
ARTIFICIAL NEURAL NETWORK
TRAINING TO CORRECT FOR
SOLAR GRAVITY POTENTIAL

PERTURBATION IN CLOSE
ORBITS

a project presented to

 The Faculty of the Department of Aerospace Engineering
San Jose State University

in partial fulfilment of the requirements for the degree
Master of Science in Aerospace Engineering

by

 Mayra Lopez-Thibodeaux
July 2021

To be Approved by

Professor Jeanine Hunter
Faculty Advisor

 ii

ABSTRACT
The research done in this project aims to lay the basis for building a grid of solar gravitational
potential perturbation at every point in the phase space on a close orbit around Venus for
autonomous space travel. Two different approaches have been provided to reach this goal. The
most convenient one is the extraction of output weights from a Long Short-Term Memory
(LSTM) Recurrent Neural Network (RNN) trained with data generated by deep space orbit
determination and optimization software GMAT (General Mission Analysis Tool). The LSTM
train data was generated by simulating the solar potential perturbed and unperturbed orbits with
an initial state vector corresponding to that of the Venera D mission but at a 10,000 km larger
radius of pericenter. This same data was used to provide a second approach for building the solar
perturbation mapping by taking the difference between each of the perturbed and unperturbed
position vectors of the spacecraft at every step of its orbit around Venus and towards the
perturbed state. The training of the LSTM RNN was achieved with an accuracy between 89%
and 92% with two LSTM layers of 50 and 10 units respectively, a 0.46-rate regularizer and a
TimeDistributed wrapped Dense layer of 3 units. A burn analysis was initiated using GMAT as
well to provide a technique to farther develop this investigation. The analysis was done by solar
perturbation drifting of the spacecraft with different types of orbits and showed that solar
perturbation could aid to reach the goals of a mission with less or not fuel once in close orbit
around the planet.

 iii

Acknowledgments

 The work done in this project was possible by the collaboration of a group of great
computer scientists, aerodynamists and Professors. My deepest appreciation to all of them.
Special thanks to my advisor for this project, Professor Jeanine Hunter for her support and
always wise advice during this research, and to both Dr. Nikos Mourtos and Professor Hunter for
maintaining the Aerospace Department at San Jose State where they bring in a wide viarety of
projects, events, and opportunities for students to grow and thrive. I highly appreciate having the
opportunity to closely having collaborated with a great, supportive colleague, Takoua Bejaoui,
SJSU Graduate student from the Mechanical and Aerospace (AE) Engineering departments, who
played a major role in helping with the development of the RNN LSTM presented in this paper
and provided guidance for the development of some of the GMAT simulations used in this
report. Thanks to Dr. Fabio Di Troia, Professor of the Computer Science (C.S) department at
SJSU and Nelson Wong, SJSU Graduate students from the Computer Engineering (C.E) and C.S
departments and one of the leaders of the Robotics Team, who initiated the first machine
learning summer workshop based on the CS231 Stanford class’ materials that thought me the
foundations of my knowledge about Artificial Neural Networks. I highly appreciate their well
thought advise and continuous support and guidance during this project. Thanks to Theodore
Hendricks, a SJSU alumni from the AE department, for his guidance with GMAT and insight
ideas about some of the orbital mechanics behind this project. Thanks to my husband
Christopher Thibodeaux who has made it possible for me to reach this point in my educational
career and has been a tireless supporter in all senses during my education at SJSU and much of
my life. Special thanks to my beloved mother, Librada Felix de Lopez who is my most powerful
motivator, example to look at and role model to follow to grow in my years of life.

 iv

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 12

1.1 MOTIVATION .. 12
1.2 LITERATURE REVIEW .. 13
1.3 PROJECT PROPOSAL .. 22
1.4 METHODOLOGY .. 23

CHAPTER 2: DATA GENERATION FOR RNN TRAINING ... 25
2.1 STATE VECTORS FOR CLOSE ORBIT DETERMINATION .. 25

2.1.1 The Venera D Mission .. 25
2.2 GMAT .. 29

2.2.1 Propagation Method ... 29
2.2.2 Set Up ... 32

CHAPTER 3: RNN BACK-PROPAGATION IMPLEMENTATION 37
3.1 DEEP LEARNING AND DEEP NEURAL NETWORKS ... 37

3.1.1 Feedforward Neural Networks ... 38
3.1.1.1 The XOR Example ... 39
3.1.1.2 Gradient-Descent Learning and the Cost Function .. 43

3.2 RECURRENT NEURAL NETWORKS ... 47
3.2.1 RNN Training with Backpropagation ... 49

CHAPTER 4: LSTM RNN IMPLEMENTATION ... 52
4.1 LSTM RNN ARCHITECTURE .. 53

4.1.1 Steps in an LSTM Walk Through .. 54
4.2 LSTM RNN APPLICATION PROGRAMMING INTERFACE AND MACHINE LEARNING PLATFORM
 ... 56

4.2.1 Keras BPTT Implementation .. 56
4.2.2 State Maintenance in Keras .. 57
4.2.3 TensorFlow ... 57

4.3 ALGORITHM AND LSTM RNN SET UP ... 58
4.3.1 Data Gathering and Preparation for Training .. 59

4.3.1.1 Fetching the Data ... 59
4.3.1.2 Data Splitting, Normalization and Reshaping ... 59

4.3.4 The Model ... 60
4.3.4.1 LSTM Hyperparameters .. 61
4.3.4.2 LSTM RNN Model Architecture ... 62
4.3.4.3 Calculating the Weights .. 66

4.3 LSTM TRAINING RESULTS ... 67

CHAPTER 5: SOLAR GRAVITATIONAL POTENTIAL PERTURBATION ANALYSIS
 ... 71

5.1 VENUS APPROACH BY SOLAR GRAVITATIONAL POTENTIAL PERTURBATION DRIFT 71
5.2 SOLAR GRAVITATIONAL POTENTIAL PERTURBATION VECTOR FIELD 81

 v

5.3 SOLAR GRAVITATIONAL POTENTIAL PERTURBATION VECTOR FIELD BURN ANALYSIS
RESULTS ... 87

CHAPTER 6: CONCLUSION AND FUTURE WORK ... 97
APPENDICES .. 101

REFERENCES .. 102

LIST OF FIGURES

Figure 1. Perturbation methods used in favor of space travel [5], [6]. .. 13
Figure 2. GMAT propagator setup. ... 15
Figure 3. Spacecraft setup in GMAT and its corresponding plots. ... 16
Figure 4. Depiction of a Poincaré map with states of intersection 𝑰𝟏 and 𝑰𝟐 [4]. 17
Figure 5. Propose transfer type in [11]. ... 17
Figure 6. Error Summary in radius and inclination at periareion for the predicted transfer to

arrive at Phobos [11]. .. 18
Figure 7. The structure of a NN [13]. .. 19
Figure 8. Typical NN activation functions [14]. ... 19
Figure 9. Representation of a forward feed of a single-hidden-layer NN [13]. 20
Figure 10. A standard RNN [13]. .. 21
Figure 11. An LSTM cell with forget gate [15]. ... 21
Figure 12. Venera D Orbital Mechanics [16]. .. 26
Figure 13. Conversion of the right ascension of the asymptotic velocity arriving vector

in J2000 coordinates to that of the spacecraft’s orbit with respect to Venus. 28
Figure 14. Configuration of the spacecraft in GMAT. .. 32
Figure 15. GMAT propagator set up with its numerical integrator (left) and force model (right).

 ... 33
Figure 16. Mission sequence set up in GMAT. ... 34
Figure 17. Orbit view plot setup in GMAT. .. 35
Figure 18. Orbit view plot in GMAT corresponding with the setup for the data generation of this

project. ... 35
Figure 19. Illustration of a deep learning model [31]. ... 38
Figure 20. Solving for the XOR problem by learning a representation [modified from [31]. 40
Figure 21. The rectified linear unit activation function (ReLU). function [23]. 41
Figure 22. Gradient-based learning machine (modified from [37]). ... 43
Figure 23. Recalling figure 10, a standard RNN and its unfolding in time [13]. 48
Figure 24. Multilayer NNs and backpropagation [33]. ... 50
Figure 25. Long-Term Dependency Problem [43]. ... 52
Figure 26. RNN with repeating module containing a single layer [43]. 53
Figure 27. An LSTM has a repeating module containing four interacting layers. 53
Figure 28. The cell state of an LSTM [43]. ... 54
Figure 29. An LSTM gate structure [43]. .. 54

 vi

Figure 30. The forget gate layer of an LSTM [43]. ... 54
Figure 31. The input gate layer of an LSTM [43]. .. 55
Figure 32. The new cell state of an LSTM [43]. ... 55
Figure 33. The output gate layer of an LSTM [43]. .. 56
Figure 34. The many-to-many model [60]. ... 65
Figure 35. Training and validation accuracy and loss results. .. 69
Figure 36. Examples of overfitting given different number epochs as a limit. 70
Figure 37. Orbital parameters and epoch in GMAT and position of Venus in

the Solar System at the epoch of the Venera D mission [65]. ... 73
Figure 38. Position of the spacecraft with respect to the Sun in a Venera D-like closed orbit

around Venus. .. 73
Figure 39. Mission Tree with the command mission sequence used and the Toggle function. 74
Figure 40. Spacecraft approach to Venus after drifting towards the solar potential perturbation

for 451.65 days. ... 74
Figure 41. Orbit view of the set up for the second simulation. ... 75
Figure 42. Orbit view and track plot of the second simulation done after running over close to 4.8

years. .. 77
Figure 43. Orbital parameters and epoch in GMAT and position of Venus in

the Solar System at the epoch of the Venera 16 mission [65]. .. 78
Figure 44. Orbit view of the set up for the third simulation. ... 79
Figure 45. Orbit view and track plot of the second simulation done after running over
approximately 5 years……..80
Figure 46. A summary of LSTM architecture [66]. .. 81
Figure 47. Composition of an autoencoder [67]. ... 82
Figure 48. Example of an autoencoder with 5 features and 500 samples [68]. 83
Figure 49. Perturbed and unperturbed orbits closed to radius of pericenter. 84
Figure 50. Solar gravitational potential vector field at a rate of one step every 10 minutes. 85
Figure 51. Approximate location of the four areas of investigation for burn analysis other than at

radius of pericenter. ... 86
Figure 52. Mission Tree with the mission command sequence and description of its various

commands. ... 87
Figure 53. Setup for the Maneuver command in GMAT. ... 88

 vii

LIST OF TABLES

Table 1. GMAT key features (modified from [8]). ... 14
Table 2. GMAT numerical integrators overview [10]. .. 15
Table 3. Architecture and training results of NN using the circular Hill System [11]. 18
Table 4. Data file generated by GMAT corresponding with the setup presented in this chapter.

 ... 36
Table 5. Data set with 4 features (age, job, education, marital) and label y [39]. 44
Table 6. Updated Step with stochastic gradient descent [39]. ... 45
Table 7. Updated step with mini-batch gradient descent [39]. .. 46
Table 8. Software libraries used in this project. .. 59
Table 9. LSTM Hyperparameters. ... 62
Table 10. LSTM RNN architecture Map. .. 63
Table 11. Sequential RNN model summary. ... 66
Table 12. Burn analysis results. ... 89

 viii

ABBREVIATIONS, SYMBOLS AND UNITS

Abbreviations

GMAT General Mission Analysis Tool

NN Artificial Neural Network

i7 Intel seven

MRS Mean Square Error

ReLU Rectified linear units

RNN Recurrent Neural Network

LSTM The Long Short-Term Memory

BPTT Back propagation through time

API Application Programming Interface

JSDT Joint Science Definition Team

LLISSE Long-Lived, In-Situ Solar System Explorer

BPTT Back-propagation through time

KVTK Oxygen/Hydrogen Heavy Class

Briz Breeze-K, KM and M

UTC Universal Time

J2000 Reference frame based on the Earth’s equator and equinox on January 1, 2000 at

 12:00:00 TBD

ANSI American National Standards Institute

GUI Graphical user interface

RK Runge-Kutta

XOR Exclusive or function

 ix

SGD Stochastic gradient descent

Symbols

𝐼! and 𝐼" States of intersection on a Poincaré map

x or X Neural network input vector

w Weight vector

W Weight matrix

b Neuron bias

⨀ Element-wise multiplication

 f Activation function,

y or Y Neuron output

𝑦' Predicted neuron output

𝜽 Neural network parameters

L Loss function

U Weight matrix between input and hidden layers

V Weight matrix between the hidden and output transition

𝛾 Neural network learning rate

x, y and z Position vector components in Cartesian coordinates

vx, vy, vz Velocity vector components in Cartesian coordinates

∆v Change in velocity and fuel burn

𝑎 Semi-major axis

e Eccentricity

i Inclination

 x

ω Argument of perigee

Ω Longitude of the ascending node

𝜈	 True anomaly

rp Radius at pericenter or perigee

𝜏 Orbital period

G Gravitational constant equal to 6.67x10#"$ %&!

%')*+"

M Mass of Venus

Ey, Ex XY plane on reference frame of Earth

Vy, Vx XY plane on reference frame of Venus

ΩVE Right ascension of Venus with respect to Earth

ΩQV Right ascension of spacecraft’s orbit with respect to Venus

r, �̇�, �̈� Position vector as a function of time and its first and second derivatives in a

 Newtonian reference frame

x, y, z Cartesian coordinates of 3-D space in the Newtonian reference frame

�̈�, �̈�, �̈� Second time derivatives of Cartesian coordinates of 3-D space in the Newtonian

 reference frame

m Mass of the spacecraft and

F Force vectors acting on mass m

t Time

h Step in time

f* Feedforward neural network approximation function

𝜙 Non-linear transformation of input x

c Bias vector

 xi

E Cost function

Z Gradient-based method input

D Gradient-based method desired output

p Number of inputs in the system

𝐽(𝜽) MSE function evaluated over a full training set

A A given matrix A

h Vector of hidden units

M Function learned by the machine

η Gradient-based method learning rate

Units

GHz Gigahertz

km Kilometer

km/hr Kilometer per hour

kg Kilograms

sec Seconds

min Minute

hr Hour

 12

Chapter 1: Introduction

1.1 Motivation

 Space exploration has become crucial in the advancement of different fields of science. It
provides scientists and engineers with vast amounts of data to be analyzed, and the opportunity
to make new discoveries. For instance, data gathered from the Hubble Space Telescope,
launched in 1990 from the John F. Kennedy Space Center in Florida, has led to the discovery of
the age and size of the universe, galaxies in the early universe and their classification, new
moons of Pluto, understanding seasons of other planets and advancing exoplanet science [1].
Furthermore, space exploration is important for national security communication using
surveillance satellites and protection from possible asteroid impacts. It has also led to more
inventions such as flexible but resilient alloys that can be folded into a rocket to be popped open
from a satellite, freeze-dried food for the Space Station and plastic-coated covers with a metallic
reflecting agent that reflects back 80 percent of the user’s body heat to keep astronauts warm [2].

 Machine learning has become essential to expand our horizons for space exploration. The
learning of a machine refers to the self-improvement capability an algorithm obtains by finding
patterns or predicting unknowns from data. Machine learning already has advanced applications
in different important fields such as aviation, healthcare and banking, and is expected to enhance
future space travel and exploration since it can control massive amounts of data, find dataset
patterns on planetary imaging, and predict spaceship conditions. In the fields of space travel and
exploration, machine learning can be mainly applied in navigation and rocket landing, analysis
of visual data, and data transmission [3]. In this project, machine learning artificial neural
networks is applied to spacecraft navigation in close orbit around Venus, with the purpose of
making it applicable to close orbit navigation around other celestial bodies.

 Presently, artificial neural networks or Neural Networks (NN) machine learning is
already revolutionizing the classification of galaxies leading to a deeper understanding of the
universe. Similarly, NN machine learning can improve current technology in relative spacecraft
and satellite motion control. Spaceships have only an instant for action control that requires
taking into account and processing geometric and kinematical location information. As space
missions become more frequent and complex, requiring them to go farther in space, the demand
for fast, self-adjusting navigation based in machine learning will grow [3].

 Space travel and exploration require orbital transfers at various stages of a space mission.
These transfers can be done via typical orbital mechanics maneuvers or perturbation-aided
maneuvers. The latter provides a convenient cost-free impulse to aid orbital transfers, even
though the perturbations which will change the path of the spacecraft toward the desired
direction require an ideal location. In the case of capture orbits around Mars, solar gravity
perturbations significantly deviate the path of a spacecraft at large apoareion [4]. This is also the
case for orbits with large pericytherion around Venus given its closer proximity to the Sun.
Hence, solar gravity perturbation is the focus of this paper and will be investigated via the
different output parameters of an ideal type of NN that best suits the needs of the investigation at
hand.

 13

1.2 Literature Review

For a spacecraft away from the sphere of influence of a planet, two-body astrodynamics
becomes inaccurate in determining its path given the gravitational perturbations due to other
celestial bodies. These perturbations have been extensively investigated and used to the
advantage of space travel, e.g., gravity assist maneuvers where the spacecraft is required to have
close proximity to the perturbing body. Some gravity perturbation methods use a dynamical
system based on stable and unstable sets of points of gravitational attraction in phase space, or
manifolds, that serve as a guide on space for cheap transfers. Gravity perturbation methods have
proven to be successful for the GRAIL mission in low-energy Moon-Earth transfers and for the
ATEMIS mission transfer between different libration points. Other perturbation methods also use
the forces present in nature to do ballistic captures to favor transfers, e.g., the Hiten mission,
which was launched into a highly elliptical Earth orbit that intersected the Moon’s orbit [4][5].

Figure 1. Perturbation methods used in favor of space travel [5], [6].

 The Space Manifold Dynamics approach to solving astrodynamics problems makes it
possible to systematically analyze the nature of a plausible mission approach by describing phase
space around Lagrangian points - points where the gravitational force from the orbiting bodies
cancels out. It also provides determination of Lagrangian points, interplanetary and low-energy
mission determination, station-keeping strategies that keep a spacecraft in the assigned orbit,
transfer determination between Lagrangian points or eclipse-avoidance strategies design [7]. In
addition, ballistic captures use the gravitational pull of an orbiting body to aid spacecraft transfer
when it is inserted into the orbit of a celestial body orbiting the target planet or moon at a greater
velocity of that of the spacecraft. All perturbation methods mentioned earlier are restricted by the
three-body astrodynamics problem. The gravitational potential influence of a secondary celestial
body over a spacecraft becomes significant enough to add up to that of the primary orbiting body
changing the path of the spacecraft.

Note: The figure on the left shows GRAIL-A (red) and GRAIL-B (blue) trajectories
for a launch at the open and close of the launch period. The low-energy trajectories
leave Earth following a path towards the Sun, passing near the interior Sun-Earth

Lagrange Point 1 (Earth Libration Point 1) before heading back towards the Earth-
moon system [5]. The figure on the right shows a Hiten-like low energy trajectory in

the geocentric inertial frame using ballistic capture by the Moon’s orbit [6].

 14

 Currently, there are no analytical solutions for orbital transfers involving the three-body
problem. Instead, these solutions rely on numerical integration methods applied to complex
astrodynamical systems, which involve strenuous computational loads [4]. Nevertheless, mission
design platforms based on numerical methods for orbit propagation have become an important
part of space mission design. One such platform that is widely used in the aerospace industry due
to its open source and high capability nature is that developed by NASA and private industry in
the last decade called General Mission Analysis Tool (GMAT). GMAT was qualified to be used
in NASA Missions Operations rooms for operational planning summation in 2014. Hence,
GMAT simulation calculations have been proven to be qualified for a level of reliability that will
pose no undue risk on a spacecraft mission design [8]. GMAT is a platform designed for the
constrained or unconstrained optimization of deep space missions of spacecraft trajectories. This
system includes numerical integrators with initial and boundary value solvers for propagation as
a function of time. It is also capable of synchronizing the epochs of multiple spacecrafts, plotting
their trajectories and parameters, and saving them to files for comparison and processing [9].
Some of the resources in GMAT to model space missions are spacecraft, propagators, and
optimizers that can be configured to fit specific models and applications that simulate the motion
of a spacecraft and mission events chronologically.

Table 1 summarizes the key features of GMAT:

Table 1. GMAT key features (modified from [8]).

 The component that simulates spacecraft motion in GMAT is called a Propagator. A
GMAT Propagator is either of numerical integration type or ephemeris type (see Table 1 for
description of ephemeris type). The former type of propagator offers a list of numerical
integrators based on the Runge-Kutta and prediction corrector methods and requires a force
model. A force model simulates the natural forces in the environment that affect the spacecraft
dynamics. Once configured, the force model is added to the Propagator to solve for the
astrodynamics equations numerically and may include relativistic corrections, atmospheric drag,

SPK & DE ephemerides: data banks for celestial navigation
that gives the trajectory of celestial bodies and satellites
Viz: visualization

 15

point mass, solar radiation, gravity and tie models [10]. Figure 2 and Table 2 below show a
description of GMAT numerical integrators and an example of the setup of a Runga-Kutta89
Propagator with a force model with Venus and the Sun as the point masses influencing a
spacecraft.

Figure 2. GMAT propagator setup.

Table 2. GMAT numerical integrators overview [10].

 The GMAT Propagation tool also requires configuring the spacecraft to be simulated for
propagation. To do so, initial conditions such as the epoch and classical orbital elements must be

 16

determined. Figure 3 shows the setup of a spacecraft on a pronounced eccentric orbit around
Venus with its initial position and epoch, the corresponding propagation plot in space (right) and
on the surface of Venus (down left) with the propagation setup of Figure 2.

Figure 3. Spacecraft setup in GMAT and its corresponding plots.

 The GMAT platform is an example of the required complexity of numerical integration
applications to develop astrodynamical systems involving three-body dynamics. An alternative
method that aids with the significant computational load of numerical integration simulations is
the use of NN. NNs can be used to develop a database of the dynamics within a system which
can be used as a roadmap to find convenient trajectories and transfers [11]. The application of
NNs in the past on some fields of aerospace engineering have been proven to be successful. Such
is the case of the investigation done in [12] at NASA Glenn Research Center in 2002 where the
application of NNs to shorten the design cycle in the design and optimization of aircraft engine
propulsion systems and monitoring the microgravity quality onboard the International Space
Station were researched. In the case of NN application for design and optimization, NNs were
used to provide mappings for fast analysis and design, which enabled the simulation of a highly
complex model near real time within an acceptable 5% error. For system monitoring, NNs were
used to develop a monitoring system tool that helped researchers to remotely assess how the
space environment affected their experiments. This second investigation led to an understanding
about how Back Propagation NNs can recognize new patterns and avoid the misclassification of
patterns while accounting for multi-dimensional ranges of neighboring clusters [12].

De Smet et al investigate solar gravity perturbation driven transfer via the creation of a database
of solutions for a spacecraft in closed orbit around Mars [11]. This methodology uses a sparse
grid of numerical integrated points to train a NN in a small subset of phase space to be later
developed into larger areas and other part of the solar system. The weights and biases of the NN
capture the developed database, which can then be used to identify transfers for different
applications. In this problem, numerical integrations of a periareion Poincaré map are used to
compute the sparse grid data points, and the developed database using NNs is tested with GMAT
and Monte Carlo simulations. A Poincaré map is the intersection of a periodic orbit in the state
space of a periodic dynamical system with a subspace transversal to the flow of the system (refer
to Figure 4 for its visual depiction). This problem is initially simplified by using the Circular Hill

 17

System, which assumes Mars orbiting the Sun in a circular orbit at a constant angular velocity,
making the problem time invariant. This simplification allows one to readily obtain a set of
initial solutions to be then adjusted using the Eccentric Hill System (which assumes the same
conditions as the circular Hill System except by Mars orbiting the Sun in an elliptical orbit) via a
second NN. The proposed transfer under study starts at the periapse of the incoming areocentric
parabola with a small maneuver to reduce the eccentricity to less than one to get it into an
elliptical orbit [4][11]. The spacecraft orbit is then circularized into its final orbit by a second
maneuver that aims rendezvous with Phobos (see Figure 4 below).

Figure 4. Depiction of a Poincaré map with states of intersection 𝐼! and 𝐼" [4].

Figure 5. Propose transfer type in [11].

 18

In order to pose an example of the capability of the use of NNs in this type of problem, the NN
architecture and training results using the circular Hill System in [11] are presented in Table 3
and Figure 6:

Figure 6. Error Summary in radius and inclination at periareion for the predicted transfer to

arrive at Phobos [11].

 Figure 6 compares the results in [11] between the scaled circular Hill system (which is an
approximation to the eccentric Hill dynamics), the eccentric Hill system and numerical
integration simulation with GMAT. The results show significant errors on the periapse and
inclination on the trajectory predicted for arrival to Phobos in the scaled Hill model. The main
sources of error are the NN predictions and the difference between the scaled circular and
eccentric Hill systems. Hence, the simplification of the scaled circular Hill system, shown as
“Scaled Hill” on the top in Figure 6, introduced approximate errors in the calculation of the
periapse between 3000-6000 km and corresponding errors in inclination close to −3, and 6,
This error could be fixed by adding more neurons, layers and training data to the NN. On the
next row, the solutions from the eccentric Hill system using NN and numerical integration via
GMAT show almost no difference. The application of NN to solve for the circular model on a
small subset of phase space reduced the number of required integrated transfers from 8.4 million
to 74,000 with a training time of 50 minutes on a single core of a 2.5 GHz Intel Core i7
processor, rather than 10 days using numerical integration. NN application reduced the number
of integrated transfers from 3.04 billion to 492,000 for the eccentric model case with a training
time of one day rather than 3570 days using numerical integration [11].

Table 3. Architecture and training results of NN using the circular Hill System [11].

 19

 Table 3 shows a basic architecture and typical results of a multilayer NN using the back-
propagation approach. The hidden-layer architecture of an NN as well as how the Mean Square
Error (MRS) will be used are discussed in this section. Training, validation and test data
corresponds to the different steps an NN follows for training, validating and testing its learning
process. An NN is a machine learning model that is composed of simple computational units
called neurons. Each of these neurons takes an input at its incoming edge, multiplies it by a
randomly assigned weight and applies a non-linear function called the activation function to the
weighted sum to produce an output. The following figure shows a visual representation of an NN
where x, w, b, ⨀, f and y represent input vector, weight vector, neuron bias, element-wise
multiplication, activation function, and neuron output respectively [13].

Figure 7. The structure of a NN [13].

 The non-linearity of the output corresponding to the input of every neuron is introduced
by the activation function. Commonly used activation functions are the tanh, the rectified linear
units or ReLU, the sigmoid and the linear or identity function. Figure 8 below shows the
behavior of these functions.

Figure 8. Typical NN activation functions [14].

 20

 The forward feed of a NN is composed of a network of layers of neurons interconnected
layer by layer with assigned weights at each edge. The first layer is called the input layer because
it takes the input data to train the NN. The rest of the layers of the NN are called hidden layers.
The outputs are calculated per neuron starting at the input layer and forward to the last layer on
the opposite side (see Figure 9). In order to facilitate learning by self-correcting, the NN uses a
loss function, which measures the difference between the desired and the network outputs. A
common loss function used in regression models is the mean square error or MSE given by the
following equation:

 (1.1)

where yi represents the true value, and 𝑦'i the predicted value [13].

Figure 9. Representation of a forward feed of a single-hidden-layer NN [13].

 An NN uses gradient descent optimization to learn. In this process, the network tunes its
parameters such that it minimizes the loss function by calculating the gradients of the loss
function with respect to each of these parameters. Gradients are calculated via the back-
propagation method, which is based on the chain-rule of derivatives. The gradient represents the
change in the loss value of each parameter. The network parameters (𝜽) are adjusted in the
opposite direction of the gradient by updating a scalar called the learning rate (𝛾) via equation

𝜽 = 𝜽 − 𝛾
𝜕𝐿(𝜽)
𝜕𝜽

 The process is repeated by passing iteratively over the training data, and each of these
passes is called an epoch. The parameters of a NN are the weights and biases and they are
learned by training. Other parameters of the NN such as learning rate, decay, batch size and
dropout are called hyperparameters and are to be appropriately set by the user before training
[13].

(1.2)

 21

 Recurrent NNs or RNNs are of special interest to solve many astrodynamical problems
because they use both current input and past information while making future predictions. They
are capable of retaining dependencies across time steps by learning how to retain relevant
information. RNNs do so by processing the input elements one at a time while maintaining a
hidden state vector that acts as the memory for past process information. Hence, RNNs are
suitable for sequential data [13].

Figure 10. A standard RNN [13].

 Figure 10 shows the schematic of a standard RNN with hidden state vector S which keeps
a memory of the previous elements of the sequence. A current input element xi is received at
time t and state St-1 from the previous time step, which is then updated St and the final network
output ht is calculated. U is the weight matrix between input and hidden layers and W is the
weight matrix of the recurrent transition between hidden states. V is the weight matrix between
the hidden and output transition. The equivalent of the back-propagation method for RNNs is the
back-propagation through time (BPTT) method. This method involves multiplying the error
gradient over every time step, which causes gradients to become either too large or too small
over time. This issue is called the exploding or vanishing gradient problem. The Long Short-
Term Memory (LSTM) RNN architecture was developed to counter
this type of problem with RNN gradients [13].

Figure 11. An LSTM cell with forget gate [15].

 22

 Figure 11 shows the architecture of an LSTM RNN with forget gate. Refer to the
equations shown on this figure to better understand the function of the main components of this
type of RNN. Its main components are:

1. Input: The LSTM unit takes the input Xt and output from the previous step Ht-1 and their
weighted sum is passed through the tanh activation which produces CG-.

2. Input gate I: the input gate reads Xt and Ht-1, computes their weighted sum and applies
the sigmoid activation to calculate It, which is multiplied by CG- and passed into the
memory cell.

3. Forget gate f: The forget gate serves to forget irrelevant old content. This gate also reads
Xt and Ht-1, computes their weighted sum and applies the sigmoid activation to calculate
ft, which is multiplied by St-1.

4. Memory gate: It is a central unit with unit weight recurrent connection that represents a
time step of 1 feedback loop. It computes the current state St by forgetting irrelevant
information from the previous step and keeping information from the current input.

5. Output gate O: It controls what information to flow out of the LSTM unit by applying the
sigmoid activation to the weighted sum of Xt and Ht-1.

6. Output: It is denoted by Ht and is computed by passing the St cell through a tanh
activation and multiplying it by Ot [15].

This project uses LSTM RNN, or LSTM for short, to solve the astrodynamics problem.

1.3 Project Proposal

 This project takes advantage of the computational power of NNs to demonstrate the
construction of a database which can be used as a roadmap for a spacecraft in close orbit around
a planet. An NN is capable of correcting two-body astrodynamics problems for the gravitational
perturbations caused by multiple celestial bodies on a spacecraft in space transit. In doing so,
some of the NN output parameters could represent a mapping of these perturbations on space
given that these parameters can be decoded after training. In an effort to carefully study these
gravity perturbations, the proposed technique is to be developed for capture orbits with high
apocytherion, at which solar gravity perturbations significantly deviate the spacecraft aerocentric
orbits. Hence, the data to be analyzed will involve closed orbits at different pericytheria starting
with highly eccentric orbits to end in circular orbits that approach Venus in favor of cost-free
transfers. The large number of numerical integrations required by this type of analysis can be
significantly reduced by the use of NN without compromising sufficient accuracy.

 This project proposes an Artificial Recursive Neural Network (RNN) model for the
orbital dynamics of a spacecraft in closed orbit around Venus. The RNN will be trained to
accomplish path-correction in the presence of solar gravity used to its advantage for cost-free
transfers. The method and position of transfer from an orbit with large apocytherion will be
chosen depending on the position on the orbit where the solar gravity pull provides the minimum
cost of transfer.

 23

1.4 Methodology

The predicted development of this project proposes the following procedure:

1. Create a database using simulation methods for RNN implementation:

The input data of the RNN consists of the parameters to be corrected when compared with its
output or training data. In this problem, the input data are the position and velocity vectors of a
spacecraft in Cartesian coordinates at every orbit time step with no solar gravity perturbations.
The output, or training data, is composed of the position and velocity vectors of the spacecraft
in Cartesian coordinates at every step on time with solar perturbation considered. The input and
training data will be simulated by deep space orbit determination and optimization software
GMAT (General Mission Analysis Tool) given an initial state vector (position and velocity
vectors) and time of propagation. Initial position and velocity vectors corresponding to capture
orbits with high apocytherion will be used to generate the first set of data at different
pericytheria. Posterior data sets with less eccentric orbits with initial state vectors
corresponding to the most convenient transfer orbits will be used to create a solar gravity
perturbation mapping for the phase space covered by these orbits.

2. Application of the Back-Propagation approach of an RNN:

RNNs use the Back-Propagation approach, which will be used to solve for the proposed
problem. This approach trains an NN through supervised learning involving a forward pass that
propagates input data forward from the input layer to the output layer of the network. This pass
generates an output and its error value, which is corrected if within an acceptable range, while
leaving synaptic weights (connection amplitude between nodes) intact, and the network is
trained with the new set of input data. The back-propagation algorithm can be summarized as
follows:
1) The network is fed with an input vector and a corresponding desired output vector.
2) The output of the network is calculated using the forward pass.
3) The error in the output signal is calculated.
4) The process moves on if the error is within the acceptable range or goes backward to update
the network weights.
5) The process repeats until all input vectors are consumed.
Hence, the above-mentioned steps will be applied in the ideal RNN to analyze the perturbed
closed orbits involved in this project.

3. RNN Implementation (LSTM):
Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) capable of
learning order dependence in sequence prediction models. This type of RNN is well suited for
classifying, processing and making predictions based on time series, which very well serves the
purposes of this project. Hence, LSTM will be used for this project via Keras, a deep learning
Application Programming Interface (API) based in Python, running on top of the open-source
machine learning platform TensorFlow. TensorFlow is based in differentiable programming,
where the program’s parameters can be optimized via gradient descent. Keras is a powerful,
robust API well suited to serve the purpose of this project. Keras is a well-documented
framework that makes its application accessible to the intermediate level programmer.
However, it involves highly advanced, complex algorithms that might be time consuming to
learn and understand for non-expert programmers.

 24

4. Developing a Solar Perturbation Mapping of Phase Space:

Within each node of an RNN, there is a set of inputs, weight, and a bias value. As the input
enters the node, it is multiplied by a weight value and the resulting output is either observed or
passed to the next layer in the RNN. For instance, a single node might take the input data and
multiply it by an assigned weight value, add a bias and pass the data to the next layer. The
output layers might tune the inputs from the hidden layers to produce the desired values within
a specific range. Weights and biases are learnable parameters within the RNN that are initiated
randomly before the learning process begins. As training continues, both parameters are
adjusted to match the desired output. In this problem, the weights represent the small changes
that solar gravity perturbation makes on the input data. The weight will adjust until the
unperturbed data values approach the perturbed data values. This analysis will not only allow
for the mapping of the solar gravity perturbations but also to detect where these perturbations
can aid desired orbit transfers. However, the resultant weight matrix of an NN has a complex
relation with its outputs due to the gradient descent backward method, and it might require an
autoencoder that will manipulate the data in a way that can more clearly relate to the input
data. Disentangling the complexity of NN weight matrices is presently an area under research
and great interest in the field of machine learning.

 25

Chapter 2: Data Generation for RNN Training

 In order to train the RNN model in this investigation, a vast data bank describing the
position and velocity of a spacecraft in closed orbits around Venus is needed. This data bank
involves the position and velocity vector components at every point in time for a given close
orbit, which will be used not only to train the RNN but also to construct the mapping of the solar
perturbation present at every step. Although one of the objectives of this investigation is to be
able to detangle the weights of an RNN to represent the solar perturbations, this is a new field of
study still under development in computer science. Hence, it might take more than the time
allotted to the completion of this project to reach such goal. Therefore, the solar gravity
perturbations are also being tracked by calculating the change in every one of the position
components, x, y and z and velocity components vx, vy, and vz between the solar gravity
perturbed and unperturbed orbits of the spacecraft around Venus.

2.1 State Vectors for Close Orbit Determination

 GMAT is being used to generate the position and velocity vectors of the spacecraft for
every time point of every close orbit being mapped in this project with and without solar gravity
potential perturbations. The initialization of the GMAT function simulating the motion of the
spacecraft, the Propagator, requires initial state vectors for the position and velocity of the
spacecraft or the initial orbital elements. The recently proposed Venera D mission aiming to do a
comprehensive mission to Venus was used as a model to determine the initial conditions of the
spacecraft’s orbit for this project. The projected arrival date to Venus of this mission is
December 5 of 2026 [16].

2.1.1 The Venera D Mission
 The Joint Science Definition Team (JSDT) formed by The Russian Space Agency, Space
Research Institute of the Russian Academy of Sciences, and NASA, proposed the Venera-
Dolgozhivuschaya (Venera-D) mission in 2014 with the goal of “understanding Venus as a
system, from the top of the atmosphere to the surface and interior” [16, p1]. The Venera D
mission will consist of a lander with an attached Long-Lived, In-Situ Solar System Explorer
(LLISSE), which will sample the atmosphere and image the surface during descent before
landing at high altitude on the northern hemisphere of Venus [17].

 In spite of the fact that water is not, at this point present on Venus' surface, accessible
geomorphology information shows a past filled with a surface molded from ongoing volcanism,
blaming, and collapsing, which might be connected to the previous presence of water [18]. Life
in Venus that might have evolved during its wet era, when its climate was still habitable, may
remain extant today given its thick sulfuric acid clouds [19], [20]. This poses an opportunity to
better understand when Venus may have been habitable in the past. Moreover, the study of the
existence of water in Venus [21], [22] and its climate, including possible formation and loss or
migration of microbial life forms from surface to the clouds, makes the planet an appealing
destination for the study of life on other Earth-like planets [16].

 26

According to the launch opportunities in 2026 and 2027, the trajectory analysis of this mission is
as follows:

1) Launch from the Vostochny launch facility in Russia in 2026 with backup dates in 2027
and 2029 using the Angara-А5 carrier rocket;

2) Earth-Venus trajectory transition using hydrogen KVTK or Briz upper stage vehicle;
3) Flight along Earth-Venus trajectory with necessary corrections;
4) Descent module separation two days prior the arrival to Venus;
5) Transfer maneuver to place orbiter on nominal approaching orbit;
6) Descent module entry to the atmosphere;
7) Orbital module transfer to a high elliptical orbit using the rocket engine;
8) Separation of a subsatellite, if provided;
9) Nominal scientific operations assuming data transmission from the surface of Venus and

the subsatellite to Earth though the orbiter [16].

 For the scenario of a launch from Earth on May 30 of 2026, an initial ∆v (delta-v or burn)
of 3.905 km/s will take Venera D from a circular low orbit around Earth with an altitude of 200
km to a departure velocity vector at infinity (or v-infinity) of 3.905 km/s. A second ∆v of 0.899
km/s will transfer it into a high elliptic orbit around Venus with pericenter (or periapsis) altitude
of 500 km and orbital period of 24 hours. The right ascension of the asymptotic velocity arriving
vector in J2000 coordinates is expected to be 186.73°. The required pericenter altitude can be
guaranteed by and inclination of 90°±10°, and argument of pericenter π/2 < ω < π or 3π/2 < ω <
2π [16]. Figure 13 below provides a visual scenario of the orbital mechanics of this mission with
a launch date on June 2026.

Figure 12. Venera D Orbital Mechanics [16].

Note: Earth-Venus transfer
trajectory with start in June

2026.

Note: Arrival to Venus: (1) separation and
trajectory offset, (2) Venus orbit, (3) orbiter’s
orbit, (4) flyby trajectory, (5) area of orbiter-

lander communication, (6) braking and
transferring the orbiter onto the orbit around

Venus, and (7) radio shadow of Venus.

 27

2.1.2 The Astrodynamics

 The initial conditions for propagation of both the unperturbed and perturbed orbits to be
used in the initial stage of this project, include the orbital parameters projected in [16] mentioned
above. For the initial point of the first orbit, the two-body astrodynamics equations of motion can
be propagated via the Runga Kutta numerical methods in GMAT. This propagation method is
necessary to solve the three-body problem in the presence of solar gravity perturbations.
GMAT’s propagator requires initial conditions given by either the initial state vectors (AKA
position and velocity) or the six Keplerian elements, which describe an orbit. The six elements
are:

• 𝑎 = Semi-major axis (size)
• e = Eccentricity (shape)
• i = inclination (tilt)
• ω = argument of perigee (twist)
• Ω = longitude of the ascending node (pin)
• ν	= true anomaly (angle at a given time) [23]

Having the pericenter altitude and period, 𝜏, of the initial high elliptical orbit after the point of
transfer, its semi-major axis and eccentricity can be found via the equation for the period of a
closed orbit, 𝜏" = ./"0!

12
, where G is the gravitational constant, G = 6.67x10#"$ %&!

%')*+"
 , and M

the mass of Venus, M = 4.8675	x	10".	kg [24]. Solving for 𝑎 in the previous equation, we have

𝑎 = O3"12
./"

!
= P(56.$$))"(6.69:!$#"$ %&!

%')*+")(..5696	:	!$
",	%')

./"

!

.

This yields a semi major axis 𝑎 = 39,448.744	km. The given pericenter altitude can be used to
find the radius at pericenter by adding the radius of Venus [24] to it: rp = 500 km + 6051.8 km =
6551.8 km. Relating rp to the eccentricity of the elliptical orbit yields the equation rp = 𝑎(1 − 𝑒).	
Solving for e in this equation, we have 𝑒 = 1 − ;-

0
.	 This results in an eccentricity of 𝑒 = 0.8339.

Figure 14 below shows the XY plane on the reference frames of Earth and Venus and the
position of spacecraft Q with respect to both frames. The right ascension of the asymptotic
velocity arriving vector in J2000 coordinates of 186.73° can be converted to Venus’ reference
frame, which represents the right ascension of the orbit at radius of pericenter. As the sketch
shows, this can be done by subtracting the right ascension of Venus with respect to Earth, ΩVE
from that of the asymptotic velocity arriving vector.

 28

Figure 13. Conversion of the right ascension of the asymptotic velocity arriving vector
in J2000 coordinates to that of the spacecraft’s orbit with respect to Venus.

The orbital elements calculated so far were tested by propagating the spacecraft for a full period
in GMAT. The calculated semimajor axis of 39,448.744	km proved to yield a radius of
pericenter too small to serve the purposes of this investigation, and it was increased by 10,000
km. This increment to the semimajor axis yields a period of:

 τ = O.<"=!

12
= P

.<"(.>,..5.9..%&)!

(6.69:!$#"$ %&!

%')*+")(..5696	:	!$
",	%')

=≈ 33.6814	hr. ≈ 33	hr. , 40	min. and	53	sec.

The test also proved 100° to be the most convenient value, within the allowable range, for the
argument of perigee.

Collecting the known orbital elements to initiate the data generation for this project we have:

• 𝑎 = Semi-major axis = 49,448.744 km
• e = Eccentricity = 0.8339
• i = inclination = 90°
• ω = argument of perigee = 100.0° (chosen from allowable range)
• Ω = longitude of the ascending node = 98.7887°
• ν		= mean anomaly = 0° (at radius of pericenter).

The values above represent the initial condition of the first orbit of perturbation mapping of this
investigation. Time permitting, several other orbits will be investigated and will be chosen based
on the minimum cost of transfer provided. However, the initial conditions for the next orbits to
be observed will be given by the GMAT propagator itself. An analysis of the GMAT numerical
method for data generation will be presented in the next section, as well as a brief derivation of
the astrodynamical differential equations leading to the need for numerical methods.

Longitude of ascending node (J2000) Earth = -11.26064°

Longitude of ascending node (J2000) Venus = 76.68069° [24]
E = Earth reference frame (J2000)
V = Venus reference frame (J2000)
Right ascension of Venus with respect to Earth:
ΩVE = 76.68069° + 11.26064° = 87.94133° (shown in blue)
Right ascension of spacecraft’s orbit with respect to Venus:
𝛀QV = 186.73° - 87.94133° = 98.7887° (shown in orange)

 29

2.2 GMAT

 The General Mission Analysis Tool, GMAT, is an open-source software developed by
NASA in partnership with industry, private and public contributors. GMAT has a wide range of
capabilities beyond supporting with the design and analysis of space missions. Its dynamics and
environment modelling support the modeling of orbits, their analysis and detailed visualization,
orbit perturbation study and maneuver planning, the determination of propulsion system
requirements and estimation of the lifetime of a mission. It also provides a detailed visual
representation of the solar system allowing the use of a rich set of coordinate systems, orbits and
natural phenomena such as axial tilts and the phases of the moon, formations and constellations,
harmonic gravity, drag, tides, and relativistic corrections. GMAT’s propagation feature uses
ephemeris files from celestial navigation data banks CCSDS, SPICE, STK, and Code 500.
Propagators in GMAT naturally synchronize epochs of multiple vehicles and about fixed step
integration and interpolation [10].

 GMAT is implemented in ANSI standard C++ using Object Oriented methodology. It
interfaces with external platforms, such as, MATLAB and Python, giving an extensible
engineering for future development. It has a rich featured, interactive GUI that makes analysis
quick and simple, custom scripting language that makes complex, custom analysis possible, and
a command line interface for batch analysis. GMAT has enabled and upgraded missions in
practically every NASA flight system including empowering new mission types, broadening the
life of existing missions, and advancing new science perceptions. It has supported eight NASA
missions and more than ten NASA proposal endeavors. Up to date, GMAT has benefit over 30
organization including 15 universities and 12 commercial firms with their publication of results
in the open literature. GMAT is under the Apache License 2.0, and supports Windows 7+, Mac
OSX 10.10+ and Linux platforms [10].

2.2.1 Propagation Method

 Simulating the orbital motion of (or propagating) a spacecraft is the most fundamental
capability of GMAT, which is done via the Propagator function. A GMAT Propagator is either
of numerical integration type or ephemeris type. The ephemeris type uses data banks for celestial
navigation that gives the trajectory of celestial bodies and satellites. The numerical integration
type uses the different propagation methods mentioned on Table 2 on page 6 of this report. The
data generated for the purposes of this investigation uses the Runge-Kutta 89 numerical
integrator with an error control on the eighth order, and for which its coefficients were derived
by J. Verner. These coefficients are chosen due to their robustness though they are not
necessarily being the most efficient [10].

The analysis of spacecraft motion leads to ordinary differential equations with time as the
independent variable. Many times, numerical methods make it possible or less complicated to
solve for these ordinary differential equations. In this section, a brief analysis of the origin of the
astrodynamical ordinary differential equations describing the motion of a spacecraft will be
presented, as well as the Runge-Kutta numerical method to solve for them. Bold letters in the rest
of this paper will denote vectors [25].

 30

Newton’s second law describes the particle mechanics in the Newtonian frame via the second-
order differential equation

�̈� = 𝐅
A

, (2.1)
where r is the position vector as a function of time, m is the mass of the spacecraft and F, the
forces acting on it. Whether there might or not a closed, analytical solution to this equation,
depends on how complex the force function F might be. In the most trivial case, the problem can
be solved using ordinary differential equation integration methods, which yield:

𝐫 = 𝐅
"A
𝑡" + C!𝑡 + C", with F and m being constant (2.2)

C! and C" in this equation are the vector constants of integration making six scalar constants of
integration in total. Given that the position and velocity at time 𝑡 = 0 are r$ and ṙ$ yields an
initial value problem. Applying the initial conditions to equation 2, we have that C! = r$ and
C" = ṙ$, and the equation becomes

𝐫 = 𝐅
"A
𝑡" + �̇�$𝑡 + 𝐫$, with F and m being constant (2.3)

Similarly, if we know the position, 𝐫$ at 𝑡 = 0, and velocity, �̇�B, at a later time 𝑡 = 𝑡B, we can
apply the boundary conditions for a boundary value problem where C! = �̇�B −

𝐅
"A
𝑡B and C" = 𝐫$

yielding
𝐫 = 𝐅

"A
𝑡" + (�̇�B −

𝐅
"A
𝑡B)t + 𝐫$, with F and m being constant (2.4)

The goal here is to solve the initial value problem [25].
Equation one contains three components:

�̈� = C.(D,𝐫,�̇�)
A

							 �̈� = C/(D,𝐫,�̇�)
A

						 �̈� = C0(D,𝐫,�̇�)
A

 (2.5)

These are uncoupled second-order differential equations and will be reduced to six first-order for
the purpose of numerical solution. Introducing the auxiliary variables 𝑦! through 𝑦6 for
reduction, we have:

 𝑦! = 𝑥						𝑦" = 𝑦					𝑦G = 𝑧 (2.6)

 𝑦. = �̇�						𝑦H = 𝑦	̇ 				𝑦6 = �̇�

The position and velocity in terms of these auxiliary variables in a Newtonian frame become:
𝐫 = 	𝑦!b̂ + 𝑦"d̂ + 𝑦G𝒌f �̇� = 	 𝑦.b̂ + 𝑦Hd̂ + 𝑦6𝒌f

Their derivatives with respect to time yield:

d𝑦!
d𝑡 = �̇� 				

d𝑦"
d𝑡 = �̇� 				

d𝑦G
d𝑡 = �̇�

d𝑦.
d𝑡 = �̈� 				

d𝑦H
d𝑡 = �̈� 				

d𝑦6
d𝑡 = �̈�

Combining equations 5 and 6, we get:
 �̇�! = 𝑦.

 �̇�" = 𝑦H (2.7)

 31

 �̇�G = 𝑦6

 �̇�. = 𝐅I	(𝑡, 𝑦!, 𝑦", 𝑦G,	 𝑦., 𝑦H, 𝑦6)

 �̇�H = 𝐅J(𝑡, 𝑦!, 𝑦", 𝑦G,	 𝑦., 𝑦H, 𝑦6)

 �̇�6 = 𝑭K(𝑡, 𝑦!, 𝑦", 𝑦G,	 𝑦., 𝑦H, 𝑦6)

 Since these equations are coupled, they can be written more compactly in the following way

�̇� = 𝐟(𝑡, 𝐲)

Where 𝐲 = 	

⎩
⎪
⎨

⎪
⎧
𝑦!
𝑦"
𝑦G
𝑦.
𝑦H
𝑦6⎭
⎪
⎬

⎪
⎫

 �̇� =

⎩
⎪
⎨

⎪
⎧
�̇�!
�̇�"
�̇�G
�̇�.
�̇�H
�̇�6⎭
⎪
⎬

⎪
⎫

0 𝐟 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑦.
𝑦H
𝑦6

L.	(D,J)
A

L/	(D,J)

A
L1	(D,J)
A ⎭

⎪
⎪
⎬

⎪
⎪
⎫

 (8)

In order to obtain a numerical solution for equation �̇� = 𝐟(𝑡, y) over the time interval
𝑡$ ≤ 𝑡 ≤ 𝑡B, we divide or mesh the interval into N discrete times 𝑡!, 𝑡", 𝑡G…𝑡M, with 𝑡! = 𝑡! and
𝑡M = 𝑡B. The step size h represents the time difference between adjacent times on the mesh [25].

Let us define equation 7 as 	�̇�N = 𝐟(𝑡N , 	𝐲N) for time	𝑡 = 𝑡N. The Runge-Kutta or RK methods
were developed by German mathematicians Carle Runge (1856-1927) and Martin Kutta (1867-
1944). For the explicit, single-step RK, 	𝐲NO! at 𝑡N + ℎ is obtained from 	𝐲N at 𝑡N by the formula

	𝐲NO! = 	𝐲N + ℎ𝜑(𝑡N , 	𝐲N , ℎ)

where 𝜑 is a function average of the derivative dy/dt over the interval 𝑡N to 𝑡N + ℎ obtained by
evaluating the derivative 𝐟(𝑡, y) at different stages within the time interval. The order of an RK
method reflects the accuracy to which 𝜑 is computed, compared to a Taylor series expansion. An
RK method of the p order is called RKp method,
and it is as accurate in computing 	𝐲N from equation 9 as a Taylor series of the pth order is:

𝐲(𝑡N + ℎ) = 	𝐲N +	c!ℎ + c"ℎ"…+ cPℎP

For the RK method only the first derivative 𝐟(𝑡, y) is required, which is available from equation
2.7 itself. The higher the RK order is, the more stages it has and the more accurate 𝜑 is. For a
number of stages s, there are s times �̃� within time interval 𝑡N ≤ 𝑡 ≤ 𝑡N + ℎ where the derivatives
𝐟(𝑡, y) are evaluated. These times are given by specifying numerical values of the nodes 𝑎A in
the expression

�̃�	A = 𝑡N + 𝑎Aℎ, where m = 1, 2, 3, …, s

At each of these times the value of 𝑦x is obtained by providing numerical values for the coupling
coefficients bmn in the formula

𝐲xA = 𝐲N + ℎ∑ 𝑏𝑚𝑛A#!
QR! 𝐟}Q, where m = 1, 2, 3, …, s

(2.8)

(2.9)

(2.10)

(2.11)

 32

The vector of derivatives 𝐟}A is evaluated at stage m by substituting and �̃�	A and 𝐲xA into equation

7: 𝐟}A = 𝐟(�̃�A, 	𝐲~A), where m = 1, 2, 3, …, s (2.12)

The increment function 𝜑 is a weighted sum of the derivatives 𝐟}A over the s stages within the
time interval 𝑡N to 𝑡N + ℎ, 𝜑 = ∑ 𝑐𝑚S

AR! 𝐟}𝒎 (2.13)

The coefficients cm are known as the weights. Substituting equation 13 into equation 9 yields

	𝐲NO! = 	𝐲N + ℎ∑ 𝑐𝑚S
AR! 𝐟}𝒎 (14)

The numerical values of the coefficients 𝑎A, 𝑏A, and 𝑐A depend on which RK method is being
used. It is convenient to write these coefficients as arrays, so that

{𝐚} = 	�

𝑎!
𝑎"
⋮
𝑎"

� [𝐛] = {𝐜} = 	�

𝑐!
𝑐"
⋮
𝑐"

� , where s is the number of stages (15).

[𝐛] is undefined when s = 1 and nodes {a}, coupling coefficients [b], and weights {c} for a given
RK method are not necessarily unique [25].

2.2.2 Set Up

 The set up in GMAT is initiated by configuring the spacecraft, which includes the initial
conditions to start propagation. This configuration requires not only the six Keplerian elements
above calculated above, but also the epoch (data of arrival to Venus in this case) and coordinate
system. The epoch is in Coordinate Universal Time (UTC) time scale based on the current
Gregorian year and is located at 0-degree latitude, the Prime Meridian. This is the usual calendar
format plus Hour:Minute:Second.fraction [26].
The coordinate system used to propagate is based on the Venus mean orbital elements J2000
defined based on the Earth’s equator and equinox on January 1, 2000 at 12:00:00 TBD. Figure
15 shows this configuration with the six Keplerian elements calculated above and the expected
epoch for the arrival of Venera D to Venus with launch date on May 30, 2026.

Figure 14. Configuration of the spacecraft in GMAT.

 33

The next step of the set up includes the spacecraft propagator which defines the method of
propagation which requires a force model via the FM field on the propagator object. The
propagator includes the following components pertinent to this setup:

1) Type – numerical integrator Runge-Kutta 89 (method defined on Table 2 and explained
in detail in the previous section).

2) Initial step size – size of the first step attempted by the integrator.
3) Accuracy – desired accuracy for an integration step. GMAT uses the method selected in

the ErrorControl field on the Force Model to determine a metric of the integration
accuracy.

4) FM – identifies the force model used by an integrator.
5) Min step size – minimum allowable step size.
6) Max step size - maximum allowable step size.
7) Max step attempts - The number of attempts the integrator takes to meet the tolerance

defined by the Accuracy field.
8) Stop if accuracy is violated - Flag to stop propagation if integration error value defined

by Accuracy is not satisfied [10].

The following figure shows the numerical integrator set up with the force model required.

Figure 15. GMAT propagator set up with its numerical integrator (left) and force model (right).

 As discussed in the previous section, the analysis of a spacecraft motion leads to ordinary
differential equations and a force model is required by the numerical integrator. The setup for the
model analyzed in this project has the following components:

1) Error control – controls how error in the current integration step is estimated. The error in
the current step is computed by the selection of ErrorControl and compared to the value
set in the Accuracy field to determine whether the step has an acceptable error or needs to

 34

be improved. All error measurements are relative error. The RSSStep is the Root Sum
Square (RSS) relative error measured with respect to the current step.

2) Central body – central body of propagation, which must be a celestial body with mass
and cannot be a libration point, barycenter, spacecraft, or other special point. In this setup
the central body is Venus.

3) Point masses – a list of celestial bodies to be treated as point masses in the force model.
A body cannot be both, the primary body in the point masses list. For the needs of this
project only the Sun and Venus are analyzed [10].

The rest of the components of the GMAT propagator feature are not of relevance for this
investigation at the moment.

The orbit view plot gives a graphical view of the propagation of the satellite following the
previous set up and obeys the Propagation and Spacecraft configuration under the Mission
Sequence tab (or function in the code) of the GMAT GUI. This configuration includes the
previously programmed propagator setup with its corresponding spacecraft (named SatVenus in
this case) and the time or upper bound parameter to propagate. In this configuration, the
spacecraft starts at the pericenter and ends at the periapsis of Venus as it can be seen on the
figure below [10].

Figure 16. Mission sequence set up in GMAT.

 The orbit view plot allows to configure the visuals of the orbit done by the propagator
and includes the object to be plotted such as starts, constellations, labels and axes, mesh grids for
the celestial body, and x-y or ecliptic planes. It also allows plotting of the Sun line to see the
location of the Sun with respect to the system under observation, various spacecraft and celestial
bodies with respect to the chosen coordinate system, point of reference and a defined vector use
as the point of view from which the system can be observed. This setup also has the
MVenusJ2000 coordinate system with Venus as the point of reference and view direction.
Figures 18 and 19 show the described setup and its resultant orbit view plot respectively. The
direction of the Sun with respect to Venus is shown as a yellow line on the plot. The data
generated by GMAT corresponding to the setup presented in this section is presented in Table 4,
and it corresponds to the orbit view plot presented in Figure 19.

 35

The three components of the position and velocity vectors with respect to the number of seconds
lapsed per propagation step are presented and will be analyzed in detail in the following chapters
of this paper.

Figure 17. Orbit view plot setup in GMAT.

Figure 18. Orbit view plot in GMAT corresponding with the setup for the
data generation of this project.

 36

Table 4. Data file generated by GMAT corresponding with the setup presented in this chapter.

 37

Chapter 3: RNN Back-Propagation Implementation

 One of the most dreamed-of inventions since ancient Greek times has been a machine
that can think. Some of the mythical inventor figures of those times are Hephaestus, Pygmalion
and Daedalus with Pandora, Galatea and Talos as a representation of artificial life [27], [28],
[29]. It took more than a hundred years for a programmable computer to be built after it was first
conceived [30]. Nowadays, artificial intelligence (AI) is revolutionizing science and thriving
with numerous applications and new topics of research.

 In the beginning stages of AI, the field immediately proved to be readily able to solve
problems that are extremely difficult for the human intellect; problems involving formal,
mathematical rules. On the other hand, a true challenge for AI proved to be performing tasks that
are easy for people to do, but difficult to describe such as problems solved by intuition like
language, face and path recognition and the planning and scheduling of craft operations [31],
[32]. A solution to this problem is to allow computers to learn from experience by presenting the
world in the form of hierarchical concepts defined in their relation to simpler concepts. This
learning process avoids the need for a human operator having to specify the knowledge the
computer needs to learn and allows it to learn complicated concepts by building them from
simpler ones. A visual representation of these concepts would be a deep, multi-layer process for
which the name of AI “deep learning” has been assigned [31].

3.1 Deep Learning and Deep Neural Networks

 Deep learning is a type of machine learning that involves representation-learning
methods based on multiple levels of representation starting with simple but non-linear modules
each of which transform the representation of one level, or raw data, to a higher, more complex
level of representation. With enough such transformations, a classification task can amplify
important aspects of the input and suppress irrelevant variations. For instance, the input image is
an array of pixel values. The learned feature in the first layer of representation usually detects the
absence or presence of edges at certain orientations and locations in the image. The second layer
typically spots specific arrangement of the edges to detect patterns despite small differences
between them. The third layer commonly assembles patterns into large combinations
corresponding to parts of familiar objects, and posterior layers would recognize objects as
combinations of these parts. The relevance of deep learning is that these layers are not human
engineered but learned from data using a procedure with a general purpose [33]. The image
shows visual representation of identification of an image via deep learning.

 38

Figure 19. Illustration of a deep learning model [31].

 A perfect example of a deep learning model is the feedforward deep network, or
multilayer perceptron, which is just a mathematical function that maps a set of input values to
output values. This function is composed of many simpler functions with each of their
applications representing a new depiction of the input [31]. Feedforward deep networks are also
called feedforward neural networks. The name of neural network was inspired by the structure
and functioning of a biological brain, as it comprises computational units called nodes or neurons
(perceptron layers). Deep neural networks are NNs with multiple hidden layers of neurons
stacked together, each with a non-linear module and each of which receives the output of its
previous layer. Each of the neurons in a deep NN takes an input at its incoming edge, multiplies
it by a randomly assigned weight and applies a nonlinear function called the activation function
to the weighted sum to produce an output. Recall Figures 7 and 8 with a visual representation of
a NN and its typical activation functions where x, w, b, ⨀, f and y represent input vector, weight
vector, neuron bias, element-wise multiplication, activation function, and neuron output
respectively. Then the output is given by y(x) = f (w ⨀ x + b), and it is an approximate
representation of the input vector to a level of accuracy that depends on how vast the training (or
input) data and training time are [11].

3.1.1 Feedforward Neural Networks

 A feedforward neural network has the goal of approximating some function f*. In the
case of a classifier y = f* (x) that maps an input to a category y, a feedforward NN defines a
mapping y = f (x; 𝜽) and learns the value of the parameters 𝜽 that best approximate the function.
The feedforward models are so named because information flows through the function x being
evaluated, through the intermediate computations to define f, to end at the output y. There are no
feedback connections where outputs are fed back into themselves, in which case the model
would become a recurrent NN or RNN [31]. The RNN model is described in the next section
since it is of special interest to this project.

 39

The network part of feedforward NNs comes from the fact that it is associated with an acyclic
nature of how its functions are related. For instance, having functions f (1), f (2), and f (3) connected
in a chain as f (x) = f (3) (f (2) (f (1) (x))), would represent a typical structure of a NN. Additionally,
f (1) would be called the first layer, f (2) the second layer, and so on. The depth of the model is
determined by the length of the chain, which is where the name “deep learning” originated from.
The final layer of the NN is the output layer. The training of a NN involves approximating f (x)
to f*(x) where the training data yields approximate examples of f*(x) evaluated at different
points of the training process. A label y ≈ f*(x) accompanies every example x, and all training
examples directly determine what the output layer must do at each x in order to approximate y.
The behavior of the rest of the layers is not directly determined by the training data, but the
algorithm must decide how to use these layers to find the best approach to approximate f*. Since
in these layers the training data does not show the desired output, they are said to be hidden
layers. The width of a NN is determined by the dimensionality of its hidden layers, each of
which is usually vector valued. Each element of this vector or unit plays a role similar to a
neuron because it receives input from many other units and computes its own activation value. A
layer consists of many units, each representing a vector-to-scalar function [31].

Feedforward NNs use linear models and then find ways to overcome the limitations of these
simple models. Linear models such as linear regression are convenient due to how easily and
reliably, they can be fit, but their capacity is limited to linear functions, which limits the
understanding of the interaction between any two input variables. In order to get linear models to
represent non-linear functions of x, the linear model could be applied to a transformed input 𝜙(x)
rather than x itself, where 𝜙 is a non-linear transformation. In this approach, 𝜙 could be
described as providing a new representation of x or a set of features describing x and the model
would be y = f (x; 𝜽,𝒘) = 𝜙(𝒙; 	𝜽)U𝒘, where 𝜽 are parameters that describe 𝜙 and w are
parameters that map 𝜙(𝒙) to the desired output. Such an approach is an example of a
feedforward network with a hidden layer defined by 𝜙 with the representation 𝜙((𝒙; 	𝜽)
parametrized and an optimization logarithm to find the 𝜽 that corresponds to a good
representation [31].

The training of a feedforward network requires the same design decisions as a linear model, such
as choosing the optimizer, cost function and the form of the output units. This type of network
introduces the use of hidden layers, which requires the choice of an activation function
responsible for computing the hidden layer values [31].

3.1.1.1 The XOR Example

 A simple depiction of a feedforward network is the “exclusive or function”, also named
the XOR function. This function is an operation on binary values x1 and x2, and targets the
desired function y = f*(x) to be learned. The XOR function returns 1 when x1 or x2 is 1, and 0
otherwise. In this model, a learning algorithm will adapt parameters 𝜽 to approach f the closest
possible to f* given the function y = f (x; 𝜽). Hence, the goal is for the network to operate
correctly on the points X= {[0,0]T, [0,1]T, [1,0]T, and [1,1]T}. The network is then trained on
these four points and it is treated as a regression problem with a square mean error loss function
(MSE). The MSE function evaluated over the full training set is

 40

𝐽(𝜽) = !
.
∑ (𝑓 ∗ (𝒙) − 𝑓(𝒙; 	𝜽))"𝒙WX (3.1)

Assuming f (x; 𝜽) is a linear model with 𝜽 consisting of w and b, it is defined as

f (x; w, b) = xTw + b (3.2)

 Solving using normal equations (ex. ATAx̂ =ATb) yields w = 0 and b = !
"
. The linear model

outputs 0.5 everywhere indicating it cannot be represented by a linear model (as it can be seen in
Figure 21), and the use of a transformation is in place. A feedforward network with one hidden
layer is presented as a follow up approach. This feedforward network has a vector of hidden
units h computed by function f (1) (x; W, c), which are then used as input for the second layer.
Although the output layer is still a linear regression model, it is now applied to h rather than x.
The different functions within the network are now chained together: h = f (1) (x; W, c) and y = f
(2) (h; w, b) and f (x; W, c, w, b) = f (2) (f (1) (x)) overall for the full model. For instance, if f (1) (x)
= W T x and f (2) (h) = hT w, then f (x) = xT Ww. It is clear then that these features cannot be
described by a linear function. NNs usually do so by applying a transformation determined by
learning parameters followed by a fixed nonlinear function called an activation function.
Following that same strategy, the vector of hidden units can be defined as h = g (W T x + c)
where W contains the weights of a linear transformation and c the biases [31].

Note: The bold numbers on the graph indicate the value that the learned function is expected to
output at each point. The plot on the left shows how the XOR function cannot be implemented by a
linear model: when x1 = 0, the output from the model must increase as x2 increases, and when x1
= 1, the output from the model must decrease as x2 increases. The two lines show the need for two
different regression lines to fit the three different regions of the model. The plot on the right show

that a linear model can solve the problem in the transformed space represented by the features
extracted by the NN. The line represents a linear regression line fit for the two regions of the

model. In this example solution, the two points corresponding to an output of 1 have been
collapsed into a single point in the feature space. The motivation of learning the feature space in

this example is to make the capacity of the model greater to be able to fit the training set [31].

Figure 20. Solving for the XOR problem by learning a representation [modified from [31].

 41

The next numerical example presents an affine transformation from a vector x to a vector h,
which will require a bias parameter vector. The activation function g is usually an applied
element-wise function defined as hi = g (xT W:i x + ci). The most recommended activation
function use presently for NNs is the rectified linear unit, or ReLU [34], [35], [36] defined by the
activation function g(z) = max{0, z} shown in the figure below.

The complete network can then be specified as

f (x; W, c, w, b) = wT max{0, W T x + c} + b (3.3)

Then we can also specify the XOR problem if we let

W = �1 1
1 1�,

C = � 0−1�,

w = � 1−2�,

b = 0.

The next steps show how the NN processes a batch of inputs. X is the design matrix, with one
sample per row and containing all four points in the binary input space:

X = �

0			0
0			1
1			0
1			1

�.

First, the NN multiplies the input by the weight matrix of the first layer obtaining:

Note: This activation function is the default

recommended one for most feedforward
NNs. Its application to the output of a linear

transformation results in a nonlinear
transformation. Piecewise functions being

very closed to linear, they preserve many of
the properties that make linear models easy
to optimize with gradient-based methods. It

also allows to build complicated systems
from minimal components [31].

Figure 21. The rectified linear unit activation
function (ReLU). function [23].

(3.4)

(3.5)

(3.6)

(3.7)

 42

XW = �

0			0
1			1
1			1
2			2

�.

Note how this operation collapsed [0 1] and [1 0] into a single point [1 1].

Next, the bias vector c is added:

XW + c = �

0		 − 1
1								0
1								0
2							1

�.

The examples in this space fit along a line with a slope of 1. The output along this line is
expected to begin at 0, then rise to 1, and drop back to 0 again. However, such a function cannot
be fit by a linear model, and it is then when the rectified linear transformation is in place.
Transforming each example x into h as it is shown in Figure 21 we have:

 �

0			0
1			0
1			0
2			1

�.

The relationship between the examples has been changed, and they no longer lie on a single line
but on a space where a linear model can solve the problem as can be seen on Figure 21.

Finally, the NN obtains the correct answer for every example in the batch by multiplying (3.10)
by the weight vector w:

 �

0
1
1
0

�.

Although this example shows how a NN model obtains an answer with zero error, in real life
situations there might be billions of model parameters and training examples for which a simple
solution cannot be guessed. In order to overcome that challenge, a gradient-based optimization
algorithm can be used to find parameters that yield very small error. The solution to the XOR
problem is a global minimum of the loss function, so gradient descent could converge to this

(3.8)

(3.9)

(3.10)

(3.11) [31]

 43

point. In actuality, gradient descent does not find an exact, integer-valued, and easy to
understand solution like the one found in this example [31].

3.1.1.2 Gradient-Descent Learning and the Cost Function

 Most of the successful approaches to automatic machine learning can be categorized as
gradient-based learning methods. Figure 23 shows how, when applying these learning methods, a
learning machine computes a function M (𝑍P, W) where 𝑍P is the 𝑝-Y input in the system, and
W is the collection of adjustable parameters in the system. A cost function 𝐸P= C (𝐷P, M (𝑍P,
W)), measures the discrepancy between desired output, 𝐷P, for pattern 𝑍P and the output given
by the system. The average of the errors 𝐸Pover an input-output set, called the training set, is
given by the average cost function 𝐸DZ0NQ(𝑊). The learning problem consists of finding the value
of W that minimizes 𝐸DZ0NQ(𝑊). It is of special interest here to measure the error rate of the
system in the field, which is estimated by measuring the accuracy on a separate set of samples
from the training set, called the test set. The Mean Square Error is the most common cost
function used, and it is given by

𝐸P= !
"
 (𝐷P- M (𝑍P, W))2, 𝐸DZ0NQ = !

[
∑ 𝐸PPR!

Figure 22. Gradient-based learning machine (modified from [37]).

(3.12) [37]

COST FUNCTION

M (Z, W)

LEARNIGN
MACHINE

𝐸2, 𝐸3, …𝐸4

Error

Desired
Output

𝐷2, 𝐷3, … 𝐷4
 Parameters

W

Input

𝑍2, 𝑍3, … 𝑍4

Output

 44

 Among gradient-based methods, the most popular and common one to optimize NNs is
gradient descent. Gradient descent is a way to minimize the objective function J(θ)
(parametrized by parameters θ of the model) by updating its parameter in the opposite direction
of the gradient of the objective function, ∇θ J(θ), with respect to these parameters. The learning
rate η determines the step size in order to reach the local minimum. For instance, the model
follows the direction of the slope of the surface created by the objective function downhill until
reaching a valley [38].

 There are three variants of gradient descent, and they differ in how much data is used to
compute the gradient of the objective function. One of these three variants is the batch gradient
descent, which computes the gradient of the cost function with respect to the parameters θ of the
entire dataset:

θ = θ – η	∙ ∇θ J(θ)

For example, consider the following data set in the table below with N = 6 labeled data instances:

Table 5. Data set with 4 features (age, job, education, marital) and label y [39].

 During the training process using this data set, the NN computes a prediction that is
compared to the ground truth label for each instance. Both the prediction and the label are then
used to calculate the loss function for that given sample. However, the weights are not updated
until all data instances of the dataset have been processed, but the gradients for each instance in
the dataset are calculated and summed. This accumulated gradient is then divided by the number
of data instances, which is 6 in this example. Finally, the weights are updated in the negative
direction of this averaged sum. Hence, for the given dataset, the gradients for each of the six
samples are to be calculated and summed. Then the sum of the gradients is divided by 6 and used
to perform single gradient descent to update weights of the NN [39].

 Batch gradient descent is computationally efficient, since it does not need to be updated
after each sample, and it has a very stable convergence of the weights to the optimal weights.
That way the highest increase of the loss function is achieved by getting a very good estimate of
the true gradient, since the individual gradients over each sample in the dataset are calculated and

(3.13) [38]

 45

averaged. On the other hand, batch gradient descent calls for slower learning because only one
update is performed after N number of samples have been processed. Also, the learning process
can get stuck in a local minimum of the loss function to never reach the global optimum, at
which the NN achieves the best results, because the calculated gradients are closed to each other.
Noisy gradients could, however, overcome this issue by introducing small variations in the
directional values that allow the gradient to jump from local minimum of the loss function to
continue updating towards the global minimum [39].

 The other gradient descent variant is stochastic gradient descent (SGD), which updates
the parameters for each training example x(i) and label y(i):

θ = θ – η	∙ ∇θ J(θ; x(i); y(i))

While batch gradient descent for large data sets is redundant as it recomputes gradients for
similar examples before each parameter update, SGD does away with redundancy by performing
one update at a time. It is hence usually faster and performs frequent updates with a high
variance that cause the objective function to fluctuate heavily enabling it to jump to new, and
potentially better, local minima. However, this fluctuating behavior might complicate
convergence to the exact minimum, which can be avoided by slowly decreasing the learning rate
[31].

 Consider the data set given in Table 5. In SGD, the prediction is made and compared to
the prediction with the label to calculate the gradient of the loss function as well. However, in
this case, the weights are update after each data instance (boxed in red in Table 6) has been
processed by the NN. Hence, the gradients are calculated and the weights of the NN are updated
six times.

Table 6. Updated Step with stochastic gradient descent [39].

 Other advantages of SGD are that it provides immediate performance insights, since it is
not necessary to wait until the end of the data set to see how the NN is performing, and it also
makes it possible for the NN to learn faster because an update is performed after each data
instance is processed. On the other hand, STG can be computationally intensive given that the

(3.14) [38]

 46

weight updates are done more often, and it also might be unable to settle on a global minimum of
the loss function due to the noisiness of its gradients [39].

 A third variant of gradient descent is the mini-batch gradient descent, which combines the
best of the other two variants. For the mini-batch gradient descent, the training set is divided into
batches of n size. For instance, for a dataset with 10,000 samples, a suitable size for n would be
8, 16, 32, 64, 128. Just as in the batch gradient descent case , an average gradient is computed
across the data instance in a mini-batch. The gradient descent step is performed after each mini-
batch of samples has been processed.[38]

θ = θ – η	∙ ∇θ J (θ; x(i:i+n) y(i:i+n))

For instance, if the data set in Table 5 is considered once more, the six data instances may be
divided into batches of size n = 2, resulting in three mini-batches.

Table 7. Updated step with mini-batch gradient descent [39].

 In the given example, two gradients for the two data instances (boxed in red in the table
above) in each mini-batch are calculated and divided by two to obtain the average gradient over
that mini-batch. This average gradient is used to perform a gradient descent step, which is done a
total of three times [39].

 The computational efficiency of mini-batch gradient descent is between that of the two
variants mentioned earlier, and it is more stable converging towards a global minimum, since the
average gradient is calculated over n samples that results in less noise. This variant also allows
faster learning given that the weights are updated more often than it is in the other two variants,
which results in a much faster learning process. However, mini-batch gradient descent requires
the introduction of the new hyperparameter n, which becomes the second most important
parameter for the overall performance of the NN. It is important, then, to take the time to try
many different batch sizes until a final batch size that works best with the other parameters, such
as the learning rate, is found [39].

(3.15)

 47

 For this project, the batch gradient descent approach is being used for the time steps of a
single full elliptical orbit at present. Once the dataset includes other orbits considered for the
training of the NN, the mini-batch gradient descent will be adopted with a batch number
matching the number of elliptical orbits used during training. However, STG and mini-batch
gradient descent will be considered as well for training using the first orbit being analyzed to
compare the results between these different approaches in an effort to find the best resolution
possible.

 In this section, the feedforward deep network was presented as a typical example of deep
neural network methods. As mentioned in the beginning of section 3.1.1, feedforward models are
named as such because information flows forward the NN. There are no feedback connections
where outputs are fed back into itself, in which case the model would become a recurrent NN or
RNN [31]. The RNN model would be described next since it is of special interest to this project.

3.2 Recurrent Neural Networks

 A common assumption about machine learning models, including NNs, is the
independence among data samples. This assumption, though, does not hold for sequential types
of data, such as time series, speech, language, etc. A way to account for sequential dependency is
to concatenate a fixed number of consecutive data samples together to be treated as one single
data point. However, this approach has proven to be highly dependent on finding the optimal
window size, since a small window size does not capture the longer dependencies, and a too
large window size would add unnecessary noise. Furthermore, in the case where long-range
dependencies in data ranging over hundreds of time steps are present, a window-based method
would not scale. In addition, conventional NNs cannot handle variable length sequences, which
is the case for many domains such as language translation and speech modeling [13].

 While feedforward NNs are limited to passing the data forward from input to output,
recurrent NNs (RNNs) have a feedback loop where data can be fed back into the input at some
point before it is fed forward again for further processing and final output [40]. RNNs also have
the ability to use their feedback connections to store representations of recent input events in the
form of activations. Therefore, RNNs can be very useful when dealing with time dependency
data [40], [41] as it is the case for the proposed problem in this report.

 RNNs process the input sequence one element at a time while maintaining a hidden state
vector acting as a memory for past information. The learning process is selective to relevant
information allowing the NN to capture dependencies across several time steps, which makes it
possible to use both current input and past information while making future predictions. In this
model, learning happens automatically without much knowledge of the cycles or time
dependencies in data. RNNs eliminate the need of fixed size time window and can handle
variable length sequences.

 Recall Figure 24 shown in chapter one, where an RNN and the unfolding in time of the
computation involved in its forward computation is shown [33]:

 48

Figure 23. Recalling figure 10, a standard RNN and its unfolding in time [13].

 The artificial neurons shown in the figure above as hidden units grouped under node s
with values st at time t, get inputs from the other neurons at the previous time steps. The figure
on the left represents a standard RNN with a circle depicting a time step and a black square the
delay of the time step while this process takes place. This can be considered a feedback
connection of the hidden neurons across time. Through this process, an RNN can map an input
sequence with elements xt into an output sequence with elements ot depending on all the previous
𝑥-\ (for 𝑡\ ≤ t). At time t, the RNN receives as input the current sequence element xt and the
hidden state from the previous time step st-1. The hidden state is then updated to st and finally the
output of the network ht is calculated. Hence, the current output ht depends on all the previous
inputs 𝑥-\. The sample parameters represented by matrices U, V, W, are utilized every time step.
U is the weight matrix between the input and hidden layers similar to a conventional NN. W is
the weight matrix for the recurrent transition between one hidden state to the next. V is the weigh
matrix for the hidden to output transition [13], [33]. The following equations summarize the
computations carried out at each time step:

𝑠- = 𝜎(𝑈𝑥- +𝑊𝑠-#! + 𝑏-)

ℎ- = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠- + 𝑏])

 The softmax in 3.16 represents the softmax function, which is often used as the activation
function for the output layer in a multiclass classification problem, and b is the bias at the
corresponding level of the RNN. This function ensures that all the outputs range from 0 to 1 and
their sum is 1. For a K class problem, the softmax equation is:

𝑦^ =
𝑒05

∑ 𝑒056_
^6R!

	𝑓𝑜𝑟	𝑘 = 1,… , 𝐾

 In this equation, 𝑎 is a parameter learned during training. The standard RNN shown in
Figure 24 can be considered a deep network with the number of layers equivalent to the number
of time steps in the input sequence. An RNN can process variable length sequences, since the
same weights are used for each time step. A new input is received at each time step, and, given
that the hidden state 𝑠- is updated via equation 3.16, the information can flow in the RNN for the

(3.16) [13]

(3.17) [13]

 49

arbitrary number of time steps. This allows the RNN to maintain a memory of all the past
information [13].

 Many other variants than those observed in Figure 24 are possible, such as one where the
network generates a sequence of outputs, like words, each of which is used as an input for the
next time step. The backpropagation logarithm can be directly applied to the unfolded
computational graph network on the right to compute the derivative of a total error with respect
to all the states st and all the parameters [33]. Backpropagation is the most common method used
to train RNNs and it is discussed in detail in the next section.

3.2.1 RNN Training with Backpropagation

 When a feedforward NN is used to accept an input Z and produce an output Y,
information flows forward through the network. The initial information provided by input Z then
propagates up to the hidden layers to finally produce output Y. This is call forward propagation.
Forward propagation can continue onward during training until it produces a scalar cost E(W).
The backpropagation algorithm or backprop for short, allows the information from the cost
function to then flow backward through the network in order to compute the gradient [31].

 Backprop algorithm has been cornerstone in machine learning to train NNs, with a rich
history of having been reinvented several times by independent researchers (Griewank, 2012;
Schmidhuber, 2015). It has been one of the most studied and used training algorithms since it
gained popularity mainly through the work of Fumenlhart el al. (1986) [42]. The backprop
procedure to compute the gradient of an objective function with respect to the weights of a
multilayer stack of modules is simply a practical application of the chain rule for derivatives. The
key concept of this method is that the derivative, or gradient, of the objective with respect to the
input of a module can be computed by working backwards from the gradient with respect to the
output of that module (which is also the input of the subsequent module). The gradients can be
propagated through all modules by applying the backpropagation equation repetitively, starting
from the output at the top where the network produces its prediction, all the way to the bottom
where the external input is fed. Computing the gradients with respect to the weights of each
module becomes simple once these gradients have been propagated through all modules (refer to
Figure 24 to understand this process) [33].

 Many deep learning applications use feedforward NN work architectures, which learn to
map a fixed-sized input to a fixed-size output. In order to move from one layer to another, a set
of units compute a weighted sum of their inputs form the previous layer and pass the result
through a non-linear function such as the rectified linear unit (ReLU), which was introduced in
chapter 1 and shown again when solving for the XOR example problem in sub-section 3.1.1.1. In
past decades, NNs used smoother non-linear functions like the tanh(z) or the sigmoid functions,
but ReLU has proven to be faster, especially with NNs with many layers. As seen before, units
that are not on the output or input layers are called hidden units. The hidden layers can be seen as
distorting the input in a non-linear way in Figure 25, so that categories become linearly separable
by the last layer [33].

 50

Figure 24. Multilayer NNs and backpropagation [33].

In Figure 25:

a. The connected dots represent a multilayer NN distorting the input space to make the classes of
data (an example of which is shown by the red and blue curves) linearly separable. As it can be
seen on the left, the grid of the input class is also transformed as seen on the right by the hidden
units. This example illustrates the initiation of the process with only two input units and two
hidden units, but in a real word application, NNs contain tens or hundreds of thousands of units.

b. The chain rule of derivatives describes how the small change of x on y, and that of y on z are
composed. A small change ∆𝑥 in x gets transformed first into a small change ∆𝑦 in y when
getting multiplied by ∂y/∂x, the definition of the partial derivative. In the same way, the change
∆𝑦 creates a change ∆𝑧 in 𝑧. Substitution of one equation into the other gives the chain rule of
derivatives, which is how ∆𝑥 gets turned into ∆𝑧 through multiplication by the product of ∂y/∂x
and ∂z/∂x. It works the same way when x, y and z are vectors, and the derivatives are Jacobian
matrices.

c. The equations for computing a forward pass in a NN with two hidden layers and one output
layer are shown, each constituting a module through which gradients can be backpropagated.

Note: Reproduced with permission from
C. Olah. (http://colah.github.io/).

 51

The total input z at each layer is first computed for each unit, which is a weighted sum of the
outputs of the units in the layer below. A non-linear function f(z) is then applied to z to get the
unit output. Note that the bias term has been omitted in this example just for simplicity. The non-
linear functions used in NNs include the ReLU, f(z) = max(0, z) the hyperbolic tangent,
f(z) = `

0#`#0

`0O`#0
, and the logistic function f(z) = !

!O`#0
.

d. The equations used for computing the backward pass are shown. The error derivative with
respect to the output of each unit are computed at each hidden layer. This is a weighted sum of
the error derivatives with respect to the total inputs to the units in the layer above. Then the error
derivative with respect to the output is converted into the error derivative with respect to the
input by multiplying it by the gradient of f(z). The error derivative with respect to the output of a
unit is computed at the output layer by differentiating the cost function. This gives yl - tl if the
cost function for unit l is 0.5(yl - tl)2 where tl is the target value. Once ∂E/∂zk is known, the error-
derivative for the weight wjk on the connection from the j unit layer below is just yj (∂E/∂zk) [33].

 RNN training can be achieved by unfolding the RNN and creating a copy of the model
for each time step just as in the unfolded RNN part of Figure 24. Then, the RNN can be treated
as a multilayer NN and be trained in a way similar to backprop. This approach is called back
propagation through time (BPTT). Ideally, RNNs can be trained to learn long-range
dependencies over arbitrarily long sequences using BPTT by learning to tune weights to put the
right information in memory. In practice, though, training an RNN is not simple, and it can
perform poorly even when the outputs and relevant inputs are separated by only 10-time steps.
Using BPTT to train a RNN requires backpropagating the error gradients across several time
steps. It can be seen in Figure 24, that in a standard RNN the recurrent edge has the same weight
for each time step. Therefore, back-propagation of the error involves multiplying the error
gradient with the same value repetitively, which causes the gradients to become either too small
or too large. This problem is known as exploding and vanishing gradients respectively [13].

 Modification to the training procedure and new RNN architectures were proposed to deal
with the exploding and vanishing gradient problems such as LSTM RNNs. The LSTM
architecture has been investigated and proven to be very useful in learning long-term
dependencies as compared to standard RNNs and have become a popular variant of RNN [13].
The LSTM architecture is the approach used in this project, and it will be presented in detail in
the next chapter, along with the specific setup of the LSTM RNN used to solve the problem. In
summary, the artificial intelligence computational procedures presented in this chapter were
implemented in an LSTM RNN via the deep learning Application Programming Interface (API),
Keras, based in Python and running on top of the open-source machine learning platform,
TensorFlow.

 52

Chapter 4: LSTM RNN Implementation

 As mentioned in the previous chapter, RNNs are networks with loops in them to allow
information to persist. An RNN can be thought of as multiple copies of the same network, each
of which passes the message to a successor just like in the unrolled RNN shown in Fig. 24.
Hence, one of the appeals of RNNs is the idea that they might be able to connect previous
information to the present task. This is sometimes possible, such as in the case of a language
model trying to predict the next word based on the previous one in a sentence. If trying to predict
the last word in “we live on the planet Earth,” no farther context is needed, since it is obvious the
next word is going to be Earth. In such cases, RNN have no problem learning to use past
information because the gap between the relevant information and the place where it is needed is
small. However, there are cases that need more context. Consider the case where the last word is
to be predicted in the sentence “I am from Mexico…I speak fluent Spanish.” Recent information
suggests for the next word to be the name of a language, but in order to narrow down which
language, the context of Mexico is needed from further back. In this case, it is highly probable
that the gap between the relevant information and the point where it is needed becomes very
large and RNNs become unable to connect the information. This is known as the problem of
Long-Term Dependencies [43].

Figure 25. Long-Term Dependency Problem [43].

Long Short Term Memory networks, or LSTMs for short, are a type of RNNs that were
introduced by Hochreiter & Schmidhuber in 1997 as a means to make RNNs capable to learn
long-term dependency problems and avoid the exploding or vanishing gradient problem
mentioned in the previous chapter. LSTMs were improved in following work by many people
and are now widely used. They are highly effective to solve a variety of problems and their
default behavior is remembering information for long periods of time [43]. LSTMs are very well
suited to solve the problem proposed in this project because they use current input and past
information while making future predictions and retaining dependencies across short or large
time steps by learning how to retain relevant information.

Left - Unrolled RNN able to learn past information. Right -
Unrolled RNN unable to learn past information due to the long

gap between relevant information and the point where it is needed.

 53

4.1 LSTM RNN Architecture

 All RNNs have a chain of repeated modules of NN. In the case of standard RNNs, a
simple structure, such as a single tanh layer, is the repeating module (as shown in Figure 26
below).

Figure 26. RNN with repeating module containing a single layer [43].

LSTMs also have a chain of repeating modules, but in this case, the module has four NNs (rather
than one) interacting in a specific way (see Figure 28 below).

Figure 27. An LSTM has a repeating module containing four interacting layers.

 In Figure 28 each line passes an entire vector starting from the output of one node to the
input of other nodes. The pink circle represents pointwise operations, such as vector addition,
and the yellow boxes are NN layers learned. The lines merging represent concatenation, while
the forking line represents its content being copied and being sent to different locations.

 The core idea behind LSTMs is the cell state represented by the horizontal line running
through the top of the diagram. The cell state runs straight down the entire chain with minor
linear interactions only, making it easy for information to just flow along it unchanged.

 54

Figure 28. The cell state of an LSTM [43].

The LSTM has structures called gates that regulate the ability to remove or add information to
the cell state. Gates are composed of a sigmoid NN layer and a pointwise multiplication
operation and are a way to optionally let information through.

Figure 29. An LSTM gate structure [43].

4.1.1 Steps in an LSTM Walk Through

1. An LSTM network begins by deciding what information will be discarded from the cell
state. This decision is made by a sigmoid (𝜎) layer called the forget gate layer (ft), which
looks at previous cell output, ht-1, and input vector, xt, and outputs a number between 0
and 1 for each number in the cell state Ct-1. An output of 1 corresponds to completely
keeping the information at that point while an output of 0 represents to completely
discarding the information at that point. For instance, in the case of the previous example
of a language model trying to predict the next word based on all the previous ones, the
cell state might decide to include the gender of the subject for the correct pronouns to be
used. When a new subject is perceived, the gender of the previous subject is forgotten.
The figure below shows this process and calculation of the forget gate layer with Wf and
bf being the vector weights and biases of the layer.

Figure 30. The forget gate layer of an LSTM [43].

 55

2. The next decision to be made is what new information to store in the cell state, which has
two parts to it. A sigmoid layer called the input gate layer (it) decides which values will
be updated first. Then, a tanh layer creates a vector of new candidate values, 𝐶}t, that
might be added to the state. These two will be combined in the next step to create an
updated state. Following the example of the language model, the gender of the new
subject would be added to the cell state to replace the forgotten old subject’s gender. The
following figure shows this process and calculation of the input gate layer and candidate
values with Wi and bi being the vector weights and biases of the input layer and Wc and
bc those of the new candidate values.

Figure 31. The input gate layer of an LSTM [43].

3. Next, the old cell state, Ct-1, is updated to the new cell state or candidate gate, Ct. Now

that previous steps have decided what to do, the new state is calculated by multiplying the
old state by ft (to forget the things decided to be forgotten earlier) and add it * 𝐶} t. This
now represents the new state value scaled by how much was decided to update each state
value. Proceeding with the example of the language model, this is where the information
about the gender of the old subject is dropped to add new information, as it was decided
in the previous steps.

Figure 32. The new cell state of an LSTM [43].

4. In this last step, the output (ot) is decided by filtering the cell state. First, a sigmoid

function decides what parts of the cell will become part of the output. Then, the cell state
goes through a tanh function to push its values between -1 and 1. The resultant values are
then multiplied by the sigmoid gate output in order to output only the parts that have been
decided. In the example language model, for instance, the output information relevant to
a verb might be considered, since it just saw a subject. For example, the output might be
whether the subject is singular or plural in order to know the form in which a verb should

 56

be conjugated given that is what follows [43]. The following figure shows this process
and calculation of the output gate layer and candidate values with Wo and bo being the
vector weights and biases of the output layer and ht is the current cell output.

Figure 33. The output gate layer of an LSTM [43].

There are other variant of LSTMs involving slightly differences that might better serve the
purpose of other problems under consideration. These variants, however, are not relevant to this
project and won’t be discussed.

4.2 LSTM RNN Application Programming Interface and Machine Learning
Platform

 This project uses the deep learning Application Programming Interface (API) Keras
running on top of the machine learning platform TensorFlow [44]. Keras is a powerful, user
friendly open-source Python library for developing and evaluating deep learning models such as
neural networks [45]. Its fast prototyping and experimentation with a simple API make it highly
suitable to solve the problem proposed in this project. It allows the configuration of NNs in a
modular way by combining different layers, activation and loss functions, as well as optimizers,
etc. Keras also contains implementation of LSTM with forget gates as described in the previous
section with BPTT implemented and state maintenance [13].

4.2.1 Keras BPTT Implementation

 It can be recalled from section 3.2.1 that RNN training can be achieved by unfolding the
RNN and creating a copy of the model for each time step just as in the unfolded RNN part of
Figure 24. Next, the RNN can be treated as a multilayer NN and be trained in a way similar the
backprop (explained in section 3.2.1). This approach is what is called back propagation through
time (BPTT). Keras has a modified version of BPTT implementation. Given that unfolding
RNNs across an input sequence of thousands of time steps is computational inefficient, an RNN
in Keras is unfolded to a maximum number of time steps. This parameter is specified when
inputting the data, which is to be fed in the form of a 3-dimensional array of shape: (batch,
timesteps, feature). The batch argument is the number of data points or samples, timesteps
specifies the past observations for a feature or steps for which the RNN is unfolded, and features,

 57

in this case, are the three components of the spacecraft’s position vectors in cartesian
coordinates. The input data is divided into sequences that overlap and with a time interval of
one. For this reason, it is important that the time steps are consistent across the whole data
sample for all the bank of data training the model. Each sequence has a timesteps number of
consecutive time steps and forms one training sample to the RNN model. BPTT is done over
individual samples for timesteps number of time steps during training [13].

4.2.2 State Maintenance in Keras

LSTM in Keras is maintained in two different ways:

1. Default Model: The samples in a batch are assumed to be independent of each other, and
state is preserved only over individual input sequences for timesteps number of time
steps.

2. Stateful Mode: The state cell is maintained among various training batches in this mode.

The final state of the ith sample of one batch is used as the initial state of the ith sample of
the next batch with the samples within one batch staying independent. A one-to-one
mapping between samples of consecutive batches is assumed in order to maintain state
across batches. Therefore, shuffling of samples should be avoid in this mode.

The reason behind the independence of samples within a batch, lays back on the history of the
development of LSTMs. Language modeling and recognition tasks motivated this
implementation, since they were the key ideas driving LSTM development and implementation.
Language models training tasks contain samples that are usually individual sentences, and a short
timesteps value equal to the maximum length of the sentence, in words, is enough to capture the
necessary sequential dependencies. Hence, different samples can be treated independently.
However, this behavior could be quite restrictive for many domains of datasets [13].

For the purpose of this report, state maintenance has been set up by constructing a many-to-many
model with a Time Distributed Dense layer, both of which will be explained in detailed in the
next section with its implementation in the algorithm to be presented.

4.2.3 TensorFlow

TensorFlow is an easy-to-use, open-source Python library for numerical computation that makes
machine learning faster and easier. It is a Google initiative with machine leaning frameworks
that eases the process of acquiring data, training models, serving predictions and refining future
results. It uses Python as a front-end API for building applications with the framework, while
executing those application in high-performance C++.

The way TensorFlow works is by allowing developers to create dataflow graphs, which are
structures that describe how data moves through a graph, or a series of processing nodes. Each
node in the graph represents a mathematical operation, and each connection or edge between

 58

nodes is a multidimensional data array, or a tensor. All this is provided to the programmer via
Python language. Hence, TensorFlow applications are Python applications themselves, and the
nodes and tensors are Python objects. However, the actual math operations are done via libraries
of transformations available through TensorFlow written as high-performance C++ binaries.
That way, Python only directs the traffic between the pieces, and provides high-level
programming abstractions to hook them together [46].

TensorFlow supports most modern platforms such as a local machine, cluster in the cloud, iOS
and Android devices, CPUs or GPUs. If used in Google cloud, TensorFlow can be ran on
Google’s custom TensorFlow Processing Unit (TPU) silicon for further acceleration [46]. Its
integration with Keras API began with the release of TensorFlow 1.0 in February 2017 and
enhanced to version TensorFlow 2.0 in October 2019 to make Keras its central high-level API,
easier to work with and improve training performance and runtime [47].

4.3 Algorithm and LSTM RNN Set Up

 The LSTM RNN (LSTM for short) is trained on “input” data with the position of a
spacecraft at every minute (each of which is a time step) of its trajectory around Venus with no
solar perturbations. This input data is to approach the “label” data composed of the spacecraft’s
position at every minute on its trajectory around Venus with solar perturbations, with the same
exact initial conditions to those of the input data and at the corresponding time steps. Due to the
shorter orbital period of the perturbed orbit, the label data had to be trimmed one step
(corresponding to one minute) to match the number of steps of the input data. The full data set is
composed of three slightly different orbits with and without solar perturbations for label data and
input data respectively.

For the purpose of training the LSTM, the data set was divided into three subsets (each
corresponding to every one of the three slightly different orbits): a training set with data
corresponding to the orbit with similar initial conditions to those of the Venera D mission; a
testing set with data corresponding to the same orbit with a shift of +15° in inclination; and a
validation set with data corresponding to the same orbit with a shift of -15° in inclination.

The LSTM training is being done in Google Colab (abbreviated term for Colaboratory) with
graphics processing units (GPUs) processors. Colab is a product from Google Research that
allows anybody to write and execute arbitrary Python code through the browser. It is well suited
for machine learning, data analysis and education. It is hosted by Jupyter notebook service that
requires no setup to use, while providing free access to computing resources including GPUs.
Jupyter notebooks allow anyone to use and share data with others without the need to having to
download, install or run anything [48]. GPUs are specialized electronic circuits designed to
manipulate and alter memory rapidly to accelerate the creation and display of images in a device.
Modern GPUs are very efficient at manipulating computer graphics and are more efficient that
the general-purpose central processing units (CPUs) for algorithms that process large blocks of
data in parallel [49].

The libraries used in this project are presented in table below.

 59

Table 8. Software libraries used in this project.

Library Version
Keras 2.4.0
TensorFlow 2.4.1
sickit-learn 0.24.1
Mathplotlib 3.4.1
Pandas 1.2.4

The Keras API and TensorFlow libraries have been introduced above and are the main banks of
libraries used to train the RNN. The sickit-learn library contains efficient tools for predictive data
analysis, and it is built in on NumPy (library for multidimensional arrays, matrices and high-
level mathematical functions), SciPy (mathematical algorithms and convenience functions built
on NumPy), and matplotlib (cross-platform, data visualization and graphical plotting library).
Pandas is a column-oriented data analysis API and will be introduced with more detail in the
next section.

4.3.1 Data Gathering and Preparation for Training

 Data for the LSTM training was gathered and prepared by mounting Google Drive to the
Google Colab runtime’s virtual machine using an authorization code, and the Python Data
Analysis (Pandas) library.

4.3.1.1 Fetching the Data

 Google Drive was mounted in runtime via, mainly, the following python commands:

from google.colab import drive
drive.mount('/content/drive')

 These commands give the virtual machine access to a Google Drive to find and read the
file with target data given that an authorization code, automatically generated in runtime, is
provided. This process is required every time access to data in a Google Drive is needed. The
Pandas library is an open-source Python package mostly used for data science, data analysis and
machine learning tasks. It is built on top the NumPy package, which provides support for multi-
dimensional arrays [50]. Some of the best functionalities of Pandas are data loading, reading,
renaming, mapping, shaping, groupby and statistics, joining, masking and handling missing
values [51]. The data set for LSTM training was gathered from three different folders in Google
Drive, each one corresponding to the data of each of the three orbits used for training, testing and
validation.

4.3.1.2 Data Splitting, Normalization and Reshaping

 The data were split into three sets corresponding to each on the three orbits, and each of
the three data sets were split once more into two data subsets: the train data set (X) and the label
data set (Y).

 60

 Normalizing the data for RNN training generally speeds up the learning process and
makes it more stable leading to faster convergence because:

1) The weights of a model are initialized to small random values and updated via an
optimization algorithm in response to estimates of error on the training dataset. Hence,
unnormalized data can lead to large or small error estimates that might lead to vanishing
or exploding gradients.

2) It is much easier for the RNN to perform the necessary operations on numbers between 0
and 1 than it is with larger or smaller numbers [52].

There are other reasons why normalization favors RNN training, but those do not apply to the
type of data being handled in this project.

Data normalization was done separately across the unperturbed or training data of each orbit and
the perturbed or label data of each orbit using Min-Max Normalization. In order to do so the Min-
Max Normalization formula was used:

Xnormalized = X#X&78
X&9:	#X&78

 Ynormalized = a#a&78
a&9:	#a&78

 In the above equations, X stands for training data and Y for label data, Xnormalized and
Ynormalized are the normalized values of each data point in both data sets, X and Y represent the
unnormalized values, Xmin and Ymin are the minimum points and Xmax and Ymax are the maximum
points in the data sets. This process resulted in the data being shifted to values between 0 and 1.
The normalized data was then reshaped to feed to the LSTM.

 As mentioned in section 4.2.1, data is to be fed to an LSTM in the form of a 3-
dimensional array of shape: (batch, timesteps, feature) where the timesteps are the past
observations for a feature. The reshaping was done using a batch size of 404, a timesteps number
of 5 and an input dimension of 3 features (one for each component of the position vector). A
batch size of 404 splits the 2020 data points into 5 even parts (one for each timesteps). This batch
size was chosen to make the training run faster given that a many-to-many model was adopted
(which takes more time to compute). The many-to-many model will be explained in detail in the
next section.

4.3.4 The Model

 This project uses a Sequential Model. NNs are defined in Keras as a sequence of layers.
The Sequential class is the container of these layers. Once an instance of the Sequential class is
created, layers can be created and added in the order that they should be connected to train the
NN. The LSTM recurrent layer composed of memory units is called LSTM(). A fully connected
layer that often follows LSTM layers used to output a prediction is called Dense(). For example,
an LSTM hidden layer with 2 memory cells followed by a Dense output layer with 1 neuron can
be define as:
 model = Sequential()
 model.add(LSTM(2))
 model.add(Dense(1))

 61

or it can be done in one step by creating an array of layers and passing it to the constructor of the
Sequential class [53]:

 layers = [LSTM(2), Dense(1)]
 model = Sequential(layers)

 Creating a Sequential Model via Keras with an LSTM with 50 memory cells and its
hyperparameters (to be discussed next) followed by a Dense output layer of 3 cells will look like:

model=keras.models.Sequential([keras.layers.LSTM(50, hyperparameters)
 keras.layers.Dense(3)]

4.3.4.1 LSTM Hyperparameters

 As one might recall from previous sections, the training of an NN is converted into an
error minimization or optimization exercise aiming to minimize the loss function (equation 1.2
introduced in page 16) by tuning its parameters. The algorithm used to perform optimization is
called “gradient”, which involves calculating the gradients of the loss function with respect to the
network parameters, such as weights and biases. Gradients are computed via the back-
propagation method based on the chain rule of derivatives as shown in section
3.2.1. Recall that the gradient is a measure of the change in the loss value corresponding to a
small change in a network parameter according to equation 1.2, , which depends on
the learning rate scalar, 𝛾, use to update the parameters, 𝜽, in the opposite direction of the
gradient. This process makes several passes iteratively over the training data, and every pass or
epoch moves the parameters closer to their optimum values which minimizes the loss function
[13].

 For large sets of data, calculating the loss and gradient over the entire dataset can be
computationally slow and infeasible. Therefore, variants of gradient descent called optimizers are
used. Optimizers divide the data into subsets called batches, and the parameters are updated after
calculating the loss function over one batch. Popular optimizers are SGD (stochastic gradient
descent), RMSprop, AdaGrad and Adam [13]. The optimizer used in this project is Adam, which
is a combination of AdaGrad and RMSprop, and will be explained in more detailed in the
discussion about the LSTM architecture for this project.

 A common problem when training NNs, is overfitting. Overfitting occurs when the model
tries to fit the noise in training data, and it is often caused by using a more complex model than
required. When overfitting, the model performs well on training data but poorly on new data.
Overfitting during training can be avoided in several ways. In early-stopping, a small subset of
data is used as a validation set, and the loss function on the training set is compared to the value
on the validation set after every epoch. When the loss of the validation set starts increasing
despite the loss on the training set is decreasing, overfitting is taking place, and the model can be
stopped. Another common method used in deep learning to avoid overfitting is dropout. In

 62

dropout, a fixed percentage of NN connections are randomly removed in each training epoch
[13].

 Network parameters, such as weights and biases, are learned by the training algorithm.
On the other hand, parameters such as learning rate, dropout, training batch size, decay, etc. are
parameters of the learning algorithm that need to be set with the appropriate values by the user,
and they are called hyperparameters [13]. The following table presents the hyperparameters used
for the LSTM model, and each of them will be explained in the model architecture section
coming next.

Table 9. LSTM Hyperparameters.

Hyperparameter Type/Value Location
activation relu LSTM layers
recurrent_activation zeros LSTM layers
bias_initializer zeros LSTM layers
kernel_initializer glorot_uniform LSTM layers
recurrent_initializer glorot_uniform LSTM layers
stateful False LSTM layers
return_sequences False LSTM layers
return_state False LSTM layers
Dropout regularizer 2nd layer
TimeDistributed wrapper layer Dense layer
Adam optimizer After model
learning rate (lr) 0.0002 Within optimizer
loss mse Model compiler
metrics accuracy Model compiler
batch_size 101 Model training history
epochs 2000 Model training history
validation_freq 1 Model training history
shuffle False Model training history

4.3.4.2 LSTM RNN Model Architecture

 The RNN comprised of an LSTM layer with 50 units, followed by a regularizer Dropout
layer with a rate of 0.46, a second LSTM layer with 10 units, and an output TimeDistributed
wrapped Dense layer with 3 units. The architecture of the model can be seen in the mapping of
table 10 below.

 63

Table 10. LSTM RNN architecture Map.

 As can be seen, the different layers of the RNN take into 3-dimensional data arrays, of
which the first element (batch or number of units) is read as “None” meaning that it is up to the
RNN to determine that argument during the learning process. As mentioned before, the LSTM
arguments were set to be timesteps = 5 and feature = 3 for the input layer. The 2020 input data
points were divided into 5 parts, which resulted in a batch or sample size of 404 with five data
points per feature each. After the input is taken, it is up to the RNN to decide the batch size that
will better suits the training.

 The hyperparameters in the LSTM RNN model are defined as follows:

activation – The activation function is responsible for transforming the summed weighted input
from the node into the activation of the node or output for that input. The ReLu is a piecewise
linear function that will output the input directly if positive, or output zero otherwise. It has
become the default activation function for many types of NNs because it makes it easier to train
a model and enhances its performance. This is another reason why the dataset used in this project
was normalized [54].

recurrent_activation – Activation function to use for the recurrent step during training and set
to the ReLu function in this case.

bias_initializer – Initializer for the bias vector of the weights, which is set up to be initialized at
zero by default. Recall that the bias is analogous to the intercept in a linear equation. It is an
additional parameter in the RNN which is used to adjust the output along with the weighted sum
of the inputs to the neuron.

 64

kernel_initializer – Initializer for the kernel weights matrix, used for the linear transformation
of the inputs. It is set to be glorot_uniform as a default in Keras. The Glorot uniform initializer
draws samples form a uniform distribution within [-limit, limit], where limit = √6

c;<Oc=>?
 , and

𝑊NQ and 𝑊deD are the are the input and output units of the weight tensor respectively.

recurrent_initializer – Initializer for the recurrent_kernel weights matrix, used for the linear
transformation of the recurrent state, which is set by default as orthogonal. In this RNN training
it was set equal to glorot_uniform as the kernel weight matrix initializer.

stateful – Boolean parameter set to False by default. If True, the last state for each sample at
index i in a batch will be used as initial state for the sample of index i in the following batch.

return_sequences – Boolean parameter set to False by default that determines whether to return
the last state in addition to the output [55].

Dropout – The Dropout layer randomly set input units to zero with a frequency of rate at each
step during training preventing overfitting. Inputs not set to zero are scaled up by !

!#Z0D`
 so that

the sum over all inputs is unchanged [56].

TimeDistributed – A layer wrapper that allows to apply a layer to every temporal slice of an
input. The input should be at least 3-dimensional, and the dimension of the index one will be
considered to be the temporal dimension [57]. A TimeDistributed(Dense()) applies a same Dense
(fully-connected) operation to every timestep of a 3-dimensional tensor [57].

Adam – Optimization algorithm and good default implementation of gradient descent. It
automatically uses a custom learning rate for each weight in the model, combining the best
properties of AdaGrad and RMSProp. Also, its implementation in Keras uses the best practice
initial values for each of the configuration parameters. The AdaGrad algorithm individually
adapts the learning rates of all model parameters by scaling them inversely proportional to the
square root of the sum of all the historical squared values of the gradient. The parameters with
the largest partial derivative of the loss function have a correspondingly rapid decrease in their
learning rate, while the parameters with small partial derivative have a relatively small decrease
in their learning rate. This results in greater progress in the more gently sloped directions of
parameter space. The RMSProp algorithm modifies the AdaGrad to perform better in the
nonconvex setting by changing the accumulation of the gradient into an exponentially weighted
moving average. It is designed to converge rapidly when applied to a convex function. If applied
to nonconvex functions for NN training, the learning trajectory may pass through many different
structures to eventually arrive to a region that is locally a convex bowl. AdaGrad shrinks the
learning rate according to the entire history of the square gradient and may have made the
learning rate too small before arriving at such convex structure. RMSProp uses an exponentially
decaying average to discard history from extreme past to allow convergence rapidly after finding
a convex bowl, as if it were an instance of the AdaGrad algorithm initialized within that bowl.
The name Adam derives from the phrase “adaptive moments” because momentum is

 65

incorporated directly as an estimate of the first-order moment, with exponential weighting, of the
gradients [31].

learning rate – It controls how much to update the wights in response to the estimated gradient
at the end of each batch [53]. It determines the step size in order to reach the local minimum. For
instance, the model
follows the direction of the slope of the surface created by the objective function downhill until
reaching a valley [38].

loss – A loss function computes the quantity that a model should seek to minimize during
training. In this case, it is a regression loss set to compute the mean of squares of errors (mse)
between labels and predictions [58].

metrics – Accuracy metric that calculates how often predictions equal labels. This metric creates
local variables total and count used to compute the frequency with which the prediction matches
the label. Then this frequency is returned as a binary calculated by dividing total/count.

batch_size – Number of samples per gradient update set as an integer or None. Its default value
is 32 if not specified.

epochs – Integer specifying the number of epochs to train the model. An epoch is an iteration
over the entire X and Y data provided.

validation_freq – If an integer, it specifies how many training epochs to run before a new
validation run is performed. Hence, if validation_freq = 1, validation is done every epoch.

shuffle – Boolean that determines whether to shuffle the training data before each epoch. In this
case is set to False given that each input (each unperturbed data point) must approach its
corresponding label (the corresponding perturbed data point) [59].

 This RNN training follows a many-to-many model. This type of model produces multiple
outputs after receiving multiple values. The internal state is accumulated with each input value
before a final output value is produced. In this case multiple time steps are output [59], which is
required in this case given that an output is desired for every input given. Most importantly, the
many-to-many model helps with maintaining the state during training. See figure 5 below.

Figure 34. The many-to-many model [60].

Note: In figure 35 each rectangle is a vector and arrows
represent function (such as matrix multiplication, etc.).
Input vectors are in red, output vectors are in blue and

green vectors hold the RNN’s state. The sequence input and
sequence output size match (although they do not have to in

this type of model). In this case, we want the predicted
solar potential perturbed data for every input data point of

the solar potential unperturbed data point [60].

 66

4.3.4.3 Calculating the Weights

 As shown in section 4.1.1, in every process an LSTM has four layers of the neuron,
which together form a processing gate: forget gate à input gate à candidate gate à output
gate (with the training sequence following the arrows). The weights in every layer of the RNN
model can be extracted via the model.get_weights() function in Keras under its Layer class. This
function outputs the kernel weights (W) and recurrent kernel weights (U) matrices with its
corresponding biases (b) for every LSTM layer. The kernel weights are those that transform the
inputs into some other internal values, and they have the shape [features, output_dim] where
output_dim is the total number of kernel weights. The recurrent kernel weights are those that
transform the previous hidden state into another internal value, and they have the shape [batch,
output_dim] (recall that batch = number of units or cells). The biases have the shape
[output_dim] [61].

 For every time step, the weight and bias for every gate is updated to update the cell state
of every cell in the layer. Hence, the LSTM training process outputs four times the number of
units per feature for the kernel weights, four times the number of units per unit for the recurrent
kernel weights and four times the number or units for the biases. The table below is a
representation of the sequential model handling the RNN training with all its components:

1. First LSTM layer with 50 cells and the input layer embedded (that is [5, 3] corresponding
to [timesteps, features]).

2. Dropout layer regularizer with a dropout rate of 0.46.
3. Second LSTM layer with 10 cells and timesteps = 5 preserved.
4. Dense layer with time_distributed layer wrapper with 3 cells and timesteps = 5 preserved.

Table 11. Sequential RNN model summary.

 67

Table 11 shows the total number of parameters, that is weights plus biases per layer. The first LSTM layer
output weight and bias matrices are as follows:

First LSTM layer with 50 cells
or units

Matrix shape Nature of parameters Total number of
parameters

[3, 200] Kernel Weights [features, 50 units * 4] 600
[50, 200] Recurrent Kernel Weights [batch, 50

units * 4]
1000

[200] Biases [50 units * 4] 200
 Grand total number of parameters 10800

The second LSTM layer output weight and bias matrices are as follows:

Second LSTM layer with 10 cells
or units

Matrix shape Nature of parameters Total number of
parameters

[50, 40] Kernel Weights [input batch, 10 units
* 4]

2000

[10, 40] Recurrent Kernel Weights [batch, 10
units * 4]

400

[40] Biases [10 units * 4] 200
 Grand total number of parameters 2440

The fourth layer is a time single ReLu gated distributed wrapped dense layer with output weight and bias
matrices as follows:

Time Distributed wrapped Dense
layer with 3 cells or units

Matrix shape Nature of parameters Total number of
parameters

[10, 3] ReLu Weights [input batch, 3 units] 30
[3] Biases [units] 3
 Grand total number of parameters 33

The output weights of a trained NN are its training signature and are meant to be implemented in
the controls systems engineering of the autonomous space craft. This topic is, however, out of
the scope of this paper and will be proposed as future follow up work.

4.3 LSTM Training Results

 The training of the RNN was done by trial and error using many different combinations
of number of LSTM hidden layers (starting with only one) all with one Dense layer for the

 68

output. Trials also involved different variations of number of units within each hidden layer, and
batch sizes using both, SGD and Adam optimizers at different initial learning rates and the
various hyperparameters of the SGD optimizer. However, Adam optimizer proved to be the
optimal optimization tool for this problem. The number of layers that yield the best results was
two hidden LSTM layers with a Dense layer to handle the output.

 Initially this model was set to be a one-to-one model, which yield poor results given that
this kind of model processes from fixed-sized input to fixed-sized output without the
interconnection an RNN requires. Hence, a many-to-many model was used in order to preserve
state interconnection within the inner layers while yielding an output for every input during
training as shown in Figure 35. In the presence of a many-to-many model, the output function for
each of the many outputs must be the same function applied to each timestep. The
TimeDistributedDense layer was adopted to serve that purpose. It allows for the Dense function
to be applied across every output over time serving the need for the same dense function to be
applied at every time step [62].

 A recurrent problem during training was overfitting. To resolve this problem, a Dropout
regularizer was added after the first LSTM. Regularization in machine learning reduces over-
fitting by adding a penalty to the loss function to train the model not to learn interdepend sets of
feature weights. It ignores (zeroes out) a random fraction, p, of nodes and its activations for
every hidden layer, each training sample and each iteration. It uses all activations but reduce
them by a factor p [63].

 The training of the RNN was tuned by looking into the accuracy (metric that calculates
how often predictions equal labels) and the loss (function computes the quantity that a model
should seek to minimize during training) versus number of epochs using the architecture and
summary models presented in the last two sections. The results obtained during tuning the RNN
training show that they were highly dependent on the number of epochs given. The final tuning
was done using numbers of epoch varying between 1000 and 4000 with the best results
happening at a number of epochs equal to 2000. The results of this last tunning are presented
below.

 69

Figure 35. Training and validation accuracy and loss results.

 It is expected to see the training accuracy curve surpass that of the validation as training
goes on. This is because the RNN is expected to learn over the training data better than the
validation data. The learning process is expected to behave in a way that both curves start from
near zero and run close together near the end with the training curve on top. Although the latter
shows to be happening in the results presented above, the former does not, since the validation
accuracy curve starts at a very high value. The reason for this is due to the training data being
close to equal to the label data in the first part of the spacecraft elliptical trajectory, where solar
perturbations are almost null on the spacecraft since it is much closer to Venus over that section
of its path.

 On the other hand, the training and validation loss curves show the expected behavior
with the training loss running lower than the validation loss in the final phase of the training. The
results are boxed on the training history shown for both sets of plots. Notice that the results of
this set of trainings do not present the same exact results given that the kernel weights of the
training are randomly set every time a new training process begins. Hence, no one training
process starts identical to another. Also, reproducibility problems with identical RNN training set
ups were encountered using google chrome. These issues were resolved by resetting the runtime
in Google Collab, clearing Google Chrome history cookies and other site data, cached images
and files and refreshing the Google Colab page.

 Even though a significant step forward has been made on the training of this LSTM RNN
model, there is a lot more work to be done and different efficient strategies that could be applied
to increase the accuracy to an ideal value of close to 98%, which is presently not known to be
possible for a case that involves the nature of the data used in this problem. The next steps, time

 70

permitting, are to feed more data to the RNN for training and another Dropout layer after the
second hidden LSTM layer to prevent overfitting. The following plots are presented to show an
example of overfitting and its dependency on number of epochs for training.

Figure 36. Examples of overfitting given different number epochs as a limit.

 It is important to research about whether overfitting being dependent on the number of
epochs for training compromises the validation of the training results of an LSTM RNN model
or if it is an expected behavior of machine learning development. In any case, using a second
Dropout layer and, perhaps, a third LSTM hidden layer with more data to train the RNN would
be worth trying as a next step in this project.

Overfitting with epoch = 3000

Overfitting

Just converged at epoch = 1000

 71

Chapter 5: Solar Gravitational Potential Perturbation Analysis

 In this chapter, an analysis of the solar gravity potential perturbation on the spacecraft in
the closed orbit has been done. The motivations for this analysis are: 1) to learn how to take
advantage of such perturbations to approach Venus in the most fuel-efficient way possible, and
2) the possibility of training the LSTM for autonomous burning at strategic points of phase space
around Venus using the approach of this analysis. Also, an alternative RNN approach is provided
given that the weights of and RNN LSTM cannot provide the user with a one-to-one
correspondence between output weights and output samples, which would represent the solar
perturbations per vector component of the position and velocity of the spacecraft in close orbit.

 Depending on the time available for a mission to approach the planet for either re-entry
or stationary orbiting, the approach to this problem can be done differently. For example, the
spacecraft could be permitted to drift towards the Sun as it orbits Venus, or small burns could be
done at strategic solar perturbation points to try to approach the planet faster or circularize its
orbit while letting it drift towards the Sun to approach the planet. A recommended first step
before burn analysis has been initiated where the spacecraft was let to drift towards the Sun with
no burn at all with a minimum radius of approach at perigee was given as a limit. However, this
approach leaves the spacecraft in a highly eccentric elliptical orbit, which requires a burn or
several small burns to be circularized. Nevertheless, there is the possibility of using strategic
solar perturbation points for these burns at several passes of the spacecraft around the planet to
save fuel. The next section shows a plausible approach to start building a grid of potential
perturbation points to aid space travel by making a burn analysis with as many orbits as possible
to cover phase space around Venus. The burn analysis presented next is only done for few orbits
as a proof of concept.

 5.1 Venus Approach by Solar Gravitational Potential Perturbation Drift

 The solar gravitational potential influence on the spacecraft is highly dependent on Venus
position with respect to the Sun. Therefore, it is advisable to first study the ideal initial position
of the spacecraft as it enters close orbit around Venus. In the case of the Venera D mission, the
orbital parameters of its path around the planet might be favorable to take advantage of the solar
perturbation to approach the planet for re-entry but it might not be as much for a low orbit
around it because it keeps its high ellipticity. In this analysis the path of the spacecraft was
simulated to be left drifting towards the solar potential perturbation using GMAT with a limit
radius of perigee of 6400 km. This limit was calculated by adding the radius of Venus to the
height of its atmosphere. For instance, the mesosphere of Venus extends beyond 100 km of
altitude [64]. To ensure the safety of the spacecraft as it comes the closest possible to Venus, the
height of its atmosphere was taken to be 300 km. The calculation is shown below:

rfg&g- = rh*ij) + h=-&,)kY*;*	h*ij) = 	6051.8	km + 300	km = 6351.8	km	 ≈ 6400	km

 Different kinds of orbits were simulated at two different epochs to investigate two
different positions at radius of perigee with respect to the Sun. The Venera D orbit that has been
investigated so far in this report, was done twice by varying its eccentricity, inclination, right

 72

ascension, and argument of perigee in close orbit with Venus to place the spacecraft at a different
position with respect to the Sun. The third orbit was done at a different epoch in 2021, and its
semi-major axis an ellipticity were changed as well. Other orbit variations were explored but the
most relevant ones pertinent to the findings of this section will be presented.

 Recall the orbital elements presented in chapter 2 based on the Venera D mission at a
larger semi-major axis:

• 𝑎 = Semi-major axis = 49,448.744
• e = Eccentricity = 0.8339
• i = inclination = 90°
• ω = argument of perigee = 100.0° (chosen from allowable range)
• Ω = longitude of the ascending node = 98.7887°
• ν		= mean anomaly = 0° (at radius of pericenter).

The epoch for the simulation using these orbital parameters is that of the Venera D mission as
well. The setup of the epoch and orbital parameter in GMAT, as well as a visualization of it, is
shown in the figures below.

 73

Note: A full view of the orbit of the spacecraft around Venus is shown on the left. On the
right side a closer look on the upper right and a front view of the Sun line (shown in

yellow) with respect of the spacecraft’s orbit are shown. The plot below represents the
path of the spacecraft as perceived on Venus’ ground.

Figure 37. Orbital parameters and epoch in GMAT and position of Venus in
the Solar System at the epoch of the Venera D mission [65].

 Figure 37 shows the orbital parameters mentioned and the epoch setup for the simulation
in GMAT, as well as the position of Venus with respect to the Sun in the solar system at that
epoch using the online propagator in [65]. The latter is important to observe to understand how
different epochs have an influence on the drifting of the spacecraft.

Figure 38. Position of the spacecraft with respect to the Sun in a Venera D-like
closed orbit around Venus.

 Figure 38 presents a visualization of how the spacecraft is positioned with respect to the
Sun with these orbital parameters and its ground track on Venus surface.

 74

Note: The propagation of the spacecraft is shown from different perspectives and at the
end of the 451.65- day period when the spacecraft reaches the limit radius of pericenter.

The yellow line represents the path of the Sun as seen from Venus during that period.
The plot below shows the path of the spacecraft on the ground of Venus.

 Using the Mission Tree feature in GMAT, the spacecraft was simulated to be left drifting
towards the perturbation solar gravitational potential until it reached the limit radius of perigee
before mentioned. the Mission Tree feature in GMAT is an ordered, hierarchical display of the
command mission sequence in the GMAT script created [9].

Figure 39. Mission Tree with the command mission sequence used and the Toggle function.

 Figure 39 shows the mission tree created for the spacecraft solar perturbation drift
simulated in the analysis of this type of orbit. The Toggle function allows turning on and off the
collection of data output. A while loop was used to keep the spacecraft propagating on the closed
orbit until the limit radius of perigee was reached. Within the loop, the data was recorded in
Report 1 every pass at radius of perigee.

Figure 40. Spacecraft approach to Venus after drifting towards the solar
potential perturbation for 451.65 days.

 75

Note: The simulation done for this orbit was done with the same epoch as the
Venera D mission but different orbital elements. The track plot shown below

represents the path of the spacecraft as seen on the ground of Venus

 Figure 40 shows the simulation done in GMAT starting with a radius of pericenter of
about 8213.4 km and ellipticity of 0.8339. The spacecraft took 451.65 days to reach a radius of
perigee of approximately 6403.3 km with a final eccentricity of about 0.87.

 Although the spacecraft successfully reaches Venus at the desired distance of approach
free of burns, there are two caveats to this approach depending on the goals of the mission under
consideration: 1) the ellipticity of the spacecraft’s closed orbit got more pronounced; 2)
depending on the mission’s time constraints, the time of approach might be too long. In the case
where a close, circular orbit around the planet is desired or time constraints to complete the
mission are present, burns for circularization and/or faster approach will be necessary.

 In an effort to simulate a planet approach while circularizing the orbit free of burns, other
simulations were done with the spacecraft left drifting towards the solar potential perturbation.
The set up for the next orbit analysis in GMAT and a visualization of it is shown below.

Figure 41. Orbit view of the set up for the second simulation.

 76

 Figure 41 shows the simulation of a closed orbit at the same epoch but different position
of the spacecraft with respect to the Sun. The orbital parameters are shown in the top section of
the figure. In this simulation the semi-major axis, eccentricity and inclination were reduced (with
the semi-major axis and eccentricity corresponding to those of the Venera 16 mission) and the
right ascension of ascending node (RAAN) or longitude of the ascending node (denoted by Ω in
this report) were increased to place the spacecraft’s orbit farther from the Sun line (shown in
yellow). These are the orbital parameter used in this simulation:

• 𝑎 = Semi-major axis = 45,632 km
• e = Eccentricity = 0.82
• i = inclination = 45°
• ω = argument of perigee = 90.0°
• Ω = longitude of the ascending node = 270°
• 𝜈		= mean anomaly = 0° (at radius of pericenter). GMAT readjusted this parameter as
closed as zero as possible with it being approximately 8.47 x 10-7. This kind of readjustment
of parameters happened often during the simulations done for this project. The reason for it is
still uncertain but it could be that the propagator tries to set up the initial state vector such
that it would accomplish the accuracy given. As it can be seen on the top part of figures 37
and 41 where the epoch, level of accuracy and initial state vector are set up for propagation,
all orbital parameters are readjusted to very closed values to the ones entered (shown above).
In this simulation the spacecraft was propagated for about 4.8 years starting at a radius of
pericenter of 8,213.76 km and eccentricity of 0.82 to a final radius or pericenter of about
15,972 km and eccentricity of approximately 0.65.

 77

Note: The orbital parameters of this simulation match the semi-major axis and eccentricity of the
Venera 16 mission. The figure shows how the spacecraft goes farther from the planet as it

circularizes. The track plot shown below shows the path of the spacecraft as seen on the ground
of Venus after going around the planet many times.

Figure 42. Orbit view and track plot of the second simulation done after
running over close to 4.8 years.

The results of letting this simulation run for close to 4.8 years are shown in figure 42. The
eccentricity of the spacecraft’s orbit around Venus is successfully decreased by the solar
potential perturbation but it is taken farther away from Venus as the orbit’s eccentricity
decreases. After approximately 453 days, the radius of pericenter increases from 8,213.76 km to
about 9,948.20 km and its eccentricity decreased from a 0.82 to about 0.78. A circular close
stationary orbit around the planet will require at least one burn in this case.

 Compared to the Venera D-like mission, the next simulation was done at a different
epoch (that of the Venera 16 mission, July 22, 2021), as well as a larger semi-major axis,
eccentricity, and longitude of the ascending node, and a smaller inclination and argument of
perigee. As can be noticed, the argument of perigee and longitude of the ascending node were
left the same as the second simulation. The orbital parameters are as follows:

• a = Semi-major axis = 70,000.8 km
• e = Eccentricity = 0.86
• i = inclination = 30°
• ω = argument of perigee = 90.0°

spacecraft

spacecraft

 78

• Ω = longitude of the ascending node = 270°
• ν		= mean anomaly = 0° (at radius of pericenter)

The epoch and setup of these orbital parameters and a visualization of Venus with respect to the
Sun in the solar system are shown in the figure below.

Figure 43. Orbital parameters and epoch in GMAT and position of Venus in

the Solar System at the epoch of the Venera 16 mission [65].

 Figure 43 shows the orbital parameters and epoch above mentioned setup in GMAT’s
propagator for simulation, as well as a visualization of the position of Venus with respect to the
Sun in the solar system at that epoch using the online propagator in [65].

 79

Note: This orbit simulation was done with the same epoch as the Venera 16 mission but
different orbital elements. The yellow line represents the location of the Sun. The track
plot shown below represents the path of the spacecraft as seen on the ground of Venus.

Figure 44. Orbit view of the set up for the third simulation.

 The propagation of the spacecraft for this simulation corresponds to approximately five
years starting at a radius of pericenter of 8213.4 km and eccentricity of 0.86 and ending at a
radius of pericenter of approximately 13,924.8 km in and eccentricity of 0.57730723 at the end
of the five-year period.

 80

Note: The orbital parameters of this
simulation match the epoch of the Venera 16
mission. The figure shows how the spacecraft
goes farther from the planet as it circularizes.
The track plot shown below shows the path of
the spacecraft as seen on the ground of Venus

after going around the planet many times.

 The results after letting this simulation run for an approximate 5-year propagation period
are shown in figure 45. Like the previous simulation, the eccentricity of the spacecraft’s orbit
around Venus is successfully decreased by the solar potential perturbation. However, it is taken
farther away from Venus as the orbit’s eccentricity decreases even more rapidly than the
previous simulation. After approximately 453 days, the radius of pericenter increased from
8,213.76 km to about 13,924.8 km and its eccentricity decreased from a 0.86 to about 0.80. A
circular close stationary orbit around the planet with these initial conditions will also require at
least one burn.

 The simulations presented in this section show the relevance of doing a deeper study on
how the initial state vector and epoch of a closed orbit around Venus (and most probably around
other planets close to the Sun) can better serve the purpose of taking advantage of the solar
gravitational potential perturbation depending on the goals of a mission. In the case of the
Venera D orbit, the solar perturbation drift carried the spacecraft to the outskirts Venus’
atmosphere in over a year but at the cost of a higher eccentricity. For the other two simulations
the spacecraft went farther away from Venus as its orbit got increasingly circular. For a close,
circular orbit around the planet, perhaps an ideal initial state vector at the right epoch could help
the spacecraft drift towards the planet as the eccentricity of its orbit decreases or, at least,
increases very slowly. Those conditions could be convenient to save fuel at it is burned at
strategic solar perturbation points. A basic solar perturbation study with suggestions on how to

spacecraft

spacecraft

Figure 45. Orbit view and track plot
of the second simulation

done after running over
approximately 5 years.

 81

proceed with a deeper investigation of a solar gravitational perturbation vector field on the
spacecraft during a full period will be presented in the next section.

5.2 Solar Gravitational Potential Perturbation Vector Field

 A vector field grid for the perturbed position and velocity of the spacecraft at every point
of a close orbit for many different orbits, such that most of phase space around Venus can be
covered, can be developed by either 1) extracting the output weights from the training of an
RNN or 2) by doing and analysis of the solar perturbation on the spacecraft at every step of its
path throughout many different orbits around Venus. An approach on how to explore these two
possibilities are presented in this section.

 One of the goals of this project is to analyze the weights and biases resulting from the
training of an LSTM to correct the state vectors (position and velocity) at every point of a closed
orbit around Venus for solar gravitational potential perturbations. It is expected for these weights
to represent the solar perturbations of phase space of the spacecraft in closed orbit. In order to do
so, there must be a one-to-one correspondence between weight and bias to the corrected element
of every featured or output of the trained LSTM. Recall that the features of the LSTM presented
in this investigation represent the three components of the spacecraft’s position and velocity at
every step of its path in orbit around Venus. Hence, every feature element will be x, y and z and
vy, vx and vz, coming into the LSTM as perturbed data (the input) to be matched to the “correct”
unperturbed data (the target or label). The output of the LSTM is the input value corrected to
match the label data with its weights and biases. However, as it was presented in table 11 in
chapter 4, the weights and biases in an LSTM do not have a one-to-one correspondence with the
output data but depend on the number of LSTM cells and gates of the LSTM cell. If we look at
the chart presented below with a summarized architecture of the LSTM, we can see that there are
two weights and one bias per gate, which makes eight weights and four biases per cell, since
there are four gates in every LSTM cell.

Figure 46. A summary of LSTM architecture [66].

 82

 Figure 46 shows the two weights (one from the hidden layer denoted by h and one from
the input denoted by x) and bias per gate in a single LSTM unit. The LSTM used for this
investigation presented in chapter 4 yields 33 weights and biases (10 weights and 1 bias per cell
for 3 output cells) for the 2020 elements per feature used to train it. Detangling the weights
corresponding to every element of the output is quite complex. Understanding how an NN
calculates weights, and their disentanglement are presently topics under investigation. The code
in Google Colab used to train the RNN LSTM presented in this paper provided in appendix A
shows the output weights per layer and a visualization of them and its biases. However, they
were not discussed in this report because they are not directly related to the physical implication
of the solar perturbation study done in this project but rather a representation of the numerical
methods use by the RNN LSTM to correct for them.

 A way to detangle the weights per element output of an NN are using autoencoders.
Autoencoders are NNs which goal is to reconstruct its input dataset, that is, to learn to copy
inputs to its outputs. Autoencoders are used mainly for denoising, reduction of dimensionality,
pretraining and generating data [67].

Figure 47. Composition of an autoencoder [67].

 An autoencoder is composed of an encoder used to convert input data into a latent
representation (a bottleneck layer), and a decoder used to convert the latent representation into
outputs (reconstruction). The encoder and decoder might comprise many neuron layers while the
latent representation is usually only one layer. The overall architecture is similar to the
multilayer perceptron, with the particularity that the output layer size must match the one of the
input layers. The latent representation layer size determines how much information an
autoencoder can keep, which is usually significantly smaller than the input data. Restricting its
size forces the autoencoder to find patterns in the inputs and eliminate irrelevant features [67].

 Autoencoders with tied weights have decoders weights that are the transposed of the
encoder weights. This is a way to reducing the number of parameters in the model while sharing
them. Advantages of tying weights include the risk reduction of overfitting and increased of
training speed [67].

 83

Figure 48. Example of an autoencoder with 5 features and 500 samples [68].

Figure 48 shows an example of an autoencoder with five features and 500 samples. The
constraints are shown on the left bottom corner where the encoder takes the transpose of the
weights to bottleneck the information and the decoder outputs a copy of the input with its
weights and biases per element. This way, autoencoders pose a much more efficient way to
detangle the weights and biases corresponding to every element of an RNN output rather than
spending much men and computing power trying to decodified weights per element using a
mathematical approach.

 Another approach to analyze the solar perturbation on the spacecraft throughout its orbit
around Venus is by creating a gravitational potential vector field using GMAT data from the
propagation of the spacecraft with and without the solar gravitational potential. This vector field
is done by taking the difference between perturbed and unperturbed data points per unit time
from the spacecraft’s propagation in the direction of the perturbed orbit.

 84

Figure 49. Perturbed and unperturbed orbits closed to radius of pericenter.

 85

Note: The arrows in this
plot represent the

displacement, in kilometers,
the spacecraft drifted away
from its unperturbed path.
The dot on the left lower

corner represents the scale
of the arrows, which is 10
km pet dot. The axis of the

vector plot is z versus y
according to GMAT data.

The solar perturbation on x
is represented by the vector

color scheme, which is
lightest for the smallest

(negative mid 30s) values
and darkest for the largest

(in the 70s) values.

 A comparison between the perturbed and unperturbed orbits is shown in figure 49. The
top image is the plot generated by the GMAT for the spacecraft’s propagation with solar
potential perturbation. It is shown to better visualize the 3D plots of the perturbed and
unperturbed orbits and where the Sun line with respect to them is. The middle plot represents the
last 12 steps (with a rate of step/10 min) of the orbit’s period before reaching radius of
pericenter. The bottom plot is that of the last 9 steps, with the same rate, before the last 12 steps.
The curbs in the bottom plot are very closed together because the solar potential perturbation is
very small in comparison to the large distances covered by the spacecraft’s orbit. The last steps
of the orbit’s period are shown for convenience, since the perturbation is larger and easier to see
in that section of the orbit. These plots are consistent with the perturbation vector field
calculated using GMAT propagation data and presented in the figure below.

Figure 50. Solar gravitational potential vector field at a rate of one step every 10 minutes.

 86

 Figure 50 shows the results of the calculation of the solar perturbation vectors for a step
every 10 minutes of the spacecraft’s path. This plot is useful to visualize how the spacecraft is
being acted upon by the Sun’s and Venus’ solar perturbation and confirm that it is indeed being
pulled more towards the Sun at large distances away from the planet. A burn analysis has been
done on five different regions on the vector field where the perturbations are larger including at
perturbed radius of pericenter to be compared with the burn at the unperturbed radius of
pericenter, which is the common technique for orbit circularization. This burn analysis is focused
more on solving for circularizing the orbit, since it was already proven that the solar perturbation
does aid with re-entry. The four areas of investigation other than at radius of pericenter are
approximately shown in the following figure.

Figure 51. Approximate location of the four areas of investigation for
burn analysis other than at radius of pericenter.

Approximate
4th area of

investigation

Approximate
1st area of

investigation

Approximate
2nd area of

investigation

Approximate
3rd area of

investigation

 87

 Figure 51 shows approximately where the areas that will be investigated for burn analysis
are on the orbit’s perturbed path. It is the perturbed data that is being investigated because it is to
be compared to burning at the unperturbed (or the path corrected for perturbations) point at
radius of pericenter, proven to be one of the best locations to burn for orbit circularization. The
results for the burn analysis are presented in the next section.

5.3 Solar Gravitational Potential Perturbation Vector Field Burn Analysis Results

 Three different burn analyses will be presented in this section. The first one will aim to
achieve an eccentricity of zero with a tolerance of 0.1, which is the value that reach convergence
to the closest value of eccentricity of zero. The second analysis will have as a goal to reach both
an eccentricity of zero and the smallest possible radius of pericenter. The third analysis will be
for a planet approach for re-entry having as a goal only to achieve the smallest radius of
pericenter possible with the before mentioned limit of 6400 km, which is where the outskirt of
Venus’ atmosphere is considered to be for this research.

 The simulation done for the burn analysis also uses the Mission Tree feature in GMAT,
where a mission sequence is created.

Figure 52. Mission Tree with the mission command sequence and
description of its various commands.

 The target sequence for the mission is determined within the Target and EndTarget
commands where the differential corrector (DC) and solver mode are specified. The Vary
command is where the variable name, initial value, limit bounds and the maximum step of the
differential corrector are specified for every one of the elements of the delta-V (or burn) vector.
Very1, Very2 and Very3 were setup to correspond to Element1, Element2 and Element3
respectively. Element1, Element2 and Element3 correspond to the velocity, normal and binormal
elements of the Velocity-Normal-Binormal coordinate system respectively. Velocity-Normal-
Binormal or VNB is a non-inertial coordinate system based upon the motion of the spacecraft

 88

with respect to the origin sub-field, in this case Venus. For example, Origin was chosen as
Venus, then the X-axis of this coordinate system is the along the velocity of the spacecraft with
respect to the Venus, the Y-axis is along the instantaneous orbit normal (with respect to the
Venus) of the spacecraft, and the Z-axis points away from the Venus as much as possible while
remaining orthogonal to the other two axes, completing the right-handed set. The limit bounds in
the Vary command were chosen as the smallest and largest acceptable values for each component
of a Delta-V vector [10]. The rest of the elements under this command were taken to be the
default values shown in figure 52. The Manuver1 command specifies the burn and spacecraft
programed in the Resource section and links this command to that set up.

Figure 53. Setup for the Maneuver command in GMAT.

 Figure 53 shows the setup for the Manuver1 command and how it links Maneuver1 in the
Mission Tree (in the middle image) to those programmed in the Resources Tree (on the far-left
image). The Achieve commands, are those that the maneuver is to achieve. In this example
Achieve1 is setup to achieve an eccentricity of zero (as shown on the far bottom right of figure
52), and Achieve2 a radius of pericenter of 8,197 km, which is the approximately the radius of
pericenter of the orbit under study.

 In summary, the Mission Sequence in the Mission Tree goes as follows: Toggle1 activates
the desired graphs and data acquisition as an output, Propagate1 propagates the spacecraft to the
orbital point for burn, target1command sequence activates the burn vector components to be
varied, the programed spacecraft and Delta-V from the Resources Tree, the target orbital
elements to be achieved by the burn and the Propagate2 command to propagate the spacecraft to
the desired final orbital point after burn. A table of results is presented and analyzed next.

 89

Table 12. Burn analysis results.

Initial State Orbital Parameters
Recall the initial orbital
parameters discussed throughout
this report for comparison to the
change in state of the
spacecraft’s orbit after the burn
in each of the analyzes presented
below. The orbit’s period
corresponding to these
parameters is approximately
33.7 hrs. and a radius of
pericenter of about 8,196.8264
km.

Circularization with an Achieve1 target variable of eccentricity = 0 and a 0.1 tolerance

Orbital point for Burn

Approximate Results
Orbital elements right after burn
∆Vmag = magnitude of Delta-V
RadPer = radius	of	pericenter

Radius of pericenter for the unperturbed orbit after a full period

∆Vmag = 1.81043 km/s
SMA = 9707.27 km
PerRad = 7873.103 km
ECC = 0.189
INC = 90.00°
RAAN = 98.79°
AOP = 65.59°
TA = 58.48°
Orbit Period = 2.93 hrs.

The table below is the Delta-V
DC solver report, which
identifies the result as
nonconvergent because it could
not reach the tolerance value for
a zero eccentricity
of 0.1. It shows the last two DC
solver steps for Delta-V to
achieve an eccentricity of zero.

Orbital point for Burn
The following data was generated accounting for solar perturbation

Approximate Results
Orbital elements right after burn
∆Vmag = magnitude of Delta-V
RadPer = radius	of	pericenter

 90

Radius of pericenter after a full period

∆Vmag = 1.81041 km/s
SMA = 9701.72 km
PerRad = 7863.376 km
ECC = 0.1895
INC = 90.00°
RAAN = 98.79°
AOP = 65.635°
TA = 58.44°
Orbit Period = 2.93 hrs.

The table below is the Delta-V
DC solver report, which
identifies the result as
nonconvergent because it could
not reach the tolerance value for
a zero eccentricity
of 0.1. It shows the last two DC
solver steps for three
components of Delta-V to
achieve an eccentricity of zero.

1st area of investigation at approximately (-4937.322332, 31936.51537, -71381.18602)
with TA = 194.372° and Time Elapse = 87382.8924 secs ≈ 24.27 hrs

∆Vmag = 1.4046 km/s
SMA = 77102.1 km
PerRad = 75398.3 km
ECC = 0.0697
INC = 90.00°
RAAN = 98.8°
AOP = 37.43°
TA = 257.19°
Orbit Period = 65.56 hrs.
Elapse Time = 24.3 hrs.

The table below is the Delta-V
DC solver report, which
identifies the result as
convergent since it reaches the
desired value for a zero
eccentricity within the level of
tolerance of 0.1. It shows the last
two DC solver steps for three
components of Delta-V to
achieve an eccentricity of zero.

 91

2nd area of investigation at approximately (-5397.955008, 34916.15161, -52461.21294)
with a TA = 203.9755° and a Time Elapse = 99470.64052secs ≈ 27.63 hrs.

∆Vmag = 1.844 km/s
SMA = 62720.1 km
PerRad = 58303.23 km
ECC = 0.07042
INC = 90.00°
RAAN = 98.8°
AOP = 37.3°
TA = 257.1°
Orbit Period = 65.56 hrs. Elapse
Time = 427.65 hrs.

The table below is the Delta-V
DC solver report, which
identifies the result as
convergent since it reaches the
desired value for a zero
eccentricity within the level of
tolerance of 0.1. It shows the last
two DC solver steps for three
components of Delta-V to
achieve an eccentricity of zero.

3rd area of investigation at approximately (-5076.737489, 32838.38482, -31961.91718)
with a TA = 216.1313728° and Time Elapse = 108492.976 secs ≈ 30.14 hrs.
 ∆Vmag = 1.965 km/s

SMA = 45639.8 km
PerRad = 34281.92 km
ECC = 0.248856
INC = 90.00°
RAAN = 98.8°
AOP = 59.26°
TA = 257.68°
Orbit Period = 29.86 hrs. Elapse
Time = 30.15 hrs.

The table below is the Delta-V
DC solver report, which
identifies the result as
nonconvergent because it could
not reach the tolerance value for
a zero eccentricity
of 0.1. It shows the last two DC
solver steps for three
components of Delta-V to
achieve an eccentricity of zero.

 92

4th area of investigation at approximately (-3812.527883, 24660.90067, -10034.24295)
with a TA = 238.114014° and Time Elapse = 115522.907 secs ≈ 32.1 hrs.

∆Vmag = 2.105 km/s
SMA = 26040.15 km
PerRad = 16240.9 km
ECC = 0.3763
INC = 90.00°
RAAN = 98.8°
AOP = 90.244°
TA = 250.33°
Orbit Period = 12.87 hrs. Elapse
Time = 32.1 hrs.

The table below is the Delta-V
DC solver report, which
identifies the result as
nonconvergent because it could
not reach the tolerance value for
a zero eccentricity
of 0.1. It shows the last two DC
solver steps for three
components of Delta-V to
achieve an eccentricity or zero.

Circularization with Achieve1 target variable of eccentricity = 0 and a 0.1 tolerance
and Achieve2 target variable of radius of pericenter = 8,197 km and a 50 km tolerance

Orbital point for Burn
The following data was generated accounting for solar perturbation unless

stated otherwise

Approximate Results
Orbital elements right after burn
∆Vmag = magnitude of Delta-V
RadPer = radius	of	pericenter

Radius of pericenter for the unperturbed orbit after a full period

∆Vmag = 1.8704 km/s
SMA = 9777.71 km
PerRad = 8184.88 km
ECC = 0.1624
INC = 90.00°
RAAN = 98.79°
AOP = 81.32°
TA = 42.77°
Orbit Period = 2.96 hrs..

 93

Radius of pericenter after a full period

∆Vmag = 1.873 km/s
SMA = 9769.32 km
PerRad = 8186.65 km
ECC = 0.1623
INC = 90.00°
RAAN = 98.79°
AOP = 81.94°
TA = 42.16°
Orbit Period = 2.96 hrs.

1st area of investigation at approximately (-4937.322332, 31936.51537, -71381.18602)
with TA = 194.372° and Time Elapse = 87382.8924 secs ≈ 24.27 hrs

∆Vmag = 0.806 km/s
SMA = 43186.25 km
PerRad = 8104.0 km
ECC = 0.8123
INC = 90.00°
RAAN = 98.8°
AOP = 112.00°
TA = 182.57°
Orbit Period = 27.48 hrs.
Elapse Time = 24.3 hrs.

 94

2nd area of investigation at approximately (-5397.955008, 34916.15161, -52461.21294)
with a TA = 203.9754682° and a Time Elapse = 99470.64052 secs ≈ 27.63 hrs.

∆Vmag = 1.6914 km/s
SMA = 35417.37 km
PerRad = 8119.665 km
ECC = 0.771
INC = 90.00°
RAAN = 98.8°
AOP = 125.76°
TA = 178.56°
Orbit Period = 20.4 hrs.
Elapse Time = 27.65 hrs.

3rd area of investigation at approximately (-5076.737489, 32838.38482, -31961.91718)
with a TA = 216.1313728° and Time Elapse = 108492.976 secs ≈ 30.14 hrs.

∆Vmag = 2.112 km/s
SMA = 26783.9 km
PerRad = 8124.8 km
ECC = 0.697
INC = 90.00°
RAAN = 98.8°
AOP = 133.3°
TA = 183.6°
Orbit Period = 29.86 hrs.
Elapse Time = 13.43 hrs.

 95

4th area of investigation at approximately (-3812.527883, 24660.90067, -10034.24295)

with a TA = 238.114014° and Time Elapse = 115522.907 secs ≈ 32.1 hrs.

∆Vmag = 2.148 km/s
SMA = 18516.07 km
PerRad = 8127.72 km
ECC = 0.561
INC = 90.00°
RAAN = 98.8°
AOP = 134.5°
TA = 205.965°
Orbit Period = 7.715 hrs.
Elapse Time = 32.1 hrs.

 Table 12 shows the sequence of simulations done trying to understand how solar
gravitational potential could aid either circularizing an orbit around Venus or approaching Venus
while circularizing the spacecraft’s orbit. The first part of the table shows the results of the
simulations trying to circularize the very elliptical orbit under study starting with a location of
burn at radius of pericenter after a full period and four other areas on the spacecraft orbit where
solar perturbation becomes more prominent. The period of the modified Venera D mission
presented in this report is about 33.7 hours. The areas under study happen approximately 24.27
hrs. and TA = 194.4°, 27.63 hrs. and TA = 203.98°, 30.14 hrs. and TA = 216.13°, 32.1 hrs. and
TA = 238.11°, and at the end of the orbit’s period at radius of pericenter.

 The first part of the table where the goal is circularizing the orbit only, shows that
burning at the radius of pericenter decreases both the eccentricity and radius of perigee with the
Delta-V for the perturbed orbit 0.2 m/s less that the perturbed one, a smaller radius of pericenter
by about 10 km and eccentricity 0.0005 larger. Perhaps these values could get more significant
after several rounds of the perturbed orbit before burning at radius of pericenter, or by making
smaller burns at several passes at radius of pericenter. Compared to the other four areas under
study, the radius of pericenter of the perturbed orbit proved to be a more effective spot to burn
given a close distance to the planet is relevant for a mission. Otherwise, circularization at a
much larger radius of pericenter is much closer to an eccentricity of zero with the first area
leading the way followed by areas 2, 3 and 4 in order of increasing eccentricity and with their
radius of pericenter decreasing as the eccentricity increases. This can be noticed on the plots
generated by GMAT in the first part of table 12.

 96

 The second part of the table aims to present the results of the simulations targeting both, a
small eccentricity close to zero and a limit radius of pericenter equal to that of the Venera D-like
orbit. For the unperturbed and perturbed orbits at radius of pericenter, the Delta-V for the
perturbed orbit is approximately 2.6 m/s less that the perturbed one with a smaller radius of
pericenter by about 1.77 km and eccentricity 0.0001 larger. Burning at radius of pericenter
reduces both the eccentricity and radius of perigee with a slight difference between the burn
happening at and unperturbed versus a perturbed orbit, with the perturbed orbit placing the
spacecraft at a slightly closer distance of radius of perigee and smaller burn but larger
eccentricity (in the 10-3 difference for ∆Vmag and e). The values are, once more shown below for
reference.

Table 13. Perturbed vs unperturbed results targeting e and rp

Unperturbed Orbit Perturbed Orbit
∆Vmag = 1.873 km/s
PerRad = 8186.65 km
ECC = 0.1623

∆Vmag = 1.8704 km/s
PerRad = 8184.88 km
ECC = 0.1624

 Circularization at a larger eccentricity but radius of pericenter closer to the desired value
is observed for the other four areas of study. In this case, the propagator has a much harder time
reaching an eccentricity of zero while preserving the radius of pericenter at the same distance in
all four areas. Area 1 presents this behavior more pronounced, which lessens as the spacecraft
moves closer to radius of perigee in areas 2, 3 and 4 in order of decreasing eccentricity and
increasing radius of pericenter toward the target value. This can also be noticed on the plots
generated by GMAT in the second part of table 12.

 Generating a grid of data for as many points of phase space as possible around Venus at
different points of approach to enter a closed orbit with respect to the Sun could be a promising
mission to accomplish for different types of goals such as planet re-entry, circularization, etc.
This report presents only the basis of this idea with a very simple analysis that aims to prove this
concept.

 97

Chapter 6: Summary, Conclusion and Future Work

6.1 Summary and conclusion

 This report presents the analysis of a Venera D-like mission. All parameters of the orbit
under study matching those of the Venera D mission except by the radius of pericenter which
was increased by 10,000 km to better serve the proof-of-concept objective. One of the goals of
this investigation was to train an RNN LSTM to correct for solar gravity potential perturbation
on a spacecraft while in closed orbit around Venus. A database for such an orbital path was
gathered via the RK89 propagation simulator in GMAT to be fed into an RNN LSTM with two
LSTM layers with 50 and 10 units respectively, a 0.46-rate regularizer and a TimeDistributed
wrapped Dense layer of 3 units for the output data.

 The original database generated and presented in table 4, chapter 2, had to be modified to
be used for the training of the LSTM later in chapter 4 because the time steps of such data set
were not evenly distributed, which is required to train any type of RNN. Hence, six features of
the 2020 samples were used for training where each feature corresponds to each one of the three
components of the location of the spacecraft at every point of its orbit in cartesian coordinates for
both, the unperturbed and perturbed orbits. The 2020 samples correspond to all steps on the
spacecraft’s orbit for a full period at a rate of one step per minute. The data was then split into
the training data set (X) and the label data set (Y). The LSTM is to approach as close as possible
the train data to the label data. It is expected for the difference between the train and label data
during this training to represent the solar gravitational potential perturbation. This difference is to
be represented by the output weights (considering the shift given by its biases) of the RNN
LSTM. This, ideally, would create a grid of weights or solar gravitational potential perturbation
per step on the spacecraft’s path of the given orbit. However, it was found that obtaining the
output weights per output sample is a far more complicated task since this would require a one-
to-one correspondence between weight and output sample. As mentioned in chapter 5, the
weights and biases in an LSTM do not have a one-to-one correspondence with the output data
but depend on the number of LSTM cells and gates of the LSTM cell. Rather, there are two
weights and one bias per gate in every LSTM cell, which makes eight weights and four biases
per cell, since there are four gates in every LSTM cell. With the output layer of the RNN LSTM
built for training in this project being a dense layer of 3 units, the training output resulted in 33
weights and biases (10 weights and 1 bias per cell for 3 dense layer output cells) for the 2020
elements per feature used to train it.

 The other two sets of 2020 samples with a similar initial state as the orbit under study
with two different angles of inclination (15°#

O than that of the Venera D-like orbit) were
generated in GMAT for the RNN LSTM training testing and validation. These two other data
sets were split the same way as the training data and were generated with the same rate of orbital
step per minute. The RNN LSTM was able to approach the training data to that of the label with
and accuracy of approximately between 89% and 92% with number of 2000 training epochs.
There is much more work to be done regarding this part of this investigation to reach a level of
accuracy of at least 98%, and next recommended steps will be provided in the next section. It is

 98

important to note here that the data was “normalized” by using the so-called Min-Max
Normalization in the field of Artificial Intelligence. In reality, Min-Max Normalization is a way
to rescale data to [0,1] rather than normalizing it as it is in Statistics. In the next section, it will be
discussed why it is recommended to also normalize the data to get more accurate results when
training an RNN, and how this normalization and rescaling should be done per feature rather
than across training and label data.

 An analysis of the perturbation on the spacecraft in orbit due to solar gravitational
potential was done and presented in chapter 5. This analysis was started by letting the spacecraft
drift towards the solar perturbation until it either reached the outskirts of the atmosphere of
Venus or it significantly decreased the eccentricity of the orbit. This was done as a means to find
out how solar perturbation can aid either the re-entry to Venus or the circularization of the
spacecraft’s orbit around it at a low enough radius of pericenter for observation of the planet.
The result of this analysis shows that the drifting to reach the planet or circularizing its orbit
around it highly depends on the initial state vector of the closed orbit with respect to the Sun.
Therefore, one of the simulations was done at a different epoch and initial state vector where the
Sun is at a different position with respect to Venus and the initial state vector of the spacecraft’s
orbit.

 The spacecraft drifting analysis was done in three different kinds of orbits. The first one
was the Venera D-like orbit which was left drifting until it successfully reached the outskirts of
Venus’ atmosphere at a radius of perigee of approximately 6403.3 km and an ellipticity of about
0.87 in 451.65 days. Hence, using solar gravitational potential perturbation to aid planet re-entry
might be a promising method to save fuel either by letting a spacecraft drift for some time or
making a small burn to help it reach the planet in less time than it would take by drifting only.
The second orbit was done at the same epoch as the Venera-D like orbit, smaller semi-major
axis, eccentricity, inclination and argument of perigee but larger longitude of the ascending node.
This initial state vector was such that it placed the spacecraft father from the Sun line (the line
joining the center of mass of Venus and the Sun). A drifting of about 4.8 years decreased the
eccentricity of this orbit from 0.82 to 0.65 at a radius of pericenter of about 15,972 km. In this
case, the radius of pericenter increased as its eccentricity decreased. Therefore, this type of orbit
could be useful for circularization rather than approach to the planet. However, it took a long
time for the solar perturbation drifting of the spacecraft to decrease its eccentricity by 0.17. The
relevance of this observation is to learn how the position of the spacecraft with respect to the Sun
affects the orbital path of the spacecraft.

 The third orbit was done at a different epoch, higher semi-major axis, eccentricity, and
argument of perigee but smaller inclination and longitude of the ascending node. In this type of
orbit the spacecraft was approximately at the same angular distance from the Sun line as that of
the previous orbit but with its radius of pericenter almost in front of the Sun. This type of orbit
took about 5 years to go from an eccentricity of 0.86 to about 0.58 but at a radius of pericenter
about 5700 km larger than the initial one. Perhaps a combination of an initial state vector placing
the spacecraft close to the Sun line and its radius of pericenter in front of the Sun could more
successfully aid the circularization of its orbit without increasing its radius of pericenter as much.

 99

 A second alternative for creating a grid of solar gravitational perturbation acting on the
spacecraft at different orbital points was presented in chapter 5 as well. This could be done for as
many orbits as possible to create a solar perturbation vector field on phase space around Venus.
As a proof of concept, a vector field for the Venera D-like orbit was done for some of the orbital
points of the spacecraft’s path using the data generated in GMAT. One step per every ten
minutes was taken for both, perturbed and unperturbed orbits to create this solar perturbation
vector field. This was done by taking the difference between every perturbed and unperturbed
step toward the direction of the unperturbed orbit. This solar perturbation vector field is useful to
visualize how exactly the spacecraft is being acted upon by the Sun’s and Venus’ solar
perturbation and determined the regions where solar and Venus’ perturbations on the spacecraft
are more significant. A burn analysis was done on five different regions on the vector field where
the perturbations are larger including at perturbed radius of pericenter to be compared with the
burn at the unperturbed orbit’s radius of pericenter, which is a common technique for orbit
circularization. This burn analysis focused more in solving for circularizing the orbit, since it was
already proven that the solar perturbation does aid with re-entry. The four areas of investigation
other than at radius of pericenter are approximately shown in figure 51.

 Table 12 shows the sequence of results from the burn analysis done via GMAT
simulations. The first sequence of burn analysis was done with the goal of circularizing the
Venera D-like orbit only. In this part of the analysis, it was found that burning at the radius of
pericenter decreases both the eccentricity and radius of perigee (and this might be the reason why
it is a common point of burn for circularization) with the Delta-V for the perturbed orbit 0.2 m/s
less that the perturbed one, a smaller radius of pericenter by about 10 km and an eccentricity
0.0005 larger. Although the value of eccentricity reached by burning at the perturbed orbit’s
radius of pericenter is slightly larger, it might be convenient to have the spacecraft closer to the
planet for observation with a bit less of a burn. As mentioned before, these values might get
more significant with letting the spacecraft drift for several passes at radius of pericenter before
burning fuel or do tiny burns at every pass. The simulation for the other four areas achieved an
eccentricity very closed to zero but at the cost of a much larger radius of pericenter (within 65 to
25 thousand difference). The smallest the orbit’s eccentricity got, the larger its radius of
pericenter and the less of a burn it required. This behavior was more pronounced farther away
from radius of pericenter, being more pronounced in area of analysis 1 followed by areas 2, 3
and 4 in preceding order. Hence, circularizing at area 1 is most effective orbit if being farther
away from the planet suits the goals of the mission under consideration.

 The second sequence of simulations was done on the same orbit with the goal of
circularizing it at a radius of pericenter like that of the Venera D-like orbit, 8,197 km. Burning at
a radius of pericenter of the perturbed orbit resulted in approximately 2.6 m/s less that the
unperturbed one and with a smaller radius of pericenter by about 1.77 km and eccentricity
0.0001 larger. In this case, burning at the unperturbed orbit the simulation reached the values to
be achieves slightly more closely. Once more, the perturbed orbit simulation yielded a slightly
smaller radius of pericenter and burn and larger eccentricity. The other four areas presented
similar behavior as the first set of simulations. Reaching a small eccentricity was unsuccessful
while preserving the same radius of pericenter. This behavior was more pronounced in the area
of analysis 1 and increasingly less at shorter distances from radius of pericenter in areas 2, 3 and
4.

 100

 This analysis shows that the radius of pericenter is indeed the best point to burn for
circularization while preserving a small radius of pericenter. Solar perturbation slightly helps to
achieve this with a closer approach to the planet with a bit let of a burn and with the possibility
of getting more aid by letting the spacecraft drift for several passes through radius of pericenter.
However, if circularizing is the main goal at the cost of a large radius of pericenter, burning
farther away from center of perigee, around area 1of the perturbed orbit is more effective.

6.2 Future Work

 Due to limited time, the training of the RNN LSTM was not advanced to try more
effective techniques found later during this project to improve the training accuracy. For
instance, the number of units and layers of the RNN LSTM developed in this project was done
by trial and error. This should be investigated more in depth, since some reliable sources, such as
[69], recommend a more systematic way to better determined the number of neurons to use in
every layer that have proven to be effective to train NNs. These recommendations were tried in
the beginning phases of the development of the LSTM with not much success. The reason for
that is believed to be the fact that the data was not scaled in a more effective way nor normalized
at all. It is recommended for the data used for training to not only be scaled to make the
optimization process faster, but also to be normalized to make it more precise. Also, the scaling
and normalizing of data should be done per feature rather than across a set of features as it was
done in this report (normalization was done across the 3 features for the position components of
the unperturbed data and separately for the other 3 features of the components of the perturbed
data). Normalizing data per feature leads to the preservation of the variance for each feature in
the data set. The variance is an important part of the optimization process done by the any NN,
and it is the difference between validation and training error [70], which results in the accuracy
of the model. In this way the variance is responsible for the differences in predictions of the same
observation in different mappings from input to output in the statistical model use for training
[71]. Therefore, it is important for the variance to be understood by the NN for a every feature of
the data set to be accounted for when optimizing.

 A larger bank of data with several orbits at different initial state vectors and different
positions with respect to the Sun were proposed to better train the RNN LSTM in the beginning
of this project, and it is still highly recommended. Also, this larger bank of data should include
the other six features composed by the velocity vector components for the spacecraft at every
orbital step for the perturbed and unperturbed orbits.

 The extraction of LSTM output weights was not investigated enough to put into practice.
A possible way to do this is with autoencoders, which make possible a one-to-one
correspondence between RNN output weights and elements without compromising the speed of
training as a one-to-one RNN model might do. In the case that developing a grid of solar
perturbation vectors in phase space around Venus is to be done in a way other than extracting the
weights of a trained NN, a solar perturbation vector field could be constructed by the simulation
of as many orbits as possible in a similar manner as shown in chapter 5. This could help with
finding the areas where the gravitational potential field of the Sun can aid the path of a spacecraft

 101

of a given mission and train the RNN LSTM to do autonomous burning in such areas. It is
important to do a detailed study of the most convenient ways to place the spacecraft in close
orbit with respect to the Sun beforehand in order to take advantage from the solar perturbation in
the most effective way to meet the goals of the particular mission. The initial placement of the
spacecraft in close orbit would depend on the goal of the mission of interest, such as
circularization, planet re-entry, etc.

 Another way to advance this project even further is by implementing the grid of solar
perturbation vector field (via the weights of the RNN LSTM or multiple orbit simulations) into a
spacecraft control system by burning the grid of values into a type of flash memory to the
microprocessor and memory chips of a computer. This type of process is described in Nelson
Wong’s thesis titled “On Clustering Low-Cost SoC FPGA Devices for Deep Learning Inference
Applications.” An abstract of this paper can be found in Appendix F for reference. Given that the
solar perturbation vector field can be implemented in the control system of choice, it is ideal to
be able to turn on and of the solar perturbation corrections at any point in order to manipulate the
areas where it is convenient to let the spacecraft drift, or its path to be corrected from such
perturbations.

 102

References

[1] Kramer, M., “5 amazing discoveries made using the Hubble Telescope in the past 25 years.”
Mashasble [online article], 2015, URL https://mashable.com/archive/hubble-telescope-
discoveries [retrieved 28 May, 2020].

[2] Kiger, P., “10 Reasons Why Space Exploration Matters to You.” HowStuffWorks [online
article], 2021, URL: https://science.howstuffworks.com/10-reasons-space-exploration-
matters.htm [retrieved 28 May, 2020].

[3] Tian, R., Sarazen, M., “What to Expect About Space Exploration and Machine Learning
After Elon Musk’s SpaceX Makes History,” Synced AI Technology & Industry Review [online
article], 2018, URL: https://medium.com/syncedreview/the-new-age-of-discovery-space-
exploration-and-machine-learning-64883f7dc7f9, [retrieved 27 September, 2020].

[4] De Smet, S., “On the design of solar gravity driven planetocentric transfers using artificial
neural networks.” Ph.D. Dissertation, Department of Aerospace Engineering Sciences,
University of Colorado, Boulder, Colorado, 2018.

 [5] NASA, “Gravity Recovery and Interior Laboratory (GRAIL),” GRAIL Launch, URL:
https://www.nasa.gov/pdf/582116main_GRAIL_launch_press_kit.pdf, [retrieved 29 May, 2020].

[6] Koon, S., Lo, M., Marsden, J., Ross, S., “Low Energy Transfer to the Moon,” Celestial
Mechanics and Dynamical Astronomy, Vol. 81, Sep. 2001, pp. 63-73.
https://doi.org/10.1023/A:1013359120468.

 [7] Gomez, G., Barrabés, E. “Space Manifold Dynamics. Encyclopedia of Life Support
Systems”, Encyclopedia of Life Support Systems Journal (EOLSS), URL:
https://www.eolss.net/Sample-Chapters/C01/E6-119-55-06.pdf [retrieved 29 May, 2020].

 [8] Parker, J., “Training Overview – GMAT Fundamentals,” NASA Goddard Space Flight
Center [tutorial video], 2014, URL: https://www.youtube.com/watch?v=9vt9iBuhYng, [retrieved
29 May, 2020].

[9] Anis, A., “General Mission Analysis Tool (GMAT),” Goddard Space Flight Center
Innovative Partnerships Program Office, URL:
https://opensource.gsfc.nasa.gov/projects/GMAT/index.php, [retrieved 29 May 2020].

[10] NASA, “General Mission Analysis Tool (GMAT) User Guide,” The GMAT Development
Team, URL: http://gmat.sourceforge.net/docs/nightly/html/index.html [retrieved 26 September
2020].

[11] De Smet, S., Parker, J., Scheeres, D., “Systematic Exploration of Solar Gravity Driven
Orbital Transfers in the Martian System Using Artificial Neural Networks,” 2018 AAS/AIAA
Astrodynamics Specialist Conference, AAS 18-216, Snowbird, Utah, August 31, 2018.

 103

[12] Jules, K., Lin, P., “Artificial Neural Networks Applications: From Aircraft Design
Optimization to Orbiting Spacecraft On-board Environment Monitoring.” NASA Glenn
Research Center, Cleveland, Ohio, August 2002.

[13] Singh, A., “Anomaly Detection for Temporal Data using Long Short-Term Memory
(LSTM),” Master’s Thesis at KTH Information and Communication Technology, Stockholm,
Sweden, 2017.

[14] Navlani, S., “Neural Network Models in R,” Data Camp Tutorials [online tutorial], URL:
https://www.datacamp.com/community/tutorials/neural-network-models-r, [retrieved 26
September, 2020].

[15] Sanjeevi, M., “Chapter 10.1: DeepNLP — LSTM (Long Short-Term Memory) Networks
with Math,” Medium Machine Learning [online article], 2018, URL: https://medium.com/deep-
math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-short-term-memory-networks-with-
math-21477f8e4235, [retrieved 27 September, 2020].

[16] The Venera-D Joint Science Definition Team, “Venera-D: Expanding Our Horizon of
Terrestrial Planet Climate and Geology Through the Comprehensive Exploration of Venus,”
Phase II Final Report, Jan. 31, 2019.

[17] Kremic, T.; Hunter, G.; and Rock, J., “Long-lived in-situ solar system explorer (LLISSE),”
15th Meeting of the Venus Exploration and Analysis Group (VEXAG), Laurel, MD, URL:
https://www.lpi.usra.edu/vexag/meetings/archive/vexag_15/presentations/8-Kremic-LLISSE.pdf
[retrieved 28 September, 2020].

[18] Műller, N.; Helbert, J.; Hashimoto, G.L.; Tsang, C.C.C.; Erard, S.; Piccioni, G.; and
Drossart, P., “Venus surface thermal emission at 1 μm in VIRTIS imaging observations:
Evidence for variation of crust and mantle differentiation conditions,” J. Geophys. Res., Vol.
113, 2008. https://doi.org/10.1029/2008JE003118.

[19] Way, M.J., Del Genio, A. D., Kiang, N. Y., Sohl, L. E., Grinspoon, D. H., Aleinov, I.,
Kelley, M., Clune, T., “Was Venus the first habitable world of our solar system?” Geophys.
Res.Lett., Vol. 43, 2016, no. 16, pp. 8376–8383. https://doi.org/10.1002/2016GL069790.

[20] Limaye, S.S.; Mogul, R.; Smith, D.J.; Ansari, A.H.; Słowik, G.P.; and Vaishampayan, P.,
“Venera-D Phase II Final report 147 Venus' Spectral Signatures and the Potential for Life in the
Clouds,” Astrobiology, vol. 18, 2018, no. 9, pp. 1181–1198.
http://doi.org/10.1089/ast.2017.1783.

[21] Moroz, V., “Stellar magnitude and albedo data of Venus,” Venus, Hunten, D.M., Colin, L.,
Donahue, T.M., and Moroz, V.I. (Eds.), Univ. of Arizona Press, Tucson, AZ, 1983, pp. 27–35.
https://doi.org/10.1016/0273-1177(85)90202-9.

[22] Barabash, S.; Fedorov, A.; Lundin, R.; and Sauvaud, J.A., “Martian atmospheric erosion
rates,” Science, Vol. 315, 2007, pp. 501–503.

 104

[23] Project Calliope, “The 6 Classic Orbital Elements,” Science 2.0 [online article], URL:
https://www.science20.com/satellite_diaries/6_classic_orbital_elements-79561, [retrieved 15
October, 2020].

[24] Williams, D., “Planetary Fact Sheet – Metric,” NASA Goddard Space Flight Center fact
sheet, URL: https://nssdc.gsfc.nasa.gov/planetary/factsheet/, [retrieved 29 October, 2020].

[25] Cutis, H., Orbital Mechanics for Engineering Students, 3rd ed., Elsevier Ltd., Oxford, 2014,
Chaps. 1, pp. 37 - 42.

[26] Navigation and Ancillary Information Facility, “Navigation and Ancillary Information
Facility,” NASA tutorial [online tutorial], URL:
https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/04_concepts.pdf
[retrieved 29 October, 2020].

[27] Ovid and Martin, C. Metamorphoses. W.W. Norton, New York, 2004.

[28] Sparkes, B. The Red and the Black: Studies in Greek Pottery. Routledge, Abingdon, 1996.

[29] Tandy, D. W. Works and Days: A Translation and Commentary for the Social Sciences.
University of California Press, Berkeley, 1997.

[30] Lovelace, A. Notes upon L. F. Menabrea’s “Sketch of the Analytical Engine invented by
Charles Babbage,” London, 1842.

[31] Goodfellow, I., Bengio, Y., Courville, A., “Deep Learning,” an MIT Press book, Ch. 1, 6, 8,
10 [online book], URL: http://www.deeplearningbook.org, [retrieved November 6, 2020].

[32] Meß, J., Dannemann, F., Greif, F., “Techniques of Artificial Intelligence for Space
Applications - A Survey,” European Workshop on On-Board Data Processing (OBDP2019)
Research Gate [online conference paper], URL:
https://www.researchgate.net/publication/336073809_Techniques_of_Artificial_Intelligence_for
_Space_Applications_-_A_Survey#fullTextFileContent, [retrieved November 6, 2020].

[33] LeCun,Y., Bengio, Y., Hinton, G., “Review – Deep Learning,” doi 10.1038 nature14539
Vol. 251 article review, URL: https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf,
[retrieved November 8, 2020].

[34] Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. “What is the best multi-stage
architecture for object recognition?” 12th International Conference on Computer Vision, IEEE,
Kyoto, 2009, pp. 2146-2153. doi: 10.1109/ICCV.2009.5459469.

[35] Nair, V. and Hinton, G. (2010). “Rectified linear units improve restricted Boltzmann
machines,” International Conference on Machine Learning, Haifa, 2010. URL:
https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf, [retrieved November 8].

 105

[36] Glorot, X., Bordes, A., and Bengio, Y. (2011a). “Deep sparse rectifier neural networks,”
International Conference on Artificial Intelligence and Statistics. Vol. 15, Fort Lauderdale, FL,
2011. URL: https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf, [retrieved November 8].

[37] LeCun,Y., Bottou, L. Orr, G., Müller, K., “Efficient BackProp,” Montavon G., Orr G.B.,
Müller KR. (eds) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol
7700. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35289-8_3.

[38] Ruder, S. “An Overview of Gradient Descent Optimization Algorithms,” Insight Centre for
Data Analytics, NUI Galway Aylien Ltd., Dublin, URL: https://arxiv.org/pdf/1609.04747.pdf,
[retrieved 21 November, 2020].

[39] Oppermann, A. “Stochastic-, Batch-, and Mini-Batch Gradient Descent Demystified – Why
do we need Stochastic, Batch and Mini Batch Gradient Descent when implementing Deep Neural
Networks?,” More from Toward Data Science a medium publication sharing concepts, ideas,
and codes, URL: https://towardsdatascience.com/stochastic-batch-and-mini-batch-gradient-
descent-demystified-8b28978f7f5, [retrieved 27 November, 2020].

[40] Dematos, G., Boyd, M.S., Kermanshahi, B., Kohzadi, N., Kaastra, I. “Feedforward versus
recurrent neural networks for forecasting monthly japanese yen exchange rates,” Financial
Engineering and the Japanese Markets 3, pp. 59–75. https://doi.org/10.1007/BF00868008.

[41] Kolen, J. F., Kremer, S. C., "Gradient Flow in Recurrent Nets: The Difficulty of Learning
LongTerm Dependencies," A Field Guide to Dynamical Recurrent Networks, IEEE, 2001,
pp.237-243. doi: 10.1109/9780470544037.ch14.

[42] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., Siskind, J. M., “Automatic differentiation
in machine learning: a survey.” Journal of Machine Learning Research, 18(153), pp. 1-43, 2018,
arXiv:1502.05767.

[43] Olah, C. “Understanding LSTM Networks,” Github Olah’s blog, 2015, URL:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/, [retrieved 14 April, 2021].

[44] Keras SIG. “About Keras,” Python open-source library, URL: https://keras.io/about/,
[retrieved 14 April, 2021].

[45] Brownlee, J. “Your First Deep Learning Project in Python with Keras Step-By-Step,”
Machine Learning Mastery book, 2020, URL: https://machinelearningmastery.com/tutorial-first-
neural-network-python-keras/, [retrieved 17 April, 2021].

[46] Yegulalp, S. “What is TensorFlow? The Machine Learning Library Explained,” Software
Development InfoWorld, 2019, URL: https://www.infoworld.com/article/3278008/what-is-
tensorflow-the-machine-learning-library-explained.html,
 [retrieved 18 April, 2021].

 106

[47] Johnson, K. “Google Launches TensorFlow 2.0 with Tighter Keras Integration,” VB Lab
insights The Machine Making sense of AI, URL: https://venturebeat.com/2019/09/30/google-
launches-tensorflow-2-0-with-tighter-keras-integration/, [retrieved 19 April, 2021].

[48] Google Colaboratory. “Frequently Asked Questions The Basics,” Google Research
Collaboratory, URL:
https://research.google.com/colaboratory/faq.html#:~:text=Colaboratory%2C%20or%20%E2%8
0%9CColab%E2%80%9D%20for,learning%2C%20data%20analysis%20and%20education,
[retrieved 20 April, 2021].

[49] Wikipedia. “Graphics Processing Unit,” Wikimedia Foundation trademark [online
encyclopedia], URL: https://en.wikipedia.org/wiki/Graphics_processing_unit. [retrieved 20
April, 2021].

[50] ActiveState. “What Is Pandas In Python? Everything You Need To Know,” ActiveState
Software Inc. [online article], URL: https://www.activestate.com/resources/quick-reads/what-is-
pandas-in-python-everything-you-need-to-know/, [retrieved 21 April, 2021]

[51] Jeevan, M. “14 Best Python Pandas Features,” Dataconomy Data Science 101 [online
article], 2015, URL: https://dataconomy.com/2015/03/14-best-python-pandas-features/,
[retrieved 21 April, 2021].

[52] Brownlee, J. “How to use Data Scaling Improve Deep Learning Model Stability and
Performance,” Machine Learning Mastery Pty. [online article], URL:
https://machinelearningmastery.com/how-to-improve-neural-network-stability-and-modeling-
performance-with-data-scaling/, [retrieved 22 April, 2021].

[53] Brownlee, J. Long Short-Term Memory Networks with Python - Develop Sequence
Prediction Models with Deep Learning. Machine Learning ebook, 2020.

[54] Brownlee, J. “A Gentle Introduction to the Rectified Linear Unit (ReLu),” Machine
Learning Mastery Pty. [online article], 2020, URL:
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-
neural-networks/, [retrieved 24 April, 2021].

[55] Keras SIG. “LSTM Layer,” Python open-source library, URL:
https://keras.io/api/layers/recurrent_layers/lstm/, [retrieved 25 April, 2021].

[56] Keras SIG. “Dropout Layer,” Python open-source library, URL:
https://keras.io/api/layers/regularization_layers/dropout/, [retrieved 25 April, 2021].

[57] Keras SIG. “TimeDistributed Layer,” Python open-source library, URL:
https://keras.io/api/layers/recurrent_layers/time_distributed/, [retrieved 25 April, 2021]

 107

[58] Brownlee, J. “How to Use the TimeDistributed Layer in Keras,” Machine Learning Mastery
Pty. [online article], 2017, URL: https://machinelearningmastery.com/timedistributed-layer-for-
long-short-term-memory-networks-in-python/, [retrieved 25 April, 2021].

[58] Keras SIG. “Losses,” Python open-source, URL: https://keras.io/api/losses/, [retrieved 25
April, 2021].

[59] Keras SIG. “Model training APIs,” Python open-source library, URL:
https://keras.io/api/models/model_training_apis/, [retrieved 25 April, 2021].

[59] Brownlee, J. “Gentle Introduction to Models for Sequence Prediction with RNNs,” Machine
Learning Mastery Pty. [online article], 2017, URL:
https://machinelearningmastery.com/models-sequence-prediction-recurrent-neural-networks/,
[retrieved 25 April, 2021].

[60] Karpathy, A. “The Unreasonable Effectiveness of Recurrent Neural Networks,” Andrej
Karpathy blog [online article], URL: http://karpathy.github.io/2015/05/21/rnn-effectiveness/,
[retrieved 25 April, 2021].

[61] Stack overflow questions. “How to interpret weights in a LSTM layer in Keras,” Stack
Exchange Inc., 2019, URL: https://stackoverflow.com/questions/42861460/how-to-interpret-
weights-in-a-lstm-layer-in-keras, [retrieved 29 April, 2021].

[62] Keras-team. “When and How to use TimeDistributedDense #1029,” Github [online blog],
URL: https://github.com/keras-team/keras/issues/1029, [retrieved 30 April, 2021].

[63] Budhiraja, A. “Dropout in (Deep) Machine learning,” Medium digital publishing platform,
URL: https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-
learn-better-dropout-in-deep-machine-learning-74334da4bfc5, [retrieved 30 April, 2021].

[64] Lumen Astronomy. “The Massive Atmosphere of Venus,” OpenStax CNX [online article],
URL: https://courses.lumenlearning.com/astronomy/chapter/the-massive-atmosphere-of-venus/,
[retrieved 20 June, 2021].

[65] Hayling Graphics. “A video showing the motion of the planets of our Solar System 2026,”
The Planets Today Store [online animation], URL:
https://www.theplanetstoday.com/solar_system_video_2026, [retrieved 26 June, 2021].

[66] The Nobles. “Demystifying LSTM Weights and Bias Dimensions,” Analytics Vidhya
article, 2020, URL: https://medium.com/analytics-vidhya/demystifying-lstm-weights-and-
biases-dimensions-c47dbd39b30a, [retrieved 27 June, 2021].

[67] Mayrand-Provencher, L. “Building an Autoencoder with Tied Weights in Keras,” Medium
[online tutorial], 2019, URL: https://medium.com/@lmayrandprovencher/building-an-
autoencoder-with-tied-weights-in-keras-c4a559c529a2, [retrieved 29 June, 2021].

 108

[68] Ranjan C. “Build the right Autoencoder — Tune and Optimize using PCA principles. Part
II,” Towards data science [online tutorial], 2019, URL: https://towardsdatascience.com/build-
the-right-autoencoder-tune-and-optimize-using-pca-principles-part-ii-24b9cca69bd6, [retrieved
28 June, 2021].

[69] Kasperski, A. “How to decide the number of hidden layers and nodes in a hidden layer?,”
Research Gate [online discussion], 2016. URL: https://www.researchgate.net/post/How-to-
decide-the-number-of-hidden-layers-and-nodes-in-a-hidden-
layer/581ce9f5eeae397d27799324/citation/download, [retrieved 11 July, 2021].

[70] Talaulikar, A. “How to measure the variance of a statistical model?,” Towards data science
[online article], 2020, URL: https://towardsdatascience.com/measure-variance-of-statistical-
model-e3b4725095b6, [retrieved 11 July, 2021].

[71] Radhakrishnan, P. “Bias and Variance in Neural Network,” buZZrobot Artificial
Intelligence for Human Intelligence [online article], 2017, URL: https://buzzrobot.com/bias-and-
variance-11d8e1fee627, [retrieved 11 July, 2021].

 109

Appendices

Appendix A – Keras Python codes via Google Colab - Jupyter Notebook.
Code found at Google Drive link:
https://drive.google.com/drive/folders/1rC1SQRnTclREhKPQsQGh8idEVtmzKB_a?usp=sharing

Appendix B - Datasets used for RNN LSTM Model Training via Google Colab - Jupyter Notebook.
 Spreadsheets found at Google Drive link:
https://drive.google.com/drive/folders/1puF8JPd2vouMrt7rn2yRb17iB8z_pNlE?usp=sharing

Appendix C - Datasets used to Generate the Solar Perturbation Vector Field via GMAT.
Spreadsheets found at Google Drive link: https://drive.google.com/drive/folders/1s-
bLBsiyXQqUeH7MfXkKolTphC-b74G7?usp=sharing

Appendix D - Datasets Generated by Solar Perturbation Drifting via GMAT.
Spreadsheets found at Google Drive link: https://drive.google.com/drive/folders/1nocEHxOc-
sEqY4iWTQGJVzAgWAkLSawm?usp=sharing

Appendix E - Datasets Generated by the Burn Analysis done in GMAT.
Spreadsheets found at Google Drive link:
https://drive.google.com/drive/folders/1Wjo7qE4Fe3M1zKSNn5oNWYWU2h9djyT6?usp=sharing

Appendix F - Nelson Wong’s Thesis Abstract:
On Clustering Low-Cost SoC FPGA Devices for Deep Learning Inference Applications
(tentative title).
The thesis investigates the efficacy of linking multiple sub-$100 system-on-chip field
programmable gate array devices to perform inferencing. This exploration involves Xilinx's
XC7Z020 and XC7Z010, which contain block RAM (BRAM) and DSP slices scattered across
their programmable logic fabric. The DSP slices are leveraged for their multiply-accumulate to
efficiently perform vector-matrix multiplication, while block RAM slices cache network
parameters to achieve sub-millisecond multi-layer inference (results pending). I'm still far from
the end of this thesis but the above should still hold true by the end. The SD card in the [SD card
-> DDR memory -> BRAM cache] pipeline has been adjusted; attaching the cluster to network-
attached storage and managing parameter loading over Ethernet made for a more flexible
architecture. The XC7Z010 was especially targeted due to its popularity in previous-generation
crypto currency miners; the Chinese online retail service AliExpress has been flooded with
refurbished boards that use this chip and are very affordable (currently $16.50 each).

