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𝑎𝑓 = Vibrationally frozen speed of sound  

[C], [�̇�] = Concentration, concentration with respect to time  

∆𝐶 = Distance along characteristic curve  

C+/- = Positive or negative characteristic line  

x = Horizontal cartesian coordinate  

y = Vertical cartesian coordinate  

𝜂 = Unit vector normal to streamline  

𝜉 = Unit vector parallel to streamline  

𝜃 = Inclination angle  

𝜇 = Mach angle  

𝜈′ = Reactant stoichiometric constant  

𝜈′′ =  Product stoichiometric constant  

i = Species index  

h = Enthalpy  

𝑌, �̇� = Mass fraction, mass fraction with respect to time  

X, �̇� = Mole fraction, mole fraction with respect to time  

ℳ = Molecular weight  

kf = Forward reaction rate  

kb = Rearward reaction rate  

P = Pressure  

𝜌 = Density  

CEA = Chemical Equilibrium Application  

    

    



 

1. Motivation 
 

1.1 Motivation 

 

Research and development on hypersonic vehicles have been increasing over the last few 

years. Namely, hypersonic missiles with nuclear capabilities have all the major superpowers in the 

world racing to develop arsenals of these weapons. These missiles achieve hypersonic speeds with 

scramjet or ramjet engines. Access to space is also another motivation to develop hypersonic 

airbreathing engines. For example, a paper by Martin [1] analyzed concepts for single-stage-to-

orbit vehicles where a ramjet engine with various configurations was analyzed and compared to 

traditional rocket engines. The paper found that some configurations of ramjets can carry payloads 

comparable to medium sized liquid rocket engines,

 

The focus of this paper is the convergent-divergent nozzle design, but it is worth 

understanding the functionality of a ramjet and scramjet. Figure 1 shows as schematic [2] of a 

ramjet engine. At the inlet of the ramjet, the flow decelerates and compresses through a series of 

oblique shockwaves in a diffuser. At the end of the diffuser, a normal shock is formed, and 

supersonic flow becomes subsonic flow as it passes through a divergent duct into the combustion 

chamber. Within the combustion chamber, fuel is injected, mixed, and burned with the 

composition of air. Finally, the flow is accelerated again through a convergent-divergent nozzle 

and typically reaches Mach 3-6. Scramjets, however, are effective above Mach 6. At these Mach 

numbers it is not desirable to decelerate the flow like a ramjet, and it uses supersonic combustion, 

this is where the name “scramjet” derives from. The vehicle body itself is used for the scramjet 

operation, with its supersonic combustion process, the entire engine geometry is convergent up to 

the exhaust nozzle as shown in Figure 2. 

 

 
Figure 1: Ramjet engine schematic [2]. 
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Figure 2: Scramjet engine schematic [2]. 

 

The main challenges hypersonic airbreathing engines face relate to stable combustion 

processes, structural integrity for reusability, and development of analytical tools to predict engine 

behavior. This paper will focus on nozzle wall development for supersonic and hypersonic flow. 

The nozzle contour is critical for optimum thrust operation, and this shape can be determined 

analytically with the method of characteristics in calorically perfect gas (CPG), thermally perfect 

gas (TPG), thermo-chemical equilibrium (TCE), and non-equilibrium. Below is a definition of 

each of these states of flow: 

 

• Calorically perfect gas (CPG): the specific heat capacity is constant and is not a function 

of temperature. 

• Thermally perfect gas (TPG): the specific heat capacity is a function of temperature only. 

• Thermo-chemical equilibrium (TCE): the state variables are a function of temperature and 

pressure. It is a multispecies, chemically reacting gas with no intermolecular forces. Each 

species obeys the perfect gas law. Recombination and dissociation rates are equal. 

• Non-equilibrium: Gas composition changes as a function of time, requires reaction 

mechanisms to solve reaction rates. The state variables are a function of temperature and 

moles of all species. Each species still obeys perfect gas law. Recombination and 

dissociation rates are not equal. 

 

There is a well-defined way for determining the nozzle contour with MoC in CPG (discussed 

in section 1.5) however in TCE or non-equilibrium, it becomes difficult to model and is dependent 

on available thermodynamic data for the species being considered. In CPG, the nozzle is assumed 

to be steady, inviscid, isentropic, and adiabatic. This allows the assumption that total enthalpy is 

conserved and constant throughout the entire nozzle. Looking at the energy equation below, we 

can see that the exit velocity is proportional to the square root of the difference of enthalpies. This 

equation is derived in the Fundamentals of Aerodynamics textbook [3]. In the combustion chamber 

(CC) we will have near zero velocity (assumed to be zero), and the equation is rearranged in terms 

of exit velocity of the nozzle shown below. Clearly, a large difference in enthalpies will result in 

higher exit velocity, the goal is to maximize this difference.  

 

ℎ𝐶𝐶 +
𝑉𝐶𝐶

2

2
= ℎ𝑒𝑥𝑖𝑡 +

𝑉𝑒𝑥𝑖𝑡
2

2
⟹ 𝑉𝑒𝑥𝑖𝑡 = √2(ℎ𝐶𝐶 − ℎ𝑒𝑥𝑖𝑡) 

 

(1) 
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As explained in the Hypersonics and High-Temperature Gas Dynamics textbook, chapter 

14 [4], the temperature of the gas is higher than CPG due to recombination of gas molecules in the 

divergent section of the nozzle. The recombination effect turns chemical energy into translational 

energy, which means the static temperature is higher than in the CPG case. Figure 3 below 

compares temperature axially along the nozzle for equilibrium and CPG assumptions. This figure 

also illustrates the importance of analyzing nozzle flows in TCE and non-equilibrium due to the 

large difference in static temperatures from CPG to TCE.  

 
Figure 3: Temperature distribution in CPG and equilibrium along divergent section of a C-

D nozzle [4]. 

A central issue with hypersonic nozzles is the species recombination and disassociation 

reaction rates. Long nozzles with large expansion ratios can be assumed to be steady, isentropic, 

quasi-1D flow, with CPG assumptions. Whereas for short nozzles, the nozzle length might not be 

sufficient to reach equilibrium. Shorter nozzle lengths mean that the molecular species can eject 

so fast out of the engine that recombination may not happen fast enough. This means the 

recombination and dissociation rates are not equal; hence the flow is in non-equilibrium. Reaction 

rates application to MoC is explained more in detail in Chapter 2, and the derivation is shown in 

Appendix A. 

 

Thrust, boundary layer, and active cooling systems are all affected by the nozzle wall, 

species make-up of the flow, and the reaction rates of those species. Utilizing MoC, with CPG 

assumptions, to generate a nozzle geometry is a good first approximation that can be further 

analyzed in a CFD solver.  The same idea can be applied to nozzle contours generated with MoC 

in TCE or non-equilibrium which is desirable for ramjet or scramjet nozzle designs. A first 

approximation nozzle contour can reduce the computation time for CFD solvers and include more 

in-depth analysis of more complex flow problems such as turbulence and boundary layer. 

Currently, there is a lack of an application that creates a nozzle contour in TCE or non-equilibrium 

for airbreathing engines, and this is the purpose of this project. Combining tools such as MATLAB 

and Chemical Equilibrium Application (CEA), this project will utilize MATLAB’s calling 

functionality to extract important thermodynamic properties from CEA that in turn will calculate 
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the MoC compatibility equations (derived in Appendix A) using an finite difference method 

approach. The compatibility equations solve the characteristic mesh which dictates the nozzle 

contour. Development of a tool to quickly design two-dimensional nozzles in TCE or non-

equilibrium is helpful for scramjet and ramjet geometries. For example, the Lockheed X-7, shown 

in Figure 4, was a hypersonic ramjet missile with an axisymmetric engine design. According to 

[2] designs with an axisymmetric nozzle required struts to keep it secure in place, and it did not 

make efficient use of the airframe. It was found that frames holding the engines causes significant 

amount of drag and wall effects which canceled out the uninstalled thrust. Now, most ramjet and 

scramjet vehicles have a two-dimensional engine design. This is because the body of the aircraft 

is a useful compression surface for the inlet of the engine, and the aft of the airframe can be used 

as a nozzle wall expansion surface shown below in Figure 5. 

 
Figure 4: Lockheed X-7, Source: https://en.wikipedia.org/wiki/Lockheed_X-7. 

 

Figure 5: Hypersonic aircraft airflow schematic [2]. 

 

1.2 Literature Review 

 

1.2.1 Research Articles and Technical Reports 

 

  The technical report, A General Method for Automatic Computation of Equilibrium 

Compositions and Theoretical Rocket Performance of Propellants [5], explains how their computer 

program calculates important thermodynamic variables for a rocket engine in chemical 

equilibrium. This report is vital for implementing mathematical techniques for chemical reacting 

flow into a MATLAB code. The program includes calculating a nozzle in thermo-chemical 

equilibrium from either a constant pressure and an adiabatic combustion problem or an isentropic 

expansion problem. The program carries out the calculations with equations relating to total 

enthalpy, entropy, Dalton’s law, and concentration of atomic species while assuming that the flow 

https://en.wikipedia.org/wiki/Lockheed_X-7


10 
 

is in local thermo-chemical equilibrium. The Newton-Raphson method is an iteration technique to 

solve the nonlinear equations that define the flow field. The iteration technique is well explained 

and is referenced in the main technical report [6] used for this project. The report also shows how 

to calculate equivalency ratios, what molecular species to consider in the calculations, and 

calculate it in the code routine. Overall, the report gives more insight into chemical reactions, 

specifically for nozzles, that the Hypersonic and High-Temperature Gas Dynamics book [4] does 

not discuss. 

The technical report, Applying the Method of Characteristics to Analyze the Flow Field of 

a Chemically Reacting Gas in a Two-Dimensional or an Axisymmetric Nozzle [6] outlines the 

derivation of equations of 2D and axisymmetric MoC with reacting flows. The author created a 

computer program for one reaction system, N4O2 + N2, and another for H2 + Air reaction 

mechanism broken down into fourteen elementary reactions. The computer program calculates the 

species reaction rates and the characteristic net for optimal rocket nozzle wall geometry in local 

thermo-chemical equilibrium or non-equilibrium. The data calculated consisted of pressure, 

temperature, mass concentration, and mole fraction along the two-dimensional rocket nozzle’s 

symmetry line. The data were compared against experimental results with the same conditions, 

demonstrating that the computer program closely matched the experimental results. When the 

article was published, thermodynamic data required to calculate the reaction rates, such as reward 

reaction rate, species sensible enthalpy, and entropy, was not widely known for a wide range of 

combinations of fuels and oxidizers. 

  The previous article [6] presents the equations needed to solve the compatibility equation 

for the MoC calculations. Those equations used for 2D and axisymmetric MoC with reacting flow 

in nozzles apply to blunt bodies. The paper, Inviscid Flow of a Reacting Mixture of Gases Around 

a Blunt Body [7], explains these equations in more detail, such as simplifying the Navier-stokes 

equations inviscid reacting flow and the effects recombination rates and dissociation rates have on 

the flow properties. The paper also presents non-dimensional equations of the freestream 

properties that define the non-equilibrium flow with reasonable accuracy. Overall, the paper 

clarifies techniques to tackle local equilibrium and non-equilibrium flows. It also highlights the 

effects of recombination rates and dissociation rates effects on overall nozzle performance. 

 

The technical note, Performance of Several Method-of-Characteristics Exhaust Nozzles 

[8], analyzes multiple MoC nozzles, and a fixed conical nozzle at various pressures and expansion 

ratios. The results showed that the MoC method could increase the thrust by 1%, and the paper 

demonstrates it can approximately double the payload weight of a missile. This paper explains 

how the coefficient of moment of an engine as a design parameter for MoC nozzles. The ratio, 

coefficient of thrust over the ideal coefficient of thrust, is a function of the coefficient of moment. 

The paper correlates the coefficient of moment with the pressure ratio along the nozzle horizontal 

axis with isentropic assumptions. There is uniform axial flow exiting the nozzle with these 

assumptions, and the pressure and temperature ratios are a function of Mach number. From the 

summary of results, the author states that the MoC is not sufficient for low-pressure ratios within 

the nozzle will, instead of the fixed divergent angle nozzle design will suffice. Low-pressure ratio 

nozzle designs may benefit from fixed divergent angle nozzle because an MoC contour would 

create high separation pressures, causing structural damage and a severe decrease in thrust.  
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The technical report, Recombination of Hydrogen-Air Combustion Products in an Exhaust 

Nozzle [9], can be a benchmark for data generated by the MATLAB code. The report analyzes a 

ramjet with a hydrogen-air system with a combustion temperature of 1833 Kelvin and a 

stoichiometric system. The report offers finite difference method techniques for solving reaction 

rates only in equilibrium and locating the freezing point along the nozzle axis. Furthermore, the 

report extensively discusses a ramjet nozzle experimental setup in an arc-jet facility and 

calibrations needed for pyrometers. 

  

 Supersonic Nozzle Flow with a Reacting Gas Mixture [10] analyzes the supersonic nozzle 

flow of nitrogen tetroxide and dioxide in chemical equilibrium and frozen flow. The authors 

approach the problem using pressure, area, and the defined species’ reaction mechanisms to define 

the flow field. Craig [6] references this paper regarding the frozen speed of sound and the effect 

of vibrational energy on the flow. Enthalpies of the species are datasets required to calculate the 

reaction rates. With this data and known nozzle geometry, the paper gives three methods that fully 

define the flow: frozen flow, chemical equilibrium flow, and flow with known static pressure.   

 

Design Optimization of Rocket Nozzles in Chemically Reacting Flows [11] provides 

another look into a method of calculating reacting flows within a rocket nozzle. The mathematical 

techniques used are Newton’s method and the finite rate chemistry model. The author states that 

the code can reduce computational time for finding the correct nozzle shape for a CFD simulation, 

thus reducing design time and cost. Another exciting benefit of optimizing a nozzle with reactions 

is that the species composition data can minimize exhaust plumes’ infrared detection. The 

optimization code calculation uses an implicit Newton’s solution method (analytical) in tandem 

with the Jacobian matrix for the flow analysis (numerical). The author compares the two datasets 

based on performance and design optimization. The reacting flow model presented in the article 

closely resembles the equation set up in Craig’s technical report [6]; however, it explains the 

reaction calculation in more detail and includes reaction mechanisms with third body efficiencies. 

The numerical method presented does not utilize thermodynamic species data to calculate the 

given species’ reaction rates. Instead, the author uses empirical equations to solve the reactions, 

such as the Arrhenius equation, and a fourth-order polynomial to solve the specific heat constant, 

entropy, and enthalpy for all species present in the flow. The authors’ results are analyzed along 

with three different nozzle geometries: conical nozzle, optimized nozzle, and the Taurus-II nozzle. 

 

Scramjets are also an important study for nozzle designs. These airbreathing engines 

require supersonic flow to operate as it has no moving parts, and the geometry of the inlet is 

specific for a small range of Mach numbers. Oblique shockwaves form in the inlet, thus increasing 

the pressure and slowing down the flow. The flow is moving so fast that the only feasible geometry 

requires supersonic combustion. The paper, Development and Verification of a Supersonic Nozzle 

with a Rectangular Cross Section at a Mach Number of 2.8 for a Scramjet Model Combustor [12], 

explains a numerical method that calculates the geometry of a supersonic two-dimensional nozzle 

wall with boundary layer corrections. The method used to design the nozzle contour was Foelsch’s 

method, which calculated the geometry needed to cease the expansion waves forming in the nozzle, 

like MoC. The article outlines how to approximate the boundary layer thickness by assuming a 

straight line connects the throat area and exit area. The authors conclude that the methodology 

used is easier to apply than others and still provides an optimized contour with boundary layer 

thickness. 
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Non-equilibrium is an essential study for ramjet and scramjet nozzles. Mach numbers in 

the exit section are enormous, that the species stay time is very small. If the molecules do not have 

enough time to react with other molecules within the nozzle, the reactions rates between 

recombination and dissociation are not equal; therefore, the flow is non-equilibrium. The article, 

Numerical Analysis of Thermo-chemical Non-equilibrium Flows in a Model Scramjet Engine 

[13], explains how the Navier-Stokes equations with non-equilibrium implements into an open-

source solver of the two-temperature model. The two-temperature kinetic model is discussed in 

chapter 13.4.1 of the Hypersonic and High-Temperature Gas Dynamics textbook [4]. The solver, 

hy2Foam, due to its high fidelity of solving non-equilibrium flows. The article can help understand 

what types of CFD results need analysis for a non-equilibrium or equilibrium flow and if it is 

feasible to solve non-equilibrium flows for this project. 

 

Thermal protection systems (TPS) are just as critical as the engine because hypersonic 

vehicles produce a large amount of heat in the combustion chamber. These extreme temperatures 

test today’s technological limits and are an essential topic of study for ramjets and scramjet 

engines. The Research Progress on Active Thermal Protection for Hypersonic Vehicles [14] 

article’s primary purpose is to overview all the current active cooling methods for hypersonic 

vehicles. The author states that active cooling such as regenerative, transpiration, or film cooling 

is necessary for high heat loads present in these engines. The article provides insight into each 

cooling method’s main issues, heat transfer and flow mechanisms for calculations, and current 

developments. The results and analysis section compares 3D simulations results of a model 

scramjet with each active cooling method type.  

 

The Thermo-chemical Non-Equilibrium Scale Effect of The High Enthalpy Nozzle [15] 

paper explains the importance of accurately calculated nozzle geometries with high enthalpy 

nozzle flows. Much like the previous articles mention, this article also applies Navier-Stokes 

equations with the non-equilibrium flow to a numerical model. Vibrational energy is calculated 

using methods explained in chapter 13 of the Hypersonic book [4]. It can apply with other theories 

such as Gupta-Yos viscosity, Wilkes Law, and a “translational-vibrational energy relaxation time 

(TVERT)” mathematical model, which fully defines the flow field. This numerical method is 

combined with a CFD solver to solve for unsteady flow. The article goes into depth with frozen 

vibrational energy and the freezing point’s scaling effects in a high enthalpy nozzle. The article 

also compares the expansion ratio with the mass fractions of species for three different 

mechanisms. Each mechanism increases in complexity with more species; the models presented 

were 5, 7, and 11-species for air. 

 

1.2.2 Textbooks and Dataset References 

 

 The NASA technical paper, Thermodynamic Data for Fifty Reference Elements [16], 

contains tabulated data for 50 elements, including specific heat at constant pressure, sensible 

enthalpies, and sensible entropies. These variables are a function of temperature in a range of 200 

Kelvin to 6000 Kelvin in 100 Kelvin intervals and are crucial in calculating the reaction rates. The 

Hypersonic and High-Temperature Gas Dynamics textbook [4], specifically chapters 13, 14, and 
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15, derives and explains equilibrium flow, non-equilibrium flow, and MoC in calorically perfect 

gases.  

 

1.3 Project Proposal 

 

Hypersonic vehicles such as ramjets and scramjets are the new frontier of airbreathing 

propulsion. With an increased need to develop and analyze these high enthalpy engines, programs 

need further development to provide important thermodynamic data and a useful nozzle geometry 

for a user-defined problem. This data is incredibly valuable for analyzing a vehicle’s thermal 

protection system, boundary layer formation, and separation. Due to the extreme conditions the 

nozzle experiences at hypersonic speeds, chemical reactions play an important role in performance 

losses. The ability to quickly iterate nozzle designs and produce data that closely match the 

physical flow is required for rapid prototype development and cost savings.  

The objective of this project is to design a tool that can create two-dimensional nozzle wall 

contours in CPG, TCE, and non-equilibrium for hypersonic airbreathing engine applications. This 

project will focus on a hydrogen-air system where the non-equilibrium nozzle will require a 

reaction mechanism of this system. First, the MoC in CPG will be applied to generate a nozzle 

contour which will be used to obtain data such as nozzle shape, temperature, and pressure 

distribution, etc. Once this is achieved, a calling function for CEA into MATLAB will be required 

to do analysis on TCE and non-equilibrium nozzle flows with an iterative technique, described in 

Chapter 2. CEA is useful for this application because it calculates thermodynamic properties in 

equilibrium for a variety of oxidizer and fuel mixtures. The throat thermodynamic data provided 

by CEA is needed to begin any MoC calculation. 

 

1.4 Methodology 
 

Semester 1: Problem definition and MATLAB script development of MoC in CPG 

1. Background research into ramjets and scramjets 

2. Background research into MoC in CPG, TCE, and non-equilibrium 

3. Develop a calling function for CEA into a MATLAB script 

4. Develop functionality for CPG MoC calculations in MALTAB 

5. Determine required inputs for CPG, TCE, and non-equilibrium MoC 

6. Determine reaction mechanism for non-equilibrium MoC 

7. Collect Arrhenius law and third body efficiency data 

8. Begin TCE MoC calculation with integration of CEA in a MATLAB script 

 

Semester 2: Development of TCE and Non-equilibrium MoC Nozzle  

1. Develop a MATLAB script to iteratively calculate TCE MoC 

2. Validate the TCE MoC data with data from [6] as a benchmark 
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3. Develop a MATLAB script to iteratively calculate non-equilibrium MoC 

4. Validate the non-equilibrium MoC data with [6] as a benchmark 

5. Further develop the generated nozzle contour in a CFD solver 

 

1.5 MoC with Calorically Perfect Gas Assumption 

 

From chapter 11.4, Determination of the Compatibility Equations [17], the compatibility 

equations define the flow angle and velocity magnitude. The eqn. (5) below is the Prandtl-Meyer 

Expansion Angle derived using calorically perfect gas assumptions. For the case of reacting flow 

in nozzles, multiple articles such as [6] utilize the vibrationally frozen speed of sound for 

calculations in non-equilibrium and local chemical equilibrium flows.  

𝐾+ =  𝜃 − 𝜐(𝑀) (2) 

𝐾− =  𝜃 + 𝜐(𝑀) (3) 

𝜃𝑚𝑎𝑥 =
𝜐(𝑀)𝑒

2
 

(4) 

𝜐(𝑀) =  √
𝛾 + 1

𝛾 − 1
(tan−1 (√

𝛾 − 1

𝛾 + 1
(𝑀2 − 1))) − tan−1 √𝑀2 − 1 

(5) 

𝜇 = sin−1 (
1

𝑀
) 

(6) 

𝑑𝜃 =  √(𝑀2 − 1)
𝑑𝑉

𝑉
 = 𝜃𝑚𝑎𝑥/𝑁 (7) 

 

The problem is assumed to be isentropic with calorically perfect gas to calculate a 

preliminary nozzle wall with MoC. Another analysis will be done for a fixed divergent angle 

nozzle wall, which does not prevent the expansion waves from forming. From the technical note, 

Performance of Several Method-of-Characteristics Exhaust Nozzles [8], it was discovered that 

low-pressure ratios create severe pressure separation in contoured nozzle walls. Therefore, the 

code needs to be able to calculate fixed divergent wall contours. Shown below in Figure 6, the 

fixed divergent angle nozzle wall does not prevent expansion waves from forming, as seen by the 

blue's characteristic net. Due to the continuous expansion of the flow, streamlines do not exit 

radially. The exit Mach number is lower, creating a decrease in thrust. However, these losses 

outweigh the risk for low-pressure nozzles. Furthermore, the contoured nozzle wall terminates the 

expansion waves generated from the supersonic flow, as shown in Figure 7. Doing so straightens 

the flow radially; therefore, the expansion ratio can be a function of exit Mach number. Setting the 

inclination angle at the wall equal to the previous node's inclination angle will prevent the 

reflection of the Mach line. 



15 
 

 

 

Figure 6: Fixed wall angle nozzle. 

 

 

 

 

Figure 7: Contoured nozzle. 

 

 

 

 

1.6 MoC with Reactions: General Equations 
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Outlined in Craig's article [6], the 2D and axisymmetric flow field of a nozzle is calculated 

by the Navier-Stokes equations and reaction rate equations for the streamline coordinate system 

shown in Figure 8. The streamline coordinate system (ξ,η) is shown in light blue. The cartesian 

coordinate system (x,y) is shown in dark blue. The streamline coordinates are related to the 

characteristic lines with the Mach angle. The angle between the horizontal and the streamline 

direction is the inclination angle. These relationships between coordinate systems are necessary 

for the derivation of the system of equation.

 

 
Figure 8: MoC with reactions coordinate system 

 Equations (8), (9), (10), and (11) represent the continuity, momentum, and energy 

equations, respectively, and correlate to the streamline coordinate system. Manipulating the system 

of equations to reduce the number of variables in each equation, one can find the unique solution 

of the system of unknowns (
dP

dξ
,
dP

dη
,
dθ

dξ
,
dθ

dη
 ). Cramer's rule is applied to find a solution where the 

determinant is zero. 

 

 

 

Continuity: 
𝜌

𝜕𝑉

𝜕𝜉
+ 𝑉

𝜕𝜌

𝜕𝜉
+ 𝜌𝑉

𝜕𝜃

𝜕𝜂
= 0 

(8) 
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Momentum: 
𝜌𝑉

𝜕𝑉

𝜕𝜉
+

𝜕𝑃

𝜕𝜉
= 0 

(9) 

Momentum: 
𝜌𝑉2

𝜕𝜃

𝜕𝜉
+

𝜕𝑃

𝜕𝜂
= 0 

(10) 

Energy: 𝜕ℎ

𝜕𝜉
+ 𝑉

𝜕𝑉

𝜕𝜉
= 0 

(11) 

Rate of Species Change: 
𝑉

𝜕𝑌𝑖

𝜕𝜉
= �̇� 

(12) 

General Net Reaction Rate: [�̇�] = (𝜈𝑖
′ − 𝜈𝑖

′′){𝑘𝑓 ∏ ([𝐶𝑖])
𝜈𝑖′   − 𝑁

𝑖=1 𝑘𝑏 ∏ ([𝐶𝑖])
𝜈𝑖′′𝑁

𝑖=1 } (13) 

Total Enthalpy Equation: 
𝐻𝑇𝑜𝑡𝑎𝑙 = ℎ +

𝑉2

2
 

(14) 

Below are the final equations required to solve the 2D MoC in reacting flow. On the right-

hand side of equation (13), the forward and rearward reaction rates (𝑘𝑓 𝑎𝑛𝑑 𝑘𝑏) require 

thermodynamic data to solve. This data can be extracted from CEA through MATLAB by user 

input of chamber pressure, mixture ratio, fuel and oxidizer types, and temperature. To initiate the 

characteristic net calculation, MATLAB would pull data calculated by CEA to define the chamber 

conditions, throat conditions, and the species present in the flow at each of those locations. 

Along 

Characteristics: 

Δx

Δy
= 𝑡𝑎𝑛[�̅� ± 𝜇𝑓̅̅ ̅] 

(15) 

 
ΔP

�̅��̅�2𝑡𝑎𝑛𝜇𝑓̅̅ ̅
± Δθ =  

𝑎𝑓̅̅ ̅

�̅�
Δc [−∑

ℎ𝑖

𝐶𝑝𝑇𝑉

𝑛

𝑖=1

�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

+ ∑
ℳ

ℳ𝑖𝑉
�̇�

𝑛

𝑖=1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

] 

(16) 
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Along 

Streamlines: 
�̅�ΔV +

ΔP

𝜌
= 0 

(17) 

 Δx

Δy
=

�̅�

�̅�
 

(18) 

 Δξ = √(𝑥𝑛−1  −  𝑥𝑛)2 + (𝑦𝑛−1 − 𝑦𝑛)2 = Δc cos𝜇𝑓  (19) 

The next steps require implementing these equations into a code specifically written for the 

Hydrogen-Air reaction mechanism. In equations (15), (16), (17), and (18), the average between 

two points is taken across the state variables in the flow that is not a derivative. The delta symbol, 

Δ, represents the difference between the two points.  

Referring to Figure 7, the characteristic net consists of nodes within the nozzle. Point A 

has properties of the flow at the throat, which can be obtained from CEA. Both point A and point 

one are required to solve for point two. The equations presented above require knowledge of the 

state variables at point two, even though it is unknown. The iteration technique converges point 

two by solving it roughly five times when the previous iteration is within 0.1% agreement. The 

finite difference method does not suffice to solve for reaction rates. The article [6] recommends 

integrating on the streamline between two points, as seen in Figure 9 below.   

 

Figure 9: Streamline integration. This is a close-up image of the characteristic net either from 

figure 1 or 2. To solve for the reaction rate, eq. (12) is integrated along the streamline between 

points 2' and 2. CEA will be utilized for this step. 
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2. Method of Characteristics in TCE and Non-Equilibrium 
 

2.1 MoC Approach with Chemical Equilibrium and Non-Equilibrium 

 

From Craig’s article [6], it was found that vibrationally frozen speed of sound was 

sufficient for TCE and non-equilibrium MoC. If we assume vibrationally frozen flow at the nozzle 

throat, this will allow for simplifications in the derivation of MoC with reaction rates. Utilizing 

eqns. (2-6) the frozen Mach angle can be calculated. The turn angle will be determined by eqn. (7) 

with the number of characteristic lines, N. In Figure 9, the (x,y) coordinate of point 2 is found 

with the following equations:  

𝑥2 =
𝑦𝑎 − 𝑦1 − 𝑥𝑎 𝑡𝑎𝑛(𝜃 − 𝜇𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅)
2−𝑎

+ 𝑥1 𝑡𝑎𝑛(𝜃 + 𝜇𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅)

2−1

𝑡𝑎𝑛(𝜃 + 𝜇𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅)

2−1
− 𝑡𝑎𝑛(𝜃 − 𝜇𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅)
2−𝑎

 
(20) 

𝑦2 = 𝑦1 + (𝑥2 − 𝑥1) 𝑡𝑎𝑛(𝜃 + 𝜇𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅)

2−1
 (21) 

In addition to eqns. (2-6) and eqns. (20-21), the remaining equations are required for 

nozzles to solve for chemical equilibrium and non-equilibrium. 

𝑃2 =
𝐵1 + 𝐵𝑎 + 𝜃1 − 𝜃𝑎 +

𝑃1

𝐴1
+

𝑃𝑎

𝐴𝑎

(
1
𝐴1

+
1
𝐴𝑎

)
 

(22) 

𝜃2 = 𝐵1 + 𝜃1 − (
𝑃2 − 𝑃1

𝐴1
) 

(23) 

𝐴1 = (𝜌𝑉2 tan 𝜇𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2−1
 (24) 

𝐴𝑎 = (𝜌𝑉2 tan 𝜇𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2−𝑎
 (25) 

𝐵1 = sin 𝜇𝑓̅̅ ̅
2−1

Δ𝐶2−1 {(∑
ℳ𝑚𝑖𝑥

ℳ𝑖𝑉
𝑌�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑛

𝑖

)

2−1

− (∑
ℎ𝑖

𝐶𝑝𝑖𝑇𝑉
𝑌�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑛

𝑖

)

2−1

} 

(26) 
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𝐵𝑎 = sin 𝜇𝑓̅̅ ̅
2−𝑎

Δ𝐶2−𝑎 {(∑
ℳ𝑚𝑖𝑥

ℳ𝑖𝑉
𝑌�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑛

𝑖

)

2−𝑎

− (∑
ℎ𝑖

𝐶𝑝𝑖𝑇𝑉
𝑌�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑛

𝑖

)

2−𝑎

} 

(27) 

Δ𝐶2−1 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (28) 

Δ𝐶2−𝑎 = √(𝑥2 − 𝑥𝑎)2 + (𝑦2 − 𝑦𝑎)2 (29) 

 

To begin the calculation of eqns. (24-24), the density and velocity are assumed to be the same 

as the previous point for the first iteration, i.e.: 

• 𝜌2−1(1) = 𝜌1and 𝜌2−𝑎(1) = 𝜌𝑎  

• 𝑉2−1(1) = 𝑉1and 𝑉2−𝑎(1) = 𝑉𝑎  

 

The following iterations will be calculated with values with subscript 2 are from the previous 

iteration. These values are plugged into eqns. (24-25): 

𝜌2−1 =
𝜌2 + 𝜌1

2
 

(30) 

𝜌2−𝑎 =
𝜌2 + 𝜌𝑎

2
 

(31) 

𝑉2−1 =
𝑉2 + 𝑉1

2
 

(32) 

𝑉2−𝑎 =
𝑉2 + 𝑉𝑎

2
 

(33) 

 

Once pressure at point 2 is calculated, the velocity at point 2 can be obtained with eqn. 10. 

Expanded out to relate to point 2: 

𝑉2 = 𝑉2′ − (
𝑃2 − 𝑃2′

𝑉2−2′𝜌2−2′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 
(34) 

 

Where 𝑉2′and 𝑃2′ are found through linear interpolation of point a and 1. The values, 𝑉2−2′ 

and 𝜌2−2′ , are found through taking the average of points a and 1. 
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2.2.1 Example Reaction Rate Mechanism 

 

This section illustrates an example reaction mechanism for non-equilibrium flow, the 

reaction mechanism for H2-Air will be discussed further in chapter 4. To begin the calculation of 

eqns. (26-27), the reaction rates must be known at point 2 and point 1. With the same iterative 

process to calculate eqns. (24-25), the reaction rate is assumed to equal the previous point for the 

first iteration. Utilizing eqn. (13), the reaction rates can be derived for each species, an example of 

a simple reaction mechanism is demonstrated below. 

An example reaction mechanism from [17] is:  

• Reaction 1:   𝐻 + 𝑂2 ⇋ 𝑂𝐻 + 𝑂 

• Reaction 2:  𝑂 + 𝐻2 ⇋ 𝑂𝐻 + 𝐻 

• Reaction 3:  𝑂𝐻 + 𝐻2 ⇋ 𝐻2𝑂 + 𝐻 

• Overall Reaction: 𝟐𝑯𝟐 + 𝑶𝟐 ⇋ 𝑶𝑯 + 𝑯 + 𝑯𝟐𝑶 

  

Adding up reactions 1, 2 and 3 will result in the overall reaction taking place within the 

nozzle. The arrows represent recombination and dissociation reaction rate coefficients, 𝑘𝑏 and 𝑘𝑓 

respectively. The reaction rates of each species are derived from eqn. (13) and an example reaction 

rates of species [OH] and [H] are shown: 

𝑑[𝑂𝐻]

𝑑𝑡
= {𝑘𝑓1[𝐻][𝑂2] − 𝑘𝑏1[𝑂𝐻][𝑂]} + {𝑘𝑓2[𝑂][𝐻2] − 𝑘𝑏2[𝑂𝐻][𝐻]} − {𝑘𝑓3[𝑂𝐻][𝐻2] − 𝑘𝑏3[𝐻2𝑂][𝐻]} 

𝑑[𝐻]

𝑑𝑡
= −{𝑘𝑓1[𝐻][𝑂2] − 𝑘𝑏1[𝑂𝐻][𝑂]} + {𝑘𝑓2[𝑂][𝐻2] − 𝑘𝑏2[𝑂𝐻][𝐻]} + {𝑘𝑓3[𝑂𝐻][𝐻2] − 𝑘𝑏3[𝐻2𝑂][𝐻]} 

The subscript numbers on 𝑘𝑏 and 𝑘𝑓 represent one of the 3 reactions in the reaction 

mechanism shown above, Reactions 1-3. 𝑘𝑓  can be obtained through a statistical equation called 

the Arrhenius equation. The Arrhenius equation can be found in Chapter 13.3, Chemical Non-

equilibrium: The Chemical Rate Equation [4].  

𝑘𝑓 = 𝐶𝑓𝑇
𝑛𝑓𝑒

−𝐸
ℛ𝑇 

 

(35) 

The recombination rate constant, 𝑘𝑏, can be found with the equilibrium constants, 𝐾𝑐 and 𝑘𝑝: 

𝑘𝑓

𝑘𝑏
= 𝐾𝑐=(

1

ℛ𝑇
)
Δ𝑛

𝑘𝑝 
(36) 

𝑘𝑝1 =
𝑃𝑂𝐻𝑃𝑂

𝑃𝐻𝑃𝑂2

 
(37) 
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𝑘𝑝2 =
𝑃𝑂𝐻𝑃𝐻

𝑃𝑂𝑃𝐻2

 
(38) 

𝑘𝑝3 =
𝑃𝐻2𝑂𝑃𝐻

𝑃𝑂𝐻𝑃𝐻2

 
(39) 

𝜒𝑖 =
𝑃𝑖

𝑃𝑚𝑖𝑥
 

(40) 

 

 

 

With the reaction rates defined, the pressure at point 2 can be calculated as eqns. (22-29) 

are all known after calculating the first iteration. For the second iteration onward, CEA will be 

needed to calculate the mole fractions. To do this, the previous iteration of temperature, pressure, 

and mole fractions at point two will be put into the CEA (t, p) problem to calculate the next iteration 

mole fraction. According to the article [6] assuming that the specific heat at constant pressure and 

the molecular weight of the mixture are the same at both points, then the temperature at point 2 

can be calculated as: 

𝑇2 = 𝑇1 +
𝑉1

2 − 𝑉2
2

2𝐶𝑝
 

(41) 

 

The iterative process of calculating eqns. (22) and (23) continues until the pressure 

calculated between each iteration agrees within 0.1%. Once this is achieved, point 2 is successfully 

calculated, then point 3 will be calculated next with information from point 2.  
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3. Reaction Rate Mechanism and CPG MoC Initial Results  
 

3.1 Full Hydrogen-Air Reaction Rate Mechanism for Non-equilibrium MoC 

 

The reaction mechanism for H2-Air is obtained from reference [6]. In Table 1, the 

elementary reactions are listed. Reactions 1-5, and 12-14 are bimolecular reactions, whereas 

Reactions 6-11 are trimolecular reactions with a third body, M. The third body can be any of the 

species within the mechanism, which means there are multiple reaction rates for those trimolecular 

reactions. 

n Rn 

1 𝐾𝑓1
[𝐻2][𝑂2] − 𝐾𝑏1

[𝑂𝐻][𝑂𝐻] 

2 𝐾𝑓2
[𝐻][𝑂2] − 𝐾𝑏2

[𝑂𝐻][𝑂] 

3 𝐾𝑓3
[𝑂][𝐻2] − 𝐾𝑏3

[𝑂𝐻][𝐻] 

4 𝐾𝑓4
[𝑂𝐻][𝐻2] − 𝐾𝑏4

[𝐻2𝑂][𝐻] 

5 𝐾𝑓5
[𝑂𝐻][𝑂𝐻] − 𝐾𝑏5

[𝐻2𝑂][𝑂] 

6* 𝐾𝑓6
[𝐻][𝐻][𝑀] − 𝐾𝑏6

[𝐻2][𝑀] 

7* 𝐾𝑓7
[𝐻][𝑂𝐻][𝑀] − 𝐾𝑏7

[𝐻2𝑂][𝑀] 

8* 𝐾𝑓8
[𝐻][𝑂][𝑀] − 𝐾𝑏8

[𝑂𝐻][𝑀] 

9* 𝐾𝑓9
[𝑂][𝑂][𝑀] − 𝐾𝑏9

[𝑂2][𝑀] 

10* 𝐾𝑓10
[𝑁][𝑁][𝑀] − 𝐾𝑏10

[𝑁2][𝑀] 

11* 𝐾𝑓11
[𝑁][𝑂][𝑀] − 𝐾𝑏11

[𝑁𝑂][𝑀] 

12 𝐾𝑓12
[𝑁][𝑂2] − 𝐾𝑏12

[𝑁𝑂][𝑂] 

13 𝐾𝑓13
[𝑁2][𝑂] − 𝐾𝑏13

[𝑁𝑂][𝑁] 

14 𝐾𝑓14
[𝑁2][𝑂2] − 𝐾𝑏14

[𝑁𝑂][𝑁𝑂] 

Table 1: Reaction Rates for H2-Air Mechanism. The * represents that the equation changes 

with each species, M. Furthermore, for n = 6-11, reaction rate coefficients have multiple third 

body efficiencies, 𝜂𝑏, tabulated in table 2. 
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The reaction rates require either kf or kb to be calculated with the Arrhenius equation. 

Reactions 6-9 are all recombination reactions that have an activation energy of 0. Therefore, eqn. 

(36) is modified for recombination:  

𝐾𝑏 = 𝐶𝑏𝑇
𝑛𝑏 

Where Cb is a constant and 𝜂𝑏 is the recombination efficiency which changes depending 

on the third body species, most species have an efficiency of 1. Reactions 10, 11, 13, 14 have 

forward reaction rate data from reference [19]. 

Reaction 

No. 

Chemical Reaction 𝐶𝑓, 𝐶𝑏* E 𝑛𝑓 𝑛𝑏 

[𝐻2,  𝐻2𝑂,  𝑁2] 
Ref. 

1 𝐻2 + 𝑂2 ⇋ 𝑂𝐻 + 𝑂𝐻 1.7e13 48,000 0 - [4] 

2 𝐻 + 𝑂2 ⇋ 𝑂𝐻 + 𝑂 2.2e14 16,800 0 - [4] 

3 𝑂 + 𝐻2 ⇋ 𝑂𝐻 + 𝐻 1.8e10 8,900 1 - [4] 

4 𝑂𝐻 + 𝐻2 ⇋ 𝐻2𝑂 + 𝐻 2.2e13 5150 0 - [4] 

5 𝑂𝐻 + 𝑂𝐻 ⇋ 𝐻2𝑂 + 𝑂 6.3e12 1090 0 - [4] 

6 𝐻 + 𝐻 + 𝑀 ⇋ 𝐻2 + 𝑀 1.0e18* 0 0 [2, 6, 1] [4],[20] 

7 𝐻 + 𝑂𝐻 + 𝑀 ⇋ 𝐻2𝑂 + 𝑀 2.2e22* 0 0 [0.73, 3.65, 1] [4],[20] 

8 𝐻 + 𝑂 + 𝑀 ⇋ 𝑂𝐻 + 𝑀 5.0e07* 0 0 [1, 5, 1] [4],[20] 

9 𝑂 + 𝑂 + 𝑀 ⇋ 𝑂2 + 𝑀 1.2e17* 0 0 [2.4, 15.4, 1] [4] 

10+ 𝑁 + 𝑁 + 𝑀 ⇋ 𝑁2 + 𝑀 5.4e13  

225,000 

0 - [19] 

11+ 𝑁 + 𝑂 + 𝑀 ⇋ 𝑁𝑂 + 𝑀 2.4e15 149,000 0 - [19] 

12 𝑁 + 𝑂2 ⇋ 𝑁𝑂 + 𝑂 6.4e09 63000 1 - [19] 

13+ 𝑁2 + 𝑂 ⇋ 𝑁𝑂 + 𝑁 1.6e13 0 0 - [19] 

14+ 𝑁2 + 𝑂2 ⇋ 2𝑁𝑂 1.3e12 63,800 0 - [19] 

Table 2: Reaction mechanism for H2-Air. The + represents data that was taken for 

dissociation, 𝑘𝑓. The third body efficiency, 𝜂𝑏, had values from both [4] and [20]. The most 

recent data is from [20] so the most recent 𝜂𝑏 is utilized for calculations. 

This reaction mechanism has nine species: 𝐻2,  𝑂2,  𝑁2,  𝐻2𝑂, 𝑂𝐻, 𝐻, 𝑂, 𝑁, 𝑁𝑂. Since 

the third body reactions can be any species, reactions 6-11 each have 9 reaction rates for each 

species. Luckily, most of the species have an efficiency of 1, so most of the reaction rate 

coefficients will not change, but the mole fractions must be considered. 

Below are the common equations found in the reactions rates and are simplified into a 

variable, Rn, where n represents the reaction number in Table 2. 
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The reactions rates for each species are shown above in simplified form. Keep note that the 

variables 𝑅6, 𝑅7, 𝑅8, 𝑅9, 𝑅10, 𝑎𝑛𝑑 𝑅11 are all a function of the species being considered, M, and 

the corresponding third body efficiencies, 𝜂𝑏. With the reaction mechanism and the reaction rates 

for each species, the non-equilibrium MoC can be calculated in MATLAB using the iterative 

technique explained in chapter 2. 

3.2 Chemical Equilibrium MoC 

 

As discussed in chapter 2, the reaction rates are zero for equilibrium conditions. This means 

that the dissociation and recombination occur at equal rates, therefore the rate at equilibrium is 

equal to the forward or backward reaction rate. 

With this simplification, the information required to solve the problem is the mass fractions 

for each species and the density of the mixture, shown in eqns. (24) and (25). The mass fractions 

can be determined from using the CEA (t,p) problem. The inputs into CEA would be temperature, 

pressure, and mole fractions of each species. The output will include enthalpy of the mixture, each 

mole/mass fraction of the species, and density of the mixture.  

A MATLAB function developed by Edgar Aguilar [21], extrapolates data from CEA for a 

rocket problem. The script will need to be modified slightly to call CEA with a (t,p) problem, and 

the code is shown in Appendix C. 

𝑑[𝐻2]

𝑑𝑡
= −𝑅1 − 𝑅3 − 𝑅4 + 𝑹𝟔([𝑴], 𝒏𝒃) (42) 

𝑑[𝑂2]

𝑑𝑡
= −𝑅1 − 𝑅2 + 𝑹𝟗([𝐌],𝒏𝒃) − 𝑅12 − 𝑅14 

(43) 

𝑑[𝑂𝐻]

𝑑𝑡
= 𝑅1 + 𝑅2 + 𝑅3 − −2𝑅5 − 𝑹𝟕([𝐌], 𝒏𝒃) − 𝑹𝟖([𝐌],𝒏𝒃) 

(44) 

𝑑[𝐻]

𝑑𝑡
= −𝑅2 + 𝑅3 + 𝑅4 − 2𝑹𝟔([𝑴],𝒏𝒃) − 𝑹𝟕([𝐌], 𝒏𝒃) − 𝑹𝟖([𝐌], 𝒏𝒃) 

(45) 

𝑑[𝑂]

𝑑𝑡
= 𝑅2 − 𝑅3 + 𝑅5 − 𝑹𝟖([𝐌], 𝒏𝒃) − 2𝑹𝟗([𝐌], 𝒏𝒃) − 𝑹𝟏𝟏([𝐌],𝒏𝒃) + 𝑅12 − 𝑅13 

(46) 

𝑑[𝐻2𝑂]

𝑑𝑡
= 𝑅5 + 𝑹𝟕([𝑴], 𝒏𝒃) 

(47) 

𝑑[𝑁]

𝑑𝑡
=  −2𝑹𝟏𝟎([𝑴],𝒏𝒃) − 𝑹𝟏𝟏([𝑴], 𝒏𝒃) − 𝑅12 + 𝑅13 

(48) 

𝑑[𝑁2]

𝑑𝑡
= 𝑹𝟏𝟎([𝑴],𝒏𝒃) − 𝑅13 − 𝑅14 

(49) 

𝑑[𝑁𝑂]

𝑑𝑡
= 𝑹𝟏𝟏([𝑴],𝒏𝒃) + 𝑹𝟏𝟐([𝑴], 𝒏𝒃) + 𝑅13 + 2𝑅14 

(50) 
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3.3 CPG MoC Results 

 

The code  (see Appendix B) which will eventually include the ability to solve the MoC in 

thermo-chemical equilibrium, is currently capable to calculate the nozzle contour with the basic 

CPG assumption and using the specific heat ratio  given by CEA. The inputs for CEA are below: 

• Chamber Pressure = 10 atm 

• Supersonic Area Ratio = 5 

• Infinite Contraction Ratio 

• Equilibrium 

• Fuel = 𝐻2(𝐿) 

o 100% rel. wt. 

o Injection Temp. = 20.17 K 

• Oxidizer = Air 

o 100% rel. wt. 

o Injection Temp. = 800 K  

 

The injection temperature for air is dependent on the conditions upstream of the 

airbreathing engine. However, for liquids, the injection temperature is usually known.  

The outputs from CEA are inputs for the MoC calculation such as: 

• Exit Mach Number = 2.839 

• Throat Gamma = 1.1983 

• Chamber Temperature = 2597.87 K 

• Chamber Density = 1.1436 
𝑘𝑔

𝑚3 

• Throat Temperature = 2381.98 K 

• Throat Pressure = 5.6447 atm 

• Throat Sonic Velocity = 984.3 m/s 

 

The remaining inputs are the throat height and number of characteristic lines for the calculation 

which is user defined. Below in Figure 10 to Figure 14 is the output of MoC in CPG with 100 

characteristic lines. This data can be used to compare to TCE and non-equilibrium flows when the 

functionality is developed.  
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Figure 10: CPG MoC characteristic mesh with 100 characteristic lines 

 

 

Figure 11: Isentropic ratios for pressure, temperature, and density along the nozzle 

symmetry line. 

 

 

Figure 12: Gas side wall temperature. 
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Figure 13: Two-dimensional temperature contour. 

 

 

Figure 14: Mach number within the nozzle. 
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4. Thermochemical Equilibrium Nozzle Design Methodology 

4.1 Four-Step Reduced H2-Air Reaction Mechanism and Reaction Rate Constants 

The nozzle design in thermochemical equilibrium requires a reaction mechanism for the 

propellants used. An example of a reaction mechanism is presented in chapter 3 above, however 

for TCE, this reaction mechanism is too lengthy, and it is required to calculate the reaction rate of 

each species. However according to an article called “Complex CSP for Chemistry Reduction and 

Analysis” [22], a detailed reaction mechanism for H2/Air with 9 species can be reduced to a 4-

step reaction mechanism with 6 species. This 4-step reaction mechanism will be used for the TCE 

calculation within pressure limits of 0.2 atm to 20 atm and equivalence ratios of 0.7 to 2. 

The 4-step reduced reaction mechanism is as follows: 

• Reaction 1:   𝑯 + 𝑶𝟐 ⇋ 𝑶𝑯 + 𝑶 

• Reaction 2:  𝑶 + 𝑯𝟐 ⇋ 𝑶𝑯 + 𝑯 

• Reaction 3:  𝑶𝑯 + 𝑯𝟐 ⇋ 𝑯𝟐𝑶 + 𝑯 

• Reaction 4:  𝑯 + 𝑯 + 𝑴 ⇋ 𝑯𝟐 + 𝑴 

 

These four reactions are also within the detailed reaction mechanism shown in Table 2 as 

2,3,4, and 6th reactions. For each of these reactions, there is a forward rate constant (𝑘𝑓)  required 

to calculate the reaction rates of each species, the data for these constants are also shown in Table 

2. 

Below are the forward reaction rate equations for each reaction: 

Reaction 1: 𝑘𝑓1 = 3.87𝑥104𝑇2.7𝑒
−6260

𝑐𝑎𝑙
𝑚𝑜𝑙

ℜ𝑇 [
𝑐𝑚3

𝑚𝑜𝑙∗𝑠
]   (51) 

Reaction 2: 𝑘𝑓2 = 2.65𝑥1016𝑇−0.6707𝑒
−17041

𝑐𝑎𝑙
𝑚𝑜𝑙

ℜ𝑇 [
𝑐𝑚3

𝑚𝑜𝑙∗𝑠
]   (52) 

Reaction 3: 𝑘𝑓3 = 2.16𝑥108𝑇1.51𝑒
−3430

𝑐𝑎𝑙
𝑚𝑜𝑙

ℜ𝑇  [
𝑐𝑚3

𝑚𝑜𝑙∗𝑠
]   (53) 

Reaction 4: 𝑘𝑓4 =
1𝑥1018

𝑇
  [

𝑐𝑚6

𝑚𝑜𝑙2∗𝑠
]     (54) 

*Note: each equation is converted from centimeters to meters when calculating for reaction rate, 

and ℜ, the universal gas constant, is converted into [calories/mol*K] to match the units of the 

activation energy. 
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Table 3: Reaction Rate Data. Above is data tabulated for each reaction in the 4-step reduced 

reaction mechanism. The Arrhenius rate law equations where benchmarked with this data 

provided by reference [20]. 
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Figure 15: Forward reaction rate constants calculated with Arrhenius rate law. 
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4.2 Reaction Rates in Equilibrium 

Recalling equations 13, 26, and 27 (repeated here), we focus attention on the reaction rate, 𝑌�̇�, 

(highlighted in red) for each of the six species being considered in the flow.  

 

      [�̇�] = (𝜈𝑖
′ − 𝜈𝑖

′′){𝑘𝑓 ∏ ([𝐶𝑖])
𝜈𝑖′   − 𝑁

𝑖=1 𝑘𝑏 ∏ ([𝐶𝑖])
𝜈𝑖′′𝑁

𝑖=1 }                            (13) 

𝐵1 = sin 𝜇𝑓̅̅ ̅
2−1

Δ𝐶2−1 {(∑
ℳ𝑚𝑖𝑥

ℳ𝑖𝑉
𝒀𝒊
̇

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑛

𝑖

)

2−1

− (∑
ℎ𝑖

𝐶𝑝𝑇𝑉
𝒀𝒊
̇

̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑛

𝑖

)

2−1

} 

(26) 

𝐵𝑎 = sin 𝜇𝑓̅̅ ̅
2−𝑎

Δ𝐶2−𝑎 {(∑
ℳ𝑚𝑖𝑥

ℳ𝑖𝑉
𝒀𝒊
̇

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑛

𝑖

)

2−𝑎

− (∑
ℎ𝑖

𝐶𝑝𝑇𝑉
𝒀𝒊
̇

̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑛

𝑖

)

2−𝑎

} 

(27) 

Equation 13 needs to be in terms of mass fraction with respect to time. To convert into mass 

fraction with respect to time, the following ideal gas with species equations are applied: 

[𝐶𝑖] =
𝑋𝑖𝑃𝑚𝑖𝑥

ℜ𝑇
 ➔𝑋𝑖 =

[𝐶𝑖]ℜ𝑇

𝑃𝑚𝑖𝑥
 (55) 

𝑌𝑖 =
𝑋𝑖ℳ𝑖

ℳ𝑚𝑖𝑥
➔𝑌𝑖 =

[𝐶𝑖]ℜ𝑇ℳ𝑖

ℳ𝑚𝑖𝑥𝑃𝑚𝑖𝑥
; where 

𝑃𝑚𝑖𝑥

ℳ𝑚𝑖𝑥𝑅𝑇
=

𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
 

 

𝒀𝒊 =
[𝑪𝒊]𝓜𝒊

𝝆𝒎𝒊𝒙
 

 

 

 

(56) 

 

[�̇�] =
𝑑[𝑌]

𝑑𝑡
=

ℳ𝑖

𝜌𝑚𝑖𝑥
(𝜈𝑖

′ − 𝜈𝑖
′′) {𝑘𝑓 ∏ (

𝑌𝑖𝜌𝑚𝑖𝑥

ℳ𝑖
)

𝜈𝑖′

  − 𝑁
𝑖=1 𝑘𝑏 ∏ (

𝑌𝑖𝜌𝑚𝑖𝑥

ℳ𝑖
)

𝜈𝑖′′
𝑁
𝑖=1 } 

Furthermore, recall equation 36, which related the forward reaction rate constant to the rearward 

reaction rate constant.  

𝑘𝑓

𝑘𝑏
= 𝐾𝑐=(

1

ℛ𝑇
)
Δ𝑛

𝑘𝑝, where Δ𝑛 = 𝜈𝑖
′′ − 𝜈𝑖 ′ 

(36) 

For reactions 1, 2, and 3, the Δ𝑛 is equal to zero because the stoichiometric coefficients are 

equal (products minus reactants). For reaction 4, the Δ𝑛= -1 due to third body reactant, [M], which 

can be any of the six species colliding with hydrogen. The reaction rate in terms of mass fraction 

is further simplified in terms of mole fractions which will be convenient for CEA calculations. 
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[�̇�]
𝑁𝐸𝑇

=
𝑑[𝑌]

𝑑𝑡 𝑁𝐸𝑇
=

ℳ𝑖

𝜌𝑚𝑖𝑥
(𝜈𝑖

′ − 𝜈𝑖
′′) {𝑘𝑓 ∏ (

𝑋𝑖𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
)

𝜈𝑖′

  − 𝑁
𝑖=1

1

(
1

ℛ𝑇
)
Δ𝑛

𝑘𝑝𝑖

∏ (
𝑋𝑖𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
)

𝜈𝑖′′
𝑁
𝑖=1 }            

(57) 

Below are the full reaction rates for each species with the given 4-step reduced reaction 

mechanism. 

[𝒀𝑯𝟐
̇ ]

𝑵𝑬𝑻
= (

ℳ𝐻2
𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){−𝑘𝑓1

(𝑋𝐻2
𝑋𝑂 −

𝑋𝐻𝑋𝑂𝐻

𝑘𝑝1

) − 𝑘𝑓3
(𝑋𝐻2

𝑋𝑂𝐻 −
𝑋𝐻2𝑂𝑋𝐻

𝑘𝑝3

) +
𝑘𝑓4

ℛ𝑇
(𝑋𝐻

2𝑃𝑚𝑖𝑥 −
𝑋𝐻2

𝑘𝑝4

)} 

 

(58) 

[𝒀𝑶𝟐
]̇ 𝑵𝑬𝑻 =  (

ℳ𝑂2
𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){−𝑘𝑓2

(𝑋𝑂2
𝑋𝐻 −

𝑋𝑂𝑋𝑂𝐻

𝑘𝑝2

)} 

 

(59) 

[𝒀�̇�]
𝑵𝑬𝑻

= (
ℳ𝑂𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){−𝑘𝑓1

(𝑋𝐻2
𝑋𝑂 −

𝑋𝐻𝑋𝑂𝐻

𝑘𝑝1

) + 𝑘𝑓2
(𝑋𝑂2

𝑋𝐻 −
𝑋𝑂𝑋𝑂𝐻

𝑘𝑝2

)} 

 

(60) 

[𝒀�̇�]
𝑵𝑬𝑻

= (
ℳ𝐻𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){𝑘𝑓1

(𝑋𝐻2
𝑋𝑂 −

𝑋𝐻𝑋𝑂𝐻

𝑘𝑝1

) − 𝑘𝑓2
(𝑋𝑂2

𝑋𝐻 −
𝑋𝑂𝑋𝑂𝐻

𝑘𝑝2

) + 𝑘𝑓3
(𝑋𝐻2

𝑋𝑂𝐻 −
𝑋𝐻2𝑂𝑋𝐻

𝑘𝑝3

)

+
2𝑘𝑓4

ℛ𝑇
(𝑋𝐻

2𝑃𝑚𝑖𝑥 −
𝑋𝐻2

𝑘𝑝4

)} 

 

(61) 

[𝒀𝑶𝑯
̇ ]

𝑵𝑬𝑻
= (

ℳ𝑂𝐻𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){𝑘𝑓1

(𝑋𝐻2
𝑋𝑂 −

𝑋𝐻𝑋𝑂𝐻

𝑘𝑝1

) + 𝑘𝑓2
(𝑋𝑂2

𝑋𝐻 −
𝑋𝑂𝑋𝑂𝐻

𝑘𝑝2

) − 𝑘𝑓3
(𝑋𝐻2

𝑋𝑂𝐻 −
𝑋𝐻2𝑂𝑋𝐻

𝑘𝑝3

)} 

 

(62) 

[𝒀𝑯𝟐𝑶
̇ ]

𝑵𝑬𝑻
= (

ℳ𝐻2𝑂𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){𝑘𝑓3

(𝑋𝐻2
𝑋𝑂𝐻 −

𝑋𝐻2𝑂𝑋𝐻

𝑘𝑝3

)} 

 

 

(63) 

 

Equations (58-63) represent the full reaction rate for each species which is needed for non-

equilibrium flows; however, in equilibrium the net reaction rate is equal to zero. This means the 

finite rates of both the forward and rearward reactions are equal. 

 𝑁𝑒𝑡 𝑅𝑎𝑡𝑒 = 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝑎𝑡𝑒 − 𝑅𝑒𝑎𝑟𝑤𝑎𝑟𝑑 𝑅𝑎𝑡𝑒 = 0 ⟹ 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝑎𝑡𝑒 = 𝑅𝑒𝑎𝑟𝑤𝑎𝑟𝑑 𝑅𝑎𝑡𝑒  

The net reaction rates for equilibrium are shown below. Equations (64-69) will be needed 

for the calculation of equations (26) and (27). 

[𝒀𝑯𝟐
̇ ]

𝑵𝑬𝑻
= (

ℳ𝐻2
𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){−𝑘𝑓1

(𝑋𝐻2
𝑋𝑂) − 𝑘𝑓3

(𝑋𝐻2
𝑋𝑂𝐻) +

𝑘𝑓4

ℛ𝑇
(𝑋𝐻

2𝑃𝑚𝑖𝑥)} 

 

(64) 

[𝒀𝑶𝟐
]̇ 𝑵𝑬𝑻 =  (

ℳ𝑂2
𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){−𝑘𝑓2

(𝑋𝑂2
𝑋𝐻)} 

 

(65) 

[𝒀�̇�]
𝑵𝑬𝑻

= (
ℳ𝑂𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){−𝑘𝑓1

(𝑋𝐻2
𝑋𝑂) + 𝑘𝑓2

(𝑋𝑂2
𝑋𝐻)} 

 

(66) 
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[𝒀�̇�]
𝑵𝑬𝑻

= (
ℳ𝐻𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){𝑘𝑓1

(𝑋𝐻2
𝑋𝑂) − 𝑘𝑓2

(𝑋𝑂2
𝑋𝐻) + 𝑘𝑓3

(𝑋𝐻2
𝑋𝑂𝐻) +

2𝑘𝑓4

ℛ𝑇
(𝑋𝐻

2𝑃𝑚𝑖𝑥)} 

 

(67) 

[𝒀𝑶𝑯
̇ ]

𝑵𝑬𝑻
= (

ℳ𝑂𝐻𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){𝑘𝑓1

(𝑋𝐻2
𝑋𝑂) + 𝑘𝑓2

(𝑋𝑂2
𝑋𝐻) − 𝑘𝑓3

(𝑋𝐻2
𝑋𝑂𝐻)} 

 

(68) 

[𝒀𝑯𝟐𝑶
̇ ]

𝑵𝑬𝑻
= (

ℳ𝐻2𝑂𝜌𝑚𝑖𝑥

ℳ𝑚𝑖𝑥
2 ){𝑘𝑓3

(𝑋𝐻2
𝑋𝑂𝐻)} (69) 

 

4.3 Absolute Enthalpy for Each Species 

 

Looking back at equations (26) and (27), the last unknown to solve for is the absolute 

enthalpy of each species (highlighted in red below). 

𝐵1 = sin 𝜇𝑓̅̅ ̅
2−1

Δ𝐶2−1 {(∑
ℳ𝑚𝑖𝑥

ℳ𝑖𝑉
𝑌�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑛

𝑖

)

2−1

− (∑
𝒉𝒊

𝐶𝑝𝑇𝑉
𝑌�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑛

𝑖

)

2−1

} 

(26) 

𝐵𝑎 = sin 𝜇𝑓̅̅ ̅
2−𝑎

Δ𝐶2−𝑎 {(∑
ℳ𝑚𝑖𝑥

ℳ𝑖𝑉
𝑌�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑛

𝑖

)

2−𝑎

− (∑
𝒉𝒊

𝐶𝑝𝑇𝑉
𝑌�̇�

̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑛

𝑖

)

2−𝑎

} 

(27) 

Absolute enthalpy is defined as the sensible enthalpy obtained from statistical 

thermodynamics added with the heat of formation at zero kelvin.  

ℎ𝑖 =
(𝐻 − 𝐸0)𝑖 + (Δ𝐻𝑓

0)
𝑖

ℳ𝑖
 

The term, 
(𝐻−𝐸0)𝑖

ℳ𝑖
, is the sensible enthalpy per unit mass. Furthermore, according to 

reference [4], chapter 11, the sensible enthalpy can be calculated directly from the internal energies 

of the molecules or atoms.  

For atoms, internal energy per unit mass: 

𝑒 =
3

2
𝑅𝑇 + 𝑒𝑒𝑙𝑒𝑐  

For molecules, internal energy per unit mass: 

𝑒 = 𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝑒𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝑒𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝑒𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐  

or 
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𝑒 =
3

2
𝑅𝑇 + 𝑅𝑇 +

ℏ𝑣
𝐾𝑇

e
ℏ𝑣
𝐾𝑇 − 1

𝑅𝑇 + 𝑒𝑒𝑙𝑒𝑐 

Where the vibrational energy term contains plank’s constant (ℏ), fundamental vibrational 

frequency of a molecule (𝑣), and Boltzmann’s constant (K). 

Recall the second law of thermodynamics:  

ℎ = 𝑒 + 𝑝𝑉 ⟶ ℎ = 𝑒 + 𝑅𝑇 

The sensible enthalpy for atoms becomes:  

ℎ =  
5

2
𝑅𝑇 + 𝑒𝑒𝑙𝑒𝑐 

Sensible enthalpy for molecules: 

ℎ = 𝑅𝑇 (
7

2
+

ℏ𝑣
𝐾𝑇

e
ℏ𝑣
𝐾𝑇 − 1

) + 𝑒𝑒𝑙𝑒𝑐 

It would be extremely cumbersome to include and calculate the sensible enthalpy taking 

into consideration each molecule’s fundamental vibrational frequency; luckily the JANAF tables 

provide the sensible and heat of formation data for each species being considered. The tables are 

provided in Appendix D. Finally, equations (26) and (27) are now known and can be solved to 

determine the pressure at each point in the characteristic mesh. 
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Appendix A: Method of Characteristics with Reaction Rates Derivation 
 

Note that this derivation is the same in [6] but shown here with more detailed steps and 

clarifications. Beginning with the continuity, momentum, and energy equations in terms of 

coordinate system shown below: 

• Continuity Equation: 𝜌
𝜕𝑉

𝜕𝜉
+ 𝑉

𝜕𝜌

𝜕𝜉
+ 𝜌𝑉

𝜕𝜃

𝜕𝜂
= 0  

• Momentum Equation: 𝜌𝑉
𝜕𝑉

𝜕𝜉
+

𝜕𝑃

𝜕𝜉
= 0  

• Momentum Equation: 𝜌𝑉2 𝜕𝜃

𝜕𝜉
+

𝜕𝑃

𝜕𝜂
= 0  

• Energy Equation: 
𝜕ℎ

𝜕𝜉
+ 𝑉

𝜕𝑉

𝜕𝜉
= 0 

 

Mass fractions with respect to streamline: 

 

𝜕𝑌𝑖

𝜕𝜉
=

�̇�

𝑉
 

 

Reaction rate equation in terms of mole fractions, this form is needed for CEA: 

 

�̇� = (𝜈𝑖
′ − 𝜈𝑖

′′) {𝑘𝑓 ∏(𝜒𝑖)
𝜈𝑖′   − 

𝑁

𝑖=1

𝑘𝑏 ∏(𝜒𝑖)
𝜈𝑖′′

𝑁

𝑖=1

} 

 

From the perfect gas law, we have the general partial derivative of density with 

respect to the streamline from general chain rule:  
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𝜕𝜌

𝜕𝜉
=

𝜕𝜌

𝜕𝑃

𝜕𝑃

𝜕𝜉
+

𝜕𝜌

𝜕𝑇

𝜕𝑇

𝜕𝜉
+

𝜕𝜌

𝜕𝑌𝑖

𝜕𝑌𝑖

𝜕𝜉
 

 

Below are some useful transformations of the perfect gas law: 

 

𝜌 =
𝑃

ℛ𝑇
∑ 𝑌𝑖𝑖

∑ ℳ𝑖𝑖

⇒ 𝑃 =
𝜌ℛ𝑇

ℳ𝑚𝑖𝑥
, 𝑤ℎ𝑒𝑟𝑒 ℳ𝑚𝑖𝑥 = 

∑ ℳ𝑖𝑖

∑ 𝑌𝑖𝑖
⇒ 𝜌 =

𝑃ℳ𝑚𝑖𝑥

ℛ𝑇
 

 

Taking the partial derivative against each state variable, we have the following 

simplifications for 
𝜕𝜌

𝜕𝜉
: 

𝜕𝜌

𝜕𝑃
=

ℳ𝑚𝑖𝑥

ℛ𝑇
 ;    

𝜕𝜌

𝜕𝑇
=

−𝜌

𝑇
;    

𝜕𝜌

𝜕𝑌𝑖
=

−𝜌

∑ 𝑌𝑖𝑖
=

−𝜌(
1

∑ℳ𝑖
)

(∑
𝑌𝑖
ℳ𝑖

)
 

𝜕𝜌

𝜕𝜉
= 

ℳ𝑚𝑖𝑥

ℛ𝑇

𝜕𝑃

𝜕𝜉
−

𝜌

𝑇

𝜕𝑇

𝜕𝜉
−

𝜌(
1

∑ ℳ𝑖
)

(∑
𝑌𝑖
ℳ𝑖

)

𝜕𝑌𝑖

𝜕𝜉
 

 

The above equation is substituted into the continuity equation highlighted in red 

below: 

 

 

𝜌
𝜕𝑉

𝜕𝜉
+ 𝑉

𝜕𝜌

𝜕𝜉
+ 𝜌𝑉

𝜕𝜃

𝜕𝜂
= 0 

𝜌
𝜕𝑉

𝜕𝜉
+ 𝑉 (

ℳ𝑚𝑖𝑥

ℛ𝑇

𝜕𝑃

𝜕𝜉
−

𝜌

𝑇

𝜕𝑇

𝜕𝜉
−

𝜌 (
1

∑ℳ𝑖
)

(∑
𝑌𝑖

ℳ𝑖
)

𝜕𝑌𝑖

𝜕𝜉
) + 𝜌𝑉

𝜕𝜃

𝜕𝜂
= 0 

 

After simplification of the above equation, now must simplify 
𝜕𝑇

𝜕𝜉
. The goal is to 

reduce the number of variables in the equation below: 

 

 

𝜌
𝜕𝑉

𝜕𝜉
+ 𝜌𝑉 (

1

𝑃

𝜕𝑃

𝜕𝜉
−

1

𝑇

𝜕𝑇

𝜕𝜉
−

1

∑𝑌𝑖

𝜕𝑌𝑖

𝜕𝜉
) + 𝜌𝑉

𝜕𝜃

𝜕𝜂
= 0 

 

Evaluating the partial derivative of the energy equation along a streamline: 

 

 

𝜕ℎ

𝜕𝜉
= ∑ℎ𝑖

𝑖

𝜕𝑌𝑖

𝜕𝜉
+ ∑𝑌𝑖

𝑖

𝜕ℎ𝑖

𝜕𝜉
 

 

Shifting focus to 
𝜕ℎ𝑖

𝜕𝜉
, to obtain 

𝜕𝑇

𝜕𝜉
: 
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𝜕ℎ𝑖

𝜕𝜉
=

𝜕ℎ𝑖

𝜕𝑇

𝜕𝑇

𝜕𝜉
= 𝐶𝑝𝑖

𝜕𝑇

𝜕𝜉
 

 

*Note that 
𝜕ℎ𝑖

𝜕𝑇
 is by definition (

𝜕ℎ𝑖

𝜕𝑇
)

𝑃=𝑐𝑜𝑛𝑠𝑡.
= 𝐶𝑝𝑖

 

Substituting 
𝜕ℎ𝑖

𝜕𝜉
 simplification into the energy equation: 

 
𝜕ℎ

𝜕𝜉
= ∑ℎ𝑖

𝑖

𝜕𝑌𝑖

𝜕𝜉
+ ∑𝑌𝑖

𝑖

𝐶𝑝𝑖

𝜕𝑇

𝜕𝜉
 

 

Then rearranging the energy equation in terms of 
𝜕𝑇

𝜕𝜉
: 

 
𝜕ℎ

𝜕𝜉
+ 𝑉

𝜕𝑉

𝜕𝜉
= 0 ⟹ ∑ ℎ𝑖𝑖

𝜕𝑌𝑖

𝜕𝜉
+ ∑ 𝑌𝑖𝑖 𝐶𝑝𝑖

𝜕𝑇

𝜕𝜉
+ 𝑉

𝜕𝑉

𝜕𝜉
= 0  

 

 

𝜕𝑇

𝜕𝜉
= −

∑ ℎ𝑖𝑖

𝐶𝑝𝑚𝑖𝑥

𝜕𝑌𝑖

𝜕𝜉
−

𝑉

𝐶𝑝𝑚𝑖𝑥

𝜕𝑉

𝜕𝜉
 

Substituting 
𝜕𝑇

𝜕𝜉
 into the continuity equation and combining like terms: 

 

𝜌
𝜕𝑉

𝜕𝜉
+ 𝜌𝑉 (

1

𝑃

𝜕𝑃

𝜕𝜉
+

1

𝑇
(
∑ ℎ𝑖𝑖

𝐶𝑝𝑚𝑖𝑥

𝜕𝑌𝑖

𝜕𝜉
+

𝑉

𝐶𝑝𝑚𝑖𝑥

𝜕𝑉

𝜕𝜉
) −

1

∑𝑌𝑖

𝜕𝑌𝑖

𝜕𝜉
) + 𝜌𝑉

𝜕𝜃

𝜕𝜂
= 0 

 

(𝜌 +
𝜌𝑉2

𝑇𝐶𝑝𝑚𝑖𝑥

)
𝜕𝑉

𝜕𝜉
+

𝜌𝑉

𝑃

𝜕𝑃

𝜕𝜉
+ 𝜌𝑉 (

∑ ℎ𝑖𝑖

𝑇𝐶𝑝𝑚𝑖𝑥

−
1

∑𝑌𝑖
)

𝜕𝑌𝑖

𝜕𝜉
+ 𝜌𝑉

𝜕𝜃

𝜕𝜂
= 0 

 

Utilizing the first momentum equation, 
𝜕𝑉

𝜕𝜉
 can be simplified in terms of 

𝜕𝑃

𝜕𝜉
: 

 

 

𝜕𝑉

𝜕𝜉
= −

1

𝜌𝑉

𝜕𝑃

𝜕𝜉
 

 

Finally, 
𝜕𝑌𝑖

𝜕𝜉
, can be changed into a constant value: 

 

 

(−
1

𝑉
−

𝑉

𝑇𝐶𝑝𝑚𝑖𝑥

+
𝜌𝑉

𝑃
)

𝜕𝑃

𝜕𝜉
+ 𝜌𝑉 (

∑ ℎ𝑖𝑖

𝑇𝐶𝑝𝑚𝑖𝑥

−
1

∑𝑌𝑖
)

𝜕𝑌𝑖

𝜕𝜉
+ 𝜌𝑉

𝜕𝜃

𝜕𝜂
= 0 
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𝜕𝑌𝑖

𝜕𝜉
=

𝑌�̇�

𝑉
 

 

(−
1

𝑉
−

𝑉

𝑇𝐶𝑝𝑚𝑖𝑥

+
𝜌𝑉

𝑃
)

𝜕𝑃

𝜕𝜉
+ 𝜌𝑉

𝜕𝜃

𝜕𝜂
+ 𝜌𝑌�̇� (

∑ ℎ𝑖𝑖

𝑇𝐶𝑝𝑚𝑖𝑥

−
1

∑𝑌𝑖
) = 0 

 

 

 

 

Now manipulating equations for matrix form: 

 

(−
1

𝑉
−

𝑉

𝑇𝐶𝑝𝑚𝑖𝑥

+
𝜌𝑉

𝑃
)

𝜕𝑃

𝜕𝜉
+ 0

𝜕𝑃

𝜕𝜂
+ 0

𝜕𝜃

𝜕𝜉
+ 𝜌𝑉

𝜕𝜃

𝜕𝜂
= −𝜌𝑌�̇� (

∑ ℎ𝑖𝑖

𝑇𝐶𝑝𝑚𝑖𝑥

−
1

∑𝑌𝑖
) 

 

𝐴
𝜕𝑃

𝜕𝜉
+ 0

𝜕𝑃

𝜕𝜂
+ 0

𝜕𝜃

𝜕𝜉
+ 𝜌𝑉

𝜕𝜃

𝜕𝜂
= 𝐵 

 

0
𝜕𝑃

𝜕𝜉
+ 1

𝜕𝑃

𝜕𝜂
+ 𝜌𝑉2

𝜕𝜃

𝜕𝜉
+ 0

𝜕𝜃

𝜕𝜂
= 0 

 

𝜕𝜉
𝜕𝑃

𝜕𝜉
+ 𝜕𝜂

𝜕𝑃

𝜕𝜂
+ 0

𝜕𝜃

𝜕𝜉
+ 0

𝜕𝜃

𝜕𝜂
= 𝑑𝑃 

 

0
𝜕𝑃

𝜕𝜉
+ 0

𝜕𝑃

𝜕𝜂
+ 𝜕𝜉

𝜕𝜃

𝜕𝜉
+ 𝜕𝜂

𝜕𝜃

𝜕𝜂
= 𝑑𝜃 

[
 
 
 
𝐴 0 0 𝜌𝑉

0 1 𝜌𝑉2 0
𝜕𝜉 𝜕𝜂 0 0
0 0 𝜕𝜉 𝜕𝜂]

 
 
 

[
 
 
 
 
 
 
 
 
𝜕𝑃

𝜕𝜉
𝜕𝑃

𝜕𝜂
𝜕𝜃

𝜕𝜉
𝜕𝜃

𝜕𝜂]
 
 
 
 
 
 
 
 

= [

𝐵
0
𝑑𝑃
𝑑𝜃

] 

 

Need to solve unknown variable, 
𝜕𝑃

𝜕𝜂
, with Cramer’s rule. The denominator needs to be zero for 

the solution to be indeterminate and discontinuous, which is also the characteristics lines for non-

equilibrium and TCE: 
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𝜕𝑃

𝜕𝜂
=

𝑁

𝐷
=

[

𝐴 𝐵 0 𝜌𝑉

0 0 𝜌𝑉2 0
𝜕𝜉 𝑑𝑃 0 0
0 𝑑𝜃 𝜕𝜉 𝜕𝜂

]

[

𝐴 0 0 𝜌𝑉

0 1 𝜌𝑉2 0
𝜕𝜉 𝜕𝜂 0 0
0 0 𝜕𝜉 𝜕𝜂

]

 

 

Solving the determinate for the denominator: 

 

det(

[
 
 
 
𝐴 0 0 𝜌𝑉

0 1 𝜌𝑉2 0
𝜕𝜉 𝜕𝜂 0 0
0 0 𝜕𝜉 𝜕𝜂]

 
 
 
)= 0 

 

 A[
1 𝜌𝑉2 0
𝜕𝜂 0 0
0 𝜕𝜉 𝜕𝜂

]- 𝜌𝑉 ⌊
0 1 𝜌𝑉2

𝜕𝜉 𝜕𝜂 0
0 0 𝜕𝜉

⌋= 0 

 

 

𝐴 (1 [
0 0
𝜕𝜉 𝜕𝜂

] −  𝜌𝑉2 [
𝜕𝜂 0
0 𝜕𝜂

]) −  𝜌𝑉 (−𝜕𝜉 [
1 𝜌𝑉2

0 𝜕𝜉
]) = 0 

 

 

−𝐴 𝜌𝑉2𝜕𝜂2 + 𝜌𝑉 𝜕𝜉2 = 0 

 

𝐴 𝜌𝑉2𝜕𝜂2 =  𝜌𝑉 𝜕𝜉2 

 

Rearranging in terms of 
∂η

∂ξ
: 

 

𝜕𝜂

𝜕𝜉
= ±√

1

𝐴 𝑉
 = ±

1

√
𝜌𝑉2

𝑃
−

𝑉2

𝑇𝐶𝑝
−1

=±
1

√
𝐶𝑃ℳ−ℛ

ℛ𝑇𝐶𝑝
𝑉2−1

 

 

*Note: definition of frozen speed of sound: 𝑎𝑓 =
ℛ𝑇𝐶𝑝

𝐶𝑃ℳ−ℛ
 

 
𝜕𝜂

𝜕𝜉
= ±

1

√𝑀𝑓
2 − 1

= ±tan 𝜇𝑓  

 

Now solving numerator in terms of 
𝜕𝑃

𝜕𝜂
, using Cramer’s rule: 
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det([

𝐴 𝐵 0 𝜌𝑉

0 0 𝜌𝑉2 0
𝜕𝜉 𝑑𝑃 0 0
0 𝑑𝜃 𝜕𝜉 𝜕𝜂

]) = 0 

 

 

𝐴 [
0 𝜌𝑉2 0
𝑑𝑃 0 0
𝑑𝜃 𝜕𝜉 𝜕𝜂

] +  𝜕𝜉 [

𝐵 0 𝜌𝑉

0 𝜌𝑉2 0
𝑑𝜃 𝜕𝜉 𝜕𝜂

] = 0 

 

 

𝐴(−𝜌𝑉2 [
𝑑𝑃 0
𝑑𝜃 𝜕𝜂

]) +  𝜕𝜉 (𝐵 [
𝜌𝑉2 0
𝜕𝜉 𝜕𝜂

] + 𝑑𝜃 [
0 𝜌𝑉

𝜌𝑉2 0
]) = 0 

 

 

−𝐴𝜌𝑉2𝑑𝑃 𝜕𝜂 + 𝐵𝜌𝑉2𝜕𝜂𝜕𝜉 − 𝜌2𝑉3𝑑𝜃𝜕𝜉 = 0 

 

 

Simplifying further: 

 

−𝐴𝜌𝑉2𝑑𝑃 + 𝜌𝑉2 (𝐵𝜕𝜉 − 𝜌𝑉𝑑𝜃
𝜕𝜂

𝜕𝜉
) = 0 

 
𝐴𝑉

𝜌𝑉2
𝑑𝑃 + 𝑑𝜃

𝜕𝜂

𝜕𝜉
=

𝐵

𝜌𝑉
𝜕𝜉 

 

 

*Recall: tan2 𝜇𝑓 =
1

𝐴𝑉
, and 

𝜕𝜂

𝜕𝜉
= ±tan 𝜇𝑓 

 

 
𝑑𝑃

ρV2tan2 𝜇𝑓
±

𝑑𝜃

tan 𝜇𝑓
=

𝐵

𝜌𝑉
 𝜕𝜉 

 

Multiplying by tan 𝜇𝑓: 

 
𝑑𝑃

ρV2tan 𝜇𝑓
± 𝑑𝜃 =

𝐵 tan 𝜇𝑓

𝜌𝑉
 𝜕𝜉 

 

Where 𝜕𝜉=dccos 𝜇𝑓  from coordinate system: 

 
𝑑𝑃

ρV2tan 𝜇𝑓
± 𝑑𝜃 =

𝐵 sin 𝜇𝑓

𝜌𝑉
 𝑑𝑐 
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Also, from geometry, sin 𝜇𝑓 =
1

𝑀𝑓
=

𝑎𝑓

𝑉
 

 

 
𝑑𝑃

ρV2tan 𝜇𝑓
± 𝑑𝜃 =

𝐵𝑎𝑓

𝜌𝑉2
 𝑑𝑐 

 

Arrive at the final equations defining the characteristic lines: 

 

𝑑𝑃

ρV2tan 𝜇𝑓
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𝑉
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𝑉 ∑𝑌𝑖
𝑌�̇� −

∑ ℎ𝑖𝑖

𝐶𝑝𝑚𝑖𝑥
𝑇𝑉

𝑌�̇�) 

 
𝑑𝑥

𝑑𝑦
= tan(𝜃 + 𝜇𝑓) 
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Appendix B: MoC Contour Nozzle Code 
 

function [Wall_Points, T_wall] = MoC_Analysis(M_e, gamma, Tc, Pc, rc, a_f, 

P_t, T_t, C_Lines, Throat_Radius) 
%% 2D Method of Characteristics 
%% Code Created by Michael Sandoval 

  
%% Inital Conditions 
%     ***Nomenclature*** 
% M_e = Exit Mach Number 
% Gamma = Specific Heat Ratio 
% Tc = Chamber Total Temperature 
% Pc = Chamber Total Pressure 
% rc = Chamber Density 
% a_f = Throat Speed of Sound 
% P_t = Throat Static Pressure 
% T_t = Throat Static Temperature 
% C_Lines = User defined number of Characteristic Lines 
% Throat_Radius = Radius of the throat 
% Wall_Points = Wall (x,y) coordinates 
% T_wall = Temperature at the wall 

  

% Gamma Constants  
y_a = sqrt((gamma+1)/(gamma-1)); 
y_b = sqrt((gamma-1)/(gamma+1)); 

  
%% Solving for divergence angle of the nozzle and initial theta increments 
nu_e      = ((y_a)*(atand(y_b*sqrt((M_e^2-1))))-atand(sqrt(M_e^2-1))); 
Theta_max = nu_e/2; 
DTheta_1  = Theta_max - fix(Theta_max); 
% C_input   = input('Number of Characteristic Lines: '); 
C         = 1:C_Lines; 
dTheta    = fix(Theta_max)/C(end); 

  
%% Solving & Defining MoC Points 

  

% Grid Points 
GP = 1:(0.5*(C_Lines^2 + 3*C_Lines)); 

  
% Wall Points 
WP = zeros(1,length(C)); 

  

for i = 1:length(C) 
    WP(i) = 0.5*( (2*C(end)+3)*i - i^2 ); 
end 

  
WP = [0 WP]; 

  

% Symmetry Points 
SP = zeros(1,length(C)); 

  
for i = 1:length(C) 
    if i == 1 
        SP(i) = GP(1); 
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    else 
        SP(i) = WP(i)+1; 
    end 
end 

  
WP(1) = []; 

  
% Characteristic node matrix 
AA    = zeros(C(end),WP(1)); 

  

for i = 1:C(end) 
    A = SP(i):WP(i); 
    AA(i,i:end) = A; 
end 

  
[rows, columns] = size(AA); 
SP(1) = []; 

  
% Solving for Theta, Mu, K_p, and K_m 
Theta = zeros(C(end),WP(1)); 
Nu    = zeros(C(end),WP(1)); 
K_p   = zeros(C(end),WP(1)); 
K_m   = zeros(C(end),WP(1)); 
Mu    = zeros(C(end),WP(1)); 
M     = zeros(C(end),WP(1)); 

  
for i = 1:rows 
    for ii = 1:columns    
        if AA(i,ii) == 0  
            Theta(i,ii) = 0; 
            Nu(i,ii)    = NaN; 
            K_p(i,ii)   = 0; 
            K_m(i,ii)   = 0; 
            M(i,ii)     = 0; 
            Mu(i,ii)    = 0; 
        elseif any(SP(:) == AA(i,ii)) 
            Theta(i,ii)  = 0; 
            K_m(i,ii)    = K_m(i-1,ii); 
            Nu(i,ii)     = K_m(i,ii) - Theta(i,ii); 
            K_p(i,ii)    = Theta(i,ii) - Nu(i,ii); 
        elseif any(WP(:) == AA(i,ii)) 
            Theta(i,ii)  = Theta(i,ii-1); 
            K_p(i,ii)    = K_p(i,ii-1); 
            Nu(i,ii)     = Theta(i,ii) - K_p(i,ii); 
            K_m(i,ii)    = Theta(i,ii) + Nu(i,ii); 
        elseif any(C(:) == AA(i,ii)) 
            if C(1) == AA(i,ii) 
                Theta(i,ii) = DTheta_1; 
                Nu(i,ii)    = DTheta_1; 
                K_p(i,ii)   = 0; 
                K_m(i,ii)   = Theta(i,ii)+Nu(i,ii);    
            else 
                Theta(i,ii) = dTheta*ii; 
                Nu(i,ii)    = Theta(i,ii); 
                K_p(i,ii)   = 0; 
                K_m(i,ii)   = Theta(i,ii)+Nu(i,ii);  
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            end 
        else 
            K_p(i,ii)    = K_p(i, ii-1); 
            K_m(i,ii)    = K_m(i-1,ii);  
            Theta(i,ii)  = 0.5*(K_m(i,ii) + K_p(i,ii)); 
            Nu(i,ii)     = 0.5*(K_m(i,ii)-K_p(i,ii)); 
        end    
    end 
end 

  

% Manipulating Data for Aerospace Toolbox 
for i = 1:rows 
    for ii = 1:columns 
        if isnan(Nu(i,ii))             
            Nu(i,ii) = 1; 
        else 
        end 
    end 
end 

  
A = size(Nu); 

  
% Aerospace Toolbox: Prandtl-Meyer Expansion Fan Function 
for i = 1:A(1) 
    for ii = 1:A(2) 
        [M(i,ii), Nu(i,ii), Mu(i,ii)] = flowprandtlmeyer(gamma, Nu(i,ii), 

'nu'); 
    end 
end 

  

%% Solving and Plotting Points 

  
S_p = zeros(C(end),WP(1)); 
S_m = zeros(C(end),WP(1)); 

  
% Slopes of characteristic lines 
for i = 1:rows 
    for ii = 1:columns 
        if AA(i,ii) == 0 
            S_m(i,ii) = 0; 
            S_p(i,ii) = 0; 
        elseif any(C(:) == AA(i,ii)) 
            S_m(i,ii) = tand( Theta(i,ii) - Mu(i,ii) ); 
            S_p(i,ii) = tand( 0.5*(Theta(i,ii) + Theta(i,ii+1) + Mu(i,ii) + 

Mu(i,ii+1)) );  
        elseif any(WP(:) == AA(i,ii)) 
            if WP(1) == AA(i,ii) 
                S_m(i,ii) = 0; 
                S_p(i,ii) = tand( Theta(i,ii) ); 
            else 
                S_m(i,ii) = 0; 
                S_p(i,ii) = tand( 0.5*(Theta(i,ii) + Theta(i-1,ii)) ); 
            end    
        else 
            S_m(i,ii) = tand( 0.5*(Theta(i,ii) + Theta(i-1,ii) - Mu(i,ii) - 

Mu(i-1,ii)) ); 
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            S_p(i,ii) = tand( 0.5*( Theta(i,ii) + Theta(i,ii+1) + Mu(i,ii) + 

Mu(i,ii+1)) ); 
        end           
    end 
end 

  
x   = zeros(C(end),WP(1)); 
y   = zeros(C(end),WP(1)); 
x_0 = 0; 

  

Tx_Tc = zeros(C(end),WP(1)); 
Px_Pc = zeros(C(end),WP(1)); 
rx_rc = zeros(C(end),WP(1)); 
Vx    = zeros(C(end),WP(1)); 
Tx    = zeros(C(end),WP(1)); 
Px    = zeros(C(end),WP(1)); 
rx    = zeros(C(end),WP(1)); 

  
% (x,y) coordinates for each characteristic node 
for i = 1:rows 
    for ii = 1:columns 
        if AA(i,ii) == 0   
            x(i,ii) = NaN; 
            y(i,ii) = NaN; 
        elseif any(C(:) == AA(i,ii)) 
            if C(1) == AA(i,ii)  
                x(i,ii) = x_0 - (Throat_Radius/S_m(i,ii)); 
                y(i,ii) = 0; 
            else  
                x(i,ii) = ( Throat_Radius - y(i,ii-1) + S_p(i,ii-1)*x(i,ii-1) 

- S_m(i,ii)*x_0 )/( S_p(i,ii-1) - S_m(i,ii) ); 
                y(i,ii) = S_m(i,ii)*(x(i,ii) - x_0) + Throat_Radius; 
            end 
        elseif any(WP(:) == AA(i,ii)) 
            if WP(1) == AA(i,ii)     
                x(i,ii) = ( y(i,ii-1) - Throat_Radius + S_p(i,ii)*x_0 - 

S_p(i,ii-1)*x(i,ii-1) )/ (S_p(i,ii) - S_p(i,ii-1)); 
                y(i,ii) = S_p(i,ii-1)*( x(i,ii) - x(i,ii-1) ) + y(i,ii-1); 
            else 
                x(i,ii) = ( y(i,ii-1) - y(i-1,ii) + S_p(i,ii)*x(i-1,ii) - 

S_p(i,ii-1)*x(i,ii-1) )/ (S_p(i,ii) - S_p(i,ii-1)); 
                y(i,ii) = S_p(i,ii-1)*( x(i,ii) - x(i,ii-1) ) + y(i,ii-1);  
            end 
        elseif any(SP(:) == AA(i,ii)) 
            x(i,ii) = x(i-1,ii) - (y(i-1,ii)/S_m(i,ii)); 
            y(i,ii) = 0; 
        else     
            x(i,ii) = ( y(i-1,ii) - y(i,ii-1) - S_m(i,ii)*x(i-1,ii) + 

S_p(i,ii-1)*x(i,ii-1) )/ ( S_p(i,ii-1) - S_m(i,ii) ); 
            y(i,ii) = S_m(i,ii)*( x(i,ii) - x(i-1,ii) ) + y(i-1,ii); 
        end 
            Tx_Tc(i,ii) = ( 1 + 0.5*(gamma-1)*(M(i,ii)^2) )^-1; 
            Px_Pc(i,ii) = ( 1 + 0.5*(gamma-1)*(M(i,ii)^2) )^(-gamma/(gamma-

1)); 
            rx_rc(i,ii) = ( 1 + 0.5*(gamma-1)*(M(i,ii)^2) )^(-1/(gamma-1)); 
            Vx(i,ii)    = M(i,ii)*a_f; 
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            Tx(i,ii)    = Tx_Tc(i,ii)*Tc; 
            Px(i,ii)    = Px_Pc(i,ii)*Pc; 
            rx(i,ii)    = rx_rc(i,ii)*rc; 
    end 
end 

  
% Characteristic Mesh Plot 
for i = 1:rows 
    for ii = 1:columns 
        if isnan(x(i,ii)) || isnan(y(i,ii)) 
        elseif any(C(:) == AA(i,ii)) 
            subplot(3,2,1) 
            plot([x_0,x(i,ii)], [Throat_Radius,y(i,ii)],'-

o','color','#0072BD') 
            hold on 
            plot([x(i,ii),x(i,ii+1)],[y(i,ii),y(i,ii+1)],'-

o','color','#0072BD') 
            hold on 
        elseif any(WP(:) == AA(i,ii)) 
            if WP(1) == AA(i,ii) 
                plot([x_0,x(i,ii)],[Throat_Radius,y(i,ii)],'-

','color','#77AC30','LineWidth',2) 
                hold on 
            else 
                plot([x(i-1,ii),x(i,ii)],[y(i-1,ii),y(i,ii)],'-

o','color','#77AC30','LineWidth',2) 
                hold on 
                plot([x(i,ii-1),x(i,ii)],[y(i,ii-1),y(i,ii)],'-

o','color','#0072BD') 
                hold on 
            end 
        else 
            plot([x(i,ii),x(i,ii+1)],[y(i,ii),y(i,ii+1)],'-

o','color','#0072BD') 
            hold on 
            plot([x(i-1,ii),x(i,ii)],[y(i-1,ii),y(i,ii)],'-

o','color','#0072BD') 
        end 
    end 
end 

  
xlim([0,x(end,end)]) 
ylim([0,y(end,end)]) 
xlabel('x position') 
ylabel('y position') 
title('Nozzle Contour in CPG') 
grid on 
grid minor 

  
x_wall = [x_0; x(:,end)]; 
y_wall = [Throat_Radius; y(:,end)]; 

  
Wall_Points = [x_wall, y_wall]; 

  
%% Various Plots for Analysis 
Px_s    = zeros(1,length(SP));   % Pressure along symmetry line 
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Px_Pc_s = zeros(1,length(SP));   % Pressure ratio along symmetry line 
Tx_Tc_s = zeros(1,length(SP));   % Temperature ratio along symmetry line 
rx_rc_s = zeros(1,length(SP));   % Density ratio along the symmetry line 
M_s     = zeros(1,length(SP));   % Mach number along symmetry line 
x_sym   = zeros(1,length(SP));   % x location along symmetry line 

  
% Critical Conditions 
M_t = 1; 
Tt_Tc = ( 1 + 0.5*(gamma-1)*(M_t^2) )^-1; 
Pt_Pc = ( 1 + 0.5*(gamma-1)*(M_t^2) )^(-gamma/(gamma-1)); 
rt_rc = ( 1 + 0.5*(gamma-1)*(M_t^2) )^(-1/(gamma-1)); 

  
% Extracting data from symmetry line 
for i = 1:length(SP) 
    A = find(SP(i) == AA(:,:)); 
    Tx_Tc_s(i) = Tx_Tc(A); 
    Px_Pc_s(i) = Px_Pc(A); 
    rx_rc_s(i) = rx_rc(A); 
    Px_s(i)    = Px(A); 
    M_s(i)     = M(A); 
    x_sym(i)   = x(A);  
end 

  

% Manipulating data for contour plots and line graphs 
Px_s     = [P_t Px_s]'; 
Px_Pc_s  = [Pt_Pc Px_Pc_s]'; 
Tx_Tc_s  = [Tt_Tc Tx_Tc_s]'; 
rx_rc_s  = [rt_rc rx_rc_s]'; 
M_s      = [M_t M_s]'; 
x_sym    = [0 x_sym]'; 

  
Px_curve = fit(x_sym, Px_s, 'smoothingspline', 'Normalize', 'on'); 

  
x_M      = zeros(1, (C(end)+1)); 
x_M(:)   = x_0; 
x        = [x_M; x]; 

  
y_M      = zeros(1, (C(end)+1)); 
y_M(:)   = Throat_Radius; 
y        = [y_M; y]; 

  
Tt_M     = zeros(1, (C(end)+1)); 
Tt_M(:)  = T_t; 
Tx       = [Tt_M; Tx]; 

  
X = zeros(C(end),WP(1)); 
Y = zeros(C(end),WP(1)); 

  
for i = 1:(rows+1) 
    for ii = 1:columns 
        if isnan(x(i,ii)) || isnan(y(i,ii)) 
        else 
           [X(i,ii),Y(i,ii)] = meshgrid(x(i,ii),y(i,ii)); 
           hold on 
        end 
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    end 
end 

  

Tx_curve = fit(x(:,end), Tx(:,end), 'smoothingspline', 'Normalize', 'on'); 
T_wall   = Tx(:,end); 

  
M_M     = zeros(1, (C(end)+1)); 
M_M(:)  = 1; 
M       = [M_M; M]; 

  

subplot(3,2,2) 
plot(x_sym,Px_Pc_s) 
hold on 
plot(x_sym,Tx_Tc_s) 
hold on 
plot(x_sym,rx_rc_s) 
hold on 
plot(x_sym,M_s) 
xlim([0 x_sym(end)]) 
ylim([0 M_s(end)]) 
ylim([0 Tx_Tc_s(1)]) 
title('Isentropic Ratios and Mach Number') 
xlabel('x position along symmetry') 
ylabel('Ratios') 
legend('Pressure Ratio','Temperature Ratio','Density Ratio') 
grid on 
grid minor 

  
subplot(3,2,3) 
plot(Tx_curve,x(:,end), Tx(:,end)) 
hold on 
plot(x(:,end), Tx(:,end),'--b') 
xlim([0 x(end,end)]) 
ylim([Tx(end,end) T_t]) 
title('Hot Gas Side Wall Temperature [K]') 
xlabel('x position of wall') 
ylabel('Temperature [K]') 
legend('Temperature Data','Temperature Curve Fit', 'Temperature Data Plot') 
grid on 
grid minor 

  
subplot(3,2,4) 
plot(Px_curve,x_sym, Px_s) 
hold on 
plot(x_sym, Px_s,'--b') 
xlim([0 x_sym(end)]) 
ylim([Px_s(end) P_t]) 
title('Pressure along Symmetry [atm]') 
xlabel('x position along symmetry') 
ylabel('Pressure [atm]') 
legend('Pressure Data','Pressure Curve Fit', 'Pressure Data Plot') 
grid on 
grid minor 

  
subplot(3,2,5) 
contourf(X,Y,Tx,500,'Fill','on','LineColor','none'); 
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hold on 
plot(x(:,end),y(:,end),'-k','LineWidth',2) 
title('Temperature in Nozzle') 
xlabel('x position') 
ylabel('y position') 
xlim([0,x(end,end)]) 
ylim([0,y(end,end)+0.5]) 
cc = colorbar; 
cc.Label.String = ('Temperature [K]'); 

  

subplot(3,2,6) 
contourf(X,Y,M,500,'Fill','on','LineColor','none'); 
hold on 
plot(x(:,end),y(:,end),'-k','LineWidth',2) 
title('Mach Number in Nozzle') 
xlabel('x position') 
ylabel('y position') 
xlim([0,x(end,end)]) 
ylim([0,y(end,end)]) 
cc = colorbar; 
cc.Label.String = ('Mach Number'); 
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Appendix C: CEA Calling Scripts for MATLAB [20] 
C.1) Script for CEA Rocket Problem 

function [CD, TD, ED, moles_x, caseNamesRkt, dataRkt] = ceaRkt(ExitType, A, 

OF, P_0c, Ox, T_Ox, Fuel, T_F) 
%% This function ceaRkt.m was created by Edgar Aguliar, and modified by 

Michael Sandoval 
% Modifications include: 
%  - Including all data at chamber, throat, and exit 
%  - Includes usaer input of fuel/oxidizer and exit type 
%  - More comments, modified input script 
% INPUTS: 
%  - AeAt = Supersonic area ratio 
%  - P_0c = Chamber total pressure 
%  - T_Ox = Initial total temperature of the oxidizer 
%  - T_F  = Initial total temperature of the fuel 
%  - Ox   = Script of oxidizer type 
%  - Fuel = Script of oxidizer type 
%  - OF   = Oxidizer/fuel mixture ratio by weight 
%  - ExitType = 'AeAt' or 'Pi/Pe' 

  
% OUTPUTS: 
%  - CD = Chamber Data 
%  - TD = Throat Data 
%  - ED = Exit Data 
%  - caseNames = Names of each row of data 

  
%% Creating text file to read into CEA 
% fopen opens the file name '1511.inp' and '1512.inp' for writing acess 'w' 
% 'w' opens or creates a new file for writing. Discards existing contents 

  
executeTP1     = fopen('1511.inp','w'); 
executeTP1file = fopen('1512.inp','w'); 

  
fprintf(executeTP1, sprintf('problem    o/f=%f,\n',OF)); 
fprintf(executeTP1, sprintf('\t rocket equilibrium tcest,k=3800\n')); 
fprintf(executeTP1, sprintf('\t p,atm=%f,\n', P_0c)); 

  
if strcmpi(ExitType, 'AeAt') 
    fprintf(executeTP1, sprintf('\t sup,ae/at=%f,\n', A)); 
else  
    fprintf(executeTP1, sprintf('\t pi/p=%f,\n', A)); 
end 

  
fprintf(executeTP1, sprintf('react\n')); 
fprintf(executeTP1, sprintf('\t fuel=%s wt=100 t,k=%f\n',Fuel, T_F)); 
fprintf(executeTP1, sprintf('\t oxid=%s wt=100 t,k=%f\n', Ox, T_Ox)); 
fprintf(executeTP1, sprintf('output short\n')); 
fprintf(executeTP1, sprintf('end\n')); 

  
% Writing the executeable file for computer command 
fprintf(executeTP1file, sprintf('1511\n')); 

  
fclose(executeTP1); 
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fclose(executeTP1file); 

  
% MATLAB calls Operating System to use Command: redirecting "<" input file  
system('FCEA2.exe < 1512.inp'); 

  
% MATLAB opens the output file created by the execution of 1512.inp in 

FEA2.exe 
% 'rt' opens the file for reading in text mode 
fid = fopen('1511.out', 'rt'); 

  

% Textscan looks into 1511.out to find all the data in particular pattern 
% shown below: 
data_cell = textscan(fid,'%s%s%f%f%f','delimiter',',','delimiter','\t',... 
    'delimiter','\t', 'delimiter','\t'); 

  
fclose(fid); 

  
%% Locating CEA data in output file 
dataRkt = data_cell{1} 
B    = length(dataRkt); 

  
% Finding first value of output 
locator = strfind(dataRkt,'P, BAR'); 
index   = find(~cellfun(@isempty, locator)); 
n       = B - index; % Number of CEA output lines to check 

  
caseData_chamber = zeros(n,1); 
caseData_throat  = zeros(n,1); 
caseData_exit    = zeros(n,1); 

  
%% Extracting data from output file 

  
% Extracting exit data 
for ii = 1:n 

     
    dataSplit       = split(dataRkt{ii + index - 1});     
    caseValues_exit = dataSplit{end};   
    blank           = length(caseValues_exit); 

     
    if blank == 1 
         caseValues_exit = []; 
    end 

  

     
    % Names of each output 
    if ii <= 13 
        caseNamesRkt(ii, 1) = {strcat(dataSplit{1},{' '},dataSplit{2})}; 
    else 
        caseNamesRkt(ii, 1) = {dataSplit(1)}; 
    end 

      
    checkPos = strfind(caseValues_exit,'+'); 
    checkNeg = strfind(caseValues_exit,'-'); 
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    % Converting all expontintial data from CEA to read with MATLAB 
    if isempty(checkPos) == 1 && isempty(checkNeg) == 1 
        caseData_exit(ii) = str2double(caseValues_exit); 
    elseif isempty(checkPos) == 0 && isempty(checkNeg) == 0 && 

length(checkNeg) == 2 
        Z = [caseValues_exit(1:6), 'e', caseValues_exit(7:end)]; 
        caseData_exit(ii) = str2double(Z); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && 

length(checkNeg) == 2 
        Z = [caseValues_exit(1:6), 'e', caseValues_exit(7:end)]; 
        caseData_exit(ii) = str2double(Z); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 7 
        Z = [caseValues_exit(1:6), 'e', caseValues_exit(7:end)]; 
        caseData_exit(ii) = str2double(Z); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 
        caseData_exit(ii) = str2double(caseValues_exit);  
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 1 
        Z = [caseValues_exit(1:6), 'e', caseValues_exit(7:end)]; 
        caseData_exit(ii) = str2double(Z); 
    elseif isempty(checkPos) == 0 && isempty(checkNeg) == 1 && checkNeg == 7 
        Z = [caseValues_exit(1:6), 'e', caseValues_exit(7:end)]; 
        caseData_exit(ii) = str2double(Z);   
    end 

     

    ED = caseData_exit(~isnan(caseData_exit)); 

  
end 

  
% Extracting throat data 
for ii = 1:n 

     
    dataSplit         = split(dataRkt{ii + index - 1});     
    caseValues_throat = dataSplit{end-1}; 
    blank             = length(caseValues_throat); 

     
    if blank == 1 
        caseValues_throat = []; 
    end 

     
    checkPos = strfind(caseValues_throat,'+'); 
    checkNeg = strfind(caseValues_throat,'-'); 

     
    if isempty(checkPos) == 1 && isempty(checkNeg) == 1 
        caseData_throat(ii) = str2double(caseValues_throat); 
    elseif isempty(checkPos) == 0 && isempty(checkNeg) == 0 && 

length(checkNeg) == 2 
        Z = [caseValues_throat(1:6), 'e', caseValues_throat(7:end)]; 
        caseData_throat(ii) = str2double(Z); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && 

length(checkNeg) == 2 
        Z = [caseValues_throat(1:6), 'e', caseValues_throat(7:end)]; 
        caseData_throat(ii) = str2double(Z); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 7 
        Z = [caseValues_throat(1:6), 'e', caseValues_throat(7:end)]; 
        caseData_throat(ii) = str2double(Z); 
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    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 
        caseData_throat(ii) = str2double(caseValues_throat); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 1 
        Z = [caseValues_throat(1:6), 'e', caseValues_throat(7:end)]; 
        caseData_throat(ii) = str2double(Z); 
    elseif isempty(checkPos) == 0 && isempty(checkNeg) == 1 && checkNeg == 7 
        Z = [caseValues_throat(1:6), 'e', caseValues_throat(7:end)]; 
        caseData_throat(ii) = str2double(Z); 
    end 

     

    TD = caseData_throat(~isnan(caseData_throat)); 

   
end 

  
% Extracting chamber data   
for ii = 1:n 

     
    dataSplit = split(dataRkt{ii + index - 1}); 

     
    if length(dataSplit) == 2 || length(dataSplit) == 1                                                                                       
        continue 
    elseif ii == 3 
        caseValues_chamber = dataSplit{end-3}; 
    else 
        caseValues_chamber = dataSplit{end-2}; 
    end 

     
    blank = length(caseValues_chamber); 

     

    if blank == 1 
        caseValues_chamber = []; 
    end 

  
    checkPos = strfind(caseValues_chamber,'+'); 
    checkNeg = strfind(caseValues_chamber,'-'); 

     

    if isempty(checkPos) == 1 && isempty(checkNeg) == 1 
        caseData_chamber(ii) = str2double(caseValues_chamber); 
    elseif isempty(checkPos) == 0 && isempty(checkNeg) == 0 && 

length(checkNeg) == 2 
        Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)]; 
        caseData_chamber(ii) = str2double(Z); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && 

length(checkNeg) == 2 
        Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)]; 
        caseData_chamber(ii) = str2double(Z); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 7 
        Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)]; 
        caseData_chamber(ii) = str2double(Z); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 
        caseData_chamber(ii) = str2double(caseValues_chamber); 
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 1 
        Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)]; 
        caseData_chamber(ii) = str2double(Z); 
    elseif isempty(checkPos) == 0 && isempty(checkNeg) == 1 && checkNeg == 7 
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        Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)]; 
        caseData_chamber(ii) = str2double(Z); 
    end 

     
CD = caseData_chamber(~isnan(caseData_chamber)); 

  
end 
moles_x = 0; 
% Converting CEA Rkt case names cell into a string array for indexing 
caseNamesRkt = string(caseNamesRkt); 

  
for k = 1:length(TD) 
    if strcmp(caseNamesRkt(k),'MOLE') 
        caseNamesRkt(k) = []; 
    elseif strcmp(caseNamesRkt(k), 'PERFORMANCE') 
        caseNamesRkt(k) = []; 
    elseif strcmp(caseNamesRkt(k), '*') 
        caseNamesRkt(k) = []; 
    else 
    end 
end 

  
% Finding the index for each species from caseNamesRkt 
H_i   = find(strcmp(caseNamesRkt, '*H')); 
H2_i  = find(strcmp(caseNamesRkt, '*H2')); 
H2O_i = find(strcmp(caseNamesRkt, 'H2O')); 
NO_i  = find(strcmp(caseNamesRkt, '*NO')); 
N2_i  = find(strcmp(caseNamesRkt, '*N2')); 
N_i   = find(strcmp(caseNamesRkt, '*N')); 
O_i   = find(strcmp(caseNamesRkt, '*O')); 
OH_i  = find(strcmp(caseNamesRkt, '*OH')); 
O2_i  = find(strcmp(caseNamesRkt, '*O2')); 

  
% "Packaging" results into cells to find any empty cells, [] 
moles_x   = {TD(H_i), TD(H2_i), TD(H2O_i), TD(NO_i), TD(N2_i), TD(N_i), 

TD(O_i), TD(OH_i), TD(O2_i)}; 
% Placing zero for empty arrays 
for i = 1:length(moles_x) 
    if isempty(moles_x{i}) 
        moles_x{i} = 0; 
    end 
end 
% Converting cells to array 
moles_x = cell2mat(moles_x); 
% Removing scientific notation for scripting into CEA 
moles_x = compose("%.5f", moles_x); 

  
delete *inp 
delete *out 

  

 end 
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C.2) Script for CEA Temperature and Pressure Problem 
function [n, x_data, moles_x, caseNamesTP] = ceaTP(T, P, species, moles_x) 

  

% fopen opens the file name '1511.inp' and '1512.inp' for writing acess 'w' 
% 'w' opens or creates a new file for writing. Discards existing contents 

  
executeTP1     = fopen('1511.inp','w'); 
executeTP1file = fopen('1512.inp','w'); 

  

% sprintf formats data into string, fprintf writes data into a text file 
fprintf(executeTP1, sprintf('problem \n')); 
fprintf(executeTP1, sprintf('\t tp   t,k=%d,  p,atm=%d,\n',T,P)); 
fprintf(executeTP1, sprintf('react\n')); 
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(1), 

moles_x(1), T)); 
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(2), 

moles_x(2), T)); 
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(3), 

moles_x(3), T)); 
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(4), 

moles_x(4), T)); 
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(5), 

moles_x(5), T)); 
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(6), 

moles_x(6), T)); 
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(7), 

moles_x(7), T)); 
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(8), 

moles_x(8), T)); 
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(9), 

moles_x(9), T)); 
fprintf(executeTP1, sprintf('output short\n')); 
fprintf(executeTP1, sprintf('end\n')); 
fprintf(executeTP1file, sprintf('1511\n')); 

  
fclose(executeTP1); 
fclose(executeTP1file); 

  
% MATLAB calls Operating System to use Command: redirecting "<" input file  
system('FCEA2.exe < 1512.inp'); 

  

  
% MATLAB opens the output file created by the execution of 1512.inp in 

FEA2.exe 
% 'rt' opens the file for reading in text mode 
fid = fopen('1511.out', 'rt'); 

  
% Textscan looks into 1511.out to find all the data in particular pattern 
% shown below: 
data_cell = textscan(fid,'%s%s%f%f%f','delimiter',',','delimiter','\t',... 
    'delimiter','\t', 'delimiter','\t'); 

  
fclose(fid); 
dataTP = data_cell{1} 
B = length(dataTP); 
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% Finding first value of output 
locator = strfind(dataTP,'P, BAR'); 
index = find(~cellfun(@isempty, locator)); 
n       = B - index; % Number of CEA output lines to check 

  
x_data = zeros(n,1); 

  
% Extracting data from output file 
for ii = 1:n 
    dataSplit = split(dataTP{ii + index - 1}); 
    caseValues = dataSplit{end}; 
    blank = length(caseValues); 

     
    if blank == 1 
        caseValues = dataSplit{(end - 1)}; 
    end 

     
    % Text of output. Used to see what data is being checked 
    if ii <= 13 
        caseNamesTP(ii, 1) = {strcat(dataSplit{1},{' '},dataSplit{2})}; 
    else 
        caseNamesTP(ii, 1) = {dataSplit(1)}; 
    end 

  
    checkPos = strfind(caseValues,'+'); 
    checkNeg = strfind(caseValues,'-'); 

     
    if isempty(checkPos) == 1 && isempty(checkNeg) == 1 
        x_data(ii) = str2double(caseValues); 

         
    elseif isempty(checkPos) == 0 && isempty(checkNeg) == 0 && 

length(checkNeg) == 2 
        Z = [caseValues(1:6), 'e', caseValues(7:end)]; 
        x_data(ii) = str2double(Z); 

         

    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && 

length(checkNeg) == 2 
        Z = [caseValues(1:6), 'e', caseValues(7:end)]; 
        x_data(ii) = str2double(Z); 

         
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 7 
        Z = [caseValues(1:6), 'e', caseValues(7:end)]; 
        x_data(ii) = str2double(Z); 

         
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 
        x_data(ii) = str2double(caseValues); 

         
    elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 1 
        Z = [caseValues(1:6), 'e', caseValues(7:end)]; 
        x_data(ii) = str2double(Z); 

         
    elseif isempty(checkPos) == 0 && isempty(checkNeg) == 1 && checkNeg == 7 
        Z = [caseValues(1:6), 'e', caseValues(7:end)]; 
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        x_data(ii) = str2double(Z); 

         
    end 

     
end 
caseNamesTP = string(caseNamesTP); 
for j = 1:length(caseNamesTP) 
    if strcmp(caseNamesTP,'MOLE') 
        caseNamesTP(j) = []; 
    else 
    end 
end 

  
H_i_TP   = find(strcmp(caseNamesTP, '*H')); 
H2_i_TP  = find(strcmp(caseNamesTP, '*H2')); 
H2O_i_TP = find(strcmp(caseNamesTP, 'H2O')); 
NO_i_TP  = find(strcmp(caseNamesTP, '*NO')); 
N2_i_TP  = find(strcmp(caseNamesTP, '*N2')); 
N_i_TP   = find(strcmp(caseNamesTP, '*N')); 
O_i_TP   = find(strcmp(caseNamesTP, '*O')); 
OH_i_TP  = find(strcmp(caseNamesTP, '*OH')); 
O2_i_TP  = find(strcmp(caseNamesTP, '*O2')); 

  

moles_x   = {x_data(H_i_TP), x_data(H2_i_TP), x_data(H2O_i_TP), 

x_data(NO_i_TP), x_data(N2_i_TP), x_data(N_i_TP), x_data(O_i_TP), 

x_data(OH_i_TP), x_data(O2_i_TP)}; 

  
for i = 1:length(moles_x) 
    if isempty(moles_x{i}) || isnan(moles_x{i}) 
        moles_x{i} = 0; 
    end 
end 

  
moles_x = cell2mat(moles_x); 
moles_x = compose("%.5f", moles_x); 

  

x_data = x_data(~isnan(x_data)); 

  

  
delete *inp 
delete *out 

  

end 

  

 

 

 

 

 

 



61 
 

Appendix D: JANAF Tables for Species 𝐻2, 𝑂2, 𝑂, 𝐻, 𝑂𝐻 and 𝐻2𝑂 
 

D.1) Hydrogen (H) (gas) 
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D.2) Oxygen (O) (gas) 
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D.3) Diatomic Oxygen (O2) (gas) 
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D.4) Diatomic Hydrogen (H2) (gas) 
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D.5) Water (H2O) (gas) 
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D.6) Hydroxyl (OH) (gas) 
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Appendix E: Thermochemical Equilibrium Nozzle Design Code 
 

%% 2D TCE Method of Characteristics 
%% Code created by Michael Sandoval 
close all; clear; clc; fclose('all'); 

  
%% Initial data CEA rocket problem in equilibrium 
P_0c     = 10;            % [atm] Chamber pressure 
ExitType = "AeAt";        % Exit type for CEA 
A        = 2.5;           % Exit type entry for CEA 
OF       = 34.29623;      % Mixture ratio 
Ox       = "Air";         % Oxidizer type 
T_Ox     = 600;           % [K] Oxidizer temperature 
Fuel     = "H2";          % Fuel type 
T_F      = 298.15;        % {K] Fuel temperature 

  
% Species being considered for TCE calculation 
species = ["H", "H2", "H2O", "NO", "N2", "N", "O", "OH", "O2"]; 

  
% FUNCTION: CEA(Rkt) Problem 
[CD, TD, ED, moles_Throat, caseNamesRkt, dataRkt] = ceaRkt(ExitType, A, OF, 

P_0c, Ox, T_Ox, Fuel, T_F); 

  
%% Data from CEA Rkt are the initial conditions to calculate MoC in CPG 
% This data will be used as the first iteration for every point in the 

flowfield 
gamma = TD(12);           % Throat gamma 
M_e   = ED(14);           % Exit mach number 
Tc    = CD(2);            % [K] Chamber temperature 
Pc    = P_0c;             % [atm] Chamber pressure 
rc    = CD(3);            % [kg/m^3] Chamber density 
a_f   = TD(13);           % [m/s^2] Frozen speed of sound at throat 
H_t   = CD(4)*1000;       % [J/kg] Total enthalpy (same everywhere) 
Throat_Height = 0.0508;   % [m] Throat radius 
C_Lines = 10;             % Number of characteristic lines 

  
% FUNCTION: MoC_Analysis (CPG) 
[Wall_Points, x, y, Theta_x, Mu_x, Nu_x, K_p, K_m, M_x, P_x, T_x, r_x, V_x] = 

MoC_Analysis(M_e, gamma, Tc, Pc, rc, a_f, C_Lines, Throat_Height); 

  
% FUNCTION: CEA(T,P) Problem 
[n, x_data, moles_x, caseNamesTP] = ceaTP(T_x(1,1), P_x(1,1), species, 

moles_Throat); 

  
% Throat conditions 
y_a      = Throat_Height;  % [m] Throat height 
x_a      = 0;              % [m] Throat x coordinate 
P_a     = TD(1)*0.986923;  % [Bar to atm] Throat pressure 
rho_a   = TD(3);           % [kg/m^3] Throat density 
V_a     = TD(19);          % [m/s] Throat velocity 
Mu_a    = 89;              % [deg] Wave angle (not sure if this is a good 

assumption) 
Theta_a = 0;               % [deg] 
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% Universial gas constant 
R_u = 8314;               % [J/kg*mol*k]  

  
%% Point 2 iteration 
k = 1;              % Index for cells 
iterations = 100;    % Number of iterations 

  
% Formating data for iterations 
T       = cell(1,1,iterations); 
P       = cell(1,1,iterations); 
V       = cell(1,1,iterations); 
Mu      = cell(1,1,iterations); 
rho     = cell(1,1,iterations); 
h       = cell(1,1,iterations); 
Theta   = cell(1,1,iterations); 
moles   = cell(1,1,iterations); 
x_point = cell(1,1,iterations); 
y_point = cell(1,1,iterations); 
ratio_1 = cell(1,1,iterations); 
ratio_2 = cell(1,1,iterations); 

  
% First iteration initial conditions 
P(1)       = {P_x(1,2)}; 
T(1)       = {T_x(1,1)}; 
V(1)       = {V_x(1,1)}; 
Mu(1)      = {Mu_x(1,1)}; 
rho(1)     = {r_x(1,1)}; 
h(1)       = {x_data(4)*1000}; 
Theta(1)   = {Theta_x(1,1)}; 
moles(1)   = {moles_x}; 
x_point(1) = {0}; 
y_point(1) = {0}; 

  
while k < iterations+1 

     

% Slopes for x and y equations 
N_Slope = tand( 0.5*(Theta{1,1,k} + Theta_a - Mu{1,1,k} - Mu_a) ); 
P_Slope = tand( 0.5*(Theta{1,1,k} + Theta_x(1,1) + Mu{1,1,k} + Mu_x(1,1)) ); 

  
% Next iteration [x,y] coordinates for point 2 
x_point{1,1,k+1} = ( y_a - y(1,1) - x_a*N_Slope + x(1,1)*P_Slope )/( P_Slope 

- N_Slope ); 
y_point{1,1,k+1} = y(1,1) + (x_point{1,1,k} - x(1,1))*P_Slope; 

  
% Values for pressure equation 
A1 = 0.5*( (rho{1,1,k}*(V{1,1,k}^2)*tand(Mu{1,1,k}) ) + ( 

r_x(1,1)*(V_x(1,1)^2)*tand(Mu_x(1,1)) ) ); 
AA = 0.5*( (rho{1,1,k}*(V{1,1,k}^2)*tand(Mu{1,1,k}) ) + ( 

rho_a*(V_a^2)*tand(Mu_a) ) ); 

  
% Next iteration of pressure and theta for point 2 
P{1,1,k+1}     = (Theta_x(1,1) - Theta_a + (101325*P_x(1,1)/A1) + 

(101325*P_a/AA))/( (1/A1) + (1/AA) ); 
Theta{1,1,k+1} = Theta_x(1,1) - ( (P{1,1,k+1} - 101325*P_x(1,1))/A1 ); 
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% Prime values, linear interpolation of conditions between point a and point 

1 
x_prime   = 0.5*(x(1,1)+x_a); 
y_prime   = y(1,1)   + (x_prime - x(1,1))*( (y_a - y(1,1))/(x_a - x(1,1)) ); 
V_prime   = V_x(1,1) + (x_prime - x(1,1))*( (V_a - V_x(1,1))/(x_a - x(1,1)) 

); 
rho_prime = r_x(1,1) + (x_prime - x(1,1))*( (rho_a - r_x(1,1))/(x_a - x(1,1)) 

); 
P_prime   = 101325*(P_x(1,1) + (x_prime - x(1,1))*( (P_a - P_x(1,1))/(x_a - 

x(1,1)) )); 

  
% Average velocity and density between point 2' and 2 
V_avg   = 0.5*(V{1,1,k} + V_prime); 
rho_avg = 0.5*(rho{1,1,k} + rho_prime); 

  
% Calculation of velocity at point 2 
V{1,1,k+1} = V_prime - ( (P{1,1,k+1} - P_prime)/(V_avg*rho_avg) ); 
% V{1,1,k+1} = (V_prime - ( (P{k+1} - P_prime)/(rho_avg) ))/V_avg; 
% V{1,1,k+1} = sqrt(2*(H_t - h{1,1,k})); 

  
% Velocity components and interpolated velocity for point 2' 
v_2 = V{1,1,k+1}*sind(Theta{1,1,k+1}); 
v_1 = V_x(1,1)*sind(Theta_x(1,1)); 
v_a = V_a*sind(Theta_a); 
v_p = v_1 + (x_prime - x(1,1))*( (v_a-v_1)/(x_a-x(1,1)) ); 

  
u_2 = V{1,1,k+1}*cosd(Theta{1,1,k+1}); 
u_1 = V_x(1,1)*cosd(Theta_x(1,1)); 
u_a = V_a*cosd(Theta_a); 
u_p = u_1 + (x_prime - x(1,1))*( (u_a-u_1)/(x_a-x(1,1)) ); 

  
% Average velocity between point 2' and 2 
v2_avg = 0.5*(v_2 + v_p); 
u2_avg = 0.5*(u_2 + u_p); 

  

ratio_1{1,1,k} = v2_avg/u2_avg; 
ratio_2{1,1,k} = (y_point{1,1,k} - y_prime)/(x_point{1,1,k}-x_prime); 

  
% New data 
Cp           = x_data(11)*1000; 
T{1,1,k+1}   = T_x(1,1) + ( (V_x(1,1)^2) - (V{1,1,k+1}^2) )/(2*Cp); 
rho{1,1,k+1} = (P{1,1,k+1}*x_data(8))/(R_u*T{1,1,k+1}); 
Mu{1,1,k+1}  = asind(a_f/V{1,1,k+1}); 

  
P{1,1,k+1} = P{1,1,k+1}*9.86923e-6; 
% [x_data, moles_x, caseNamesTP] = ceaTP(T{1,1,k+1}, P{1,1,k+1}, species, 

moles_x{1,1,k}); 
% h{1,1,k+1} = x_data(4)*1000; 
% rho{1,1,k+1} = x_data(3); 

  
k = k + 1; 

  
end 
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