
ARTIFICIAL NEURAL NETWORK 
TRAINING TO CORRECT FOR 
SOLAR GRAVITY POTENTIAL 

PERTURBATION IN CLOSE 
ORBITS 

 
a project presented to 

 The Faculty of the Department of Aerospace Engineering  
San Jose State University  

 
 
 

in partial fulfilment of the requirements for the degree  
Master of Science in Aerospace Engineering 

 

 

by 

  Mayra Lopez-Thibodeaux 
July 2021 

 

To be Approved by 

Professor Jeanine Hunter 
Faculty Advisor 

 

 

 

 

 



 ii 

ABSTRACT 
The research done in this project aims to lay the basis for building a grid of solar gravitational 
potential perturbation at every point in the phase space on a close orbit around Venus for 
autonomous space travel. Two different approaches have been provided to reach this goal. The 
most convenient one is the extraction of output weights from a Long Short-Term Memory 
(LSTM) Recurrent Neural Network (RNN) trained with data generated by deep space orbit 
determination and optimization software GMAT (General Mission Analysis Tool). The LSTM 
train data was generated by simulating the solar potential perturbed and unperturbed orbits with 
an initial state vector corresponding to that of the Venera D mission but at a 10,000 km larger 
radius of pericenter. This same data was used to provide a second approach for building the solar 
perturbation mapping by taking the difference between each of the perturbed and unperturbed 
position vectors of the spacecraft at every step of its orbit around Venus and towards the 
perturbed state. The training of the LSTM RNN was achieved with an accuracy between 89% 
and 92% with two LSTM layers of 50 and 10 units respectively, a 0.46-rate regularizer and a 
TimeDistributed wrapped Dense layer of 3 units. A burn analysis was initiated using GMAT as 
well to provide a technique to farther develop this investigation. The analysis was done by solar 
perturbation drifting of the spacecraft with different types of orbits and showed that solar 
perturbation could aid to reach the goals of a mission with less or not fuel once in close orbit 
around the planet.  
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Chapter 1:  Introduction 
 
1.1 Motivation  
 
 Space exploration has become crucial in the advancement of different fields of science. It 
provides scientists and engineers with vast amounts of data to be analyzed, and the opportunity 
to make new discoveries. For instance, data gathered from the Hubble Space Telescope, 
launched in 1990 from the John F. Kennedy Space Center in Florida, has led to the discovery of 
the age and size of the universe, galaxies in the early universe and their classification, new 
moons of Pluto, understanding seasons of other planets and advancing exoplanet science [1]. 
Furthermore, space exploration is important for national security communication using 
surveillance satellites and protection from possible asteroid impacts. It has also led to more 
inventions such as flexible but resilient alloys that can be folded into a rocket to be popped open 
from a satellite, freeze-dried food for the Space Station and plastic-coated covers with a metallic 
reflecting agent that reflects back 80 percent of the user’s body heat to keep astronauts warm [2].  
 
 Machine learning has become essential to expand our horizons for space exploration. The 
learning of a machine refers to the self-improvement capability an algorithm obtains by finding 
patterns or predicting unknowns from data. Machine learning already has advanced applications 
in different important fields such as aviation, healthcare and banking, and is expected to enhance 
future space travel and exploration since it can control massive amounts of data, find dataset 
patterns on planetary imaging, and predict spaceship conditions. In the fields of space travel and 
exploration, machine learning can be mainly applied in navigation and rocket landing, analysis 
of visual data, and data transmission [3]. In this project, machine learning artificial neural 
networks is applied to spacecraft navigation in close orbit around Venus, with the purpose of 
making it applicable to close orbit navigation around other celestial bodies. 
  
 Presently, artificial neural networks or Neural Networks (NN) machine learning is 
already revolutionizing the classification of galaxies leading to a deeper understanding of the 
universe.  Similarly, NN machine learning can improve current technology in relative spacecraft 
and satellite motion control. Spaceships have only an instant for action control that requires 
taking into account and processing geometric and kinematical location information. As space 
missions become more frequent and complex, requiring them to go farther in space, the demand 
for fast, self-adjusting navigation based in machine learning will grow [3]. 
 
 Space travel and exploration require orbital transfers at various stages of a space mission. 
These transfers can be done via typical orbital mechanics maneuvers or perturbation-aided 
maneuvers. The latter provides a convenient cost-free impulse to aid orbital transfers, even 
though the perturbations which will change the path of the spacecraft toward the desired 
direction require an ideal location. In the case of capture orbits around Mars, solar gravity 
perturbations significantly deviate the path of a spacecraft at large apoareion [4]. This is also the 
case for orbits with large pericytherion around Venus given its closer proximity to the Sun. 
Hence, solar gravity perturbation is the focus of this paper and will be investigated via the 
different output parameters of an ideal type of NN that best suits the needs of the investigation at 
hand.  
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1.2 Literature Review  
 

For a spacecraft away from the sphere of influence of a planet, two-body astrodynamics 
becomes inaccurate in determining its path given the gravitational perturbations due to other 
celestial bodies. These perturbations have been extensively investigated and used to the 
advantage of space travel, e.g., gravity assist maneuvers where the spacecraft is required to have 
close proximity to the perturbing body. Some gravity perturbation methods use a dynamical 
system based on stable and unstable sets of points of gravitational attraction in phase space, or 
manifolds, that serve as a guide on space for cheap transfers. Gravity perturbation methods have 
proven to be successful for the GRAIL mission in low-energy Moon-Earth transfers and for the 
ATEMIS mission transfer between different libration points. Other perturbation methods also use 
the forces present in nature to do ballistic captures to favor transfers, e.g., the Hiten mission, 
which was launched into a highly elliptical Earth orbit that intersected the Moon’s orbit [4][5].  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Perturbation methods used in favor of space travel [5], [6]. 

 
 

 
 
 

  
  
  
 The Space Manifold Dynamics approach to solving astrodynamics problems makes it 
possible to systematically analyze the nature of a plausible mission approach by describing phase 
space around Lagrangian points - points where the gravitational force from the orbiting bodies 
cancels out. It also provides determination of Lagrangian points, interplanetary and low-energy 
mission determination, station-keeping strategies that keep a spacecraft in the assigned orbit, 
transfer determination between Lagrangian points or eclipse-avoidance strategies design [7]. In 
addition, ballistic captures use the gravitational pull of an orbiting body to aid spacecraft transfer 
when it is inserted into the orbit of a celestial body orbiting the target planet or moon at a greater 
velocity of that of the spacecraft. All perturbation methods mentioned earlier are restricted by the 
three-body astrodynamics problem. The gravitational potential influence of a secondary celestial 
body over a spacecraft becomes significant enough to add up to that of the primary orbiting body 
changing the path of the spacecraft.  

Note: The figure on the left shows GRAIL-A (red) and GRAIL-B (blue) trajectories 
for a launch at the open and close of the launch period. The low-energy trajectories 
leave Earth following a path towards the Sun, passing near the interior Sun-Earth 

Lagrange Point 1 (Earth Libration Point 1) before heading back towards the Earth-
moon system [5]. The figure on the right shows a Hiten-like low energy trajectory in 

the geocentric inertial frame using ballistic capture by the Moon’s orbit [6]. 
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 Currently, there are no analytical solutions for orbital transfers involving the three-body 
problem. Instead, these solutions rely on numerical integration methods applied to complex 
astrodynamical systems, which involve strenuous computational loads [4]. Nevertheless, mission 
design platforms based on numerical methods for orbit propagation have become an important 
part of space mission design. One such platform that is widely used in the aerospace industry due 
to its open source and high capability nature is that developed by NASA and private industry in 
the last decade called General Mission Analysis Tool (GMAT). GMAT was qualified to be used 
in NASA Missions Operations rooms for operational planning summation in 2014. Hence, 
GMAT simulation calculations have been proven to be qualified for a level of reliability that will 
pose no undue risk on a spacecraft mission design [8]. GMAT is a platform designed for the 
constrained or unconstrained optimization of deep space missions of spacecraft trajectories. This 
system includes numerical integrators with initial and boundary value solvers for propagation as 
a function of time. It is also capable of synchronizing the epochs of multiple spacecrafts, plotting 
their trajectories and parameters, and saving them to files for comparison and processing [9]. 
Some of the resources in GMAT to model space missions are spacecraft, propagators, and 
optimizers that can be configured to fit specific models and applications that simulate the motion 
of a spacecraft and mission events chronologically.  
 
 
Table 1 summarizes the key features of GMAT: 
 

Table 1. GMAT key features (modified from [8]). 

 
 

 

 

 

 

 

 

 

 

 
 
 The component that simulates spacecraft motion in GMAT is called a Propagator. A 
GMAT Propagator is either of numerical integration type or ephemeris type (see Table 1 for 
description of ephemeris type). The former type of propagator offers a list of numerical 
integrators based on the Runge-Kutta and prediction corrector methods and requires a force 
model. A force model simulates the natural forces in the environment that affect the spacecraft 
dynamics. Once configured, the force model is added to the Propagator to solve for the 
astrodynamics equations numerically and may include relativistic corrections, atmospheric drag, 

SPK & DE ephemerides: data banks for celestial navigation 
that gives the trajectory of celestial bodies and satellites  
Viz: visualization   
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point mass, solar radiation, gravity and tie models [10]. Figure 2 and Table 2 below show a 
description of GMAT numerical integrators and an example of the setup of a Runga-Kutta89 
Propagator with a force model with Venus and the Sun as the point masses influencing a 
spacecraft. 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. GMAT propagator setup. 

 
 

Table 2. GMAT numerical integrators overview [10]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The GMAT Propagation tool also requires configuring the spacecraft to be simulated for 
propagation. To do so, initial conditions such as the epoch and classical orbital elements must be 
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determined. Figure 3 shows the setup of a spacecraft on a pronounced eccentric orbit around 
Venus with its initial position and epoch, the corresponding propagation plot in space (right) and 
on the surface of Venus (down left) with the propagation setup of Figure 2. 
 

 

 

 

 

 
 
 
 
 

Figure 3. Spacecraft setup in GMAT and its corresponding plots. 

 
 The GMAT platform is an example of the required complexity of numerical integration 
applications to develop astrodynamical systems involving three-body dynamics. An alternative 
method that aids with the significant computational load of numerical integration simulations is 
the use of NN. NNs can be used to develop a database of the dynamics within a system which 
can be used as a roadmap to find convenient trajectories and transfers [11]. The application of 
NNs in the past on some fields of aerospace engineering have been proven to be successful. Such 
is the case of the investigation done in [12] at NASA Glenn Research Center in 2002 where the 
application of NNs to shorten the design cycle in the design and optimization of aircraft engine 
propulsion systems and monitoring the microgravity quality onboard the International Space 
Station were researched. In the case of NN application for design and optimization, NNs were 
used to provide mappings for fast analysis and design, which enabled the simulation of a highly 
complex model near real time within an acceptable 5% error. For system monitoring, NNs were 
used to develop a monitoring system tool that helped researchers to remotely assess how the 
space environment affected their experiments. This second investigation led to an understanding 
about how Back Propagation NNs can recognize new patterns and avoid the misclassification of 
patterns while accounting for multi-dimensional ranges of neighboring clusters [12].  
 
De Smet et al investigate solar gravity perturbation driven transfer via the creation of a database 
of solutions for a spacecraft in closed orbit around Mars [11]. This methodology uses a sparse 
grid of numerical integrated points to train a NN in a small subset of phase space to be later 
developed into larger areas and other part of the solar system. The weights and biases of the NN 
capture the developed database, which can then be used to identify transfers for different 
applications. In this problem, numerical integrations of a periareion Poincaré map are used to 
compute the sparse grid data points, and the developed database using NNs is tested with GMAT 
and Monte Carlo simulations. A Poincaré map is the intersection of a periodic orbit in the state 
space of a periodic dynamical system with a subspace transversal to the flow of the system (refer 
to Figure 4 for its visual depiction). This problem is initially simplified by using the Circular Hill 
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System, which assumes Mars orbiting the Sun in a circular orbit at a constant angular velocity, 
making the problem time invariant. This simplification allows one to readily obtain a set of 
initial solutions to be then adjusted using the Eccentric Hill System (which assumes the same 
conditions as the circular Hill System except by Mars orbiting the Sun in an elliptical orbit) via a  
second NN. The proposed transfer under study starts at the periapse of the incoming areocentric 
parabola with a small maneuver to reduce the eccentricity to less than one to get it into an 
elliptical orbit [4][11]. The spacecraft orbit is then circularized into its final orbit by a second 
maneuver that aims rendezvous with Phobos (see Figure 4 below). 
 
 
 

 
 
 

 
  
 
 
 
 
 

Figure 4. Depiction of a Poincaré map with states of intersection 𝐼! and 𝐼" [4]. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 5. Propose transfer type in [11]. 
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In order to pose an example of the capability of the use of NNs in this type of problem, the NN 
architecture and training results using the circular Hill System in [11] are presented in Table 3 
and Figure 6: 
 
 
 

 
 

 

 

 

 

 

 
Figure 6. Error Summary in radius and inclination at periareion for the predicted transfer to 

arrive at Phobos [11]. 

 
 Figure 6 compares the results in [11] between the scaled circular Hill system (which is an 
approximation to the eccentric Hill dynamics), the eccentric Hill system and numerical 
integration simulation with GMAT. The results show significant errors on the periapse and 
inclination on the trajectory predicted for arrival to Phobos in the scaled Hill model. The main 
sources of error are the NN predictions and the difference between the scaled circular and 
eccentric Hill systems. Hence, the simplification of the scaled circular Hill system, shown as 
“Scaled Hill” on the top in Figure 6, introduced approximate errors in the calculation of the 
periapse between 3000-6000 km and corresponding errors in inclination close to −3, and 6, 
This error could be fixed by adding more neurons, layers and training data to the NN. On the 
next row, the solutions from the eccentric Hill system using NN and numerical integration via 
GMAT show almost no difference. The application of NN to solve for the circular model on a 
small subset of phase space reduced the number of required integrated transfers from 8.4 million 
to 74,000 with a training time of 50 minutes on a single core of a 2.5 GHz Intel Core i7 
processor, rather than 10 days using numerical integration. NN application reduced the number 
of integrated transfers from 3.04 billion to 492,000 for the eccentric model case with a training 
time of one day rather than 3570 days using numerical integration [11]. 
 

Table 3. Architecture and training results of NN using the circular Hill System [11]. 
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 Table 3 shows a basic architecture and typical results of a multilayer NN using the back-
propagation approach. The hidden-layer architecture of an NN as well as how the Mean Square 
Error (MRS) will be used are discussed in this section. Training, validation and test data 
corresponds to the different steps an NN follows for training, validating and testing its learning 
process. An NN is a machine learning model that is composed of simple computational units 
called neurons. Each of these neurons takes an input at its incoming edge, multiplies it by a 
randomly assigned weight and applies a non-linear function called the activation function to the 
weighted sum to produce an output. The following figure shows a visual representation of an NN 
where x, w, b, ⨀,  f and y represent input vector, weight vector, neuron bias, element-wise 
multiplication, activation function, and neuron output respectively [13].  
 
 
 

 

 

 

 
 
 

Figure 7. The structure of a NN [13]. 

 The non-linearity of the output corresponding to the input of every neuron is introduced 
by the activation function. Commonly used activation functions are the tanh, the rectified linear 
units or ReLU, the sigmoid and the linear or identity function. Figure 8 below shows the 
behavior of these functions.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Typical NN activation functions [14]. 
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 The forward feed of a NN is composed of a network of layers of neurons interconnected 
layer by layer with assigned weights at each edge. The first layer is called the input layer because 
it takes the input data to train the NN. The rest of the layers of the NN are called hidden layers. 
The outputs are calculated per neuron starting at the input layer and forward to the last layer on 
the opposite side (see Figure 9). In order to facilitate learning by self-correcting, the NN uses a 
loss function, which measures the difference between the desired and the network outputs. A 
common loss function used in regression models is the mean square error or MSE given by the 
following equation: 
                                           
                                                 (1.1)   
  
 
where yi represents the true value, and 𝑦'i the predicted value [13]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 9. Representation of a forward feed of a single-hidden-layer NN [13]. 

 An NN uses gradient descent optimization to learn. In this process, the network tunes its 
parameters such that it minimizes the loss function by calculating the gradients of the loss 
function with respect to each of these parameters. Gradients are calculated via the back-
propagation method, which is based on the chain-rule of derivatives. The gradient represents the 
change in the loss value of each parameter. The network parameters (𝜽) are adjusted in the 
opposite direction of the gradient by updating a scalar called the learning rate (𝛾) via equation  
 

𝜽 = 𝜽 − 𝛾
𝜕𝐿(𝜽)
𝜕𝜽  

 
 The process is repeated by passing iteratively over the training data, and each of these 
passes is called an epoch.  The parameters of a NN are the weights and biases and they are 
learned by training. Other parameters of the NN such as learning rate, decay, batch size and 
dropout are called hyperparameters and are to be appropriately set by the user before training 
[13].  
 

(1.2) 
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 Recurrent NNs or RNNs are of special interest to solve many astrodynamical problems 
because they use both current input and past information while making future predictions. They 
are capable of retaining dependencies across time steps by learning how to retain relevant 
information. RNNs do so by processing the input elements one at a time while maintaining a 
hidden state vector that acts as the memory for past process information. Hence, RNNs are 
suitable for sequential data [13].  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. A standard RNN [13]. 

 Figure 10 shows the schematic of a standard RNN with hidden state vector S which keeps 
a memory of the previous elements of the sequence. A current input element xi is received at 
time t and state St-1 from the previous time step, which is then updated St and the final network 
output ht is calculated. U is the weight matrix between input and hidden layers and W is the 
weight matrix of the recurrent transition between hidden states. V is the weight matrix between 
the hidden and output transition. The equivalent of the back-propagation method for RNNs is the 
back-propagation through time (BPTT) method. This method involves multiplying the error 
gradient over every time step, which causes gradients to become either too large or too small 
over time. This issue is called the exploding or vanishing gradient problem.  The Long Short-
Term Memory (LSTM) RNN architecture was developed to counter  
this type of problem with RNN gradients [13].  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11. An LSTM cell with forget gate [15]. 
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 Figure 11 shows the architecture of an LSTM RNN with forget gate. Refer to the 
equations shown on this figure to better understand the function of the main components of this 
type of RNN. Its main components are: 

1. Input:  The LSTM unit takes the input Xt and output from the previous step Ht-1 and their 
weighted sum is passed through the tanh activation which produces CG-. 

2. Input gate I:  the input gate reads Xt and Ht-1, computes their weighted sum and applies 
the sigmoid activation to calculate It, which is multiplied by CG- and passed into the 
memory cell. 

3. Forget gate f: The forget gate serves to forget irrelevant old content. This gate also reads 
Xt and Ht-1, computes their weighted sum and applies the sigmoid activation to calculate 
ft, which is multiplied by St-1. 

4. Memory gate: It is a central unit with unit weight recurrent connection that represents a 
time step of 1 feedback loop. It computes the current state St by forgetting irrelevant 
information from the previous step and keeping information from the current input. 

5. Output gate O: It controls what information to flow out of the LSTM unit by applying the 
sigmoid activation to the weighted sum of Xt and Ht-1. 

6. Output: It is denoted by Ht and is computed by passing the St cell through a tanh 
activation and multiplying it by Ot [15].  

This project uses LSTM RNN, or LSTM for short, to solve the astrodynamics problem. 
 
1.3 Project Proposal  
 
 This project takes advantage of the computational power of NNs to demonstrate the 
construction of a database which can be used as a roadmap for a spacecraft in close orbit around 
a planet. An NN is capable of correcting two-body astrodynamics problems for the gravitational 
perturbations caused by multiple celestial bodies on a spacecraft in space transit. In doing so, 
some of the NN output parameters could represent a mapping of these perturbations on space 
given that these parameters can be decoded after training. In an effort to carefully study these 
gravity perturbations, the proposed technique is to be developed for capture orbits with high 
apocytherion, at which solar gravity perturbations significantly deviate the spacecraft aerocentric 
orbits. Hence, the data to be analyzed will involve closed orbits at different pericytheria starting 
with highly eccentric orbits to end in circular orbits that approach Venus in favor of cost-free 
transfers. The large number of numerical integrations required by this type of analysis can be 
significantly reduced by the use of NN without compromising sufficient accuracy.   
  
 This project proposes an Artificial Recursive Neural Network (RNN) model for the 
orbital dynamics of a spacecraft in closed orbit around Venus. The RNN will be trained to 
accomplish path-correction in the presence of solar gravity used to its advantage for cost-free 
transfers. The method and position of transfer from an orbit with large apocytherion will be 
chosen depending on the position on the orbit where the solar gravity pull provides the minimum 
cost of transfer.  
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1.4 Methodology 
 
The predicted development of this project proposes the following procedure: 
 
1.  Create a database using simulation methods for RNN implementation: 

The input data of the RNN consists of the parameters to be corrected when compared with its 
output or training data. In this problem, the input data are the position and velocity vectors of a 
spacecraft in Cartesian coordinates at every orbit time step with no solar gravity perturbations. 
The output, or training data, is composed of the position and velocity vectors of the spacecraft 
in Cartesian coordinates at every step on time with solar perturbation considered. The input and 
training data will be simulated by deep space orbit determination and optimization software 
GMAT (General Mission Analysis Tool) given an initial state vector (position and velocity 
vectors) and time of propagation. Initial position and velocity vectors corresponding to capture 
orbits with high apocytherion will be used to generate the first set of data at different 
pericytheria. Posterior data sets with less eccentric orbits with initial state vectors 
corresponding to the most convenient transfer orbits will be used to create a solar gravity 
perturbation mapping for the phase space covered by these orbits.  

 
2.  Application of the Back-Propagation approach of an RNN:    

RNNs use the Back-Propagation approach, which will be used to solve for the proposed 
problem. This approach trains an NN through supervised learning involving a forward pass that 
propagates input data forward from the input layer to the output layer of the network. This pass 
generates an output and its error value, which is corrected if within an acceptable range, while 
leaving synaptic weights (connection amplitude between nodes) intact, and the network is 
trained with the new set of input data. The back-propagation algorithm can be summarized as 
follows: 
1) The network is fed with an input vector and a corresponding desired output vector. 
2) The output of the network is calculated using the forward pass. 
3) The error in the output signal is calculated. 
4) The process moves on if the error is within the acceptable range or goes backward to update 
the network weights. 
5) The process repeats until all input vectors are consumed. 
Hence, the above-mentioned steps will be applied in the ideal RNN to analyze the perturbed 
closed orbits involved in this project.  

3. RNN Implementation (LSTM): 
Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) capable of 
learning order dependence in sequence prediction models. This type of RNN is well suited for 
classifying, processing and making predictions based on time series, which very well serves the 
purposes of this project. Hence, LSTM will be used for this project via Keras, a deep learning 
Application Programming Interface (API) based in Python, running on top of the open-source 
machine learning platform TensorFlow. TensorFlow is based in differentiable programming, 
where the program’s parameters can be optimized via gradient descent. Keras is a powerful, 
robust API well suited to serve the purpose of this project. Keras is a well-documented 
framework that makes its application accessible to the intermediate level programmer. 
However, it involves highly advanced, complex algorithms that might be time consuming to 
learn and understand for non-expert programmers.  
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4. Developing a Solar Perturbation Mapping of Phase Space: 

Within each node of an RNN, there is a set of inputs, weight, and a bias value. As the input 
enters the node, it is multiplied by a weight value and the resulting output is either observed or 
passed to the next layer in the RNN. For instance, a single node might take the input data and 
multiply it by an assigned weight value, add a bias and pass the data to the next layer. The 
output layers might tune the inputs from the hidden layers to produce the desired values within 
a specific range. Weights and biases are learnable parameters within the RNN that are initiated 
randomly before the learning process begins. As training continues, both parameters are 
adjusted to match the desired output.  In this problem, the weights represent the small changes 
that solar gravity perturbation makes on the input data. The weight will adjust until the 
unperturbed data values approach the perturbed data values. This analysis will not only allow 
for the mapping of the solar gravity perturbations but also to detect where these perturbations 
can aid desired orbit transfers. However, the resultant weight matrix of an NN has a complex 
relation with its outputs due to the gradient descent backward method, and it might require an 
autoencoder that will manipulate the data in a way that can more clearly relate to the input 
data. Disentangling the complexity of NN weight matrices is presently an area under research 
and great interest in the field of machine learning. 
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Chapter 2:  Data Generation for RNN Training 
 
 In order to train the RNN model in this investigation, a vast data bank describing the 
position and velocity of a spacecraft in closed orbits around Venus is needed. This data bank 
involves the position and velocity vector components at every point in time for a given close 
orbit, which will be used not only to train the RNN but also to construct the mapping of the solar 
perturbation present at every step. Although one of the objectives of this investigation is to be 
able to detangle the weights of an RNN to represent the solar perturbations, this is a new field of 
study still under development in computer science. Hence, it might take more than the time 
allotted to the completion of this project to reach such goal. Therefore, the solar gravity 
perturbations are also being tracked by calculating the change in every one of the position 
components, x, y and z and velocity components vx, vy, and vz between the solar gravity 
perturbed and unperturbed orbits of the spacecraft around Venus.  
 
2.1 State Vectors for Close Orbit Determination 
 
 GMAT is being used to generate the position and velocity vectors of the spacecraft for 
every time point of every close orbit being mapped in this project with and without solar gravity 
potential perturbations. The initialization of the GMAT function simulating the motion of the 
spacecraft, the Propagator, requires initial state vectors for the position and velocity of the 
spacecraft or the initial orbital elements. The recently proposed Venera D mission aiming to do a 
comprehensive mission to Venus was used as a model to determine the initial conditions of the 
spacecraft’s orbit for this project. The projected arrival date to Venus of this mission is 
December 5 of 2026 [16]. 
 
2.1.1 The Venera D Mission 
 The Joint Science Definition Team (JSDT) formed by The Russian Space Agency, Space 
Research Institute of the Russian Academy of Sciences, and NASA, proposed the Venera-
Dolgozhivuschaya (Venera-D) mission in 2014 with the goal of “understanding Venus as a 
system, from the top of the atmosphere to the surface and interior” [16, p1].  The Venera D 
mission will consist of a lander with an attached Long-Lived, In-Situ Solar System Explorer 
(LLISSE), which will sample the atmosphere and image the surface during descent before 
landing at high altitude on the northern hemisphere of Venus [17].  
 
 In spite of the fact that water is not, at this point present on Venus' surface, accessible 
geomorphology information shows a past filled with a surface molded from ongoing volcanism, 
blaming, and collapsing, which might be connected to the previous presence of water [18]. Life 
in Venus that might have evolved during its wet era, when its climate was still habitable, may 
remain extant today given its thick sulfuric acid clouds [19], [20]. This poses an opportunity to 
better understand when Venus may have been habitable in the past. Moreover, the study of the 
existence of water in Venus [21], [22] and its climate, including possible formation and loss or 
migration of microbial life forms from surface to the clouds, makes the planet an appealing 
destination for the study of life on other Earth-like planets [16]. 
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According to the launch opportunities in 2026 and 2027, the trajectory analysis of this mission is 
as follows: 

1) Launch from the Vostochny launch facility in Russia in 2026 with backup dates in 2027 
and 2029 using the Angara-А5 carrier rocket; 

2) Earth-Venus trajectory transition using hydrogen KVTK or Briz upper stage vehicle; 
3) Flight along Earth-Venus trajectory with necessary corrections; 
4) Descent module separation two days prior the arrival to Venus; 
5) Transfer maneuver to place orbiter on nominal approaching orbit; 
6) Descent module entry to the atmosphere; 
7) Orbital module transfer to a high elliptical orbit using the rocket engine; 
8) Separation of a subsatellite, if provided; 
9) Nominal scientific operations assuming data transmission from the surface of Venus and 

the subsatellite to Earth though the orbiter [16]. 

 
 For the scenario of a launch from Earth on May 30 of 2026, an initial ∆v (delta-v or burn) 
of 3.905 km/s will take Venera D from a circular low orbit around Earth with an altitude of 200 
km to a departure velocity vector at infinity (or v-infinity) of 3.905 km/s. A second  ∆v of 0.899 
km/s will transfer it into a high elliptic orbit around Venus with pericenter (or periapsis) altitude 
of 500 km and orbital period of 24 hours. The right ascension of the asymptotic velocity arriving 
vector in J2000 coordinates is expected to be 186.73°. The required pericenter altitude can be 
guaranteed by and inclination of 90°±10°, and argument of pericenter π/2 < ω < π or 3π/2 < ω < 
2π [16]. Figure 13 below provides a visual scenario of the orbital mechanics of this mission with 
a launch date on June 2026. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 12.  Venera D Orbital Mechanics [16]. 

 

Note: Earth-Venus transfer 
trajectory with start in June 

2026. 

Note: Arrival to Venus: (1) separation and 
trajectory offset, (2) Venus orbit, (3) orbiter’s 
orbit, (4) flyby trajectory, (5) area of orbiter-

lander communication, (6) braking and 
transferring the orbiter onto the orbit around 

Venus, and (7) radio shadow of Venus. 
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2.1.2 The Astrodynamics 
 
 The initial conditions for propagation of both the unperturbed and perturbed orbits to be 
used in the initial stage of this project, include the orbital parameters projected in [16] mentioned 
above. For the initial point of the first orbit, the two-body astrodynamics equations of motion can 
be propagated via the Runga Kutta numerical methods in GMAT. This propagation method is 
necessary to solve the three-body problem in the presence of solar gravity perturbations. 
GMAT’s propagator requires initial conditions given by either the initial state vectors (AKA 
position and velocity) or the six Keplerian elements, which describe an orbit. The six elements 
are: 

• 𝑎 = Semi-major axis (size) 
• e = Eccentricity (shape) 
• i = inclination (tilt) 
• ω = argument of perigee (twist) 
• Ω = longitude of the ascending node (pin) 
• ν	= true anomaly (angle at a given time) [23] 

 
Having the pericenter altitude and period, 𝜏, of the initial high elliptical orbit after the point of 
transfer, its semi-major axis and eccentricity can be found via the equation for the period of a 
closed orbit, 𝜏" = ./"0!

12
, where G is the gravitational constant, G = 6.67x10#"$ %&!

%'	)*+"
 , and M 

the mass of Venus, M = 4.8675	x	10".	kg [24]. Solving for 𝑎 in the previous equation, we have 
 

𝑎 = O3"12
./"

!
= P(56.$$))"(6.69:!$#"$ %&!

%'	)*+"	)(..5696	:	!$
",	%')

./"

!

. 

This yields a semi major axis 𝑎 = 39,448.744	km. The given pericenter altitude can be used to 
find the radius at pericenter by adding the radius of Venus [24] to it: rp = 500 km + 6051.8 km = 
6551.8 km. Relating rp to the eccentricity of the elliptical orbit yields the equation rp = 𝑎(1 − 𝑒).	 
Solving for e in this equation, we have 𝑒 = 1 − ;-

0
.	 This results in an eccentricity of 𝑒 = 0.8339.  

Figure 14 below shows the XY plane on the reference frames of Earth and Venus and the 
position of spacecraft Q with respect to both frames. The right ascension of the asymptotic 
velocity arriving vector in J2000 coordinates of 186.73° can be converted to Venus’ reference 
frame, which represents the right ascension of the orbit at radius of pericenter. As the sketch 
shows, this can be done by subtracting the right ascension of Venus with respect to Earth, ΩVE 
from that of the asymptotic velocity arriving vector. 
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Figure 13. Conversion of the right ascension of the asymptotic velocity arriving vector                                                                                   
in J2000 coordinates to that of the spacecraft’s orbit with respect to Venus. 

 
The orbital elements calculated so far were tested by propagating the spacecraft for a full period 
in GMAT. The calculated semimajor axis of 39,448.744	km proved to yield a radius of 
pericenter too small to serve the purposes of this investigation, and it was increased by 10,000 
km. This increment to the semimajor axis yields a period of:  
 

 τ = O.<"=!

12
= P

.<"(.>,..5.9..%&)!

(6.69:!$#"$ %&!

%'	)*+"	)(..5696	:	!$
",	%')

=≈ 33.6814	hr. ≈ 33	hr. , 40	min. and	53	sec.  

 
The test also proved 100° to be the most convenient value, within the allowable range, for the 
argument of perigee. 
 
Collecting the known orbital elements to initiate the data generation for this project we have: 

• 𝑎 = Semi-major axis = 49,448.744 km 
• e = Eccentricity = 0.8339  
• i = inclination = 90° 
• ω = argument of perigee = 100.0° (chosen from allowable range) 
• Ω = longitude of the ascending node = 98.7887° 
• ν		= mean anomaly = 0° (at radius of pericenter). 

 
The values above represent the initial condition of the first orbit of perturbation mapping of this 
investigation. Time permitting, several other orbits will be investigated and will be chosen based 
on the minimum cost of transfer provided. However, the initial conditions for the next orbits to 
be observed will be given by the GMAT propagator itself. An analysis of the GMAT numerical 
method for data generation will be presented in the next section, as well as a brief derivation of 
the astrodynamical differential equations leading to the need for numerical methods. 
 
 

Longitude of ascending node (J2000) Earth = -11.26064° 

Longitude of ascending node (J2000) Venus = 76.68069° [24] 
E = Earth reference frame (J2000) 
V = Venus reference frame (J2000) 
Right ascension of Venus with respect to Earth: 
ΩVE = 76.68069° + 11.26064° = 87.94133° (shown in blue) 
Right ascension of spacecraft’s orbit with respect to Venus: 
𝛀QV = 186.73° - 87.94133° = 98.7887° (shown in orange) 
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2.2 GMAT 
 
 The General Mission Analysis Tool, GMAT, is an open-source software developed by 
NASA in partnership with industry, private and public contributors. GMAT has a wide range of 
capabilities beyond supporting with the design and analysis of space missions. Its dynamics and 
environment modelling support the modeling of orbits, their analysis and detailed visualization, 
orbit perturbation study and maneuver planning, the determination of propulsion system 
requirements and estimation of the lifetime of a mission. It also provides a detailed visual 
representation of the solar system allowing the use of a rich set of coordinate systems, orbits and 
natural phenomena such as axial tilts and the phases of the moon, formations and constellations, 
harmonic gravity, drag, tides, and relativistic corrections. GMAT’s propagation feature uses 
ephemeris files from celestial navigation data banks CCSDS, SPICE, STK, and Code 500. 
Propagators in GMAT naturally synchronize epochs of multiple vehicles and about fixed step 
integration and interpolation [10].  
 
 GMAT is implemented in ANSI standard C++ using Object Oriented methodology. It 
interfaces with external platforms, such as, MATLAB and Python, giving an extensible 
engineering for future development. It has a rich featured, interactive GUI that makes analysis 
quick and simple, custom scripting language that makes complex, custom analysis possible, and 
a command line interface for batch analysis. GMAT has enabled and upgraded missions in 
practically every NASA flight system including empowering new mission types, broadening the 
life of existing missions, and advancing new science perceptions. It has supported eight NASA 
missions and more than ten NASA proposal endeavors. Up to date, GMAT has benefit over 30 
organization including 15 universities and 12 commercial firms with their publication of results 
in the open literature. GMAT is under the Apache License 2.0, and supports Windows 7+, Mac 
OSX 10.10+ and Linux platforms [10]. 
 
2.2.1 Propagation Method 
 
 Simulating the orbital motion of (or propagating) a spacecraft is the most fundamental 
capability of GMAT, which is done via the Propagator function. A GMAT Propagator is either 
of numerical integration type or ephemeris type. The ephemeris type uses data banks for celestial 
navigation that gives the trajectory of celestial bodies and satellites. The numerical integration 
type uses the different propagation methods mentioned on Table 2 on page 6 of this report. The 
data generated for the purposes of this investigation uses the Runge-Kutta 89 numerical 
integrator with an error control on the eighth order, and for which its coefficients were derived 
by J. Verner. These coefficients are chosen due to their robustness though they are not 
necessarily being the most efficient [10].   
 
The analysis of spacecraft motion leads to ordinary differential equations with time as the 
independent variable. Many times, numerical methods make it possible or less complicated to 
solve for these ordinary differential equations. In this section, a brief analysis of the origin of the 
astrodynamical ordinary differential equations describing the motion of a spacecraft will be 
presented, as well as the Runge-Kutta numerical method to solve for them. Bold letters in the rest 
of this paper will denote vectors [25]. 
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Newton’s second law describes the particle mechanics in the Newtonian frame via the second-
order differential equation 

�̈� = 𝐅
A

,                                                                                               (2.1) 
where r is the position vector as a function of time, m is the mass of the spacecraft and F, the 
forces acting on it. Whether there might or not a closed, analytical solution to this equation, 
depends on how complex the force function F might be. In the most trivial case, the problem can 
be solved using ordinary differential equation integration methods, which yield: 

𝐫 = 𝐅
"A
𝑡" + C!𝑡 + C", with F and m being constant                        (2.2) 

C! and C" in this equation are the vector constants of integration making six scalar constants of 
integration in total.  Given that the position and velocity at time  𝑡 = 0 are r$ and ṙ$ yields an 
initial value problem. Applying the initial conditions to equation 2, we have that C! = r$  and 
C" = ṙ$, and the equation becomes 

𝐫 = 𝐅
"A
𝑡" + �̇�$𝑡 + 𝐫$, with F and m being constant                         (2.3) 

Similarly, if we know the position, 𝐫$ at 𝑡 = 0,  and velocity, �̇�B, at a later time 𝑡 = 𝑡B, we can 
apply the boundary conditions for a boundary value problem where C! = �̇�B −

𝐅
"A
𝑡B  and C" = 𝐫$  

yielding 
𝐫 = 𝐅

"A
𝑡" + (�̇�B −

𝐅
"A
𝑡B)t + 𝐫$, with F and m being constant    (2.4) 

The goal here is to solve the initial value problem [25].  
Equation one contains three components: 

�̈� = C.(D,𝐫,�̇�)
A

							 �̈� = C/(D,𝐫,�̇�)
A

						 �̈� = C0(D,𝐫,�̇�)
A

  (2.5) 
 
These are uncoupled second-order differential equations and will be reduced to six first-order for 
the purpose of numerical solution. Introducing the auxiliary variables 𝑦! through  𝑦6 for 
reduction, we have: 

 
        𝑦! = 𝑥						𝑦" = 𝑦					𝑦G = 𝑧                    (2.6) 

 𝑦. = �̇�						𝑦H = 𝑦	̇ 				𝑦6 = �̇� 
           

The position and velocity in terms of these auxiliary variables in a Newtonian frame become: 
𝐫 = 	𝑦!b̂ + 𝑦"d̂ + 𝑦G𝒌f �̇� = 	 𝑦.b̂ + 𝑦Hd̂ + 𝑦6𝒌f 

 
Their derivatives with respect to time yield: 
 

d𝑦!
d𝑡 = �̇� 				

d𝑦"
d𝑡 = �̇� 				

d𝑦G
d𝑡 = �̇� 

 
d𝑦.
d𝑡 = �̈� 				

d𝑦H
d𝑡 = �̈� 				

d𝑦6
d𝑡 = �̈� 

 
Combining equations 5 and 6, we get: 
     �̇�! = 𝑦.         

     �̇�" = 𝑦H     (2.7) 
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     �̇�G = 𝑦6     

     �̇�. = 𝐅I	(𝑡, 𝑦!, 𝑦", 𝑦G,	 𝑦., 𝑦H, 𝑦6)         

     �̇�H = 𝐅J(𝑡, 𝑦!, 𝑦", 𝑦G,	 𝑦., 𝑦H, 𝑦6) 

     �̇�6 = 𝑭K(𝑡, 𝑦!, 𝑦", 𝑦G,	 𝑦., 𝑦H, 𝑦6)    

   Since these equations are coupled, they can be written more compactly in the following way 
 

�̇� = 𝐟(𝑡, 𝐲)       
 

Where      𝐲 = 	

⎩
⎪
⎨

⎪
⎧
𝑦!
𝑦"
𝑦G
𝑦.
𝑦H
𝑦6⎭
⎪
⎬

⎪
⎫

 �̇� =

⎩
⎪
⎨

⎪
⎧
�̇�!
�̇�"
�̇�G
�̇�.
�̇�H
�̇�6⎭
⎪
⎬

⎪
⎫

0 𝐟 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝑦.
𝑦H
𝑦6

L.	(D,J)
A

L/	(D,J)

A
L1	(D,J)
A ⎭

⎪
⎪
⎬

⎪
⎪
⎫

 (8)    

 
In order to obtain a numerical solution for equation  �̇� = 𝐟(𝑡, y) over the time interval 
𝑡$ ≤ 𝑡 ≤ 𝑡B, we divide or mesh the interval into N discrete times 𝑡!, 𝑡", 𝑡G…𝑡M, with 𝑡! = 𝑡! and 
𝑡M = 𝑡B. The step size h represents the time difference between adjacent times on the mesh [25].  
 
Let us define equation 7 as 	�̇�N = 𝐟(	𝑡N , 	𝐲N 	) for time	𝑡 = 𝑡N. The Runge-Kutta or RK methods 
were developed by German mathematicians Carle Runge (1856-1927) and Martin Kutta (1867-
1944). For the explicit, single-step RK, 	𝐲NO! at 𝑡N + ℎ is obtained from 	𝐲N at 𝑡N by the formula  

	𝐲NO! = 	𝐲N + ℎ𝜑(	𝑡N , 	𝐲N , ℎ	)  

where 𝜑 is a function average of the derivative dy/dt over the interval 𝑡N to 𝑡N + ℎ obtained by 
evaluating the derivative 𝐟(𝑡, y) at different stages within the time interval. The order of an RK 
method reflects the accuracy to which 𝜑 is computed, compared to a Taylor series expansion. An 
RK method of the p order is called RKp method,  
and it is as accurate in computing 	𝐲N from equation 9 as a Taylor series of the pth order is:  

𝐲(𝑡N + ℎ) = 	𝐲N +	c!ℎ + c"ℎ"…+ cPℎP 

For the RK method only the first derivative 𝐟(𝑡, y) is required, which is available from equation 
2.7 itself. The higher the RK order is, the more stages it has and the more accurate 𝜑 is. For a 
number of stages s, there are s times �̃� within time interval 𝑡N ≤ 𝑡 ≤ 𝑡N + ℎ where the derivatives 
𝐟(𝑡, y) are evaluated. These times are given by specifying numerical values of the nodes 𝑎A in 
the expression 

�̃�	A = 𝑡N + 𝑎Aℎ, where m = 1, 2, 3, …, s 

At each of these times the value of 𝑦x is obtained by providing numerical values for the coupling 
coefficients bmn in the formula 

𝐲xA = 𝐲N + ℎ∑ 𝑏𝑚𝑛A#!
QR! 𝐟}Q, where m = 1, 2, 3, …, s 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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The vector of derivatives 𝐟}A is evaluated at stage m by substituting and �̃�	A and 𝐲xA into equation 

7:   𝐟}A = 𝐟(�̃�A, 	𝐲~A), where m = 1, 2, 3, …, s (2.12) 

The increment function 𝜑 is a weighted sum of the derivatives 𝐟}A over the s stages within the 
time interval 𝑡N to 𝑡N + ℎ,    𝜑 = ∑ 𝑐𝑚S

AR! 𝐟}𝒎  (2.13) 
 
The coefficients cm are known as the weights. Substituting equation 13 into equation 9 yields 

	𝐲NO! = 	𝐲N + ℎ∑ 𝑐𝑚S
AR! 𝐟}𝒎 (14) 

The numerical values of the coefficients 𝑎A, 𝑏A, and 𝑐A depend on which RK method is being 
used. It is convenient to write these coefficients as arrays, so that 
 

{𝐚} = 	�

𝑎!
𝑎"
⋮
𝑎"

�  [𝐛] =      {𝐜} = 	�

𝑐!
𝑐"
⋮
𝑐"

� , where s is the number of stages (15). 

 

[𝐛] is undefined when s = 1 and nodes {a}, coupling coefficients [b], and weights {c} for a given 
RK method are not necessarily unique [25]. 
 

2.2.2 Set Up 
 
 The set up in GMAT is initiated by configuring the spacecraft, which includes the initial 
conditions to start propagation. This configuration requires not only the six Keplerian elements 
above calculated above, but also the epoch (data of arrival to Venus in this case) and coordinate 
system. The epoch is in Coordinate Universal Time (UTC) time scale based on the current 
Gregorian year and is located at 0-degree latitude, the Prime Meridian. This is the usual calendar 
format plus Hour:Minute:Second.fraction [26].  
The coordinate system used to propagate is based on the Venus mean orbital elements J2000 
defined based on the Earth’s equator and equinox on January 1, 2000 at 12:00:00 TBD. Figure 
15 shows this configuration with the six Keplerian elements calculated above and the expected 
epoch for the arrival of Venera D to Venus with launch date on May 30, 2026. 
 

 
Figure 14. Configuration of the spacecraft in GMAT. 
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The next step of the set up includes the spacecraft propagator which defines the method of 
propagation which requires a force model via the FM field on the propagator object. The 
propagator includes the following components pertinent to this setup: 

1) Type – numerical integrator Runge-Kutta 89 (method defined on Table 2 and explained 
in detail in the previous section). 

2) Initial step size – size of the first step attempted by the integrator. 
3) Accuracy – desired accuracy for an integration step. GMAT uses the method selected in 

the ErrorControl field on the Force Model to determine a metric of the integration 
accuracy. 

4) FM – identifies the force model used by an integrator. 
5) Min step size – minimum allowable step size. 
6) Max step size - maximum allowable step size. 
7) Max step attempts - The number of attempts the integrator takes to meet the tolerance 

defined by the Accuracy field. 
8) Stop if accuracy is violated - Flag to stop propagation if integration error value defined 

by Accuracy is not satisfied [10]. 

The following figure shows the numerical integrator set up with the force model required.  
 
 
 
 
 

 

 

 

 

 

 

 

Figure 15.  GMAT propagator set up with its numerical integrator (left) and force model (right). 

 As discussed in the previous section, the analysis of a spacecraft motion leads to ordinary 
differential equations and a force model is required by the numerical integrator. The setup for the 
model analyzed in this project has the following components: 

1) Error control – controls how error in the current integration step is estimated. The error in 
the current step is computed by the selection of ErrorControl and compared to the value 
set in the Accuracy field to determine whether the step has an acceptable error or needs to 
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be improved. All error measurements are relative error. The RSSStep is the Root Sum 
Square (RSS) relative error measured with respect to the current step.  

2) Central body – central body of propagation, which must be a celestial body with mass 
and cannot be a libration point, barycenter, spacecraft, or other special point. In this setup 
the central body is Venus. 

3) Point masses – a list of celestial bodies to be treated as point masses in the force model. 
A body cannot be both, the primary body in the point masses list. For the needs of this 
project only the Sun and Venus are analyzed [10]. 

The rest of the components of the GMAT propagator feature are not of relevance for this 
investigation at the moment.  
 
The orbit view plot gives a graphical view of the propagation of the satellite following the 
previous set up and obeys the Propagation and Spacecraft configuration under the Mission 
Sequence tab (or function in the code) of the GMAT GUI. This configuration includes the 
previously programmed propagator setup with its corresponding spacecraft (named SatVenus in 
this case) and the time or upper bound parameter to propagate. In this configuration, the 
spacecraft starts at the pericenter and ends at the periapsis of Venus as it can be seen on the 
figure below [10].  

 

 

 

 

 

 

 

Figure 16. Mission sequence set up in GMAT. 

 The orbit view plot allows to configure the visuals of the orbit done by the propagator 
and includes the object to be plotted such as starts, constellations, labels and axes, mesh grids for 
the celestial body, and x-y or ecliptic planes. It also allows plotting of the Sun line to see the 
location of the Sun with respect to the system under observation, various spacecraft and celestial 
bodies with respect to the chosen coordinate system, point of reference and a defined vector use 
as the point of view from which the system can be observed. This setup also has the 
MVenusJ2000 coordinate system with Venus as the point of reference and view direction. 
Figures 18 and 19 show the described setup and its resultant orbit view plot respectively. The 
direction of the Sun with respect to Venus is shown as a yellow line on the plot. The data 
generated by GMAT corresponding to the setup presented in this section is presented in Table 4, 
and it corresponds to the orbit view plot presented in Figure 19.  
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The three components of the position and velocity vectors with respect to the number of seconds 
lapsed per propagation step are presented and will be analyzed in detail in the following chapters 
of this paper. 

 

 

 

 

 

 

 

 

 

 
                                                                                                                                                                                                                       

Figure 17. Orbit view plot setup in GMAT. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Orbit view plot in GMAT corresponding with the setup for the                                             
data generation of this project.  
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Table 4.   Data file generated by GMAT corresponding with the setup presented in this chapter. 
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Chapter 3:  RNN Back-Propagation Implementation 
 
 
 One of the most dreamed-of inventions since ancient Greek times has been a machine 
that can think. Some of the mythical inventor figures of those times are Hephaestus, Pygmalion 
and Daedalus with Pandora, Galatea and Talos as a representation of artificial life [27], [28], 
[29]. It took more than a hundred years for a programmable computer to be built after it was first 
conceived [30]. Nowadays, artificial intelligence (AI) is revolutionizing science and thriving 
with numerous applications and new topics of research.  
 
 In the beginning stages of AI, the field immediately proved to be readily able to solve 
problems that are extremely difficult for the human intellect; problems involving formal, 
mathematical rules. On the other hand, a true challenge for AI proved to be performing tasks that 
are easy for people to do, but difficult to describe such as problems solved by intuition like 
language, face and path recognition and the planning and scheduling of craft operations [31], 
[32]. A solution to this problem is to allow computers to learn from experience by presenting the 
world in the form of hierarchical concepts defined in their relation to simpler concepts. This 
learning process avoids the need for a human operator having to specify the knowledge the 
computer needs to learn and allows it to learn complicated concepts by building them from 
simpler ones. A visual representation of these concepts would be a deep, multi-layer process for 
which the name of AI “deep learning” has been assigned [31]. 
 
3.1 Deep Learning and Deep Neural Networks 
 
 Deep learning is a type of machine learning that involves representation-learning 
methods based on multiple levels of representation starting with simple but non-linear modules 
each of which transform the representation of one level, or raw data, to a higher, more complex 
level of representation. With enough such transformations, a classification task can amplify 
important aspects of the input and suppress irrelevant variations. For instance, the input image is 
an array of pixel values. The learned feature in the first layer of representation usually detects the 
absence or presence of edges at certain orientations and locations in the image. The second layer 
typically spots specific arrangement of the edges to detect patterns despite small differences 
between them. The third layer commonly assembles patterns into large combinations 
corresponding to parts of familiar objects, and posterior layers would recognize objects as 
combinations of these parts. The relevance of deep learning is that these layers are not human 
engineered but learned from data using a procedure with a general purpose [33]. The image 
shows visual representation of identification of an image via deep learning.  
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Figure 19. Illustration of a deep learning model [31]. 

 A perfect example of a deep learning model is the feedforward deep network, or 
multilayer perceptron, which is just a mathematical function that maps a set of input values to 
output values. This function is composed of many simpler functions with each of their 
applications representing a new depiction of the input [31]. Feedforward deep networks are also 
called feedforward neural networks. The name of neural network was inspired by the structure 
and functioning of a biological brain, as it comprises computational units called nodes or neurons 
(perceptron layers). Deep neural networks are NNs with multiple hidden layers of neurons 
stacked together, each with a non-linear module and each of which receives the output of its 
previous layer.  Each of the neurons in a deep NN takes an input at its incoming edge, multiplies 
it by a randomly assigned weight and applies a nonlinear function called the activation function 
to the weighted sum to produce an output. Recall Figures 7 and 8 with a visual representation of 
a NN and its typical activation functions where x, w, b, ⨀, f and y represent input vector, weight 
vector, neuron bias, element-wise multiplication, activation function, and neuron output 
respectively. Then the output is given by y(x) = f (w ⨀ x + b), and it is an approximate 
representation of the input vector to a level of accuracy that depends on how vast the training (or 
input) data and training time are [11].  
 
 
3.1.1 Feedforward Neural Networks 
  
 A feedforward neural network has the goal of approximating some function f*. In the 
case of a classifier y = f* (x) that maps an input to a category y, a feedforward NN defines a 
mapping y = f (x; 𝜽) and learns the value of the parameters 𝜽 that best approximate the function. 
The feedforward models are so named because information flows through the function x being 
evaluated, through the intermediate computations to define f, to end at the output y. There are no 
feedback connections where outputs are fed back into themselves, in which case the model 
would become a recurrent NN or RNN [31]. The RNN model is described in the next section 
since it is of special interest to this project. 
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The network part of feedforward NNs comes from the fact that it is associated with an acyclic 
nature of how its functions are related. For instance, having functions f (1), f (2), and f (3) connected 
in a chain as  f (x) = f (3) (f (2) (f (1) (x))), would represent a typical structure of a NN. Additionally, 
f (1) would be called the first layer, f (2) the second layer, and so on. The depth of the model is 
determined by the length of the chain, which is where the name “deep learning” originated from. 
The final layer of the NN is the output layer.  The training of a NN involves approximating f (x) 
to f*(x) where the training data yields approximate examples of f*(x) evaluated at different 
points of the training process. A label y ≈ f*(x) accompanies every example x, and all training 
examples directly determine what the output layer must do at each x in order to approximate y. 
The behavior of the rest of the layers is not directly determined by the training data, but the 
algorithm must decide how to use these layers to find the best approach to approximate f*. Since 
in these layers the training data does not show the desired output, they are said to be hidden 
layers. The width of a NN is determined by the dimensionality of its hidden layers, each of 
which is usually vector valued. Each element of this vector or unit plays a role similar to a 
neuron because it receives input from many other units and computes its own activation value. A 
layer consists of many units, each representing a vector-to-scalar function [31]. 
 
Feedforward NNs use linear models and then find ways to overcome the limitations of these 
simple models. Linear models such as linear regression are convenient due to how easily and 
reliably, they can be fit, but their capacity is limited to linear functions, which limits the 
understanding of the interaction between any two input variables. In order to get linear models to 
represent non-linear functions of x, the linear model could be applied to a transformed input 𝜙(x) 
rather than x itself, where 𝜙 is a non-linear transformation. In this approach, 𝜙 could be 
described as providing a new representation of x or a set of features describing x and the model 
would be y = f (x; 𝜽,𝒘) = 𝜙(𝒙; 	𝜽)U𝒘, where 𝜽 are parameters that describe 𝜙 and w are 
parameters that map 𝜙(𝒙) to the desired output. Such an approach is an example of a 
feedforward network with a hidden layer defined by 𝜙 with the representation 𝜙((𝒙; 	𝜽) 
parametrized and an optimization logarithm to find the 𝜽 that corresponds to a good 
representation [31].   
 
The training of a feedforward network requires the same design decisions as a linear model, such 
as choosing the optimizer, cost function and the form of the output units. This type of network 
introduces the use of hidden layers, which requires the choice of an activation function 
responsible for computing the hidden layer values [31].   
 
3.1.1.1 The XOR Example 
 
 A simple depiction of a feedforward network is the “exclusive or function”, also named 
the XOR function. This function is an operation on binary values x1 and x2, and targets the 
desired function y = f*(x) to be learned. The XOR function returns 1 when x1 or x2 is 1, and 0 
otherwise. In this model, a learning algorithm will adapt parameters 𝜽 to approach f the closest 
possible to f* given the function y = f (x; 𝜽). Hence, the goal is for the network to operate 
correctly on the points X= {[0,0]T, [0,1]T, [1,0]T, and [1,1]T}. The network is then trained on 
these four points and it is treated as a regression problem with a square mean error loss function 
(MSE). The MSE function evaluated over the full training set is  



 40 

𝐽(𝜽) = !
.
∑ (𝑓 ∗ (𝒙) − 𝑓(𝒙; 	𝜽))"𝒙WX   (3.1) 

Assuming f (x; 𝜽) is a linear model with 𝜽 consisting of w and b, it is defined as 

f (x; w, b) = xTw + b    (3.2) 

 Solving using normal equations (ex. ATAx̂ =ATb) yields w = 0 and b = !
"
. The linear model 

outputs 0.5 everywhere indicating it cannot be represented by a linear model (as it can be seen in 
Figure 21), and the use of a transformation is in place. A feedforward network with one hidden 
layer is presented as a follow up approach. This feedforward network has a vector of hidden 
units h computed by function f (1) (x; W, c), which are then used as input for the second layer. 
Although the output layer is still a linear regression model, it is now applied to h rather than x. 
The different functions within the network are now chained together: h = f (1) (x; W, c) and y = f 
(2) (h; w, b) and  f (x; W, c, w, b) = f (2) (f (1) (x)) overall for the full model. For instance, if f (1) (x) 
= W T x and f (2) (h) = hT w, then  f (x) = xT Ww. It is clear then that these features cannot be 
described by a linear function. NNs usually do so by applying a transformation determined by 
learning parameters followed by a fixed nonlinear function called an activation function. 
Following that same strategy, the vector of hidden units can be defined as h = g (W T x + c) 
where W contains the weights of a linear transformation and c the biases [31].   

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

  

Note: The bold numbers on the graph indicate the value that the learned function is expected to 
output at each point. The plot on the left shows how the XOR function cannot be implemented by a 
linear model: when    x1 = 0, the output from the model must increase as x2 increases, and when x1 
= 1, the output from the model must decrease as x2 increases. The two lines show the need for two 
different regression lines to fit the three different regions of the model. The plot on the right show 

that a linear model can solve the problem in the transformed space represented by the features 
extracted by the NN. The line represents a linear regression line fit for the two regions of the 

model. In this example solution, the two points corresponding to an output of 1 have been 
collapsed into a single point in the feature space. The motivation of learning the feature space in 

this example is to make the capacity of the model greater to be able to fit the training set [31].   
 

Figure 20. Solving for the XOR problem by learning a representation [modified from [31]. 
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The next numerical example presents an affine transformation from a vector x to a vector h, 
which will require a bias parameter vector. The activation function g is usually an applied 
element-wise function defined as hi = g (xT W:i x + ci). The most recommended activation 
function use presently for NNs is the rectified linear unit, or ReLU [34], [35], [36] defined by the 
activation function g(z) = max{0, z} shown in the figure below. 

 

 

 

 

 

 

 

 

 

The complete network can then be specified as 
 

f (x; W, c, w, b) = wT max{0, W T x + c} + b  (3.3) 
 

Then we can also specify the XOR problem if we let  
 

W = �1 1
1 1�, 
 

C = � 0−1�, 
 

w = � 1−2�, 
 

b = 0. 
 

The next steps show how the NN processes a batch of inputs.  X is the design matrix, with one 
sample per row and containing all four points in the binary input space: 
 

X = �

0			0
0			1
1			0
1			1

�.   

 
 

First, the NN multiplies the input by the weight matrix of the first layer obtaining: 

 
Note: This activation function is the default 

recommended one for most feedforward 
NNs. Its application to the output of a linear 

transformation results in a nonlinear 
transformation. Piecewise functions being 

very closed to linear, they preserve many of 
the properties that make linear models easy 
to optimize with gradient-based methods. It 

also allows to build complicated systems 
from minimal components [31].   

 

Figure 21. The rectified linear unit activation 
function (ReLU). function [23]. 

 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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XW = �

0			0
1			1
1			1
2			2

�. 

 
Note how this operation collapsed [0  1] and [1  0] into a single point [1  1]. 
 
 
 
Next, the bias vector c is added: 
 

XW + c = �

0		 − 1
1								0
1								0
2							1

�.   

 
The examples in this space fit along a line with a slope of 1. The output along this line is 
expected to begin at 0, then rise to 1, and drop back to 0 again. However, such a function cannot 
be fit by a linear model, and it is then when the rectified linear transformation is in place. 
Transforming each example x into h as it is shown in Figure 21 we have: 
 
 

              �

0			0
1			0
1			0
2			1

�. 

 

The relationship between the examples has been changed, and they no longer lie on a single line 
but on a space where a linear model can solve the problem as can be seen on Figure 21.  

Finally, the NN obtains the correct answer for every example in the batch by multiplying (3.10) 
by the weight vector w: 

                 �

0
1
1
0

�. 

  

Although this example shows how a NN model obtains an answer with zero error, in real life 
situations there might be billions of model parameters and training examples for which a simple 
solution cannot be guessed. In order to overcome that challenge, a gradient-based optimization 
algorithm can be used to find parameters that yield very small error. The solution to the XOR 
problem is a global minimum of the loss function, so gradient descent could converge to this 

(3.8) 

(3.9) 

(3.10) 

(3.11) [31] 
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point. In actuality, gradient descent does not find an exact, integer-valued, and easy to 
understand solution like the one found in this example [31].  

 

3.1.1.2 Gradient-Descent Learning and the Cost Function 
 
 Most of the successful approaches to automatic machine learning can be categorized as 
gradient-based learning methods. Figure 23 shows how, when applying these learning methods, a 
learning machine computes a function     M (𝑍P, W) where 𝑍P is the 𝑝-Y input in the system, and 
W is the collection of adjustable parameters in the system. A cost function 𝐸P= C (𝐷P, M (𝑍P, 
W)), measures the discrepancy between desired output, 𝐷P, for pattern 𝑍P and the output given 
by the system. The average of the errors 𝐸Pover an input-output set, called the training set, is 
given by the average cost function 𝐸DZ0NQ(𝑊). The learning problem consists of finding the value 
of W that minimizes 𝐸DZ0NQ(𝑊). It is of special interest here to measure the error rate of the 
system in the field, which is estimated by measuring the accuracy on a separate set of samples 
from the training set, called the test set. The Mean Square Error is the most common cost 
function used, and it is given by 
 

𝐸P= !
"
 (𝐷P- M (𝑍P, W))2,    𝐸DZ0NQ = !

[
∑ 𝐸PPR!  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 22. Gradient-based learning machine (modified from [37]). 

 

(3.12)  [37] 
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M (Z, W) 
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𝐸2, 𝐸3, …𝐸4 
 
Error 
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Output 

𝐷2, 𝐷3, … 𝐷4 
 Parameters 

W 

Input 

𝑍2, 𝑍3, … 𝑍4 
 

Output 
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 Among gradient-based methods, the most popular and common one to optimize NNs is 
gradient descent. Gradient descent is a way to minimize the objective function J(θ) 
(parametrized by parameters θ of the model) by updating its parameter in the opposite direction 
of the gradient of the objective function, ∇θ J(θ), with respect to these parameters. The learning 
rate η determines the step size in order to reach the local minimum. For instance, the model 
follows the direction of the slope of the surface created by the objective function downhill until 
reaching a valley [38]. 
 
 There are three variants of gradient descent, and they differ in how much data is used to 
compute the gradient of the objective function. One of these three variants is the batch gradient 
descent, which computes the gradient of the cost function with respect to the parameters θ of the 
entire dataset: 
 

θ = θ – η	∙ ∇θ J(θ) 

For example, consider the following data set in the table below with N = 6 labeled data instances: 

 
Table 5. Data set with 4 features (age, job, education, marital) and label y [39]. 

 

 

 

 

 

 

 

 During the training process using this data set, the NN computes a prediction that is 
compared to the ground truth label for each instance. Both the prediction and the label are then 
used to calculate the loss function for that given sample. However, the weights are not updated 
until all data instances of the dataset have been processed, but the gradients for each instance in 
the dataset are calculated and summed. This accumulated gradient is then divided by the number 
of data instances, which is 6 in this example. Finally, the weights are updated in the negative 
direction of this averaged sum. Hence, for the given dataset, the gradients for each of the six 
samples are to be calculated and summed. Then the sum of the gradients is divided by 6 and used 
to perform single gradient descent to update weights of the NN [39]. 

 Batch gradient descent is computationally efficient, since it does not need to be updated 
after each sample, and it has a very stable convergence of the weights to the optimal weights. 
That way the highest increase of the loss function is achieved by getting a very good estimate of 
the true gradient, since the individual gradients over each sample in the dataset are calculated and 

(3.13)  [38] 
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averaged. On the other hand, batch gradient descent calls for slower learning because only one 
update is performed after N number of samples have been processed. Also, the learning process 
can get stuck in a local minimum of the loss function to never reach the global optimum, at 
which the NN achieves the best results, because the calculated gradients are closed to each other. 
Noisy gradients could, however, overcome this issue by introducing small variations in the 
directional values that allow the gradient to jump from local minimum of the loss function to 
continue updating towards the global minimum [39]. 

 The other gradient descent variant is stochastic gradient descent (SGD), which updates 
the parameters for each training example x(i) and label y(i): 

θ = θ – η	∙ ∇θ J(θ; x(i); y(i)) 

While batch gradient descent for large data sets is redundant as it recomputes gradients for 
similar examples before each parameter update, SGD does away with redundancy by performing 
one update at a time. It is hence usually faster and performs frequent updates with a high 
variance that cause the objective function to fluctuate heavily enabling it to jump to new, and 
potentially better, local minima. However, this fluctuating behavior might complicate 
convergence to the exact minimum, which can be avoided by slowly decreasing the learning rate 
[31].   

 Consider the data set given in Table 5. In SGD, the prediction is made and compared to 
the prediction with the label to calculate the gradient of the loss function as well. However, in 
this case, the weights are update after each data instance (boxed in red in Table 6) has been 
processed by the NN. Hence, the gradients are calculated and the weights of the NN are updated 
six times. 

 
Table 6. Updated Step with stochastic gradient descent [39]. 

 

 

 

 

 

 

 

 
 Other advantages of SGD are that it provides immediate performance insights, since it is 
not necessary to wait until the end of the data set to see how the NN is performing, and it also 
makes it possible for the NN to learn faster because an update is performed after each data 
instance is processed. On the other hand, STG can be computationally intensive given that the 

(3.14)  [38] 
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weight updates are done more often, and it also might be unable to settle on a global minimum of 
the loss function due to the noisiness of its gradients [39].  

 A third variant of gradient descent is the mini-batch gradient descent, which combines the 
best of the other two variants. For the mini-batch gradient descent, the training set is divided into 
batches of n size. For instance, for a dataset with 10,000 samples, a suitable size for n would be 
8, 16, 32, 64, 128. Just as in the batch gradient descent case , an average gradient is computed 
across the data instance in a mini-batch. The gradient descent step is performed after each mini-
batch of samples has been processed.[38] 

θ = θ – η	∙ ∇θ J (θ; x(i:i+n) y(i:i+n)) 
 

For instance, if the data set in Table 5 is considered once more, the six data instances may be 
divided into batches of size n = 2, resulting in three mini-batches. 

 

Table 7. Updated step with mini-batch gradient descent [39]. 

 

  

 

 

 

 

 

 

 

 In the given example, two gradients for the two data instances (boxed in red in the table 
above) in each mini-batch are calculated and divided by two to obtain the average gradient over 
that mini-batch. This average gradient is used to perform a gradient descent step, which is done a 
total of three times [39]. 

 The computational efficiency of mini-batch gradient descent is between that of the two 
variants mentioned earlier, and it is more stable converging towards a global minimum, since the 
average gradient is calculated over n samples that results in less noise. This variant also allows 
faster learning given that the weights are updated more often than it is in the other two variants, 
which results in a much faster learning process. However, mini-batch gradient descent requires 
the introduction of the new hyperparameter n, which becomes the second most important 
parameter for the overall performance of the NN. It is important, then, to take the time to try 
many different batch sizes until a final batch size that works best with the other parameters, such 
as the learning rate, is found [39]. 

(3.15) 
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 For this project, the batch gradient descent approach is being used for the time steps of a 
single full elliptical orbit at present. Once the dataset includes other orbits considered for the 
training of the NN, the mini-batch gradient descent will be adopted with a batch number 
matching the number of elliptical orbits used during training. However, STG and mini-batch 
gradient descent will be considered as well for training using the first orbit being analyzed to 
compare the results between these different approaches in an effort to find the best resolution 
possible.  

 
 In this section, the feedforward deep network was presented as a typical example of deep 
neural network methods. As mentioned in the beginning of section 3.1.1, feedforward models are 
named as such because information flows forward the NN. There are no feedback connections 
where outputs are fed back into itself, in which case the model would become a recurrent NN or 
RNN [31]. The RNN model would be described next since it is of special interest to this project. 
 

3.2 Recurrent Neural Networks 
 
 A common assumption about machine learning models, including NNs, is the 
independence among data samples. This assumption, though, does not hold for sequential types 
of data, such as time series, speech, language, etc. A way to account for sequential dependency is 
to concatenate a fixed number of consecutive data samples together to be treated as one single 
data point. However, this approach has proven to be highly dependent on finding the optimal 
window size, since a small window size does not capture the longer dependencies, and a too 
large window size would add unnecessary noise. Furthermore, in the case where long-range 
dependencies in data ranging over hundreds of time steps are present, a window-based method 
would not scale. In addition, conventional NNs cannot handle variable length sequences, which 
is the case for many domains such as language translation and speech modeling [13]. 

 While feedforward NNs are limited to passing the data forward from input to output, 
recurrent NNs (RNNs) have a feedback loop where data can be fed back into the input at some 
point before it is fed forward again for further processing and final output [40]. RNNs also have 
the ability to use their feedback connections to store representations of recent input events in the 
form of activations. Therefore, RNNs can be very useful when dealing with time dependency 
data [40], [41] as it is the case for the proposed problem in this report.  

 RNNs process the input sequence one element at a time while maintaining a hidden state 
vector acting as a memory for past information. The learning process is selective to relevant 
information allowing the NN to capture dependencies across several time steps, which makes it 
possible to use both current input and past information while making future predictions. In this 
model, learning happens automatically without much knowledge of the cycles or time 
dependencies in data. RNNs eliminate the need of fixed size time window and can handle 
variable length sequences. 

 Recall Figure 24 shown in chapter one, where an RNN and the unfolding in time of the 
computation involved in its forward computation is shown [33]: 
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Figure 23. Recalling figure 10, a standard RNN and its unfolding in time [13]. 

 
 The artificial neurons shown in the figure above as hidden units grouped under node s 
with values st at time t, get inputs from the other neurons at the previous time steps. The figure 
on the left represents a standard RNN with a circle depicting a time step and a black square the 
delay of the time step while this process takes place. This can be considered a feedback 
connection of the hidden neurons across time. Through this process, an RNN can map an input 
sequence with elements xt into an output sequence with elements ot depending on all the previous 
𝑥-\ (for 𝑡\ ≤ t). At time t, the RNN receives as input the current sequence element xt and the 
hidden state from the previous time step st-1. The hidden state is then updated to st  and finally the 
output of the network ht is calculated. Hence, the current output ht depends on all the previous 
inputs 𝑥-\. The sample parameters represented by matrices U, V, W, are utilized every time step. 
U is the weight matrix between the input and hidden layers similar to a conventional NN. W is 
the weight matrix for the recurrent transition between one hidden state to the next. V is the weigh 
matrix for the hidden to output transition [13], [33]. The following equations summarize the 
computations carried out at each time step: 
 

𝑠- = 𝜎(𝑈𝑥- +𝑊𝑠-#! + 𝑏-) 

ℎ- = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠- + 𝑏]) 

 The softmax in 3.16 represents the softmax function, which is often used as the activation 
function for the output layer in a multiclass classification problem, and b is the bias at the 
corresponding level of the RNN. This function ensures that all the outputs range from 0 to 1 and 
their sum is 1. For a K class problem, the softmax equation is: 
 

𝑦^ =
𝑒05

∑ 𝑒056_
^6R!

	𝑓𝑜𝑟	𝑘 = 1,… , 𝐾 

 
 In this equation, 𝑎 is a parameter learned during training. The standard RNN shown in 
Figure 24 can be considered a deep network with the number of layers equivalent to the number 
of time steps in the input sequence. An RNN can process variable length sequences, since the 
same weights are used for each time step. A new input is received at each time step, and, given 
that the hidden state 𝑠- is updated via equation 3.16, the information can flow in the RNN for the 

(3.16)  [13] 

(3.17)  [13] 
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arbitrary number of time steps. This allows the RNN to maintain a memory of all the past 
information [13]. 
 
 Many other variants than those observed in Figure 24 are possible, such as one where the 
network generates a sequence of outputs, like words, each of which is used as an input for the 
next time step. The backpropagation logarithm can be directly applied to the unfolded 
computational graph network on the right to compute the derivative of a total error with respect 
to all the states st and all the parameters [33]. Backpropagation is the most common method used 
to train RNNs and it is discussed in detail in the next section.  
  
3.2.1 RNN Training with Backpropagation 
 
 When a feedforward NN is used to accept an input Z and produce an output Y, 
information flows forward through the network. The initial information provided by input Z then 
propagates up to the hidden layers to finally produce output Y. This is call forward propagation. 
Forward propagation can continue onward during training until it produces a scalar cost E(W). 
The backpropagation algorithm or backprop for short, allows the information from the cost 
function to then flow backward through the network in order to compute the gradient [31].  
 
 Backprop algorithm has been cornerstone in machine learning to train NNs, with a rich 
history of having been reinvented several times by independent researchers (Griewank, 2012; 
Schmidhuber, 2015). It has been one of the most studied and used training algorithms since it 
gained popularity mainly through the work of Fumenlhart el al. (1986) [42]. The backprop 
procedure to compute the gradient of an objective function with respect to the weights of a 
multilayer stack of modules is simply a practical application of the chain rule for derivatives. The 
key concept of this method is that the derivative, or gradient, of the objective with respect to the 
input of a module can be computed by working backwards from the gradient with respect to the 
output of that module (which is also the input of the subsequent module). The gradients can be 
propagated through all modules by applying the backpropagation equation repetitively, starting 
from the output at the top where the network produces its prediction, all the way to the bottom 
where the external input is fed. Computing the gradients with respect to the weights of each 
module becomes simple once these gradients have been propagated through all modules (refer to 
Figure 24 to understand this process) [33]. 

 Many deep learning applications use feedforward NN work architectures, which learn to 
map a fixed-sized input to a fixed-size output. In order to move from one layer to another, a set 
of units compute a weighted sum of their inputs form the previous layer and pass the result 
through a non-linear function such as the rectified linear unit (ReLU), which was introduced in 
chapter 1 and shown again when solving for the XOR example problem in sub-section 3.1.1.1. In 
past decades, NNs used smoother non-linear functions like the tanh(z) or the sigmoid functions, 
but ReLU has proven to be faster, especially with NNs with many layers. As seen before, units 
that are not on the output or input layers are called hidden units. The hidden layers can be seen as 
distorting the input in a non-linear way in Figure 25, so that categories become linearly separable 
by the last layer [33]. 

 



 50 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. Multilayer NNs and backpropagation [33]. 

 
 
 
In Figure 25: 
 
a.  The connected dots represent a multilayer NN distorting the input space to make the classes of 
data (an example of which is shown by the red and blue curves) linearly separable. As it can be 
seen on the left, the grid of the input class is also transformed as seen on the right by the hidden 
units. This example illustrates the initiation of the process with only two input units and two 
hidden units, but in a real word application, NNs contain tens or hundreds of thousands of units.  
 
b.  The chain rule of derivatives describes how the small change of x on y, and that of y on z are 
composed. A small change ∆𝑥 in x gets transformed first into a small change ∆𝑦 in y when 
getting multiplied by ∂y/∂x, the definition of the partial derivative. In the same way, the change 
∆𝑦 creates a change ∆𝑧 in 𝑧. Substitution of one equation into the other gives the chain rule of 
derivatives, which is how ∆𝑥 gets turned into ∆𝑧 through multiplication by the product of ∂y/∂x 
and ∂z/∂x. It works the same way when x, y and z are vectors, and the derivatives are Jacobian 
matrices.  
 
c.  The equations for computing a forward pass in a NN with two hidden layers and one output 
layer are shown, each constituting a module through which gradients can be backpropagated. 

Note: Reproduced with permission from  
C. Olah. (http://colah.github.io/). 
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The total input z at each layer is first computed for each unit, which is a weighted sum of the 
outputs of the units in the layer below. A non-linear function f(z) is then applied to z to get the 
unit output. Note that the bias term has been omitted in this example just for simplicity. The non-
linear functions used in NNs include the ReLU, f(z) = max(0, z) the hyperbolic tangent,            
f(z) = `

0#`#0

`0O`#0
, and the logistic function  f(z) = !

!O`#0
. 

 
d.  The equations used for computing the backward pass are shown. The error derivative with 
respect to the output of each unit are computed at each hidden layer. This is a weighted sum of 
the error derivatives with respect to the total inputs to the units in the layer above. Then the error 
derivative with respect to the output is converted into the error derivative with respect to the 
input by multiplying it by the gradient of f(z). The error derivative with respect to the output of a 
unit is computed at the output layer by differentiating the cost function. This gives yl - tl  if the 
cost function for unit l is 0.5(yl - tl)2 where tl is the target value. Once ∂E/∂zk is known, the error-
derivative for the weight wjk on the connection from the j unit layer below is just yj (∂E/∂zk) [33]. 
 
 RNN training can be achieved by unfolding the RNN and creating a copy of the model 
for each time step just as in the unfolded RNN part of Figure 24. Then, the RNN can be treated 
as a multilayer NN and be trained in a way similar to backprop. This approach is called back 
propagation through time (BPTT). Ideally, RNNs can be trained to learn long-range 
dependencies over arbitrarily long sequences using BPTT by learning to tune weights to put the 
right information in memory. In practice, though, training an RNN is not simple, and it can 
perform poorly even when the outputs and relevant inputs are separated by only 10-time steps. 
Using BPTT to train a RNN requires backpropagating the error gradients across several time 
steps. It can be seen in Figure 24, that in a standard RNN the recurrent edge has the same weight 
for each time step. Therefore, back-propagation of the error involves multiplying the error 
gradient with the same value repetitively, which causes the gradients to become either too small 
or too large. This problem is known as exploding and vanishing gradients respectively [13].   
 
 Modification to the training procedure and new RNN architectures were proposed to deal 
with the exploding and vanishing gradient problems such as LSTM RNNs. The LSTM 
architecture has been investigated and proven to be very useful in learning long-term 
dependencies as compared to standard RNNs and have become a popular variant of RNN [13]. 
The LSTM architecture is the approach used in this project, and it will be presented in detail in 
the next chapter, along with the specific setup of the LSTM RNN used to solve the problem. In 
summary, the artificial intelligence computational procedures presented in this chapter were 
implemented in an LSTM RNN via the deep learning Application Programming Interface (API), 
Keras, based in Python and running on top of the open-source machine learning platform, 
TensorFlow.  
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Chapter 4:  LSTM RNN Implementation 
 
 
 As mentioned in the previous chapter, RNNs are networks with loops in them to allow 
information to persist. An RNN can be thought of as multiple copies of the same network, each 
of which passes the message to a successor just like in the unrolled RNN shown in Fig. 24. 
Hence, one of the appeals of RNNs is the idea that they might be able to connect previous 
information to the present task. This is sometimes possible, such as in the case of a language 
model trying to predict the next word based on the previous one in a sentence. If trying to predict 
the last word in “we live on the planet Earth,” no farther context is needed, since it is obvious the 
next word is going to be Earth. In such cases, RNN have no problem learning to use past 
information because the gap between the relevant information and the place where it is needed is 
small. However, there are cases that need more context. Consider the case where the last word is 
to be predicted in the sentence “I am from Mexico…I speak fluent Spanish.”  Recent information 
suggests for the next word to be the name of a language, but in order to narrow down which 
language, the context of Mexico is needed from further back. In this case, it is highly probable 
that the gap between the relevant information and the point where it is needed becomes very 
large and RNNs become unable to connect the information. This is known as the problem of 
Long-Term Dependencies [43].  
 
 
 
 
 
 
 
 
 

 

Figure 25. Long-Term Dependency Problem [43]. 

 
 
  
 
 
Long Short Term Memory networks, or LSTMs for short, are a type of RNNs that were 
introduced by Hochreiter & Schmidhuber in 1997 as a means to make RNNs capable to learn 
long-term dependency problems and avoid the exploding or vanishing gradient problem 
mentioned in the previous chapter. LSTMs were improved in following work by many people 
and are now widely used. They are highly effective to solve a variety of problems and their 
default behavior is remembering information for long periods of time [43]. LSTMs are very well 
suited to solve the problem proposed in this project because they use current input and past 
information while making future predictions and retaining dependencies across short or large 
time steps by learning how to retain relevant information. 
 
 

Left - Unrolled RNN able to learn past information. Right - 
Unrolled RNN unable to learn past information due to the long 

gap between relevant information and the point where it is needed. 
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4.1 LSTM RNN Architecture 
 
 All RNNs have a chain of repeated modules of NN. In the case of standard RNNs, a 
simple structure, such as a single tanh layer, is the repeating module (as shown in Figure 26 
below). 
 
 
 
 
 
 
 
 

Figure 26. RNN with repeating module containing a single layer [43]. 

 
LSTMs also have a chain of repeating modules, but in this case, the module has four NNs (rather 
than one) interacting in a specific way (see Figure 28 below). 
 
 
 
 

 

 
 
 
 
 

Figure 27. An LSTM has a repeating module containing four interacting layers. 
 
 In Figure 28 each line passes an entire vector starting from the output of one node to the 
input of other nodes. The pink circle represents pointwise operations, such as vector addition, 
and the yellow boxes are NN layers learned. The lines merging represent concatenation, while 
the forking line represents its content being copied and being sent to different locations.  
 
 The core idea behind LSTMs is the cell state represented by the horizontal line running 
through the top of the diagram. The cell state runs straight down the entire chain with minor 
linear interactions only, making it easy for information to just flow along it unchanged. 
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Figure 28. The cell state of an LSTM [43]. 

 
The LSTM has structures called gates that regulate the ability to remove or add information to 
the cell state. Gates are composed of a sigmoid NN layer and a pointwise multiplication 
operation and are a way to optionally let information through. 
 
 
 
 
 

Figure 29. An LSTM gate structure [43]. 

 
4.1.1 Steps in an LSTM Walk Through 
 

1. An LSTM network begins by deciding what information will be discarded from the cell 
state. This decision is made by a sigmoid (𝜎) layer called the forget gate layer (ft), which 
looks at previous cell output, ht-1, and input vector, xt, and outputs a number between 0 
and 1 for each number in the cell state Ct-1. An output of 1 corresponds to completely 
keeping the information at that point while an output of 0 represents to completely 
discarding the information at that point. For instance, in the case of the previous example 
of a language model trying to predict the next word based on all the previous ones, the 
cell state might decide to include the gender of the subject for the correct pronouns to be 
used. When a new subject is perceived, the gender of the previous subject is forgotten. 
The figure below shows this process and calculation of the forget gate layer with Wf  and 
bf being the vector weights and biases of the layer. 
 

 
 
 
 
 

Figure 30. The forget gate layer of an LSTM [43]. 
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2. The next decision to be made is what new information to store in the cell state, which has 
two parts to it. A sigmoid layer called the input gate layer (it) decides which values will 
be updated first. Then, a tanh layer creates a vector of new candidate values, 𝐶}t, that 
might be added to the state. These two will be combined in the next step to create an 
updated state. Following the example of the language model, the gender of the new 
subject would be added to the cell state to replace the forgotten old subject’s gender. The 
following figure shows this process and calculation of the input gate layer and candidate 
values with Wi  and bi being the vector weights and biases of the input layer and Wc  and 
bc  those of the new candidate values. 
 

 
 
 
 
 
 
 

Figure 31. The input gate layer of an LSTM [43]. 

 
3. Next, the old cell state, Ct-1, is updated to the new cell state or candidate gate, Ct. Now 

that previous steps have decided what to do, the new state is calculated by multiplying the 
old state by ft (to forget the things decided to be forgotten earlier) and add it * 𝐶} t. This 
now represents the new state value scaled by how much was decided to update each state 
value. Proceeding with the example of the language model, this is where the information 
about the gender of the old subject is dropped to add new information, as it was decided 
in the previous steps. 
 

  
 
 
 
 

Figure 32. The new cell state of an LSTM [43]. 

 
4. In this last step, the output (ot) is decided by filtering the cell state. First, a sigmoid 

function decides what parts of the cell will become part of the output. Then, the cell state 
goes through a tanh function to push its values between -1 and 1. The resultant values are 
then multiplied by the sigmoid gate output in order to output only the parts that have been 
decided. In the example language model, for instance, the output information relevant to 
a verb might be considered, since it just saw a subject. For example, the output might be 
whether the subject is singular or plural in order to know the form in which a verb should 
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be conjugated given that is what follows [43]. The following figure shows this process 
and calculation of the output gate layer and candidate values with Wo  and bo being the 
vector weights and biases of the output layer and ht  is the current cell output. 
 

 
 
 
 
 
 

 

Figure 33. The output gate layer of an LSTM [43]. 

There are other variant of LSTMs involving slightly differences that might better serve the 
purpose of other problems under consideration. These variants, however, are not relevant to this 
project and won’t be discussed.  
 
 
4.2 LSTM RNN Application Programming Interface and Machine Learning 
Platform 
 
 This project uses the deep learning Application Programming Interface (API) Keras 
running on top of the machine learning platform TensorFlow [44]. Keras is a powerful, user 
friendly open-source Python library for developing and evaluating deep learning models such as 
neural networks [45]. Its fast prototyping and experimentation with a simple API make it highly 
suitable to solve the problem proposed in this project. It allows the configuration of NNs in a 
modular way by combining different layers, activation and loss functions, as well as optimizers, 
etc. Keras also contains implementation of LSTM with forget gates as described in the previous 
section with BPTT implemented and state maintenance [13].  
 
 
4.2.1 Keras BPTT Implementation 
 
 It can be recalled from section 3.2.1 that RNN training can be achieved by unfolding the 
RNN and creating a copy of the model for each time step just as in the unfolded RNN part of 
Figure 24. Next, the RNN can be treated as a multilayer NN and be trained in a way similar the 
backprop (explained in section 3.2.1). This approach is what is called back propagation through 
time (BPTT). Keras has a modified version of BPTT implementation. Given that unfolding 
RNNs across an input sequence of thousands of time steps is computational inefficient, an RNN 
in Keras is unfolded to a maximum number of time steps. This parameter is specified when 
inputting the data, which is to be fed in the form of a 3-dimensional array of shape: (batch, 
timesteps, feature). The batch argument is the number of data points or samples, timesteps 
specifies the past observations for a feature or steps for which the RNN is unfolded, and features, 
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in this case, are the three components of the spacecraft’s position vectors in cartesian 
coordinates.  The input data is divided into sequences that overlap and with a time interval of 
one. For this reason, it is important that the time steps are consistent across the whole data 
sample for all the bank of data training the model. Each sequence has a timesteps number of 
consecutive time steps and forms one training sample to the RNN model.  BPTT is done over 
individual samples for timesteps number of time steps during training [13].  
 
4.2.2 State Maintenance in Keras  
 
LSTM in Keras is maintained in two different ways: 
 

1. Default Model: The samples in a batch are assumed to be independent of each other, and 
state is preserved only over individual input sequences for timesteps number of time 
steps. 

 
2. Stateful Mode: The state cell is maintained among various training batches in this mode. 

The final state of the ith sample of one batch is used as the initial state of the ith sample of 
the next batch with the samples within one batch staying independent. A one-to-one 
mapping between samples of consecutive batches is assumed in order to maintain state 
across batches. Therefore, shuffling of samples should be avoid in this mode. 
 

The reason behind the independence of samples within a batch, lays back on the history of the 
development of LSTMs. Language modeling and recognition tasks motivated this 
implementation, since they were the key ideas driving LSTM development and implementation. 
Language models training tasks contain samples that are usually individual sentences, and a short 
timesteps value equal to the maximum length of the sentence, in words, is enough to capture the 
necessary sequential dependencies. Hence, different samples can be treated independently. 
However, this behavior could be quite restrictive for many domains of datasets [13]. 
 
For the purpose of this report, state maintenance has been set up by constructing a many-to-many 
model with a Time Distributed Dense layer, both of which will be explained in detailed in the 
next section with its implementation in the algorithm to be presented.  
 
4.2.3 TensorFlow 
 
TensorFlow is an easy-to-use, open-source Python library for numerical computation that makes 
machine learning faster and easier. It is a Google initiative with machine leaning frameworks 
that eases the process of acquiring data, training models, serving predictions and refining future 
results. It uses Python as a front-end API for building applications with the framework, while 
executing those application in high-performance C++.  
 
The way TensorFlow works is by allowing developers to create dataflow graphs, which are 
structures that describe how data moves through a graph, or a series of processing nodes. Each 
node in the graph represents a mathematical operation, and each connection or edge between 
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nodes is a multidimensional data array, or a tensor. All this is provided to the programmer via 
Python language. Hence, TensorFlow applications are Python applications themselves, and the 
nodes and tensors are Python objects.  However, the actual math operations are done via libraries 
of transformations available through TensorFlow written as high-performance C++ binaries. 
That way, Python only directs the traffic between the pieces, and provides high-level 
programming abstractions to hook them together [46].  
 
TensorFlow supports most modern platforms such as a local machine, cluster in the cloud, iOS 
and Android devices, CPUs or GPUs. If used in Google cloud, TensorFlow can be ran on 
Google’s custom TensorFlow Processing Unit (TPU) silicon for further acceleration [46]. Its 
integration with Keras API began with the release of TensorFlow 1.0 in February 2017 and 
enhanced to version TensorFlow 2.0 in October 2019 to make Keras its central high-level API, 
easier to work with and improve training performance and runtime [47].  
 
 
4.3 Algorithm and LSTM RNN Set Up  
 
 The LSTM RNN (LSTM for short) is trained on “input” data with the position of a 
spacecraft at every minute (each of which is a time step) of its trajectory around Venus with no 
solar perturbations. This input data is to approach the “label” data composed of the spacecraft’s 
position at every minute on its trajectory around Venus with solar perturbations, with the same 
exact initial conditions to those of the input data and at the corresponding time steps. Due to the 
shorter orbital period of the perturbed orbit, the label data had to be trimmed one step 
(corresponding to one minute) to match the number of steps of the input data. The full data set is 
composed of three slightly different orbits with and without solar perturbations for label data and 
input data respectively.  
 
For the purpose of training the LSTM, the data set was divided into three subsets (each 
corresponding to every one of the three slightly different orbits): a training set with data 
corresponding to the orbit with similar initial conditions to those of the Venera D mission; a 
testing set with data corresponding to the same orbit with a shift of +15° in inclination; and a 
validation set with data corresponding to the same orbit with a shift of -15° in inclination.   
 
The LSTM training is being done in Google Colab (abbreviated term for Colaboratory) with 
graphics processing units (GPUs) processors. Colab is a product from Google Research that 
allows anybody to write and execute arbitrary Python code through the browser. It is well suited 
for machine learning, data analysis and education. It is hosted by Jupyter notebook service that 
requires no setup to use, while providing free access to computing resources including GPUs. 
Jupyter notebooks allow anyone to use and share data with others without the need to having to 
download, install or run anything [48].  GPUs are specialized electronic circuits designed to 
manipulate and alter memory rapidly to accelerate the creation and display of images in a device. 
Modern GPUs are very efficient at manipulating computer graphics and are more efficient that 
the general-purpose central processing units (CPUs) for algorithms that process large blocks of 
data in parallel [49]. 
 
The libraries used in this project are presented in table below. 
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Table 8. Software libraries used in this project. 

Library Version 
Keras 2.4.0 
TensorFlow 2.4.1 
sickit-learn   0.24.1 
Mathplotlib 3.4.1 
Pandas 1.2.4 

 
The Keras API and TensorFlow libraries have been introduced above and are the main banks of 
libraries used to train the RNN. The sickit-learn library contains efficient tools for predictive data 
analysis, and it is built in on NumPy (library for multidimensional arrays, matrices and high-
level mathematical functions), SciPy (mathematical algorithms and convenience functions built 
on NumPy), and matplotlib (cross-platform, data visualization and graphical plotting library). 
Pandas is a column-oriented data analysis API and will be introduced with more detail in the 
next section. 
 
4.3.1 Data Gathering and Preparation for Training 
 
 Data for the LSTM training was gathered and prepared by mounting Google Drive to the 
Google Colab runtime’s virtual machine using an authorization code, and the Python Data 
Analysis (Pandas) library.  
 
4.3.1.1 Fetching the Data 
 
 Google Drive was mounted in runtime via, mainly, the following python commands: 

from google.colab import drive 
drive.mount('/content/drive') 

 These commands give the virtual machine access to a Google Drive to find and read the 
file with target data given that an authorization code, automatically generated in runtime, is 
provided. This process is required every time access to data in a Google Drive is needed. The 
Pandas library is an open-source Python package mostly used for data science, data analysis and 
machine learning tasks. It is built on top the NumPy package, which provides support for multi-
dimensional arrays [50]. Some of the best functionalities of Pandas are data loading, reading, 
renaming, mapping, shaping, groupby and statistics, joining, masking and handling missing 
values [51]. The data set for LSTM training was gathered from three different folders in Google 
Drive, each one corresponding to the data of each of the three orbits used for training, testing and 
validation.  
 
4.3.1.2 Data Splitting, Normalization and Reshaping 
 
 The data were split into three sets corresponding to each on the three orbits, and each of 
the three data sets were split once more into two data subsets: the train data set (X) and the label 
data set (Y).  
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 Normalizing the data for RNN training generally speeds up the learning process and 
makes it more stable leading to faster convergence because: 

1) The weights of a model are initialized to small random values and updated via an 
optimization algorithm in response to estimates of error on the training dataset. Hence, 
unnormalized data can lead to large or small error estimates that might lead to vanishing 
or exploding gradients. 

2) It is much easier for the RNN to perform the necessary operations on numbers between 0 
and 1 than it is with larger or smaller numbers [52].   

There are other reasons why normalization favors RNN training, but those do not apply to the 
type of data being handled in this project.  

Data normalization was done separately across the unperturbed or training data of each orbit and 
the perturbed or label data of each orbit using Min-Max Normalization. In order to do so the Min-
Max Normalization formula was used: 
 

Xnormalized = X#X&78
X&9:	#X&78

   Ynormalized = a#a&78
a&9:	#a&78

 
 
 In the above equations, X stands for training data and Y for label data, Xnormalized and 
Ynormalized are the normalized values of each data point in both data sets, X and Y represent the 
unnormalized values, Xmin and Ymin are the minimum points and Xmax and Ymax are the maximum 
points in the data sets. This process resulted in the data being shifted to values between 0 and 1. 
The normalized data was then reshaped to feed to the LSTM. 
   
 As mentioned in section 4.2.1, data is to be fed to an LSTM in the form of a 3-
dimensional array of shape: (batch, timesteps, feature) where the timesteps are the past 
observations for a feature. The reshaping was done using a batch size of 404, a timesteps number 
of 5 and an input dimension of 3 features (one for each component of the position vector). A 
batch size of 404 splits the 2020 data points into 5 even parts (one for each timesteps). This batch 
size was chosen to make the training run faster given that a many-to-many model was adopted 
(which takes more time to compute). The many-to-many model will be explained in detail in the 
next section.  
 
 
4.3.4 The Model 
 
 This project uses a Sequential Model. NNs are defined in Keras as a sequence of layers. 
The Sequential class is the container of these layers. Once an instance of the Sequential class is 
created, layers can be created and added in the order that they should be connected to train the 
NN.  The LSTM recurrent layer composed of memory units is called LSTM(). A fully connected 
layer that often follows LSTM layers used to output a prediction is called Dense(). For example, 
an LSTM hidden layer with 2 memory cells followed by a Dense output layer with 1 neuron can 
be define as:  
 model = Sequential()  
 model.add(LSTM(2))   
 model.add(Dense(1)) 
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or it can be done in one step by creating an array of layers and passing it to the constructor of the 
Sequential class [53]: 
 
 layers = [LSTM(2), Dense(1)] 
 model = Sequential(layers)          
 
 Creating a Sequential Model via Keras with an LSTM with 50 memory cells and its 
hyperparameters (to be discussed next) followed by a Dense output layer of 3 cells will look like: 
  
model=keras.models.Sequential([ keras.layers.LSTM(50, hyperparameters) 
                 keras.layers.Dense(3)] 
 
 
4.3.4.1 LSTM Hyperparameters 
 
 As one might recall from previous sections, the training of an NN is converted into an 
error minimization or optimization exercise aiming to minimize the loss function (equation 1.2 
introduced in page 16) by tuning its parameters. The algorithm used to perform optimization is 
called “gradient”, which involves calculating the gradients of the loss function with respect to the 
network parameters, such as weights and biases.  Gradients are computed via the back-
propagation method based on the chain rule of derivatives as shown in section 
3.2.1.  Recall that the gradient is a measure of the change in the loss value corresponding to a 
small change in a network parameter according to equation 1.2,                      , which depends on 
the learning rate scalar, 𝛾, use to update the parameters, 𝜽, in the opposite direction of the 
gradient. This process makes several passes iteratively over the training data, and every pass or 
epoch moves the parameters closer to their optimum values which minimizes the loss function 
[13].  
 
 For large sets of data, calculating the loss and gradient over the entire dataset can be 
computationally slow and infeasible. Therefore, variants of gradient descent called optimizers are 
used. Optimizers divide the data into subsets called batches, and the parameters are updated after 
calculating the loss function over one batch. Popular optimizers are SGD (stochastic gradient 
descent), RMSprop, AdaGrad and Adam [13]. The optimizer used in this project is Adam, which 
is a combination of AdaGrad and RMSprop, and will be explained in more detailed in the 
discussion about the LSTM architecture for this project. 
 
 A common problem when training NNs, is overfitting. Overfitting occurs when the model 
tries to fit the noise in training data, and it is often caused by using a more complex model than 
required. When overfitting, the model performs well on training data but poorly on new data. 
Overfitting during training can be avoided in several ways. In early-stopping, a small subset of 
data is used as a validation set, and the loss function on the training set is compared to the value 
on the validation set after every epoch. When the loss of the validation set starts increasing 
despite the loss on the training set is decreasing, overfitting is taking place, and the model can be 
stopped. Another common method used in deep learning to avoid overfitting is dropout. In 



 62 

dropout, a fixed percentage of NN connections are randomly removed in each training epoch 
[13].  
 
 Network parameters, such as weights and biases, are learned by the training algorithm. 
On the other hand, parameters such as learning rate, dropout, training batch size, decay, etc. are 
parameters of the learning algorithm that need to be set with the appropriate values by the user, 
and they are called hyperparameters [13]. The following table presents the hyperparameters used 
for the LSTM model, and each of them will be explained in the model architecture section 
coming next. 
 
 

Table 9. LSTM Hyperparameters. 

Hyperparameter Type/Value Location 
activation relu LSTM layers 
recurrent_activation zeros LSTM layers 
bias_initializer zeros LSTM layers 
kernel_initializer glorot_uniform LSTM layers 
recurrent_initializer glorot_uniform LSTM layers 
stateful False LSTM layers 
return_sequences False LSTM layers 
return_state False LSTM layers 
Dropout regularizer 2nd layer 
TimeDistributed wrapper layer Dense layer 
Adam optimizer After model 
learning rate (lr) 0.0002 Within optimizer 
loss mse Model compiler  
metrics accuracy Model compiler 
batch_size 101 Model training history 
epochs 2000 Model training history 
validation_freq 1 Model training history 
shuffle False Model training history 

 
 
4.3.4.2 LSTM RNN Model Architecture 
 
 The RNN comprised of an LSTM layer with 50 units, followed by a regularizer Dropout 
layer with a rate of 0.46, a second LSTM layer with 10 units, and an output TimeDistributed 
wrapped Dense layer with 3 units. The architecture of the model can be seen in the mapping of 
table 10 below.  
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Table 10. LSTM RNN architecture Map. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 As can be seen, the different layers of the RNN take into 3-dimensional data arrays, of 
which the first element (batch or number of units) is read as “None” meaning that it is up to the 
RNN to determine that argument during the learning process. As mentioned before, the LSTM 
arguments were set to be timesteps = 5 and feature = 3 for the input layer. The 2020 input data 
points were divided into 5 parts, which resulted in a batch or sample size of 404 with five data 
points per feature each. After the input is taken, it is up to the RNN to decide the batch size that 
will better suits the training.   
 
 The hyperparameters in the LSTM RNN model are defined as follows: 
 
activation – The activation function is responsible for transforming the summed weighted input 
from the node into the activation of the node or output for that input. The ReLu is a piecewise 
linear function that will output the input directly if positive, or output zero otherwise. It has 
become the default activation function for many types of NNs because it makes it easier to train 
a model and enhances its performance. This is another reason why the dataset used in this project 
was normalized [54].  
 
recurrent_activation – Activation function to use for the recurrent step during training and set 
to the ReLu function in this case. 
 
bias_initializer – Initializer for the bias vector of the weights, which is set up to be initialized at 
zero by default. Recall that the bias is analogous to the intercept in a linear equation. It is an 
additional parameter in the RNN which is used to adjust the output along with the weighted sum 
of the inputs to the neuron. 
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kernel_initializer – Initializer for the kernel weights matrix, used for the linear transformation 
of the inputs. It is set to be glorot_uniform as a default in Keras. The Glorot uniform initializer 
draws samples form a uniform distribution within [-limit, limit], where limit = √6

c;<Oc=>?
 , and 

𝑊NQ and 𝑊deD are the are the input and output units of the weight tensor respectively.  
 
recurrent_initializer – Initializer for the recurrent_kernel weights matrix, used for the linear 
transformation of the recurrent state, which is set by default as orthogonal. In this RNN training 
it was set equal to glorot_uniform as the kernel weight matrix initializer. 
 
stateful – Boolean parameter set to False by default. If True, the last state for each sample at 
index i in a batch will be used as initial state for the sample of index i in the following batch. 
 
return_sequences – Boolean parameter set to False by default that determines whether to return 
the last state in addition to the output [55].  
 
Dropout – The Dropout layer randomly set input units to zero with a frequency of rate at each 
step during training preventing overfitting. Inputs not set to zero are scaled up by !

!#Z0D`
 so that 

the sum over all inputs is unchanged [56]. 
 
TimeDistributed – A layer wrapper that allows to apply a layer to every temporal slice of an 
input. The input should be at least 3-dimensional, and the dimension of the index one will be 
considered to be the temporal dimension [57]. A TimeDistributed(Dense()) applies a same Dense 
(fully-connected) operation to every timestep of a 3-dimensional tensor [57]. 
 
Adam – Optimization algorithm and good default implementation of gradient descent. It 
automatically uses a custom learning rate for each weight in the model, combining the best 
properties of AdaGrad and RMSProp. Also, its implementation in Keras uses the best practice 
initial values for each of the configuration parameters. The AdaGrad algorithm individually 
adapts the learning rates of all model parameters by scaling them inversely proportional to the 
square root of the sum of all the historical squared values of the gradient. The parameters with 
the largest partial derivative of the loss function have a correspondingly rapid decrease in their 
learning rate, while the parameters with small partial derivative have a relatively small decrease 
in their learning rate. This results in greater progress in the more gently sloped directions of 
parameter space. The RMSProp algorithm modifies the AdaGrad to perform better in the 
nonconvex setting by changing the accumulation of the gradient into an exponentially weighted 
moving average. It is designed to converge rapidly when applied to a convex function. If applied 
to nonconvex functions for NN training, the learning trajectory may pass through many different 
structures to eventually arrive to a region that is locally a convex bowl. AdaGrad shrinks the 
learning rate according to the entire history of the square gradient and may have made the 
learning rate too small before arriving at such convex structure. RMSProp uses an exponentially 
decaying average to discard history from extreme past to allow convergence rapidly after finding 
a convex bowl, as if it were an instance of the AdaGrad algorithm initialized within that bowl. 
The name Adam derives from the phrase “adaptive moments” because momentum is 
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incorporated directly as an estimate of the first-order moment, with exponential weighting, of the 
gradients [31]. 
 
learning rate – It controls how much to update the wights in response to the estimated gradient 
at the end of each batch [53]. It determines the step size in order to reach the local minimum. For 
instance, the model 
follows the direction of the slope of the surface created by the objective function downhill until 
reaching a valley [38]. 
 
loss – A loss function computes the quantity that a model should seek to minimize during 
training. In this case, it is a regression loss set to compute the mean of squares of errors (mse) 
between labels and predictions [58]. 
 
metrics – Accuracy metric that calculates how often predictions equal labels. This metric creates 
local variables total and count used to compute the frequency with which the prediction matches 
the label. Then this frequency is returned as a binary calculated by dividing total/count. 
 
batch_size – Number of samples per gradient update set as an integer or None. Its default value 
is 32 if not specified.  
 
epochs – Integer specifying the number of epochs to train the model. An epoch is an iteration 
over the entire X and Y data provided.  
 
validation_freq – If an integer, it specifies how many training epochs to run before a new 
validation run is performed. Hence, if validation_freq = 1, validation is done every epoch.  
 
shuffle – Boolean that determines whether to shuffle the training data before each epoch. In this 
case is set to False given that each input (each unperturbed data point) must approach its 
corresponding label (the corresponding perturbed data point) [59]. 
 
 This RNN training follows a many-to-many model. This type of model produces multiple 
outputs after receiving multiple values. The internal state is accumulated with each input value 
before a final output value is produced. In this case multiple time steps are output [59], which is 
required in this case given that an output is desired for every input given. Most importantly, the 
many-to-many model helps with maintaining the state during training. See figure 5 below.  
 
 
 
 
 
 
 
 
 
 
 

Figure 34. The many-to-many model [60]. 

Note: In figure 35 each rectangle is a vector and arrows 
represent function (such as matrix multiplication, etc.). 
Input vectors are in red, output vectors are in blue and 

green vectors hold the RNN’s state. The sequence input and 
sequence output size match (although they do not have to in 

this type of model). In this case, we want the predicted 
solar potential perturbed data for every input data point of 

the solar potential unperturbed data point [60]. 
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4.3.4.3 Calculating the Weights 
 
 As shown in section 4.1.1, in every process an LSTM has four layers of the neuron, 
which together form a processing gate: forget gate à input gate à candidate gate à  output 
gate (with the training sequence following the arrows). The weights in every layer of the RNN 
model can be extracted via the model.get_weights() function in Keras under its Layer class. This 
function outputs the kernel weights (W) and recurrent kernel weights (U) matrices with its 
corresponding biases (b) for every LSTM layer. The kernel weights are those that transform the 
inputs into some other internal values, and they have the shape [features, output_dim] where 
output_dim is the total number of kernel weights. The recurrent kernel weights are those that 
transform the previous hidden state into another internal value, and they have the shape [batch, 
output_dim] (recall that batch = number of units or cells). The biases have the shape 
[output_dim] [61].  
 
 For every time step, the weight and bias for every gate is updated to update the cell state 
of every cell in the layer. Hence, the LSTM training process outputs four times the number of 
units per feature for the kernel weights, four times the number of units per unit for the recurrent 
kernel weights and four times the number or units for the biases. The table below is a 
representation of the sequential model handling the RNN training with all its components:  
 

1. First LSTM layer with 50 cells and the input layer embedded (that is [5, 3] corresponding 
to [timesteps, features]). 

2. Dropout layer regularizer with a dropout rate of 0.46. 
3. Second LSTM layer with 10 cells and timesteps = 5 preserved. 
4. Dense layer with time_distributed layer wrapper with 3 cells and timesteps = 5 preserved. 

 

Table 11. Sequential RNN model summary. 
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Table 11 shows the total number of parameters, that is weights plus biases per layer. The first LSTM layer 
output weight and bias matrices are as follows: 
 
 
First LSTM layer with 50 cells 
or units 

  

Matrix shape Nature of parameters Total number of 
parameters 

[3, 200] Kernel Weights [features, 50 units * 4] 600 
[50, 200] Recurrent Kernel Weights [batch, 50 

units * 4] 
1000 

[200] Biases [50 units * 4] 200 
 Grand total number of parameters 10800 

 
 
The second LSTM layer output weight and bias matrices are as follows: 
 
 
Second LSTM layer with 10 cells 
or units 

  

Matrix shape Nature of parameters Total number of 
parameters 

[50, 40] Kernel Weights [input batch, 10 units 
* 4] 

2000 

[10, 40] Recurrent Kernel Weights [batch, 10 
units * 4] 

400 

[40] Biases [10 units * 4] 200 
 Grand total number of parameters 2440 

 
 
The fourth layer is a time single ReLu gated distributed wrapped dense layer with output weight and bias 
matrices as follows: 
 
Time Distributed wrapped Dense 
layer with 3 cells or units 

  

Matrix shape Nature of parameters Total number of 
parameters 

[10, 3] ReLu Weights [input batch, 3 units] 30 
[3] Biases [units] 3 
 Grand total number of parameters 33 

  
The output weights of a trained NN are its training signature and are meant to be implemented in 
the controls systems engineering of the autonomous space craft. This topic is, however, out of 
the scope of this paper and will be proposed as future follow up work. 
 
4.3 LSTM Training Results 
 
 The training of the RNN was done by trial and error using many different combinations 
of number of LSTM hidden layers (starting with only one) all with one Dense layer for the 
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output. Trials also involved different variations of number of units within each hidden layer, and 
batch sizes using both, SGD and Adam optimizers at different initial learning rates and the 
various hyperparameters of the SGD optimizer. However, Adam optimizer proved to be the 
optimal optimization tool for this problem. The number of layers that yield the best results was 
two hidden LSTM layers with a Dense layer to handle the output.  
 
 Initially this model was set to be a one-to-one model, which yield poor results given that 
this kind of model processes from fixed-sized input to fixed-sized output without the 
interconnection an RNN requires. Hence, a many-to-many model was used in order to preserve 
state interconnection within the inner layers while yielding an output for every input during 
training as shown in Figure 35. In the presence of a many-to-many model, the output function for 
each of the many outputs must be the same function applied to each timestep. The 
TimeDistributedDense layer was adopted to serve that purpose. It allows for the Dense function 
to be applied across every output over time serving the need for the same dense function to be 
applied at every time step [62]. 
 
  A recurrent problem during training was overfitting. To resolve this problem, a Dropout 
regularizer was added after the first LSTM. Regularization in machine learning reduces over-
fitting by adding a penalty to the loss function to train the model not to learn interdepend sets of 
feature weights. It ignores (zeroes out) a random fraction, p, of nodes and its activations for 
every hidden layer, each training sample and each iteration. It uses all activations but reduce 
them by a factor p [63]. 
 
 The training of the RNN was tuned by looking into the accuracy (metric that calculates 
how often predictions equal labels) and the loss (function computes the quantity that a model 
should seek to minimize during training) versus number of epochs using the architecture and 
summary models presented in the last two sections. The results obtained during tuning the RNN 
training show that they were highly dependent on the number of epochs given. The final tuning 
was done using numbers of epoch varying between 1000 and 4000 with the best results 
happening at a number of epochs equal to 2000. The results of this last tunning are presented 
below. 
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Figure 35. Training and validation accuracy and loss results. 

 It is expected to see the training accuracy curve surpass that of the validation as training 
goes on. This is because the RNN is expected to learn over the training data better than the 
validation data.  The learning process is expected to behave in a way that both curves start from 
near zero and run close together near the end with the training curve on top. Although the latter 
shows to be happening in the results presented above, the former does not, since the validation 
accuracy curve starts at a very high value.  The reason for this is due to the training data being 
close to equal to the label data in the first part of the spacecraft elliptical trajectory, where solar 
perturbations are almost null on the spacecraft since it is much closer to Venus over that section 
of its path.  

 On the other hand, the training and validation loss curves show the expected behavior 
with the training loss running lower than the validation loss in the final phase of the training. The 
results are boxed on the training history shown for both sets of plots. Notice that the results of 
this set of trainings do not present the same exact results given that the kernel weights of the 
training are randomly set every time a new training process begins. Hence, no one training 
process starts identical to another. Also, reproducibility problems with identical RNN training set 
ups were encountered using google chrome. These issues were resolved by resetting the runtime 
in Google Collab, clearing Google Chrome history cookies and other site data, cached images 
and files and refreshing the Google Colab page.  

 Even though a significant step forward has been made on the training of this LSTM RNN 
model, there is a lot more work to be done and different efficient strategies that could be applied 
to increase the accuracy to an ideal value of close to 98%, which is presently not known to be 
possible for a case that involves the nature of the data used in this problem. The next steps, time 
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permitting, are to feed more data to the RNN for training and another Dropout layer after the 
second hidden LSTM layer to prevent overfitting. The following plots are presented to show an 
example of overfitting and its dependency on number of epochs for training. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Examples of overfitting given different number epochs as a limit. 

 
 It is important to research about whether overfitting being dependent on the number of 
epochs for training compromises the validation of the training results of an LSTM RNN model 
or if it is an expected behavior of machine learning development. In any case, using a second 
Dropout layer and, perhaps, a third LSTM hidden layer with more data to train the RNN would 
be worth trying as a next step in this project.  

Overfitting with epoch = 3000 

Overfitting 

Just converged at epoch = 1000 
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Chapter 5:  Solar Gravitational Potential Perturbation Analysis 
 
 In this chapter, an analysis of the solar gravity potential perturbation on the spacecraft in 
the closed orbit has been done.  The motivations for this analysis are: 1) to learn how to take 
advantage of such perturbations to approach Venus in the most fuel-efficient way possible, and 
2) the possibility of training the LSTM for autonomous burning at strategic points of phase space 
around Venus using the approach of this analysis. Also, an alternative RNN approach is provided 
given that the weights of and RNN LSTM cannot provide the user with a one-to-one 
correspondence between output weights and output samples, which would represent the solar 
perturbations per vector component of the position and velocity of the spacecraft in close orbit.  
  
 Depending on the time available for a mission to approach the planet for either re-entry 
or stationary orbiting, the approach to this problem can be done differently.  For example, the 
spacecraft could be permitted to drift towards the Sun as it orbits Venus, or small burns could be 
done at strategic solar perturbation points to try to approach the planet faster or circularize its 
orbit while letting it drift towards the Sun to approach the planet. A recommended first step 
before burn analysis has been initiated where the spacecraft was let to drift towards the Sun with 
no burn at all with a minimum radius of approach at perigee was given as a limit.  However, this 
approach leaves the spacecraft in a highly eccentric elliptical orbit, which requires a burn or 
several small burns to be circularized.  Nevertheless, there is the possibility of using strategic 
solar perturbation points for these burns at several passes of the spacecraft around the planet to 
save fuel. The next section shows a plausible approach to start building a grid of potential 
perturbation points to aid space travel by making a burn analysis with as many orbits as possible 
to cover phase space around Venus. The burn analysis presented next is only done for few orbits 
as a proof of concept.  
 
 
 5.1 Venus Approach by Solar Gravitational Potential Perturbation Drift 
 
 The solar gravitational potential influence on the spacecraft is highly dependent on Venus 
position with respect to the Sun. Therefore, it is advisable to first study the ideal initial position 
of the spacecraft as it enters close orbit around Venus. In the case of the Venera D mission, the 
orbital parameters of its path around the planet might be favorable to take advantage of the solar 
perturbation to approach the planet for re-entry but it might not be as much for a low orbit 
around it because it keeps its high ellipticity.  In this analysis the path of the spacecraft was 
simulated to be left drifting towards the solar potential perturbation using GMAT with a limit 
radius of perigee of 6400 km.  This limit was calculated by adding the radius of Venus to the 
height of its atmosphere. For instance, the mesosphere of Venus extends beyond 100 km of 
altitude [64]. To ensure the safety of the spacecraft as it comes the closest possible to Venus, the 
height of its atmosphere was taken to be 300 km.  The calculation is shown below: 
 

rfg&g- = rh*ij) + h=-&,)kY*;*	h*ij) = 	6051.8	km + 300	km = 6351.8	km	 ≈ 6400	km 
 
 Different kinds of orbits were simulated at two different epochs to investigate two 
different positions at radius of perigee with respect to the Sun. The Venera D orbit that has been 
investigated so far in this report, was done twice by varying its eccentricity, inclination, right 
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ascension, and argument of perigee in close orbit with Venus to place the spacecraft at a different 
position with respect to the Sun. The third orbit was done at a different epoch in 2021, and its 
semi-major axis an ellipticity were changed as well. Other orbit variations were explored but the 
most relevant ones pertinent to the findings of this section will be presented.  
 
 Recall the orbital elements presented in chapter 2 based on the Venera D mission at a 
larger semi-major axis: 

• 𝑎 = Semi-major axis = 49,448.744 
• e = Eccentricity = 0.8339 
• i = inclination = 90° 
• ω = argument of perigee = 100.0° (chosen from allowable range) 
• Ω = longitude of the ascending node = 98.7887° 
• ν		= mean anomaly = 0° (at radius of pericenter). 

The epoch for the simulation using these orbital parameters is that of the Venera D mission as 
well.  The setup of the epoch and orbital parameter in GMAT, as well as a visualization of it, is 
shown in the figures below. 
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Note: A full view of the orbit of the spacecraft around Venus is shown on the left. On the 
right side a closer look on the upper right and a front view of the Sun line (shown in 

yellow) with respect of the spacecraft’s orbit are shown. The plot below represents the 
path of the spacecraft as perceived on Venus’ ground. 

Figure 37. Orbital parameters and epoch in GMAT and position of Venus in                                                                                           
the Solar System at the epoch of the Venera D mission [65]. 

 
 Figure 37 shows the orbital parameters mentioned and the epoch setup for the simulation 
in GMAT, as well as the position of Venus with respect to the Sun in the solar system at that 
epoch using the online propagator in [65]. The latter is important to observe to understand how 
different epochs have an influence on the drifting of the spacecraft. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 38. Position of the spacecraft with respect to the Sun in a Venera D-like                                      
closed orbit around Venus. 

  
 
 
 
 
 
 Figure 38 presents a visualization of how the spacecraft is positioned with respect to the 
Sun with these orbital parameters and its ground track on Venus surface. 
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Note: The propagation of the spacecraft is shown from different perspectives and at the 
end of the 451.65- day period when the spacecraft reaches the limit radius of pericenter. 

The yellow line represents the path of the Sun as seen from Venus during that period. 
The plot below shows the path of the spacecraft on the ground of Venus. 

 Using the Mission Tree feature in GMAT, the spacecraft was simulated to be left drifting 
towards the perturbation solar gravitational potential until it reached the limit radius of perigee 
before mentioned. the Mission Tree feature in GMAT is an ordered, hierarchical display of the 
command mission sequence in the GMAT script created [9].  

 

 

 

 

 

Figure 39. Mission Tree with the command mission sequence used and the Toggle function. 

  Figure 39 shows the mission tree created for the spacecraft solar perturbation drift 
simulated in the analysis of this type of orbit. The Toggle function allows turning on and off the 
collection of data output. A while loop was used to keep the spacecraft propagating on the closed 
orbit until the limit radius of perigee was reached. Within the loop, the data was recorded in 
Report 1 every pass at radius of perigee. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 40. Spacecraft approach to Venus after drifting towards the solar                                                  
potential perturbation for 451.65 days. 
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Note: The simulation done for this orbit was done with the same epoch as the 
Venera D mission but different orbital elements. The track plot shown below 

represents the path of the spacecraft as seen on the ground of Venus 
 

 Figure 40 shows the simulation done in GMAT starting with a radius of pericenter of 
about 8213.4 km and ellipticity of 0.8339. The spacecraft took 451.65 days to reach a radius of 
perigee of approximately 6403.3 km with a final eccentricity of about 0.87.  

 Although the spacecraft successfully reaches Venus at the desired distance of approach 
free of burns, there are two caveats to this approach depending on the goals of the mission under 
consideration: 1) the ellipticity of the spacecraft’s closed orbit got more pronounced; 2) 
depending on the mission’s time constraints, the time of approach might be too long.  In the case 
where a close, circular orbit around the planet is desired or time constraints to complete the 
mission are present, burns for circularization and/or faster approach will be necessary. 
  
 In an effort to simulate a planet approach while circularizing the orbit free of burns, other 
simulations were done with the spacecraft left drifting towards the solar potential perturbation. 
The set up for the next orbit analysis in GMAT and a visualization of it is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
Figure 41. Orbit view of the set up for the second simulation.  

 
 
 



 76 

 Figure 41 shows the simulation of a closed orbit at the same epoch but different position 
of the spacecraft with respect to the Sun. The orbital parameters are shown in the top section of 
the figure. In this simulation the semi-major axis, eccentricity and inclination were reduced (with 
the semi-major axis and eccentricity corresponding to those of the Venera 16 mission) and the 
right ascension of ascending node (RAAN) or longitude of the ascending node (denoted by Ω in 
this report) were increased to place the spacecraft’s orbit farther from the Sun line (shown in 
yellow). These are the orbital parameter used in this simulation: 
 

• 𝑎 = Semi-major axis = 45,632 km 
• e = Eccentricity = 0.82 
• i = inclination = 45° 
• ω = argument of perigee = 90.0°  
• Ω = longitude of the ascending node = 270° 
• 𝜈		= mean anomaly = 0° (at radius of pericenter). GMAT readjusted this parameter as 
closed as zero as possible with it being approximately 8.47 x 10-7. This kind of readjustment 
of parameters happened often during the simulations done for this project. The reason for it is 
still uncertain but it could be that the propagator tries to set up the initial state vector such 
that it would accomplish the accuracy given. As it can be seen on the top part of figures 37 
and 41 where the epoch, level of accuracy and initial state vector are set up for propagation, 
all orbital parameters are readjusted to very closed values to the ones entered (shown above). 
In this simulation the spacecraft was propagated for about 4.8 years starting at a radius of 
pericenter of 8,213.76 km and eccentricity of 0.82 to a final radius or pericenter of about 
15,972 km and eccentricity of approximately 0.65.  
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Note: The orbital parameters of this simulation match the semi-major axis and eccentricity of the 
Venera 16 mission. The figure shows how the spacecraft goes farther from the planet as it 

circularizes. The track plot shown below shows the path of the spacecraft as seen on the ground 
of Venus after going around the planet many times. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

Figure 42. Orbit view and track plot of the second simulation done after                                           
running over close to 4.8 years. 

 
  
 
 
    
 
The results of letting this simulation run for close to 4.8 years are shown in figure 42. The 
eccentricity of the spacecraft’s orbit around Venus is successfully decreased by the solar 
potential perturbation but it is taken farther away from Venus as the orbit’s eccentricity 
decreases. After approximately 453 days, the radius of pericenter increases from 8,213.76 km to 
about 9,948.20 km and its eccentricity decreased from a 0.82 to about 0.78. A circular close 
stationary orbit around the planet will require at least one burn in this case.   
 
 Compared to the Venera D-like mission, the next simulation was done at a different 
epoch (that of the Venera 16 mission, July 22, 2021), as well as a larger semi-major axis, 
eccentricity, and longitude of the ascending node, and a smaller inclination and argument of 
perigee. As can be noticed, the argument of perigee and longitude of the ascending node were 
left the same as the second simulation. The orbital parameters are as follows: 

• a = Semi-major axis = 70,000.8 km 
• e = Eccentricity = 0.86 
• i = inclination = 30° 
• ω = argument of perigee = 90.0°  

spacecraft 

spacecraft 
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• Ω = longitude of the ascending node = 270° 
• ν		= mean anomaly = 0° (at radius of pericenter) 

The epoch and setup of these orbital parameters and a visualization of Venus with respect to the 
Sun in the solar system are shown in the figure below. 
 
 
 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 43. Orbital parameters and epoch in GMAT and position of Venus in                                                                                           

the Solar System at the epoch of the Venera 16 mission [65]. 

 
 Figure 43 shows the orbital parameters and epoch above mentioned setup in GMAT’s 
propagator for simulation, as well as a visualization of the position of Venus with respect to the 
Sun in the solar system at that epoch using the online propagator in [65].  
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Note: This orbit simulation was done with the same epoch as the Venera 16 mission but 
different orbital elements. The yellow line represents the location of the Sun. The track 
plot shown below represents the path of the spacecraft as seen on the ground of Venus. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 44. Orbit view of the set up for the third simulation. 

 
 

 
 
  
 The propagation of the spacecraft for this simulation corresponds to approximately five 
years starting at a radius of pericenter of 8213.4 km and eccentricity of 0.86 and ending at a 
radius of pericenter of approximately 13,924.8 km in and eccentricity of 0.57730723 at the end 
of the five-year period.  
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Note: The orbital parameters of this 
simulation match the epoch of the Venera 16 
mission. The figure shows how the spacecraft 
goes farther from the planet as it circularizes. 
The track plot shown below shows the path of 
the spacecraft as seen on the ground of Venus 

after going around the planet many times. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                                                                                                                                                                              

 

  
 
 

 
  
 
 

 
 The results after letting this simulation run for an approximate 5-year propagation period 
are shown in figure 45. Like the previous simulation, the eccentricity of the spacecraft’s orbit 
around Venus is successfully decreased by the solar potential perturbation. However, it is taken 
farther away from Venus as the orbit’s eccentricity decreases even more rapidly than the 
previous simulation. After approximately 453 days, the radius of pericenter increased from 
8,213.76 km to about 13,924.8 km and its eccentricity decreased from a 0.86 to about 0.80. A 
circular close stationary orbit around the planet with these initial conditions will also require at 
least one burn. 
 
 The simulations presented in this section show the relevance of doing a deeper study on 
how the initial state vector and epoch of a closed orbit around Venus (and most probably around 
other planets close to the Sun) can better serve the purpose of taking advantage of the solar 
gravitational potential perturbation depending on the goals of a mission. In the case of the 
Venera D orbit, the solar perturbation drift carried the spacecraft to the outskirts Venus’ 
atmosphere in over a year but at the cost of a higher eccentricity. For the other two simulations 
the spacecraft went farther away from Venus as its orbit got increasingly circular. For a close, 
circular orbit around the planet, perhaps an ideal initial state vector at the right epoch could help 
the spacecraft drift towards the planet as the eccentricity of its orbit decreases or, at least, 
increases very slowly. Those conditions could be convenient to save fuel at it is burned at 
strategic solar perturbation points. A basic solar perturbation study with suggestions on how to 

spacecraft 

spacecraft 

Figure 45. Orbit view and track plot 
of the second simulation   
              

done after running over 
approximately 5 years. 
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proceed with a deeper investigation of a solar gravitational perturbation vector field on the 
spacecraft during a full period will be presented in the next section.  
 
5.2 Solar Gravitational Potential Perturbation Vector Field 
 
 A vector field grid for the perturbed position and velocity of the spacecraft at every point 
of a close orbit for many different orbits, such that most of phase space around Venus can be 
covered, can be developed by either 1) extracting the output weights from the training of an 
RNN or 2) by doing and analysis of the solar perturbation on the spacecraft at every step of its 
path throughout many different orbits around Venus. An approach on how to explore these two 
possibilities are presented in this section. 
 
 One of the goals of this project is to analyze the weights and biases resulting from the 
training of an LSTM to correct the state vectors (position and velocity) at every point of a closed 
orbit around Venus for solar gravitational potential perturbations. It is expected for these weights 
to represent the solar perturbations of phase space of the spacecraft in closed orbit. In order to do 
so, there must be a one-to-one correspondence between weight and bias to the corrected element 
of every featured or output of the trained LSTM. Recall that the features of the LSTM presented 
in this investigation represent the three components of the spacecraft’s position and velocity at 
every step of its path in orbit around Venus. Hence, every feature element will be x, y and z and 
vy, vx and vz, coming into the LSTM as perturbed data (the input) to be matched to the “correct” 
unperturbed data (the target or label). The output of the LSTM is the input value corrected to 
match the label data with its weights and biases. However, as it was presented in table 11 in 
chapter 4, the weights and biases in an LSTM do not have a one-to-one correspondence with the 
output data but depend on the number of LSTM cells and gates of the LSTM cell. If we look at 
the chart presented below with a summarized architecture of the LSTM, we can see that there are 
two weights and one bias per gate, which makes eight weights and four biases per cell, since 
there are four gates in every LSTM cell.   
 
 

 

 

 
 
 
 
 

 
 

Figure 46. A summary of LSTM architecture [66]. 
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 Figure 46 shows the two weights (one from the hidden layer denoted by h and one from 
the input denoted by x) and bias per gate in a single LSTM unit. The LSTM used for this 
investigation presented in chapter 4 yields 33 weights and biases (10 weights and 1 bias per cell 
for 3 output cells) for the 2020 elements per feature used to train it. Detangling the weights 
corresponding to every element of the output is quite complex. Understanding how an NN 
calculates weights, and their disentanglement are presently topics under investigation. The code 
in Google Colab used to train the RNN LSTM presented in this paper provided in appendix A 
shows the output weights per layer and a visualization of them and its biases. However, they 
were not discussed in this report because they are not directly related to the physical implication 
of the solar perturbation study done in this project but rather a representation of the numerical 
methods use by the RNN LSTM to correct for them.  
 
 A way to detangle the weights per element output of an NN are using autoencoders. 
Autoencoders are NNs which goal is to reconstruct its input dataset, that is, to learn to copy 
inputs to its outputs. Autoencoders are used mainly for denoising, reduction of dimensionality, 
pretraining and generating data [67]. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 47. Composition of an autoencoder [67]. 

 An autoencoder is composed of an encoder used to convert input data into a latent 
representation (a bottleneck layer), and a decoder used to convert the latent representation into 
outputs (reconstruction). The encoder and decoder might comprise many neuron layers while the 
latent representation is usually only one layer. The overall architecture is similar to the 
multilayer perceptron, with the particularity that the output layer size must match the one of the 
input layers. The latent representation layer size determines how much information an 
autoencoder can keep, which is usually significantly smaller than the input data. Restricting its 
size forces the autoencoder to find patterns in the inputs and eliminate irrelevant features [67].  
 
 Autoencoders with tied weights have decoders weights that are the transposed of the 
encoder weights. This is a way to reducing the number of parameters in the model while sharing 
them. Advantages of tying weights include the risk reduction of overfitting and increased of 
training speed [67].  
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Figure 48. Example of an autoencoder with 5 features and 500 samples [68]. 

  
Figure 48 shows an example of an autoencoder with five features and 500 samples. The 
constraints are shown on the left bottom corner where the encoder takes the transpose of the 
weights to bottleneck the information and the decoder outputs a copy of the input with its 
weights and biases per element. This way, autoencoders pose a much more efficient way to 
detangle the weights and biases corresponding to every element of an RNN output rather than 
spending much men and computing power trying to decodified weights per element using a 
mathematical approach. 
  
 Another approach to analyze the solar perturbation on the spacecraft throughout its orbit 
around Venus is by creating a gravitational potential vector field using GMAT data from the 
propagation of the spacecraft with and without the solar gravitational potential. This vector field 
is done by taking the difference between perturbed and unperturbed data points per unit time 
from the spacecraft’s propagation in the direction of the perturbed orbit.  
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Figure 49. Perturbed and unperturbed orbits closed to radius of pericenter. 
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Note: The arrows in this 
plot represent the 

displacement, in kilometers, 
the spacecraft drifted away 
from its unperturbed path. 
The dot on the left lower 

corner represents the scale 
of the arrows, which is 10 
km pet dot. The axis of the 

vector plot is z versus y 
according to GMAT data. 

The solar perturbation on x 
is represented by the vector 

color scheme, which is 
lightest for the smallest 

(negative mid 30s) values 
and darkest for the largest 

(in the 70s) values. 

 A comparison between the perturbed and unperturbed orbits is shown in figure 49. The 
top image is the plot generated by the GMAT for the spacecraft’s propagation with solar 
potential perturbation. It is shown to better visualize the 3D plots of the perturbed and 
unperturbed orbits and where the Sun line with respect to them is. The middle plot represents the 
last 12 steps (with a rate of step/10 min) of the orbit’s period before reaching radius of 
pericenter. The bottom plot is that of the last 9 steps, with the same rate, before the last 12 steps. 
The curbs in the bottom plot are very closed together because the solar potential perturbation is 
very small in comparison to the large distances covered by the spacecraft’s orbit. The last steps 
of the orbit’s period are shown for convenience, since the perturbation is larger and easier to see 
in that section of the orbit.  These plots are consistent with the perturbation vector field 
calculated using GMAT propagation data and presented in the figure below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 50. Solar gravitational potential vector field at a rate of one step every 10 minutes.  
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 Figure 50 shows the results of the calculation of the solar perturbation vectors for a step 
every 10 minutes of the spacecraft’s path. This plot is useful to visualize how the spacecraft is 
being acted upon by the Sun’s and Venus’ solar perturbation and confirm that it is indeed being 
pulled more towards the Sun at large distances away from the planet. A burn analysis has been 
done on five different regions on the vector field where the perturbations are larger including at 
perturbed radius of pericenter to be compared with the burn at the unperturbed radius of 
pericenter, which is the common technique for orbit circularization. This burn analysis is focused 
more on solving for circularizing the orbit, since it was already proven that the solar perturbation 
does aid with re-entry. The four areas of investigation other than at radius of pericenter are 
approximately shown in the following figure. 

 

   
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51. Approximate location of the four areas of investigation for                                                   
burn analysis other than at radius of pericenter.  
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 Figure 51 shows approximately where the areas that will be investigated for burn analysis 
are on the orbit’s perturbed path. It is the perturbed data that is being investigated because it is to 
be compared to burning at the unperturbed (or the path corrected for perturbations) point at 
radius of pericenter, proven to be one of the best locations to burn for orbit circularization. The 
results for the burn analysis are presented in the next section. 

 

5.3 Solar Gravitational Potential Perturbation Vector Field Burn Analysis Results 
 
 Three different burn analyses will be presented in this section. The first one will aim to 
achieve an eccentricity of zero with a tolerance of 0.1, which is the value that reach convergence 
to the closest value of eccentricity of zero.  The second analysis will have as a goal to reach both 
an eccentricity of zero and the smallest possible radius of pericenter.  The third analysis will be 
for a planet approach for re-entry having as a goal only to achieve the smallest radius of 
pericenter possible with the before mentioned limit of 6400 km, which is where the outskirt of 
Venus’ atmosphere is considered to be for this research.  
 

 The simulation done for the burn analysis also uses the Mission Tree feature in GMAT, 
where a mission sequence is created. 

 

 

 

 

 

 

 

 

 

Figure 52. Mission Tree with the mission command sequence and                                              
description of its various commands. 

 
 The target sequence for the mission is determined within the Target and EndTarget 
commands where the differential corrector (DC) and solver mode are specified. The Vary 
command is where the variable name, initial value, limit bounds and the maximum step of the 
differential corrector are specified for every one of the elements of the delta-V (or burn) vector. 
Very1, Very2 and Very3 were setup to correspond to Element1, Element2 and Element3 
respectively. Element1, Element2 and Element3 correspond to the velocity, normal and binormal 
elements of the Velocity-Normal-Binormal coordinate system respectively. Velocity-Normal-
Binormal or VNB is a non-inertial coordinate system based upon the motion of the spacecraft 
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with respect to the origin sub-field, in this case Venus. For example, Origin was chosen as 
Venus, then the X-axis of this coordinate system is the along the velocity of the spacecraft with 
respect to the Venus, the Y-axis is along the instantaneous orbit normal (with respect to the 
Venus) of the spacecraft, and the Z-axis points away from the Venus as much as possible while 
remaining orthogonal to the other two axes, completing the right-handed set. The limit bounds in 
the Vary command were chosen as the smallest and largest acceptable values for each component 
of a Delta-V vector [10]. The rest of the elements under this command were taken to be the 
default values shown in figure 52. The Manuver1 command specifies the burn and spacecraft 
programed in the Resource section and links this command to that set up.  
   

 

 

 

 

 

 

Figure 53. Setup for the Maneuver command in GMAT. 

 
 Figure 53 shows the setup for the Manuver1 command and how it links Maneuver1 in the 
Mission Tree (in the middle image) to those programmed in the Resources Tree (on the far-left 
image). The Achieve commands, are those that the maneuver is to achieve. In this example 
Achieve1 is setup to achieve an eccentricity of zero (as shown on the far bottom right of figure 
52), and Achieve2 a radius of pericenter of 8,197 km, which is the approximately the radius of 
pericenter of the orbit under study.  

 In summary, the Mission Sequence in the Mission Tree goes as follows: Toggle1 activates 
the desired graphs and data acquisition as an output, Propagate1 propagates the spacecraft to the 
orbital point for burn, target1command sequence activates the burn vector components to be 
varied, the programed spacecraft and Delta-V from the Resources Tree, the target orbital 
elements to be achieved by the burn and the Propagate2 command to propagate the spacecraft to 
the desired final orbital point after burn. A table of results is presented and analyzed next. 
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Table 12. Burn analysis results. 

Initial State Orbital Parameters 
Recall the initial orbital 
parameters discussed throughout 
this report for comparison to the 
change in state of the 
spacecraft’s orbit after the burn 
in each of the analyzes presented 
below. The orbit’s period 
corresponding to these 
parameters is approximately 
33.7 hrs. and a radius of 
pericenter of about 8,196.8264 
km. 

Circularization with an Achieve1 target variable of eccentricity = 0 and a 0.1 tolerance 

Orbital point for Burn 

Approximate Results 
Orbital elements right after burn 
∆Vmag = magnitude of Delta-V 
RadPer = radius	of	pericenter 

Radius of pericenter for the unperturbed orbit after a full period 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

∆Vmag = 1.81043 km/s 
SMA = 9707.27 km 
PerRad = 7873.103 km 
ECC = 0.189 
INC = 90.00° 
RAAN = 98.79° 
AOP = 65.59° 
TA = 58.48°  
Orbit Period = 2.93 hrs. 
 
The table below is the Delta-V 
DC solver report, which 
identifies the result as 
nonconvergent because it could 
not reach the tolerance value for 
a zero eccentricity  
of 0.1. It shows the last two DC 
solver steps for Delta-V to 
achieve an eccentricity of zero. 

Orbital point for Burn 
The following data was generated accounting for solar perturbation 

Approximate Results  
Orbital elements right after burn 
∆Vmag = magnitude of Delta-V 
RadPer = radius	of	pericenter 
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Radius of pericenter after a full period 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

∆Vmag = 1.81041 km/s 
SMA = 9701.72 km 
PerRad = 7863.376 km 
ECC = 0.1895 
INC = 90.00° 
RAAN = 98.79° 
AOP = 65.635° 
TA = 58.44° 
Orbit Period = 2.93 hrs.   
  
The table below is the Delta-V 
DC solver report, which 
identifies the result as 
nonconvergent because it could 
not reach the tolerance value for 
a zero eccentricity  
of 0.1. It shows the last two DC 
solver steps for three 
components of Delta-V to 
achieve an eccentricity of zero. 

 

1st area of investigation at approximately (-4937.322332, 31936.51537, -71381.18602) 
with TA = 194.372° and Time Elapse = 87382.8924 secs ≈ 24.27 hrs 

 
 

∆Vmag = 1.4046 km/s 
SMA = 77102.1 km 
PerRad = 75398.3 km 
ECC = 0.0697 
INC = 90.00° 
RAAN = 98.8° 
AOP = 37.43° 
TA = 257.19° 
Orbit Period = 65.56 hrs.  
Elapse Time = 24.3 hrs. 
 
The table below is the Delta-V 
DC solver report, which 
identifies the result as 
convergent since it reaches the 
desired value for a zero 
eccentricity within the level of 
tolerance of 0.1. It shows the last 
two DC solver steps for three 
components of Delta-V to 
achieve an eccentricity of zero. 
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2nd area of investigation at approximately (-5397.955008, 34916.15161, -52461.21294) 
with a TA = 203.9755° and a Time Elapse = 99470.64052secs ≈ 27.63 hrs. 

 
 
 

∆Vmag = 1.844 km/s 
SMA = 62720.1 km 
PerRad = 58303.23 km 
ECC = 0.07042 
INC = 90.00° 
RAAN = 98.8° 
AOP = 37.3° 
TA = 257.1°  
Orbit Period = 65.56 hrs.  Elapse 
Time = 427.65 hrs. 
 
The table below is the Delta-V 
DC solver report, which 
identifies the result as 
convergent since it reaches the 
desired value for a zero 
eccentricity within the level of 
tolerance of 0.1. It shows the last 
two DC solver steps for three 
components of Delta-V to 
achieve an eccentricity of zero. 
 

3rd area of investigation at approximately (-5076.737489, 32838.38482, -31961.91718) 
with a TA = 216.1313728° and Time Elapse = 108492.976 secs ≈ 30.14 hrs. 
 ∆Vmag = 1.965 km/s 

SMA = 45639.8 km 
PerRad = 34281.92 km 
ECC = 0.248856 
INC = 90.00° 
RAAN = 98.8° 
AOP = 59.26° 
TA = 257.68° 
Orbit Period = 29.86 hrs.  Elapse 
Time = 30.15 hrs. 
 
The table below is the Delta-V 
DC solver report, which 
identifies the result as 
nonconvergent because it could 
not reach the tolerance value for 
a zero eccentricity  
of 0.1. It shows the last two DC 
solver steps for three 
components of Delta-V to 
achieve an eccentricity of zero. 
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4th area of investigation at approximately (-3812.527883, 24660.90067, -10034.24295) 
with a TA = 238.114014° and Time Elapse = 115522.907 secs ≈ 32.1 hrs. 

 
 
 
 

∆Vmag = 2.105 km/s 
SMA = 26040.15 km 
PerRad = 16240.9 km 
ECC = 0.3763 
INC = 90.00° 
RAAN = 98.8° 
AOP = 90.244° 
TA = 250.33°   
Orbit Period = 12.87 hrs. Elapse 
Time = 32.1 hrs. 
 
The table below is the Delta-V 
DC solver report, which 
identifies the result as 
nonconvergent because it could 
not reach the tolerance value for 
a zero eccentricity  
of 0.1. It shows the last two DC 
solver steps for three 
components of Delta-V to 
achieve an eccentricity or zero. 

Circularization with Achieve1 target variable of eccentricity = 0 and a 0.1 tolerance  
and Achieve2 target variable of radius of pericenter = 8,197 km and a 50 km tolerance 

Orbital point for Burn 
The following data was generated accounting for solar perturbation unless 

stated otherwise 

Approximate Results  
Orbital elements right after burn 
∆Vmag = magnitude of Delta-V 
RadPer = radius	of	pericenter 

Radius of pericenter for the unperturbed orbit after a full period 
 

∆Vmag = 1.8704 km/s 
SMA = 9777.71 km 
PerRad = 8184.88 km  
ECC = 0.1624 
INC = 90.00° 
RAAN = 98.79° 
AOP = 81.32° 
TA = 42.77°  
Orbit Period = 2.96 hrs.. 
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Radius of pericenter after a full period 
 

∆Vmag = 1.873 km/s 
SMA = 9769.32 km 
PerRad = 8186.65 km 
ECC = 0.1623 
INC = 90.00° 
RAAN = 98.79° 
AOP = 81.94° 
TA = 42.16°   
Orbit Period = 2.96 hrs.  

1st area of investigation at approximately (-4937.322332, 31936.51537, -71381.18602) 
with TA = 194.372° and Time Elapse = 87382.8924 secs ≈ 24.27 hrs 

 

∆Vmag = 0.806 km/s 
SMA = 43186.25 km 
PerRad = 8104.0 km 
ECC = 0.8123 
INC = 90.00° 
RAAN = 98.8° 
AOP = 112.00° 
TA = 182.57°   
Orbit Period = 27.48 hrs. 
Elapse Time = 24.3 hrs. 
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2nd area of investigation at approximately (-5397.955008, 34916.15161, -52461.21294) 
with a TA = 203.9754682° and a Time Elapse = 99470.64052 secs ≈ 27.63 hrs. 

 

∆Vmag = 1.6914 km/s 
SMA = 35417.37 km 
PerRad = 8119.665 km 
ECC = 0.771 
INC = 90.00° 
RAAN = 98.8° 
AOP = 125.76° 
TA = 178.56°   
Orbit Period = 20.4 hrs.  
Elapse Time = 27.65 hrs.  

 

3rd area of investigation at approximately (-5076.737489, 32838.38482, -31961.91718) 
with a TA = 216.1313728° and Time Elapse = 108492.976 secs ≈ 30.14 hrs. 

 

∆Vmag = 2.112 km/s 
SMA = 26783.9 km 
PerRad = 8124.8 km 
ECC = 0.697 
INC = 90.00° 
RAAN = 98.8° 
AOP = 133.3° 
TA = 183.6°   
Orbit Period = 29.86 hrs.  
Elapse Time = 13.43 hrs. 
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4th area of investigation at approximately (-3812.527883, 24660.90067, -10034.24295) 

with a TA = 238.114014° and Time Elapse = 115522.907 secs ≈ 32.1 hrs. 
 
 
 
 

∆Vmag = 2.148 km/s 
SMA = 18516.07 km 
PerRad = 8127.72 km 
ECC = 0.561 
INC = 90.00° 
RAAN = 98.8° 
AOP = 134.5° 
TA = 205.965°   
Orbit Period = 7.715 hrs. 
Elapse Time = 32.1 hrs. 

 
 Table 12 shows the sequence of simulations done trying to understand how solar 
gravitational potential could aid either circularizing an orbit around Venus or approaching Venus 
while circularizing the spacecraft’s orbit. The first part of the table shows the results of the 
simulations trying to circularize the very elliptical orbit under study starting with a location of 
burn at radius of pericenter after a full period and four other areas on the spacecraft orbit where 
solar perturbation becomes more prominent. The period of the modified Venera D mission 
presented in this report is about 33.7 hours. The areas under study happen approximately 24.27 
hrs. and TA = 194.4°, 27.63 hrs. and TA = 203.98°, 30.14 hrs. and TA = 216.13°, 32.1 hrs. and 
TA = 238.11°, and at the end of the orbit’s period at radius of pericenter.  
  
  The first part of the table where the goal is circularizing the orbit only, shows that 
burning at the radius of pericenter decreases both the eccentricity and radius of perigee with the 
Delta-V for the perturbed orbit 0.2 m/s less that the perturbed one, a smaller radius of pericenter 
by about 10 km and eccentricity 0.0005 larger. Perhaps these values could get more significant 
after several rounds of the perturbed orbit before burning at radius of pericenter, or by making 
smaller burns at several passes at radius of pericenter.  Compared to the other four areas under 
study, the radius of pericenter of the perturbed orbit proved to be a more effective spot to burn 
given a close distance to the planet is relevant for a mission.  Otherwise, circularization at a 
much larger radius of pericenter is much closer to an eccentricity of zero with the first area 
leading the way followed by areas 2, 3 and 4 in order of increasing eccentricity and with their 
radius of pericenter decreasing as the eccentricity increases. This can be noticed on the plots 
generated by GMAT in the first part of table 12.  
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 The second part of the table aims to present the results of the simulations targeting both, a 
small eccentricity close to zero and a limit radius of pericenter equal to that of the Venera D-like 
orbit. For the unperturbed and perturbed orbits at radius of pericenter, the Delta-V for the 
perturbed orbit is approximately 2.6 m/s less that the perturbed one with a smaller radius of 
pericenter by about 1.77 km and eccentricity 0.0001 larger. Burning at radius of pericenter 
reduces both the eccentricity and radius of perigee with a slight difference between the burn 
happening at and unperturbed versus a perturbed orbit, with the perturbed orbit placing the 
spacecraft at a slightly closer distance of radius of perigee and smaller burn but larger 
eccentricity (in the 10-3 difference for ∆Vmag and e). The values are, once more shown below for 
reference. 
 

Table 13. Perturbed vs unperturbed results targeting e and rp 

Unperturbed Orbit Perturbed Orbit  
∆Vmag = 1.873 km/s 
PerRad = 8186.65 km 
ECC = 0.1623 

∆Vmag = 1.8704 km/s 
PerRad = 8184.88 km  
ECC = 0.1624 

 
 Circularization at a larger eccentricity but radius of pericenter closer to the desired value 
is observed for the other four areas of study. In this case, the propagator has a much harder time 
reaching an eccentricity of zero while preserving the radius of pericenter at the same distance in 
all four areas. Area 1 presents this behavior more pronounced, which lessens as the spacecraft 
moves closer to radius of perigee in areas 2, 3 and 4 in order of decreasing eccentricity and 
increasing radius of pericenter toward the target value. This can also be noticed on the plots 
generated by GMAT in the second part of table 12.  
 
 Generating a grid of data for as many points of phase space as possible around Venus at 
different points of approach to enter a closed orbit with respect to the Sun could be a promising 
mission to accomplish for different types of goals such as planet re-entry, circularization, etc. 
This report presents only the basis of this idea with a very simple analysis that aims to prove this 
concept. 
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Chapter 6:  Summary, Conclusion and Future Work 
 
 

6.1 Summary and conclusion 
 
 This report presents the analysis of a Venera D-like mission. All parameters of the orbit 
under study matching those of the Venera D mission except by the radius of pericenter which 
was increased by 10,000 km to better serve the proof-of-concept objective. One of the goals of 
this investigation was to train an RNN LSTM to correct for solar gravity potential perturbation 
on a spacecraft while in closed orbit around Venus.  A database for such an orbital path was 
gathered via the RK89 propagation simulator in GMAT to be fed into an RNN LSTM with two 
LSTM layers with 50 and 10 units respectively, a 0.46-rate regularizer and a TimeDistributed 
wrapped Dense layer of 3 units for the output data.  
 
 The original database generated and presented in table 4, chapter 2, had to be modified to 
be used for the training of the LSTM later in chapter 4 because the time steps of such data set 
were not evenly distributed, which is required to train any type of RNN. Hence, six features of 
the 2020 samples were used for training where each feature corresponds to each one of the three 
components of the location of the spacecraft at every point of its orbit in cartesian coordinates for 
both, the unperturbed and perturbed orbits. The 2020 samples correspond to all steps on the 
spacecraft’s orbit for a full period at a rate of one step per minute. The data was then split into 
the training data set (X) and the label data set (Y). The LSTM is to approach as close as possible 
the train data to the label data. It is expected for the difference between the train and label data 
during this training to represent the solar gravitational potential perturbation. This difference is to 
be represented by the output weights (considering the shift given by its biases) of the RNN 
LSTM. This, ideally, would create a grid of weights or solar gravitational potential perturbation 
per step on the spacecraft’s path of the given orbit. However, it was found that obtaining the 
output weights per output sample is a far more complicated task since this would require a one-
to-one correspondence between weight and output sample. As mentioned in chapter 5, the 
weights and biases in an LSTM do not have a one-to-one correspondence with the output data 
but depend on the number of LSTM cells and gates of the LSTM cell. Rather, there are two 
weights and one bias per gate in every LSTM cell, which makes eight weights and four biases 
per cell, since there are four gates in every LSTM cell. With the output layer of the RNN LSTM 
built for training in this project being a dense layer of 3 units, the training output resulted in 33 
weights and biases (10 weights and 1 bias per cell for 3 dense layer output cells) for the 2020 
elements per feature used to train it. 
 
 The other two sets of 2020 samples with a similar initial state as the orbit under study 
with two different angles of inclination ( 15°#

O  than that of the Venera D-like orbit) were 
generated in GMAT for the RNN LSTM training testing and validation. These two other data 
sets were split the same way as the training data and were generated with the same rate of orbital 
step per minute. The RNN LSTM was able to approach the training data to that of the label with 
and accuracy of approximately between 89% and 92% with number of 2000 training epochs. 
There is much more work to be done regarding this part of this investigation to reach a level of 
accuracy of at least 98%, and next recommended steps will be provided in the next section. It is 



 98 

important to note here that the data was “normalized” by using the so-called Min-Max 
Normalization in the field of Artificial Intelligence. In reality, Min-Max Normalization is a way 
to rescale data to [0,1] rather than normalizing it as it is in Statistics. In the next section, it will be 
discussed why it is recommended to also normalize the data to get more accurate results when 
training an RNN, and how this normalization and rescaling should be done per feature rather 
than across training and label data.  
 
 An analysis of the perturbation on the spacecraft in orbit due to solar gravitational 
potential was done and presented in chapter 5. This analysis was started by letting the spacecraft 
drift towards the solar perturbation until it either reached the outskirts of the atmosphere of 
Venus or it significantly decreased the eccentricity of the orbit. This was done as a means to find 
out how solar perturbation can aid either the re-entry to Venus or the circularization of the 
spacecraft’s orbit around it at a low enough radius of pericenter for observation of the planet. 
The result of this analysis shows that the drifting to reach the planet or circularizing its orbit 
around it highly depends on the initial state vector of the closed orbit with respect to the Sun. 
Therefore, one of the simulations was done at a different epoch and initial state vector where the 
Sun is at a different position with respect to Venus and the initial state vector of the spacecraft’s 
orbit.  
 
 The spacecraft drifting analysis was done in three different kinds of orbits. The first one 
was the Venera D-like orbit which was left drifting until it successfully reached the outskirts of 
Venus’ atmosphere at a radius of perigee of approximately 6403.3 km and an ellipticity of about 
0.87 in 451.65 days. Hence, using solar gravitational potential perturbation to aid planet re-entry 
might be a promising method to save fuel either by letting a spacecraft drift for some time or 
making a small burn to help it reach the planet in less time than it would take by drifting only. 
The second orbit was done at the same epoch as the Venera-D like orbit, smaller semi-major 
axis, eccentricity, inclination and argument of perigee but larger longitude of the ascending node. 
This initial state vector was such that it placed the spacecraft father from the Sun line (the line 
joining the center of mass of Venus and the Sun). A drifting of about 4.8 years decreased the 
eccentricity of this orbit from 0.82 to 0.65 at a radius of pericenter of about 15,972 km.  In this 
case, the radius of pericenter increased as its eccentricity decreased. Therefore, this type of orbit 
could be useful for circularization rather than approach to the planet. However, it took a long 
time for the solar perturbation drifting of the spacecraft to decrease its eccentricity by 0.17. The 
relevance of this observation is to learn how the position of the spacecraft with respect to the Sun 
affects the orbital path of the spacecraft.  
 
 The third orbit was done at a different epoch, higher semi-major axis, eccentricity, and 
argument of perigee but smaller inclination and longitude of the ascending node. In this type of 
orbit the spacecraft was approximately at the same angular distance from the Sun line as that of 
the previous orbit but with its radius of pericenter almost in front of the Sun. This type of orbit 
took about 5 years to go from an eccentricity of 0.86 to about 0.58 but at a radius of pericenter 
about 5700 km larger than the initial one. Perhaps a combination of an initial state vector placing 
the spacecraft close to the Sun line and its radius of pericenter in front of the Sun could more 
successfully aid the circularization of its orbit without increasing its radius of pericenter as much.  
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 A second alternative for creating a grid of solar gravitational perturbation acting on the 
spacecraft at different orbital points was presented in chapter 5 as well. This could be done for as 
many orbits as possible to create a solar perturbation vector field on phase space around Venus. 
As a proof of concept, a vector field for the Venera D-like orbit was done for some of the orbital 
points of the spacecraft’s path using the data generated in GMAT. One step per every ten 
minutes was taken for both, perturbed and unperturbed orbits to create this solar perturbation 
vector field. This was done by taking the difference between every perturbed and unperturbed 
step toward the direction of the unperturbed orbit. This solar perturbation vector field is useful to 
visualize how exactly the spacecraft is being acted upon by the Sun’s and Venus’ solar 
perturbation and determined the regions where solar and Venus’ perturbations on the spacecraft 
are more significant. A burn analysis was done on five different regions on the vector field where 
the perturbations are larger including at perturbed radius of pericenter to be compared with the 
burn at the unperturbed orbit’s radius of pericenter, which is a common technique for orbit 
circularization. This burn analysis focused more in solving for circularizing the orbit, since it was 
already proven that the solar perturbation does aid with re-entry. The four areas of investigation 
other than at radius of pericenter are approximately shown in figure 51. 
 

 Table 12 shows the sequence of results from the burn analysis done via GMAT 
simulations. The first sequence of burn analysis was done with the goal of circularizing the 
Venera D-like orbit only. In this part of the analysis, it was found that burning at the radius of 
pericenter decreases both the eccentricity and radius of perigee (and this might be the reason why 
it is a common point of burn for circularization) with the Delta-V for the perturbed orbit 0.2 m/s 
less that the perturbed one, a smaller radius of pericenter by about 10 km and an eccentricity 
0.0005 larger. Although the value of eccentricity reached by burning at the perturbed orbit’s 
radius of pericenter is slightly larger, it might be convenient to have the spacecraft closer to the 
planet for observation with a bit less of a burn. As mentioned before, these values might get 
more significant with letting the spacecraft drift for several passes at radius of pericenter before 
burning fuel or do tiny burns at every pass. The simulation for the other four areas achieved an 
eccentricity very closed to zero but at the cost of a much larger radius of pericenter (within 65 to 
25 thousand difference). The smallest the orbit’s eccentricity got, the larger its radius of 
pericenter and the less of a burn it required. This behavior was more pronounced farther away 
from radius of pericenter, being more pronounced in area of analysis 1 followed by areas 2, 3 
and 4 in preceding order. Hence, circularizing at area 1 is most effective orbit if being farther 
away from the planet suits the goals of the mission under consideration.   
 
 The second sequence of simulations was done on the same orbit with the goal of 
circularizing it at a radius of pericenter like that of the Venera D-like orbit, 8,197 km. Burning at 
a radius of pericenter of the perturbed orbit resulted in approximately 2.6 m/s less that the 
unperturbed one and with a smaller radius of pericenter by about 1.77 km and eccentricity 
0.0001 larger. In this case, burning at the unperturbed orbit the simulation reached the values to 
be achieves slightly more closely. Once more, the perturbed orbit simulation yielded a slightly 
smaller radius of pericenter and burn and larger eccentricity. The other four areas presented 
similar behavior as the first set of simulations. Reaching a small eccentricity was unsuccessful 
while preserving the same radius of pericenter. This behavior was more pronounced in the area 
of analysis 1 and increasingly less at shorter distances from radius of pericenter in areas 2, 3 and 
4.  
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 This analysis shows that the radius of pericenter is indeed the best point to burn for 
circularization while preserving a small radius of pericenter. Solar perturbation slightly helps to 
achieve this with a closer approach to the planet with a bit let of a burn and with the possibility 
of getting more aid by letting the spacecraft drift for several passes through radius of pericenter. 
However, if circularizing is the main goal at the cost of a large radius of pericenter, burning 
farther away from center of perigee, around area 1of the perturbed orbit is more effective. 

 
6.2 Future Work 
 
 Due to limited time, the training of the RNN LSTM was not advanced to try more 
effective techniques found later during this project to improve the training accuracy. For 
instance, the number of units and layers of the RNN LSTM developed in this project was done 
by trial and error. This should be investigated more in depth, since some reliable sources, such as 
[69], recommend a more systematic way to better determined the number of neurons to use in 
every layer that have proven to be effective to train NNs. These recommendations were tried in 
the beginning phases of the development of the LSTM with not much success. The reason for 
that is believed to be the fact that the data was not scaled in a more effective way nor normalized 
at all. It is recommended for the data used for training to not only be scaled to make the 
optimization process faster, but also to be normalized to make it more precise. Also, the scaling 
and normalizing of data should be done per feature rather than across a set of features as it was 
done in this report (normalization was done across the 3 features for the position components of 
the unperturbed data and separately for the other 3 features of the components of the perturbed 
data).  Normalizing data per feature leads to the preservation of the variance for each feature in 
the data set. The variance is an important part of the optimization process done by the any NN, 
and it is the difference between validation and training error [70], which results in the accuracy 
of the model. In this way the variance is responsible for the differences in predictions of the same 
observation in different mappings from input to output in the statistical model use for training 
[71]. Therefore, it is important for the variance to be understood by the NN for a every feature of 
the data set to be accounted for when optimizing.   
 
 A larger bank of data with several orbits at different initial state vectors and different 
positions with respect to the Sun were proposed to better train the RNN LSTM in the beginning 
of this project, and it is still highly recommended. Also, this larger bank of data should include 
the other six features composed by the velocity vector components for the spacecraft at every 
orbital step for the perturbed and unperturbed orbits.  
 
 The extraction of LSTM output weights was not investigated enough to put into practice. 
A possible way to do this is with autoencoders, which make possible a one-to-one 
correspondence between RNN output weights and elements without compromising the speed of 
training as a one-to-one RNN model might do. In the case that developing a grid of solar 
perturbation vectors in phase space around Venus is to be done in a way other than extracting the 
weights of a trained NN, a solar perturbation vector field could be constructed by the simulation 
of as many orbits as possible in a similar manner as shown in chapter 5. This could help with 
finding the areas where the gravitational potential field of the Sun can aid the path of a spacecraft 
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of a given mission and train the RNN LSTM to do autonomous burning in such areas. It is 
important to do a detailed study of the most convenient ways to place the spacecraft in close 
orbit with respect to the Sun beforehand in order to take advantage from the solar perturbation in 
the most effective way to meet the goals of the particular mission. The initial placement of the 
spacecraft in close orbit would depend on the goal of the mission of interest, such as 
circularization, planet re-entry, etc.  
 
 Another way to advance this project even further is by implementing the grid of solar 
perturbation vector field (via the weights of the RNN LSTM or multiple orbit simulations) into a 
spacecraft control system by burning the grid of values into a type of flash memory to the 
microprocessor and memory chips of a computer. This type of process is described in Nelson 
Wong’s thesis titled “On Clustering Low-Cost SoC FPGA Devices for Deep Learning Inference 
Applications.” An abstract of this paper can be found in Appendix F for reference. Given that the 
solar perturbation vector field can be implemented in the control system of choice, it is ideal to 
be able to turn on and of the solar perturbation corrections at any point in order to manipulate the 
areas where it is convenient to let the spacecraft drift, or its path to be corrected from such 
perturbations.  
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Appendices 
 
Appendix A – Keras Python codes via Google Colab - Jupyter Notebook.                                                              
Code found at Google Drive link: 
https://drive.google.com/drive/folders/1rC1SQRnTclREhKPQsQGh8idEVtmzKB_a?usp=sharing 
 
Appendix B - Datasets used for RNN LSTM Model Training via Google Colab - Jupyter Notebook. 
 Spreadsheets found at Google Drive link: 
https://drive.google.com/drive/folders/1puF8JPd2vouMrt7rn2yRb17iB8z_pNlE?usp=sharing  
 
Appendix C - Datasets used to Generate the Solar Perturbation Vector Field via GMAT.  
Spreadsheets found at Google Drive link: https://drive.google.com/drive/folders/1s-
bLBsiyXQqUeH7MfXkKolTphC-b74G7?usp=sharing  
 
Appendix D - Datasets Generated by Solar Perturbation Drifting via GMAT.                                                       
Spreadsheets found at Google Drive link: https://drive.google.com/drive/folders/1nocEHxOc-
sEqY4iWTQGJVzAgWAkLSawm?usp=sharing  
 
Appendix E - Datasets Generated by the Burn Analysis done in GMAT.                                                            
Spreadsheets found at Google Drive link: 
https://drive.google.com/drive/folders/1Wjo7qE4Fe3M1zKSNn5oNWYWU2h9djyT6?usp=sharing 
 
Appendix F - Nelson Wong’s Thesis Abstract:                                                                                                                      
On Clustering Low-Cost SoC FPGA Devices for Deep Learning Inference Applications 
(tentative title).                        
The thesis investigates the efficacy of linking multiple sub-$100 system-on-chip field 
programmable gate array devices to perform inferencing. This exploration involves Xilinx's 
XC7Z020 and XC7Z010, which contain block RAM (BRAM) and DSP slices scattered across 
their programmable logic fabric. The DSP slices are leveraged for their multiply-accumulate to 
efficiently perform vector-matrix multiplication, while block RAM slices cache network 
parameters to achieve sub-millisecond multi-layer inference (results pending). I'm still far from 
the end of this thesis but the above should still hold true by the end. The SD card in the [SD card 
-> DDR memory -> BRAM cache] pipeline has been adjusted; attaching the cluster to network-
attached storage and managing parameter loading over Ethernet made for a more flexible 
architecture. The XC7Z010 was especially targeted due to its popularity in previous-generation 
crypto currency miners; the Chinese online retail service AliExpress has been flooded with 
refurbished boards that use this chip and are very affordable (currently $16.50 each).  
 
 


