 256) | (int32_t)(y2) * 256 * 256 | (uint16_t)(y1) * 256 | 
y0; 
  z = (z * 256 * 256 * 256) | (int32_t)(z2) * 256 * 256 | (uint16_t)(z1) * 256 | 
z0; 
 
  //calculate magnitude of results 
  double uT = sqrt(pow(((float)(x)/gain),2) + pow(((float)(y)/gain),2)+ 
pow(((float)(z)/gain),2)); 
 
  //display results 
  //Serial.print("Data in counts:"); 
  //Serial.print("   X:"); 
  Serial.print(x); Serial.print(","); 
  // Serial.print("   Y:"); 
  Serial.print(y); Serial.print(","); 
  //Serial.print("   Z:"); 
  Serial.print(z); Serial.print(","); 
 
  //Serial.print("Data in microTesla(uT):"); 
  //Serial.print("   X:"); 
  Serial.print((float)(x)/gain); Serial.print(","); 
  //Serial.print("   Y:"); 
  Serial.print((float)(y)/gain); Serial.print(","); 
  //Serial.print("   Z:"); 
  Serial.print((float)(z)/gain); Serial.print(","); 
 
  //Magnitude should be around 45 uT (+/- 15 uT) 
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  //Serial.print("Magnitude(uT):"); 
  //Serial.println(uT);  
  Serial.print(uT); Serial.print(","); 
  //Serial.println();     
} 
 
//addr is the 7 bit value of the register's address (without the R/W bit) 
uint8_t readReg(uint8_t addr){ 
  uint8_t data = 0; 
  digitalWrite(PIN_CS, LOW); 
  delay(100); 
  SPI.transfer(addr | 0x80); //OR with 0x80 to make first bit(read/write bit) 
high for read 
  data = SPI.transfer(0); 
  digitalWrite(PIN_CS, HIGH); 
  return data; 
} 
 
//addr is the 7 bit (No r/w bit) value of the internal register's address, data 
is 8 bit data being written 
void writeReg(uint8_t addr, uint8_t data){ 
  digitalWrite(PIN_CS, LOW);  
  delay(100); 
  SPI.transfer(addr & 0x7F); //AND with 0x7F to make first bit(read/write bit) 
low for write 
  SPI.transfer(data); 
  digitalWrite(PIN_CS, HIGH); 
} 
 
//newCC is the new cycle count value (16 bits) to change the data acquisition 
void changeCycleCount(uint16_t newCC){ 
  uint8_t CCMSB = (newCC & 0xFF00) >> 8; //get the most significant byte 
  uint8_t CCLSB = newCC & 0xFF; //get the least significant byte 
     
  digitalWrite(PIN_CS, LOW);  
  delay(100); 
  SPI.transfer(RM3100_CCX1_REG & 0x7F); //AND with 0x7F to make first 
bit(read/write bit) low for write 
  SPI.transfer(CCMSB);  //write new cycle count to ccx1 
  SPI.transfer(CCLSB);  //write new cycle count to ccx0 
  SPI.transfer(CCMSB);  //write new cycle count to ccy1 
  SPI.transfer(CCLSB);  //write new cycle count to ccy0 
  SPI.transfer(CCMSB);  //write new cycle count to ccz1 
  SPI.transfer(CCLSB);  //write new cycle count to ccz0 
  digitalWrite(PIN_CS, HIGH); 
} 
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Appendix E : Electronics Parts 

E.1. IMU 

E.1.1 IMU Pin Configuration 

 

E1.1.2 IMU Application 
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E.2. INA219 

E.2.1 INA219 Application 
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E.3. MCP9808 Application 
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E.4. Connectors 

E.4.1 Motor Connectors 

 

E.4.2. Power Supply Connector 
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E.5. AWG Wire Harness 
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E.6. BH1730 
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E.7 Solder Data 
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E.8 Solder Flux Data 
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