Design of a Contoured Nozzle through Two-Dimensional Method of Characteristics with Chemical Reactions

A Project
Presented to
The Faculty of the Department of Aerospace Engineering San Jose State University
In partial fulfilment of the requirements for the degree
Master of Science in Aerospace Engineering

By
Michael Sandoval
approved by

Dr. Fabrizio Vergine
Faculty Advisor

Table of Contents

List of Figures 3
List of Tables 4
Nomenclature 5

1. Motivation 6
1.1 Motivation 6
1.2 Literature Review 9
1.2.1 Research Articles and Technical Reports 9
1.2.2 Textbooks and Dataset References 12
1.3 Project Proposal 13
1.4 Methodology 13
1.5 MoC with Calorically Perfect Gas Assumption 14
1.6 MoC with Reactions: General Equations 15
2. Method of Characteristics in TCE and Non-Equilibrium 19
2.1 MoC Approach with Chemical Equilibrium and Non-Equilibrium 19
2.2.1 Example Reaction Rate Mechanism 21
3. Reaction Rate Mechanism and CPG MoC Initial Results 23
3.1 Full Hydrogen-Air Reaction Rate Mechanism for Non-equilibrium MoC 23
3.2 Chemical Equilibrium MoC 25
3.3 CPG MoC Results 26
4. Thermochemical Equilibrium Nozzle Design Methodology 29
4.1 Four-Step Reduced H_{2}-Air Reaction Mechanism and Reaction Rate Constants 29
4.2 Reaction Rates in Equilibrium 32
4.3 Absolute Enthalpy for Each Species 34
References 36
Appendix A: Method of Characteristics with Reaction Rates Derivation 38
Appendix B: MoC Contour Nozzle Code 45
Appendix C: CEA Calling Scripts for MATLAB [20] 53
Appendix D: JANAF Tables for Species $\mathrm{H} 2, \mathrm{O} 2, \mathrm{O}, \mathrm{H}, \mathrm{OH}$ and H 2 O 61
Appendix E: Thermochemical Equilibrium Nozzle Design Code 67

List of Figures

Figure 1: Ramjet engine schematic [2]... 6
Figure 2: Scramjet engine schematic [2]. ... 7
Figure 3: Temperature distribution in CPG and equilibrium along divergent section of a C-D nozzle [4].. 8
Figure 4: Lockheed X-7, Source: https://en.wikipedia.org/wiki/Lockheed_X-7. 9
Figure 5: Hypersonic aircraft airflow schematic [2].. 9
Figure 6: Fixed wall angle nozzle. ... 15
Figure 7: Contoured nozzle.. 15
Figure 8: MoC with reactions coordinate system.. 16
Figure 9: Streamline integration.. 18
Figure 10: CPG MoC characteristic mesh with 100 characteristic lines ... 27
Figure 11: Isentropic ratios for pressure, temperature, and density along the nozzle symmetry line......... 27
Figure 12: Gas side wall temperature. .. 27
Figure 13: Two-dimensional temperature contour. ... 28
Figure 14: Mach number within the nozzle. ... 28

List of Tables

Table 1: Reaction Rates for H2-Air Mechanism... 23
Table 2: Reaction mechanism for H2-Air.. 24
Table 3: Reaction Rate Data. ... 30

Nomenclature

a_{f}	=	Vibrationally frozen speed of sound
$[C],[\dot{C}]$	=	Concentration, concentration with respect to time
ΔC	=	Distance along characteristic curve
C^{+-}	=	Positive or negative characteristic line
x	=	Horizontal cartesian coordinate
y	=	Vertical cartesian coordinate
η	$=$	Unit vector normal to streamline
ξ	=	Unit vector parallel to streamline
θ	=	Inclination angle
μ	=	Mach angle
v^{\prime}	=	Reactant stoichiometric constant
$v^{\prime \prime}$	=	Product stoichiometric constant
i	=	Species index
h	=	Enthalpy
Y, \dot{Y}	=	Mass fraction, mass fraction with respect to time
X, \dot{X}	=	Mole fraction, mole fraction with respect to time
M	=	Molecular weight
k_{f}	=	Forward reaction rate
k_{b}	=	Rearward reaction rate
P	=	Pressure
ρ	=	Density
CEA	=	Chemical Equilibrium Application

1. Motivation

1.1 Motivation

Research and development on hypersonic vehicles have been increasing over the last few years. Namely, hypersonic missiles with nuclear capabilities have all the major superpowers in the world racing to develop arsenals of these weapons. These missiles achieve hypersonic speeds with scramjet or ramjet engines. Access to space is also another motivation to develop hypersonic airbreathing engines. For example, a paper by Martin [1] analyzed concepts for single-stage-toorbit vehicles where a ramjet engine with various configurations was analyzed and compared to traditional rocket engines. The paper found that some configurations of ramjets can carry payloads comparable to medium sized liquid rocket engines,

The focus of this paper is the convergent-divergent nozzle design, but it is worth understanding the functionality of a ramjet and scramjet. Figure 1 shows as schematic [2] of a ramjet engine. At the inlet of the ramjet, the flow decelerates and compresses through a series of oblique shockwaves in a diffuser. At the end of the diffuser, a normal shock is formed, and supersonic flow becomes subsonic flow as it passes through a divergent duct into the combustion chamber. Within the combustion chamber, fuel is injected, mixed, and burned with the composition of air. Finally, the flow is accelerated again through a convergent-divergent nozzle and typically reaches Mach 3-6. Scramjets, however, are effective above Mach 6. At these Mach numbers it is not desirable to decelerate the flow like a ramjet, and it uses supersonic combustion, this is where the name "scramjet" derives from. The vehicle body itself is used for the scramjet operation, with its supersonic combustion process, the entire engine geometry is convergent up to the exhaust nozzle as shown in Figure 2.

Figure 1: Ramjet engine schematic [2].

Figure 2: Scramjet engine schematic [2].

The main challenges hypersonic airbreathing engines face relate to stable combustion processes, structural integrity for reusability, and development of analytical tools to predict engine behavior. This paper will focus on nozzle wall development for supersonic and hypersonic flow. The nozzle contour is critical for optimum thrust operation, and this shape can be determined analytically with the method of characteristics in calorically perfect gas (CPG), thermally perfect gas (TPG), thermo-chemical equilibrium (TCE), and non-equilibrium. Below is a definition of each of these states of flow:

- Calorically perfect gas (CPG): the specific heat capacity is constant and is not a function of temperature.
- Thermally perfect gas (TPG): the specific heat capacity is a function of temperature only.
- Thermo-chemical equilibrium (TCE): the state variables are a function of temperature and pressure. It is a multispecies, chemically reacting gas with no intermolecular forces. Each species obeys the perfect gas law. Recombination and dissociation rates are equal.
- Non-equilibrium: Gas composition changes as a function of time, requires reaction mechanisms to solve reaction rates. The state variables are a function of temperature and moles of all species. Each species still obeys perfect gas law. Recombination and dissociation rates are not equal.

There is a well-defined way for determining the nozzle contour with MoC in CPG (discussed in section 1.5) however in TCE or non-equilibrium, it becomes difficult to model and is dependent on available thermodynamic data for the species being considered. In CPG, the nozzle is assumed to be steady, inviscid, isentropic, and adiabatic. This allows the assumption that total enthalpy is conserved and constant throughout the entire nozzle. Looking at the energy equation below, we can see that the exit velocity is proportional to the square root of the difference of enthalpies. This equation is derived in the Fundamentals of Aerodynamics textbook [3]. In the combustion chamber (CC) we will have near zero velocity (assumed to be zero), and the equation is rearranged in terms of exit velocity of the nozzle shown below. Clearly, a large difference in enthalpies will result in higher exit velocity, the goal is to maximize this difference.

$$
\begin{equation*}
h_{C C}+\frac{V_{C C}^{2}}{2}=h_{\text {exit }}+\frac{V_{\text {exit }}^{2}}{2} \Rightarrow V_{\text {exit }}=\sqrt{2\left(h_{C C}-h_{\text {exit }}\right)} \tag{1}
\end{equation*}
$$

As explained in the Hypersonics and High-Temperature Gas Dynamics textbook, chapter 14 [4], the temperature of the gas is higher than CPG due to recombination of gas molecules in the divergent section of the nozzle. The recombination effect turns chemical energy into translational energy, which means the static temperature is higher than in the CPG case. Figure 3 below compares temperature axially along the nozzle for equilibrium and CPG assumptions. This figure also illustrates the importance of analyzing nozzle flows in TCE and non-equilibrium due to the large difference in static temperatures from CPG to TCE.

Figure 3: Temperature distribution in CPG and equilibrium along divergent section of a CD nozzle [4].

A central issue with hypersonic nozzles is the species recombination and disassociation reaction rates. Long nozzles with large expansion ratios can be assumed to be steady, isentropic, quasi-1D flow, with CPG assumptions. Whereas for short nozzles, the nozzle length might not be sufficient to reach equilibrium. Shorter nozzle lengths mean that the molecular species can eject so fast out of the engine that recombination may not happen fast enough. This means the recombination and dissociation rates are not equal; hence the flow is in non-equilibrium. Reaction rates application to MoC is explained more in detail in Chapter 2, and the derivation is shown in Appendix A.

Thrust, boundary layer, and active cooling systems are all affected by the nozzle wall, species make-up of the flow, and the reaction rates of those species. Utilizing MoC, with CPG assumptions, to generate a nozzle geometry is a good first approximation that can be further analyzed in a CFD solver. The same idea can be applied to nozzle contours generated with MoC in TCE or non-equilibrium which is desirable for ramjet or scramjet nozzle designs. A first approximation nozzle contour can reduce the computation time for CFD solvers and include more in-depth analysis of more complex flow problems such as turbulence and boundary layer. Currently, there is a lack of an application that creates a nozzle contour in TCE or non-equilibrium for airbreathing engines, and this is the purpose of this project. Combining tools such as MATLAB and Chemical Equilibrium Application (CEA), this project will utilize MATLAB's calling functionality to extract important thermodynamic properties from CEA that in turn will calculate
the MoC compatibility equations (derived in Appendix A) using an finite difference method approach. The compatibility equations solve the characteristic mesh which dictates the nozzle contour. Development of a tool to quickly design two-dimensional nozzles in TCE or nonequilibrium is helpful for scramjet and ramjet geometries. For example, the Lockheed X-7, shown in Figure 4, was a hypersonic ramjet missile with an axisymmetric engine design. According to [2] designs with an axisymmetric nozzle required struts to keep it secure in place, and it did not make efficient use of the airframe. It was found that frames holding the engines causes significant amount of drag and wall effects which canceled out the uninstalled thrust. Now, most ramjet and scramjet vehicles have a two-dimensional engine design. This is because the body of the aircraft is a useful compression surface for the inlet of the engine, and the aft of the airframe can be used as a nozzle wall expansion surface shown below in Figure 5.

Figure 4: Lockheed X-7, Source: https://en.wikipedia.org/wiki/Lockheed X-7.

Figure 5: Hypersonic aircraft airflow schematic [2].

1.2 Literature Review

1.2.1 Research Articles and Technical Reports

The technical report, A General Method for Automatic Computation of Equilibrium Compositions and Theoretical Rocket Performance of Propellants [5], explains how their computer program calculates important thermodynamic variables for a rocket engine in chemical equilibrium. This report is vital for implementing mathematical techniques for chemical reacting flow into a MATLAB code. The program includes calculating a nozzle in thermo-chemical equilibrium from either a constant pressure and an adiabatic combustion problem or an isentropic expansion problem. The program carries out the calculations with equations relating to total enthalpy, entropy, Dalton's law, and concentration of atomic species while assuming that the flow
is in local thermo-chemical equilibrium. The Newton-Raphson method is an iteration technique to solve the nonlinear equations that define the flow field. The iteration technique is well explained and is referenced in the main technical report [6] used for this project. The report also shows how to calculate equivalency ratios, what molecular species to consider in the calculations, and calculate it in the code routine. Overall, the report gives more insight into chemical reactions, specifically for nozzles, that the Hypersonic and High-Temperature Gas Dynamics book [4] does not discuss.

The technical report, Applying the Method of Characteristics to Analyze the Flow Field of a Chemically Reacting Gas in a Two-Dimensional or an Axisymmetric Nozzle [6] outlines the derivation of equations of 2 D and axisymmetric MoC with reacting flows. The author created a computer program for one reaction system, $\mathrm{N} 4 \mathrm{O} 2+\mathrm{N} 2$, and another for $\mathrm{H} 2+$ Air reaction mechanism broken down into fourteen elementary reactions. The computer program calculates the species reaction rates and the characteristic net for optimal rocket nozzle wall geometry in local thermo-chemical equilibrium or non-equilibrium. The data calculated consisted of pressure, temperature, mass concentration, and mole fraction along the two-dimensional rocket nozzle's symmetry line. The data were compared against experimental results with the same conditions, demonstrating that the computer program closely matched the experimental results. When the article was published, thermodynamic data required to calculate the reaction rates, such as reward reaction rate, species sensible enthalpy, and entropy, was not widely known for a wide range of combinations of fuels and oxidizers.

The previous article [6] presents the equations needed to solve the compatibility equation for the MoC calculations. Those equations used for 2 D and axisymmetric MoC with reacting flow in nozzles apply to blunt bodies. The paper, Inviscid Flow of a Reacting Mixture of Gases Around a Blunt Body [7], explains these equations in more detail, such as simplifying the Navier-stokes equations inviscid reacting flow and the effects recombination rates and dissociation rates have on the flow properties. The paper also presents non-dimensional equations of the freestream properties that define the non-equilibrium flow with reasonable accuracy. Overall, the paper clarifies techniques to tackle local equilibrium and non-equilibrium flows. It also highlights the effects of recombination rates and dissociation rates effects on overall nozzle performance.

The technical note, Performance of Several Method-of-Characteristics Exhaust Nozzles [8], analyzes multiple MoC nozzles, and a fixed conical nozzle at various pressures and expansion ratios. The results showed that the MoC method could increase the thrust by 1%, and the paper demonstrates it can approximately double the payload weight of a missile. This paper explains how the coefficient of moment of an engine as a design parameter for MoC nozzles. The ratio, coefficient of thrust over the ideal coefficient of thrust, is a function of the coefficient of moment. The paper correlates the coefficient of moment with the pressure ratio along the nozzle horizontal axis with isentropic assumptions. There is uniform axial flow exiting the nozzle with these assumptions, and the pressure and temperature ratios are a function of Mach number. From the summary of results, the author states that the MoC is not sufficient for low-pressure ratios within the nozzle will, instead of the fixed divergent angle nozzle design will suffice. Low-pressure ratio nozzle designs may benefit from fixed divergent angle nozzle because an MoC contour would create high separation pressures, causing structural damage and a severe decrease in thrust.

The technical report, Recombination of Hydrogen-Air Combustion Products in an Exhaust Nozzle [9], can be a benchmark for data generated by the MATLAB code. The report analyzes a ramjet with a hydrogen-air system with a combustion temperature of 1833 Kelvin and a stoichiometric system. The report offers finite difference method techniques for solving reaction rates only in equilibrium and locating the freezing point along the nozzle axis. Furthermore, the report extensively discusses a ramjet nozzle experimental setup in an arc-jet facility and calibrations needed for pyrometers.

Supersonic Nozzle Flow with a Reacting Gas Mixture [10] analyzes the supersonic nozzle flow of nitrogen tetroxide and dioxide in chemical equilibrium and frozen flow. The authors approach the problem using pressure, area, and the defined species' reaction mechanisms to define the flow field. Craig [6] references this paper regarding the frozen speed of sound and the effect of vibrational energy on the flow. Enthalpies of the species are datasets required to calculate the reaction rates. With this data and known nozzle geometry, the paper gives three methods that fully define the flow: frozen flow, chemical equilibrium flow, and flow with known static pressure.

Design Optimization of Rocket Nozzles in Chemically Reacting Flows [11] provides another look into a method of calculating reacting flows within a rocket nozzle. The mathematical techniques used are Newton's method and the finite rate chemistry model. The author states that the code can reduce computational time for finding the correct nozzle shape for a CFD simulation, thus reducing design time and cost. Another exciting benefit of optimizing a nozzle with reactions is that the species composition data can minimize exhaust plumes' infrared detection. The optimization code calculation uses an implicit Newton's solution method (analytical) in tandem with the Jacobian matrix for the flow analysis (numerical). The author compares the two datasets based on performance and design optimization. The reacting flow model presented in the article closely resembles the equation set up in Craig's technical report [6]; however, it explains the reaction calculation in more detail and includes reaction mechanisms with third body efficiencies. The numerical method presented does not utilize thermodynamic species data to calculate the given species' reaction rates. Instead, the author uses empirical equations to solve the reactions, such as the Arrhenius equation, and a fourth-order polynomial to solve the specific heat constant, entropy, and enthalpy for all species present in the flow. The authors' results are analyzed along with three different nozzle geometries: conical nozzle, optimized nozzle, and the Taurus-II nozzle.

Scramjets are also an important study for nozzle designs. These airbreathing engines require supersonic flow to operate as it has no moving parts, and the geometry of the inlet is specific for a small range of Mach numbers. Oblique shockwaves form in the inlet, thus increasing the pressure and slowing down the flow. The flow is moving so fast that the only feasible geometry requires supersonic combustion. The paper, Development and Verification of a Supersonic Nozzle with a Rectangular Cross Section at a Mach Number of 2.8 for a Scramjet Model Combustor [12], explains a numerical method that calculates the geometry of a supersonic two-dimensional nozzle wall with boundary layer corrections. The method used to design the nozzle contour was Foelsch's method, which calculated the geometry needed to cease the expansion waves forming in the nozzle, like MoC . The article outlines how to approximate the boundary layer thickness by assuming a straight line connects the throat area and exit area. The authors conclude that the methodology used is easier to apply than others and still provides an optimized contour with boundary layer thickness.

Non-equilibrium is an essential study for ramjet and scramjet nozzles. Mach numbers in the exit section are enormous, that the species stay time is very small. If the molecules do not have enough time to react with other molecules within the nozzle, the reactions rates between recombination and dissociation are not equal; therefore, the flow is non-equilibrium. The article, Numerical Analysis of Thermo-chemical Non-equilibrium Flows in a Model Scramjet Engine [13], explains how the Navier-Stokes equations with non-equilibrium implements into an opensource solver of the two-temperature model. The two-temperature kinetic model is discussed in chapter 13.4.1 of the Hypersonic and High-Temperature Gas Dynamics textbook [4]. The solver, hy 2Foam, due to its high fidelity of solving non-equilibrium flows. The article can help understand what types of CFD results need analysis for a non-equilibrium or equilibrium flow and if it is feasible to solve non-equilibrium flows for this project.

Thermal protection systems (TPS) are just as critical as the engine because hypersonic vehicles produce a large amount of heat in the combustion chamber. These extreme temperatures test today's technological limits and are an essential topic of study for ramjets and scramjet engines. The Research Progress on Active Thermal Protection for Hypersonic Vehicles [14] article's primary purpose is to overview all the current active cooling methods for hypersonic vehicles. The author states that active cooling such as regenerative, transpiration, or film cooling is necessary for high heat loads present in these engines. The article provides insight into each cooling method's main issues, heat transfer and flow mechanisms for calculations, and current developments. The results and analysis section compares 3D simulations results of a model scramjet with each active cooling method type.

The Thermo-chemical Non-Equilibrium Scale Effect of The High Enthalpy Nozzle [15] paper explains the importance of accurately calculated nozzle geometries with high enthalpy nozzle flows. Much like the previous articles mention, this article also applies Navier-Stokes equations with the non-equilibrium flow to a numerical model. Vibrational energy is calculated using methods explained in chapter 13 of the Hypersonic book [4]. It can apply with other theories such as Gupta-Yos viscosity, Wilkes Law, and a "translational-vibrational energy relaxation time (TVERT)" mathematical model, which fully defines the flow field. This numerical method is combined with a CFD solver to solve for unsteady flow. The article goes into depth with frozen vibrational energy and the freezing point's scaling effects in a high enthalpy nozzle. The article also compares the expansion ratio with the mass fractions of species for three different mechanisms. Each mechanism increases in complexity with more species; the models presented were 5,7 , and 11 -species for air.

1.2.2 Textbooks and Dataset References

The NASA technical paper, Thermodynamic Data for Fifty Reference Elements [16], contains tabulated data for 50 elements, including specific heat at constant pressure, sensible enthalpies, and sensible entropies. These variables are a function of temperature in a range of 200 Kelvin to 6000 Kelvin in 100 Kelvin intervals and are crucial in calculating the reaction rates. The Hypersonic and High-Temperature Gas Dynamics textbook [4], specifically chapters 13, 14, and

15, derives and explains equilibrium flow, non-equilibrium flow, and MoC in calorically perfect gases.

1.3 Project Proposal

Hypersonic vehicles such as ramjets and scramjets are the new frontier of airbreathing propulsion. With an increased need to develop and analyze these high enthalpy engines, programs need further development to provide important thermodynamic data and a useful nozzle geometry for a user-defined problem. This data is incredibly valuable for analyzing a vehicle's thermal protection system, boundary layer formation, and separation. Due to the extreme conditions the nozzle experiences at hypersonic speeds, chemical reactions play an important role in performance losses. The ability to quickly iterate nozzle designs and produce data that closely match the physical flow is required for rapid prototype development and cost savings.

The objective of this project is to design a tool that can create two-dimensional nozzle wall contours in CPG, TCE, and non-equilibrium for hypersonic airbreathing engine applications. This project will focus on a hydrogen-air system where the non-equilibrium nozzle will require a reaction mechanism of this system. First, the MoC in CPG will be applied to generate a nozzle contour which will be used to obtain data such as nozzle shape, temperature, and pressure distribution, etc. Once this is achieved, a calling function for CEA into MATLAB will be required to do analysis on TCE and non-equilibrium nozzle flows with an iterative technique, described in Chapter 2. CEA is useful for this application because it calculates thermodynamic properties in equilibrium for a variety of oxidizer and fuel mixtures. The throat thermodynamic data provided by CEA is needed to begin any MoC calculation.

1.4 Methodology

Semester 1: Problem definition and MATLAB script development of MoC in CPG

1. Background research into ramjets and scramjets
2. Background research into MoC in $\mathrm{CPG}, \mathrm{TCE}$, and non-equilibrium
3. Develop a calling function for CEA into a MATLAB script
4. Develop functionality for CPG MoC calculations in MALTAB
5. Determine required inputs for CPG, TCE, and non-equilibrium MoC
6. Determine reaction mechanism for non-equilibrium MoC
7. Collect Arrhenius law and third body efficiency data
8. Begin TCE MoC calculation with integration of CEA in a MATLAB script

Semester 2: Development of TCE and Non-equilibrium MoC Nozzle

1. Develop a MATLAB script to iteratively calculate TCE MoC
2. Validate the TCE MoC data with data from [6] as a benchmark
3. Develop a MATLAB script to iteratively calculate non-equilibrium MoC
4. Validate the non-equilibrium MoC data with [6] as a benchmark
5. Further develop the generated nozzle contour in a CFD solver

1.5 MoC with Calorically Perfect Gas Assumption

From chapter 11.4, Determination of the Compatibility Equations [17], the compatibility equations define the flow angle and velocity magnitude. The eqn. (5) below is the Prandtl-Meyer Expansion Angle derived using calorically perfect gas assumptions. For the case of reacting flow in nozzles, multiple articles such as [6] utilize the vibrationally frozen speed of sound for calculations in non-equilibrium and local chemical equilibrium flows.

$$
\begin{gather*}
K^{+}=\theta-v(M) \tag{2}\\
K^{-}=\theta+v(M) \tag{3}\\
\theta_{\max }=\frac{v(M)_{e}}{2} \tag{4}\\
v(M)=\sqrt{\frac{\gamma+1}{\gamma-1}}\left(\tan ^{-1}\left(\sqrt{\frac{\gamma-1}{\gamma+1}\left(M^{2}-1\right)}\right)\right)-\tan ^{-1} \sqrt{M^{2}-1} \tag{5}\\
\mu=\sin ^{-1}\left(\frac{1}{M}\right) \tag{6}\\
d \theta=\sqrt{\left(M^{2}-1\right)} \frac{d V}{V}=\theta_{\max } / N \tag{7}
\end{gather*}
$$

The problem is assumed to be isentropic with calorically perfect gas to calculate a preliminary nozzle wall with MoC. Another analysis will be done for a fixed divergent angle nozzle wall, which does not prevent the expansion waves from forming. From the technical note, Performance of Several Method-of-Characteristics Exhaust Nozzles [8], it was discovered that low-pressure ratios create severe pressure separation in contoured nozzle walls. Therefore, the code needs to be able to calculate fixed divergent wall contours. Shown below in Figure 6, the fixed divergent angle nozzle wall does not prevent expansion waves from forming, as seen by the blue's characteristic net. Due to the continuous expansion of the flow, streamlines do not exit radially. The exit Mach number is lower, creating a decrease in thrust. However, these losses outweigh the risk for low-pressure nozzles. Furthermore, the contoured nozzle wall terminates the expansion waves generated from the supersonic flow, as shown in Figure 7. Doing so straightens the flow radially; therefore, the expansion ratio can be a function of exit Mach number. Setting the inclination angle at the wall equal to the previous node's inclination angle will prevent the reflection of the Mach line.

Figure 6: Fixed wall angle nozzle.

Figure 7: Contoured nozzle.
1.6 MoC with Reactions: General Equations

Outlined in Craig's article [6], the 2D and axisymmetric flow field of a nozzle is calculated by the Navier-Stokes equations and reaction rate equations for the streamline coordinate system shown in Figure 8. The streamline coordinate system (ξ, η) is shown in light blue. The cartesian coordinate system (x, y) is shown in dark blue. The streamline coordinates are related to the characteristic lines with the Mach angle. The angle between the horizontal and the streamline direction is the inclination angle. These relationships between coordinate systems are necessary for the derivation of the system of equation.

Figure 8: MoC with reactions coordinate system
Equations (8), (9), (10), and (11) represent the continuity, momentum, and energy equations, respectively, and correlate to the streamline coordinate system. Manipulating the system of equations to reduce the number of variables in each equation, one can find the unique solution of the system of unknowns $\left(\frac{d P}{d \xi}, \frac{d P}{d \eta}, \frac{d \theta}{d \xi}, \frac{d \theta}{d \eta}\right)$. Cramer's rule is applied to find a solution where the determinant is zero.

Continuity:

$$
\begin{equation*}
\rho \frac{\partial V}{\partial \xi}+V \frac{\partial \rho}{\partial \xi}+\rho V \frac{\partial \theta}{\partial \eta}=0 \tag{8}
\end{equation*}
$$

Momentum:

$$
\begin{equation*}
\rho V \frac{\partial V}{\partial \xi}+\frac{\partial P}{\partial \xi}=0 \tag{9}
\end{equation*}
$$

Momentum:

$$
\begin{equation*}
\rho V^{2} \frac{\partial \theta}{\partial \xi}+\frac{\partial P}{\partial \eta}=0 \tag{10}
\end{equation*}
$$

Energy:

$$
\begin{equation*}
\frac{\partial h}{\partial \xi}+V \frac{\partial V}{\partial \xi}=0 \tag{11}
\end{equation*}
$$

Rate of Species Change:

$$
\begin{equation*}
V \frac{\partial Y_{i}}{\partial \xi}=\dot{Y} \tag{12}
\end{equation*}
$$

General Net Reaction Rate: $\quad[\dot{C}]=\left(v_{i}^{\prime}-v_{i}^{\prime \prime}\right)\left\{k_{f} \prod_{i=1}^{N}\left(\left[C_{i}\right]\right)^{v_{i}{ }^{\prime}}-k_{b} \prod_{i=1}^{N}\left(\left[C_{i}\right]\right)^{v_{i}{ }^{\prime \prime}}\right\}$

Total Enthalpy Equation:

$$
\begin{equation*}
H_{\text {Total }}=h+\frac{V^{2}}{2} \tag{14}
\end{equation*}
$$

Below are the final equations required to solve the 2 D MoC in reacting flow. On the righthand side of equation (13), the forward and rearward reaction rates (k_{f} and k_{b}) require thermodynamic data to solve. This data can be extracted from CEA through MATLAB by user input of chamber pressure, mixture ratio, fuel and oxidizer types, and temperature. To initiate the characteristic net calculation, MATLAB would pull data calculated by CEA to define the chamber conditions, throat conditions, and the species present in the flow at each of those locations.

Along
Characteristics:

$$
\begin{gather*}
\frac{\Delta \mathrm{x}}{\Delta \mathrm{y}}=\tan \left[\bar{\theta} \pm \overline{\mu_{f}}\right] \tag{15}\\
\frac{\Delta \mathrm{P}}{\bar{\rho} \bar{V}^{2} \tan \overline{\mu_{f}}} \pm \Delta \theta=\frac{\overline{a_{f}}}{\bar{V}} \Delta \mathrm{c}\left[-\overline{\sum_{l=1}^{n} \frac{h_{l}}{C_{p} T V} \dot{Y}}+\overline{\sum_{l=1}^{n} \frac{\mathcal{M}}{\mathcal{M}_{l} V}} \dot{Y}\right. \tag{16}
\end{gather*}
$$

Along
Streamlines:

$$
\begin{equation*}
\bar{V} \Delta \mathrm{~V}+\frac{\Delta \mathrm{P}}{\rho}=0 \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\Delta \mathrm{x}}{\Delta \mathrm{y}}=\frac{\bar{v}}{\bar{u}} \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\Delta \xi=\sqrt{\left(x_{n-1}-x_{n}\right)^{2}+\left(y_{n-1}-y_{n}\right)^{2}}=\Delta c \cos \mu_{f} \tag{19}
\end{equation*}
$$

The next steps require implementing these equations into a code specifically written for the Hydrogen-Air reaction mechanism. In equations (15), (16), (17), and (18), the average between two points is taken across the state variables in the flow that is not a derivative. The delta symbol, Δ, represents the difference between the two points.

Referring to Figure 7, the characteristic net consists of nodes within the nozzle. Point A has properties of the flow at the throat, which can be obtained from CEA. Both point A and point one are required to solve for point two. The equations presented above require knowledge of the state variables at point two, even though it is unknown. The iteration technique converges point two by solving it roughly five times when the previous iteration is within 0.1% agreement. The finite difference method does not suffice to solve for reaction rates. The article [6] recommends integrating on the streamline between two points, as seen in Figure 9 below.

Figure 9: Streamline integration. This is a close-up image of the characteristic net either from figure 1 or 2. To solve for the reaction rate, eq. (12) is integrated along the streamline between points 2' and 2. CEA will be utilized for this step.

2. Method of Characteristics in TCE and Non-Equilibrium

2.1 MoC Approach with Chemical Equilibrium and Non-Equilibrium

From Craig's article [6], it was found that vibrationally frozen speed of sound was sufficient for TCE and non-equilibrium MoC. If we assume vibrationally frozen flow at the nozzle throat, this will allow for simplifications in the derivation of MoC with reaction rates. Utilizing eqns. (2-6) the frozen Mach angle can be calculated. The turn angle will be determined by eqn. (7) with the number of characteristic lines, N. In Figure 9, the (x, y) coordinate of point 2 is found with the following equations:

$$
\begin{gather*}
x_{2}=\frac{y_{a}-y_{1}-x_{a} \tan \left(\overline{\theta-\mu_{f}}\right)_{2-a}+x_{1} \tan \left(\overline{\theta+\mu_{f}}\right)_{2-1}}{\tan \left(\overline{\theta+\mu_{f}}\right)_{2-1}-\tan \left(\overline{\theta-\mu_{f}}\right)_{2-a}} \tag{20}\\
y_{2}=y_{1}+\left(x_{2}-x_{1}\right) \tan \left(\overline{\theta+\mu_{f}}\right)_{2-1} \tag{21}
\end{gather*}
$$

In addition to eqns. (2-6) and eqns. (20-21), the remaining equations are required for nozzles to solve for chemical equilibrium and non-equilibrium.

$$
\begin{gather*}
P_{2}=\frac{B_{1}+B_{a}+\theta_{1}-\theta_{a}+\frac{P_{1}}{A_{1}}+\frac{P_{a}}{A_{a}}}{\left(\frac{1}{A_{1}}+\frac{1}{A_{a}}\right)} \tag{22}\\
\theta_{2}=B_{1}+\theta_{1}-\left(\frac{P_{2}-P_{1}}{A_{1}}\right) \tag{23}\\
A_{1}=\left(\overline{\rho V^{2} \tan \mu_{f}}\right)_{2-1} \tag{24}\\
A_{a}=\left(\overline{\rho V^{2} \tan \mu_{f}}\right)_{2-a} \tag{25}\\
B_{1}=\sin {\overline{\mu_{f}}}_{2-1} \Delta C_{2-1}\left\{\left(\sum_{i}^{n} \frac{\overline{\mathcal{M}_{m ı x}} \dot{Y}_{\imath}}{\mathcal{M}_{\imath} V}\right)_{2-1}-\left(\sum_{i}^{n} \overline{\frac{h_{\imath}}{C_{p l} T V} \dot{Y}_{l}}\right)_{2-1}\right\} \tag{26}
\end{gather*}
$$

$$
\left.\left.\begin{array}{rl}
B_{a}=\sin \bar{\mu}_{2-a} \Delta C_{2-a} & \left\{\left(\sum_{i}^{n} \frac{\overline{\mathcal{M}_{m ı x}}}{\mathcal{M}_{\imath} V} \dot{Y}_{l}\right.\right.
\end{array}\right)_{2-a}-\left(\sum_{i}^{n} \overline{\frac{h_{\imath}}{C_{p l} T V} \dot{Y}_{l}}\right)_{2-a}\right\}
$$

To begin the calculation of eqns. (24-24), the density and velocity are assumed to be the same as the previous point for the first iteration, i.e.:

- $\rho_{2-1}(1)=\rho_{1}$ and $\rho_{2-a}(1)=\rho_{a}$
- $\quad V_{2-1}(1)=V_{1}$ and $V_{2-a}(1)=V_{a}$

The following iterations will be calculated with values with subscript 2 are from the previous iteration. These values are plugged into eqns. (24-25):

$$
\begin{align*}
& \rho_{2-1}=\frac{\rho_{2}+\rho_{1}}{2} \tag{30}\\
& \rho_{2-a}=\frac{\rho_{2}+\rho_{a}}{2} \tag{31}\\
& V_{2-1}=\frac{V_{2}+V_{1}}{2} \tag{32}\\
& V_{2-a}=\frac{V_{2}+V_{a}}{2} \tag{33}
\end{align*}
$$

Once pressure at point 2 is calculated, the velocity at point 2 can be obtained with eqn. 10. Expanded out to relate to point 2:

$$
\begin{equation*}
V_{2}=V_{2^{\prime}}-\left(\frac{P_{2}-P_{2^{\prime}}}{\overline{V_{2-2^{\prime}} \rho_{2-2^{\prime}}}}\right) \tag{34}
\end{equation*}
$$

Where $V_{2^{\prime}}$ and $P_{2^{\prime}}$ are found through linear interpolation of point a and 1. The values, $V_{2-2^{\prime}}$ and $\rho_{2-2^{\prime}}$, are found through taking the average of points a and 1 .

2.2.1 Example Reaction Rate Mechanism

This section illustrates an example reaction mechanism for non-equilibrium flow, the reaction mechanism for H_{2}-Air will be discussed further in chapter 4. To begin the calculation of eqns. ($26-27$), the reaction rates must be known at point 2 and point 1 . With the same iterative process to calculate eqns. (24-25), the reaction rate is assumed to equal the previous point for the first iteration. Utilizing eqn. (13), the reaction rates can be derived for each species, an example of a simple reaction mechanism is demonstrated below.

An example reaction mechanism from [17] is:

- Reaction 1: $\quad \mathrm{H}+\mathrm{O}_{2} \leftrightharpoons \mathrm{OH}+\mathrm{O}$
- Reaction 2: $\mathrm{O}+\mathrm{H}_{2} \leftrightharpoons \mathrm{OH}+\mathrm{H}$
- Reaction 3: $\quad \mathrm{OH}+\mathrm{H}_{2} \leftrightharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{H}$
- Overall Reaction: $\quad 2 \mathrm{H}_{2}+\mathrm{O}_{\mathbf{2}} \leftrightharpoons \mathrm{OH}+\mathrm{H}+\mathrm{H}_{2} \mathrm{O}$

Adding up reactions 1,2 and 3 will result in the overall reaction taking place within the nozzle. The arrows represent recombination and dissociation reaction rate coefficients, k_{b} and k_{f} respectively. The reaction rates of each species are derived from eqn. (13) and an example reaction rates of species $[\mathrm{OH}]$ and $[\mathrm{H}]$ are shown:

$$
\begin{aligned}
& \frac{d[\mathrm{OH}]}{d t}=\left\{k_{f 1}[H]\left[\mathrm{O}_{2}\right]-k_{b 1}[\mathrm{OH}][\mathrm{O}]\right\}+\left\{k_{f 2}[\mathrm{O}]\left[\mathrm{H}_{2}\right]-k_{b 2}[\mathrm{OH}][\mathrm{H}]\right\}-\left\{k_{f 3}[\mathrm{OH}]\left[\mathrm{H}_{2}\right]-k_{b 3}\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{H}]\right\} \\
& \frac{d[\mathrm{H}]}{d t}=-\left\{k_{f 1}[\mathrm{H}]\left[\mathrm{O}_{2}\right]-k_{b 1}[\mathrm{OH}][\mathrm{O}]\right\}+\left\{k_{f 2}[\mathrm{O}]\left[\mathrm{H}_{2}\right]-k_{b 2}[\mathrm{OH}][\mathrm{H}]\right\}+\left\{k_{f 3}[\mathrm{OH}]\left[\mathrm{H}_{2}\right]-k_{b 3}\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{H}]\right\}
\end{aligned}
$$

The subscript numbers on k_{b} and k_{f} represent one of the 3 reactions in the reaction mechanism shown above, Reactions 1-3. k_{f} can be obtained through a statistical equation called the Arrhenius equation. The Arrhenius equation can be found in Chapter 13.3, Chemical Nonequilibrium: The Chemical Rate Equation [4].

$$
\begin{equation*}
k_{f}=C_{f} T^{n_{f}} e^{\frac{-E}{\mathcal{R} T}} \tag{35}
\end{equation*}
$$

The recombination rate constant, k_{b}, can be found with the equilibrium constants, K_{c} and k_{p} :

$$
\begin{gather*}
\frac{k_{f}}{k_{b}}=K_{c}=\left(\frac{1}{\mathcal{R} T}\right)^{\Delta n} k_{p} \tag{36}\\
k_{p 1}=\frac{P_{O H} P_{O}}{P_{H} P_{O_{2}}} \tag{37}
\end{gather*}
$$

$$
\begin{gather*}
k_{p 2}=\frac{P_{O H} P_{H}}{P_{O} P_{H_{2}}} \tag{38}\\
k_{p 3}=\frac{P_{H_{2} O} P_{H}}{P_{O H} P_{H_{2}}} \tag{39}\\
\chi_{i}=\frac{P_{i}}{P_{m i x}} \tag{40}
\end{gather*}
$$

With the reaction rates defined, the pressure at point 2 can be calculated as eqns. (22-29) are all known after calculating the first iteration. For the second iteration onward, CEA will be needed to calculate the mole fractions. To do this, the previous iteration of temperature, pressure, and mole fractions at point two will be put into the CEA (t, p) problem to calculate the next iteration mole fraction. According to the article [6] assuming that the specific heat at constant pressure and the molecular weight of the mixture are the same at both points, then the temperature at point 2 can be calculated as:

$$
\begin{equation*}
T_{2}=T_{1}+\frac{V_{1}^{2}-V_{2}^{2}}{2 C_{p}} \tag{41}
\end{equation*}
$$

The iterative process of calculating eqns. (22) and (23) continues until the pressure calculated between each iteration agrees within 0.1%. Once this is achieved, point 2 is successfully calculated, then point 3 will be calculated next with information from point 2.

3. Reaction Rate Mechanism and CPG MoC Initial Results

3.1 Full Hydrogen-Air Reaction Rate Mechanism for Non-equilibrium MoC

The reaction mechanism for H_{2}-Air is obtained from reference [6]. In Table 1, the elementary reactions are listed. Reactions 1-5, and 12-14 are bimolecular reactions, whereas Reactions 6-11 are trimolecular reactions with a third body, M. The third body can be any of the species within the mechanism, which means there are multiple reaction rates for those trimolecular reactions.

n	R_{n}
1	$K_{f_{1}}\left[\mathrm{H}_{2}\right]\left[\mathrm{O}_{2}\right]-K_{b_{1}}[\mathrm{OH}][\mathrm{OH}]$
2	$K_{f_{2}}[\mathrm{H}]\left[\mathrm{O}_{2}\right]-K_{b_{2}}[\mathrm{OH}][\mathrm{O}]$
3	$K_{f_{3}}[\mathrm{O}]\left[\mathrm{H}_{2}\right]-K_{b_{3}}[\mathrm{OH}][\mathrm{H}]$
4	$K_{f_{4}}[\mathrm{OH}]\left[\mathrm{H}_{2}\right]-K_{b_{4}}\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{H}]$
5	$K_{f_{5}}[\mathrm{OH}][\mathrm{OH}]-\mathrm{K}_{b_{5}}\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{O}]$
6*	$K_{f_{6}}[H][H][M]-K_{b_{6}}\left[H_{2}\right][M]$
7*	$K_{f_{7}}[\mathrm{H}][\mathrm{OH}][\mathrm{M}]-K_{b_{7}}\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{M}]$
8*	$K_{f_{8}}[H][O][M]-K_{b_{8}}[O H][M]$
9*	$K_{f_{9}}[O][O][M]-K_{b_{9}}\left[O_{2}\right][M]$
10*	$K_{f_{10}}[N][N][M]-K_{b_{10}}\left[N_{2}\right][M]$
11*	$K_{f_{11}}[\mathrm{~N}][\mathrm{O}][\mathrm{M}]-K_{b_{11}}[\mathrm{NO}][\mathrm{M}]$
12	$K_{f_{12}}[\mathrm{~N}]\left[\mathrm{O}_{2}\right]-K_{b_{12}}[\mathrm{NO}][\mathrm{O}]$
13	$K_{f_{13}}\left[N_{2}\right][\mathrm{O}]-K_{b_{13}}[\mathrm{NO}][\mathrm{N}]$
14	$K_{f_{14}}\left[N_{2}\right]\left[\mathrm{O}_{2}\right]-K_{b_{14}}[\mathrm{NO}][\mathrm{NO}]$

Table 1: Reaction Rates for H2-Air Mechanism. The * represents that the equation changes with each species, M. Furthermore, for $n=6-11$, reaction rate coefficients have multiple third body efficiencies, η_{b}, tabulated in table 2.

The reaction rates require either k_{f} or k_{b} to be calculated with the Arrhenius equation. Reactions 6-9 are all recombination reactions that have an activation energy of 0 . Therefore, eqn. (36) is modified for recombination:

$$
K_{b}=C_{b} T^{n_{b}}
$$

Where C_{b} is a constant and η_{b} is the recombination efficiency which changes depending on the third body species, most species have an efficiency of 1 . Reactions 10, 11, 13, 14 have forward reaction rate data from reference [19].

Reaction No.	Chemical Reaction	$C_{f}, C_{b} *$	E	n_{f}	n_{b} $\left[H_{2}, H_{2} O, N_{2}\right]$	Ref.
1	$H_{2}+O_{2} \leftrightharpoons O H+O H$	1.7 e 13	48,000	0	-	$[4]$
2	$H+O_{2} \leftrightharpoons O H+O$	2.2 e 14	16,800	0	-	$[4]$
3	$O+H_{2} \leftrightharpoons O H+H$	1.8 e 10	8,900	1	-	$[4]$
4	$O H+H_{2} \leftrightharpoons H_{2} O+H$	2.2 e 13	5150	0	-	$[4]$
5	$O H+O H \leftrightharpoons H_{2} O+O$	6.3 e 12	1090	0	-	$[4]$
6	$H+H+M \leftrightharpoons H_{2}+M$	$1.0 \mathrm{e} 18^{*}$	0	0	$[2,6,1]$	$[4],[20]$
7	$H+O H+M \leftrightharpoons H_{2} O+M$	$2.2 \mathrm{e} 22^{*}$	0	0	$[0.73,3.65,1]$	$[4],[20]$
8	$H+O+M \leftrightharpoons O H+M$	$5.0 \mathrm{e} 07^{*}$	0	0	$[1,5,1]$	$[4],[20]$
9	$O+O+M \leftrightharpoons O_{2}+M$	$1.2 \mathrm{e} 17^{*}$	0	0	$[2.4,15.4,1]$	$[4]$
10^{+}	$N+N+M \leftrightharpoons N_{2}+M$	5.4 e 13	225,000	0	-	$[19]$
11^{+}	$N+O+M \leftrightharpoons N O+M$	2.4 e 15	149,000	0	-	$[19]$
12	$N+O_{2} \leftrightharpoons N O+O$	6.4 e 09	63000	1	-	$[19]$
13^{+}	$N_{2}+O \leftrightharpoons N O+N$	1.6 e 13	0	0	-	$[19]$
14^{+}	$N_{2}+O_{2} \leftrightharpoons 2 N O$	1.3 e 12	63,800	0		-
19$]$						

Table 2: Reaction mechanism for H2-Air. The + represents data that was taken for dissociation, k_{f}. The third body efficiency, η_{b}, had values from both [4] and [20]. The most recent data is from [20] so the most recent η_{b} is utilized for calculations.

This reaction mechanism has nine species: $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}, \mathrm{H}, \mathrm{O}, \mathrm{N}, \mathrm{NO}$. Since the third body reactions can be any species, reactions 6-11 each have 9 reaction rates for each species. Luckily, most of the species have an efficiency of 1 , so most of the reaction rate coefficients will not change, but the mole fractions must be considered.

Below are the common equations found in the reactions rates and are simplified into a variable, R_{n}, where n represents the reaction number in Table 2.

$$
\begin{gather*}
\frac{d\left[H_{2}\right]}{d t}=-R_{1}-R_{3}-R_{4}+\boldsymbol{R}_{\mathbf{6}}\left([\mathbf{M}], \boldsymbol{n}_{\boldsymbol{b}}\right) \tag{42}\\
\frac{d\left[O_{2}\right]}{d t}=-R_{1}-R_{2}+\boldsymbol{R}_{\mathbf{9}}\left([\mathbf{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)-R_{12}-R_{14} \tag{43}\\
\frac{d[O H]}{d t}=R_{1}+R_{2}+R_{3}--2 R_{5}-\boldsymbol{R}_{\mathbf{7}}\left([\mathbf{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)-\boldsymbol{R}_{\mathbf{8}}\left([\mathbf{M}], \boldsymbol{n}_{\boldsymbol{b}}\right) \tag{44}\\
\frac{d[H]}{d t}=-R_{2}+R_{3}+R_{4}-2 \boldsymbol{R}_{\mathbf{6}}\left([\boldsymbol{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)-\boldsymbol{R}_{7}\left([\mathbf{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)-\boldsymbol{R}_{\mathbf{8}}\left([\mathbf{M}], \boldsymbol{n}_{\boldsymbol{b}}\right) \tag{45}\\
\frac{d[O]}{d t}=R_{2}-R_{3}+R_{5}-\boldsymbol{R}_{\mathbf{8}}\left([\mathbf{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)-2 \boldsymbol{R}_{\mathbf{9}}\left([\mathbf{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)-\boldsymbol{R}_{\mathbf{1 1}}\left([\mathbf{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)+R_{12}-R_{13} \tag{46}\\
\frac{d\left[H_{2} O\right]}{d t}=R_{5}+\boldsymbol{R}_{7}\left([\boldsymbol{M}], \boldsymbol{n}_{\boldsymbol{b}}\right) \tag{47}\\
\frac{d[N]}{d t}=-2 \boldsymbol{R}_{\mathbf{1 0}}\left([\boldsymbol{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)-\boldsymbol{R}_{\mathbf{1 1}}\left([\boldsymbol{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)-R_{12}+R_{13} \tag{48}\\
\frac{d\left[N_{2}\right]}{d t}=\boldsymbol{R}_{\mathbf{1 0}}\left([\boldsymbol{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)-R_{13}-R_{14} \tag{49}\\
\frac{d t}{d t}=\boldsymbol{R}_{\mathbf{1 1}}\left([\boldsymbol{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)+\boldsymbol{R}_{\mathbf{1 2}}\left([\boldsymbol{M}], \boldsymbol{n}_{\boldsymbol{b}}\right)+R_{13}+2 R_{14} \tag{50}
\end{gather*}
$$

The reactions rates for each species are shown above in simplified form. Keep note that the variables $R_{6}, R_{7}, R_{8}, R_{9}, R_{10}$, and R_{11} are all a function of the species being considered, M, and the corresponding third body efficiencies, η_{b}. With the reaction mechanism and the reaction rates for each species, the non-equilibrium MoC can be calculated in MATLAB using the iterative technique explained in chapter 2.

3.2 Chemical Equilibrium MoC

As discussed in chapter 2, the reaction rates are zero for equilibrium conditions. This means that the dissociation and recombination occur at equal rates, therefore the rate at equilibrium is equal to the forward or backward reaction rate.

With this simplification, the information required to solve the problem is the mass fractions for each species and the density of the mixture, shown in eqns. (24) and (25). The mass fractions can be determined from using the CEA (t, p) problem. The inputs into CEA would be temperature, pressure, and mole fractions of each species. The output will include enthalpy of the mixture, each mole/mass fraction of the species, and density of the mixture.

A MATLAB function developed by Edgar Aguilar [21], extrapolates data from CEA for a rocket problem. The script will need to be modified slightly to call CEA with a (t,p) problem, and the code is shown in Appendix C.

3.3 CPG MoC Results

The code (see Appendix B) which will eventually include the ability to solve the MoC in thermo-chemical equilibrium, is currently capable to calculate the nozzle contour with the basic CPG assumption and using the specific heat ratio given by CEA. The inputs for CEA are below:

- Chamber Pressure $=10 \mathrm{~atm}$
- Supersonic Area Ratio = 5
- Infinite Contraction Ratio
- Equilibrium
- Fuel $=H_{2}(L)$
- 100% rel. wt.
- Injection Temp. $=20.17 \mathrm{~K}$
- \quad Oxidizer $=\mathrm{Air}$
- 100% rel. wt.
- Injection Temp. $=800 \mathrm{~K}$

The injection temperature for air is dependent on the conditions upstream of the airbreathing engine. However, for liquids, the injection temperature is usually known.

The outputs from CEA are inputs for the MoC calculation such as:

- Exit Mach Number $=2.839$
- Throat Gamma $=1.1983$
- Chamber Temperature $=2597.87 \mathrm{~K}$
- Chamber Density $=1.1436 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
- Throat Temperature $=2381.98 \mathrm{~K}$
- Throat Pressure $=5.6447 \mathrm{~atm}$
- Throat Sonic Velocity $=984.3 \mathrm{~m} / \mathrm{s}$

The remaining inputs are the throat height and number of characteristic lines for the calculation which is user defined. Below in Figure 10 to Figure 14 is the output of MoC in CPG with 100 characteristic lines. This data can be used to compare to TCE and non-equilibrium flows when the functionality is developed.

Figure 10: CPG MoC characteristic mesh with 100 characteristic lines

Figure 11: Isentropic ratios for pressure, temperature, and density along the nozzle symmetry line.

Figure 12: Gas side wall temperature.

Figure 13: Two-dimensional temperature contour.

Figure 14: Mach number within the nozzle.

4. Thermochemical Equilibrium Nozzle Design Methodology

4.1 Four-Step Reduced H_{2}-Air Reaction Mechanism and Reaction Rate Constants

The nozzle design in thermochemical equilibrium requires a reaction mechanism for the propellants used. An example of a reaction mechanism is presented in chapter 3 above, however for TCE, this reaction mechanism is too lengthy, and it is required to calculate the reaction rate of each species. However according to an article called "Complex CSP for Chemistry Reduction and Analysis" [22], a detailed reaction mechanism for H2/Air with 9 species can be reduced to a 4step reaction mechanism with 6 species. This 4 -step reaction mechanism will be used for the TCE calculation within pressure limits of 0.2 atm to 20 atm and equivalence ratios of 0.7 to 2 .

The 4-step reduced reaction mechanism is as follows:

- Reaction 1:

$$
\mathrm{H}+\mathrm{O}_{2} \leftrightharpoons \mathrm{OH}+\mathrm{O}
$$

- Reaction 2:
$\mathrm{O}+\mathrm{H}_{2} \leftrightharpoons \mathrm{OH}+\mathrm{H}$
- Reaction 3:
$\mathrm{OH}+\mathrm{H}_{2} \leftrightharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{H}$
- Reaction 4:
$\boldsymbol{H}+\boldsymbol{H}+\boldsymbol{M} \leftrightharpoons \boldsymbol{H}_{2}+\boldsymbol{M}$

These four reactions are also within the detailed reaction mechanism shown in Table 2 as $2,3,4$, and $6^{\text {th }}$ reactions. For each of these reactions, there is a forward rate constant (k_{f}) required to calculate the reaction rates of each species, the data for these constants are also shown in Table 2.

Below are the forward reaction rate equations for each reaction:

$$
\left.\begin{array}{l}
\text { Reaction 1: } k_{f 1}=3.87 \times 10^{4} T^{2.7} e^{\frac{-6260 \frac{\mathrm{cal}}{\mathrm{~mol}}}{\Re T}}\left[\frac{\mathrm{~cm}^{3}}{\mathrm{~mol} * \mathrm{~S}}\right.
\end{array}\right] .
$$

Note: each equation is converted from centimeters to meters when calculating for reaction rate, and \mathfrak{R}, the universal gas constant, is converted into [calories $/ \mathrm{mol}{ }^{} \mathrm{~K}$] to match the units of the activation energy.

Kf1					
Temp	delta-S	delta-H	kf	kr	Keq
(K)	(cal/mol K)	($\mathrm{kcal} / \mathrm{mol}$)		(mol,cm3,s)	
300	1.6	2	$5.20 \mathrm{E}+06$	$6.13 \mathrm{E}+07$	$8.48 \mathrm{E}-02$
500	1.6	1.9	$1.38 \mathrm{E}+09$	$4.40 \mathrm{E}+09$	3.13E-01
1000	1.6	1.9	$2.09 \mathrm{E}+11$	$2.52 \mathrm{E}+11$	$8.29 \mathrm{E}-01$
1500	1.6	2	$1.78 \mathrm{E}+12$	$1.55 \mathrm{E}+12$	$1.15 \mathrm{E}+00$
2000	1.7	2.1	$6.55 \mathrm{E}+12$	$4.78 \mathrm{E}+12$	$1.37 \mathrm{E}+00$
2500	1.7	2.1	$1.64 \mathrm{E}+13$	$1.08 \mathrm{E}+13$	$1.52 \mathrm{E}+00$
3000	1.7	2.1	$3.31 \mathrm{E}+13$	$2.03 \mathrm{E}+13$	$1.63 \mathrm{E}+00$
Kf2					
Temp	delta-S	delta-H	kf	kr	Keq
(K)	(cal/mol K)	(kcal/mol)		(mol,cm3,s)	
300	6	16.9	$2.23 \mathrm{E}+02$	$2.10 \mathrm{E}+13$	$1.06 \mathrm{E}-11$
500	6	16.9	$1.46 \mathrm{E}+07$	$1.68 \mathrm{E}+13$	$8.69 \mathrm{E}-07$
1000	5.5	16.5	$4.86 \mathrm{E}+10$	$1.22 \mathrm{E}+13$	$3.98 \mathrm{E}-03$
1500	5.1	16	$6.46 \mathrm{E}+11$	$1.06 \mathrm{E}+13$	$6.12 \mathrm{E}-02$
2000	4.9	15.6	$2.22 \mathrm{E}+12$	$9.62 \mathrm{E}+12$	$2.31 \mathrm{E}-01$
2500	4.8	15.3	$4.51 \mathrm{E}+12$	$8.96 \mathrm{E}+12$	$5.04 \mathrm{E}-01$
3000	4.6	15	$7.08 \mathrm{E}+12$	$8.45 \mathrm{E}+12$	8.37E-01
Kf3					
Temp	delta-S	delta-H	kf	kr	Keq
(K)	(cal/mol K)	($\mathrm{kcal} / \mathrm{mol}$)	(mol,cm3,s)		
300	-2.6	-15.1	$3.77 \mathrm{E}+09$	1.40E-01	$2.70 \mathrm{E}+10$
500	-3.1	-15.3	$8.14 \mathrm{E}+10$	$8.00 \mathrm{E}+04$	$1.02 \mathrm{E}+06$
1000	-3.2	-15.3	$1.30 \mathrm{E}+12$	$2.88 \mathrm{E}+09$	$4.52 \mathrm{E}+02$
1500	-3	-15.1	$4.27 \mathrm{E}+12$	$1.22 \mathrm{E}+11$	$3.50 \mathrm{E}+01$
2000	-2.8	-14.7	$8.79 \mathrm{E}+12$	$8.77 \mathrm{E}+11$	$1.00 \mathrm{E}+01$
2500	-2.6	-14.3	$1.46 \mathrm{E}+13$	$3.03 \mathrm{E}+12$	$4.83 \mathrm{E}+00$
3000	-2.4	-13.8	$2.16 \mathrm{E}+13$	$7.17 \mathrm{E}+12$	$3.02 \mathrm{E}+00$
Kf4					
Temp	delta-S	delta-H	kf	kr	Keq
(K)	(cal/mol K)	(kcal/mol)	(mol2,cm6,s)		
300	-23.6	-104.2	$3.33 \mathrm{E}+15$	$2.39 \mathrm{E}-60$	$1.40 \mathrm{E}+75$
500	-25.1	-104.8	$2.00 \mathrm{E}+15$	$2.36 \mathrm{E}-30$	$8.48 \mathrm{E}+44$
1000	-27.1	-106.2	$1.00 \mathrm{E}+15$	$6.28 \mathrm{E}-08$	$1.59 \mathrm{E}+22$
1500	-28.1	-107.5	$6.67 \mathrm{E}+14$	$1.68 \mathrm{E}+00$	$3.97 \mathrm{E}+14$
2000	-28.7	-108.5	$5.00 \mathrm{E}+14$	$8.07 \mathrm{E}+03$	$6.20 \mathrm{E}+10$
2500	-29.1	-109.2	$4.00 \mathrm{E}+14$	$1.23 \mathrm{E}+06$	$3.24 \mathrm{E}+08$
3000	-29.3	-109.8	$3.33 \mathrm{E}+14$	$3.38 \mathrm{E}+07$	$9.86 \mathrm{E}+06$

Table 3: Reaction Rate Data. Above is data tabulated for each reaction in the 4-step reduced reaction mechanism. The Arrhenius rate law equations where benchmarked with this data provided by reference [20].

Figure 15: Forward reaction rate constants calculated with Arrhenius rate law.
4.2 Reaction Rates in Equilibrium

Recalling equations 13,26 , and 27 (repeated here), we focus attention on the reaction rate, \dot{Y}_{l}, (highlighted in red) for each of the six species being considered in the flow.

$$
\begin{align*}
& {[\dot{C}]=\left(v_{i}^{\prime}-v_{i}^{\prime \prime}\right)\left\{k_{f} \prod_{i=1}^{N}\left(\left[C_{i}\right]\right)^{v_{i}}-k_{b} \prod_{i=1}^{N}\left(\left[C_{i}\right]\right)^{v_{i}^{\prime \prime}}\right\}} \tag{13}\\
& B_{1}=\sin {\overline{\mu_{f}}}_{2-1} \Delta C_{2-1}\left\{\left(\sum_{i}^{n} \frac{\overline{\mathcal{M}_{m ı x}}}{\mathcal{M}_{\imath} V} \dot{\boldsymbol{Y}}_{\iota}\right)_{2-1}-\left(\sum_{i}^{n} \overline{\overline{h_{\imath}}}{\dot{C_{p} T V}}_{\iota}\right)_{2-1}\right\} \tag{26}\\
& B_{a}=\sin {\overline{\mu_{f}}}_{2-a} \Delta C_{2-a}\left\{\left(\sum_{i}^{n} \frac{\overline{\mathcal{M}_{m ı x}}}{\mathcal{M}_{l} V} \dot{Y}_{\iota}\right)_{2-a}-\left(\sum_{i}^{n} \overline{h_{\imath}} \dot{Y}_{p} T V\right)_{2-a}\right\} \tag{27}
\end{align*}
$$

Equation 13 needs to be in terms of mass fraction with respect to time. To convert into mass fraction with respect to time, the following ideal gas with species equations are applied:

$$
\begin{gather*}
{\left[C_{i}\right]=\frac{X_{i} P_{m i x}}{\mathfrak{R T}} \rightarrow X_{i}=\frac{\left[C_{i}\right] \Re T}{P_{m i x}}} \tag{55}\\
Y_{i}=\frac{X_{i} \mathcal{M}_{i}}{\mathcal{M}_{m i x}} \rightarrow Y_{i}=\frac{\left[C_{i}\right] \Re T \mathcal{M}_{i}}{\mathcal{M}_{m i x} P_{m i x}} ; \text { where } \frac{P_{m i x}}{\mathcal{M}_{m i x} R T}=\frac{\rho_{m i x}}{\mathcal{M}_{m i x}} \\
\boldsymbol{Y}_{\boldsymbol{i}}=\frac{\left[\boldsymbol{C}_{\boldsymbol{i}}\right] \mathcal{M}_{\boldsymbol{i}}}{\boldsymbol{\rho}_{\text {mix }}} \tag{56}\\
{[\dot{Y}]=\frac{d[Y]}{d t}=\frac{\mathcal{M}_{i}}{\rho_{m i x}}\left(v_{i}^{\prime}-v_{i}^{\prime \prime}\right)\left\{k_{f} \prod_{i=1}^{N}\left(\frac{Y_{i} \rho_{m i x}}{\mathcal{M}_{i}}\right)^{v_{i}{ }^{\prime}}-k_{b} \prod_{i=1}^{N}\left(\frac{Y_{i} \rho_{m i x}}{\mathcal{M}_{i}}\right)^{v_{i}{ }^{\prime \prime}}\right\}}
\end{gather*}
$$

Furthermore, recall equation 36, which related the forward reaction rate constant to the rearward reaction rate constant.

$$
\begin{equation*}
\frac{k_{f}}{k_{b}}=K_{c}=\left(\frac{1}{\mathcal{R} T}\right)^{\Delta n} k_{p}, \text { where } \Delta n=v_{i}^{\prime \prime}-v_{i}^{\prime} \tag{36}
\end{equation*}
$$

For reactions 1, 2, and 3, the Δn is equal to zero because the stoichiometric coefficients are equal (products minus reactants). For reaction 4 , the $\Delta n=-1$ due to third body reactant, [M], which can be any of the six species colliding with hydrogen. The reaction rate in terms of mass fraction is further simplified in terms of mole fractions which will be convenient for CEA calculations.

$$
\begin{equation*}
[\dot{Y}]_{N E T}=\frac{d[Y]}{d t}{ }_{N E T}=\frac{\mathcal{M}_{i}}{\rho_{m i x}}\left(v_{i}^{\prime}-v_{i}^{\prime \prime}\right)\left\{k_{f} \prod_{i=1}^{N}\left(\frac{x_{i} \rho_{m i x}}{\mathcal{M}_{m i x}}\right)^{v_{i^{\prime}}}-\frac{1}{\left(\frac{1}{\mathcal{R T}}\right)^{\Delta n} k_{p_{i}}} \prod_{i=1}^{N}\left(\frac{X_{i} \rho_{m i x}}{\mathcal{M}_{m i x}}\right)^{v_{i}{ }_{i}^{\prime \prime}}\right\} \tag{57}
\end{equation*}
$$

Below are the full reaction rates for each species with the given 4-step reduced reaction mechanism.

$$
\begin{align*}
& {\left[Y_{H_{2}}^{\cdot}\right]_{N E T}=\left(\frac{\mathcal{M}_{H_{2}} \rho_{m i x}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{-k_{f_{1}}\left(X_{H_{2}} X_{O}-\frac{X_{H} X_{O H}}{k_{p_{1}}}\right)-k_{f_{3}}\left(X_{H_{2}} X_{O H}-\frac{X_{H_{2} O} X_{H}}{k_{p_{3}}}\right)+\frac{k_{f_{4}}}{\mathcal{R} T}\left(X_{H}^{2} P_{m i x}-\frac{X_{H_{2}}}{k_{p_{4}}}\right)\right\}} \tag{58}\\
& {\left[\boldsymbol{Y}_{\mathrm{O}_{2}}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{O_{2}} \rho_{\text {mix }}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{-k_{f_{2}}\left(X_{O_{2}} X_{H}-\frac{X_{O} X_{O H}}{k_{p_{2}}}\right)\right\}} \tag{59}\\
& {\left[\dot{Y}_{o}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{O} \rho_{\text {mix }}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{-k_{f_{1}}\left(X_{H_{2}} X_{O}-\frac{X_{H} X_{O H}}{k_{p_{1}}}\right)+k_{f_{2}}\left(X_{O_{2}} X_{H}-\frac{X_{O} X_{O H}}{k_{p_{2}}}\right)\right\}} \tag{60}\\
& {\left[\dot{Y}_{H}\right]_{N E T}=\left(\frac{\mathcal{M}_{H} \rho_{m i x}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{k_{f_{1}}\left(X_{H_{2}} X_{O}-\frac{X_{H} X_{O H}}{k_{p_{1}}}\right)-k_{f_{2}}\left(X_{O_{2}} X_{H}-\frac{X_{O} X_{O H}}{k_{p_{2}}}\right)+k_{f_{3}}\left(X_{H_{2}} X_{O H}-\frac{X_{H_{2} O} X_{H}}{k_{p_{3}}}\right)\right.} \tag{61}\\
& \left.+\frac{2 k_{f_{4}}}{\mathcal{R} T}\left(X_{H}^{2} P_{\text {mix }}-\frac{X_{H_{2}}}{k_{p_{4}}}\right)\right\} \\
& {\left[\boldsymbol{Y}_{\text {OH }}^{\dot{-}}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{O H} \rho_{\text {mix }}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{k_{f_{1}}\left(X_{H_{2}} X_{O}-\frac{X_{H} X_{O H}}{k_{p_{1}}}\right)+k_{f_{2}}\left(X_{O_{2}} X_{H}-\frac{X_{O} X_{O H}}{k_{p_{2}}}\right)-k_{f_{3}}\left(X_{H_{2}} X_{O H}-\frac{X_{H_{2} O} X_{H}}{k_{p_{3}}}\right)\right\}} \tag{62}\\
& {\left[\boldsymbol{Y}_{\boldsymbol{H}_{2} O}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{\mathrm{H}_{2} O} \rho_{\text {mix }}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{k_{f_{3}}\left(X_{H_{2} X_{O H}}-\frac{X_{H_{2} O} X_{H}}{k_{p_{3}}}\right)\right\}} \tag{63}
\end{align*}
$$

Equations (58-63) represent the full reaction rate for each species which is needed for nonequilibrium flows; however, in equilibrium the net reaction rate is equal to zero. This means the finite rates of both the forward and rearward reactions are equal.

$$
\text { Net Rate }=\text { Forward Rate }- \text { Rearward Rate }=0 \Rightarrow \text { Forward Rate }=\text { Rearward Rate }
$$

The net reaction rates for equilibrium are shown below. Equations (64-69) will be needed for the calculation of equations (26) and (27).

$$
\begin{gather*}
{\left[\boldsymbol{Y}_{H_{2}}^{\dot{\prime}}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{H_{2}} \rho_{\text {mix }}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{-k_{f_{1}}\left(X_{H_{2}} X_{O}\right)-k_{f_{3}}\left(X_{H_{2}} X_{O H}\right)+\frac{k_{f_{4}}}{\mathcal{R} T}\left(X_{H}^{2} P_{m i x}\right)\right\}} \tag{64}\\
{\left[\boldsymbol{Y} \dot{o}_{2}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{O_{2}} \rho_{m i x}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{-k_{f_{2}}\left(X_{O_{2}} X_{H}\right)\right\}} \tag{65}\\
{\left[\dot{\boldsymbol{r}}_{o}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{O} \rho_{\text {mix }}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{-k_{f_{1}}\left(X_{H_{2}} X_{O}\right)+k_{f_{2}}\left(X_{O_{2}} X_{H}\right)\right\}} \tag{66}
\end{gather*}
$$

$$
\begin{gather*}
{\left[\dot{Y}_{H}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{H} \rho_{\text {mix }}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{k_{f_{1}}\left(X_{H_{2}} X_{O}\right)-k_{f_{2}}\left(X_{O_{2}} X_{H}\right)+k_{f_{3}}\left(X_{H_{2}} X_{O H}\right)+\frac{2 k_{f_{4}}}{\mathcal{R} T}\left(X_{H}^{2} P_{\text {mix }}\right)\right\}} \tag{67}\\
{\left[\boldsymbol{Y}_{O H}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{O H} \rho_{\text {mix }}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{k_{f_{1}}\left(X_{H_{2}} X_{O}\right)+k_{f_{2}}\left(X_{O_{2}} X_{H}\right)-k_{f_{3}}\left(X_{H_{2}} X_{O H}\right)\right\}} \tag{68}\\
{\left[\boldsymbol{Y}_{H_{2}}{ }^{o}\right]_{\text {NET }}=\left(\frac{\mathcal{M}_{H_{2}} \rho_{\text {mix }}}{\mathcal{M}_{\text {mix }}^{2}}\right)\left\{k_{f_{3}}\left(X_{H_{2}} X_{O H}\right)\right\}} \tag{69}
\end{gather*}
$$

4.3 Absolute Enthalpy for Each Species

Looking back at equations (26) and (27), the last unknown to solve for is the absolute enthalpy of each species (highlighted in red below).

$$
\begin{align*}
& B_{1}=\sin {\overline{\mu_{f}}}_{2-1} \Delta C_{2-1}\left\{\left(\sum_{i}^{n} \frac{\overline{\mathcal{M}_{m l x}}}{\mathcal{M}_{l} V} \dot{Y}_{l}\right)_{2-1}-\left(\sum_{i}^{n} \overline{\overline{h_{\imath}}} \dot{C}_{p} T V \dot{Y}_{l}\right)_{2-1}\right\} \tag{26}\\
& B_{a}=\sin {\overline{\mu_{f}}}_{2-a} \Delta C_{2-a}\left\{\left(\sum_{i}^{n} \frac{\overline{\mathcal{M}_{m ı x}} \dot{\mathcal{M}}_{\imath} V}{\dot{Y}_{\imath}}\right)_{2-a}-\left(\sum_{i}^{n} \overline{\boldsymbol{h}_{\imath}} \dot{C}_{C_{l} T V}\right)_{2-a}\right\} \tag{27}
\end{align*}
$$

Absolute enthalpy is defined as the sensible enthalpy obtained from statistical thermodynamics added with the heat of formation at zero kelvin.

$$
h_{i}=\frac{\left(H-E_{0}\right)_{i}+\left(\Delta H_{f}^{0}\right)_{i}}{\mathcal{M}_{i}}
$$

The term, $\frac{\left(H-E_{0}\right)_{i}}{\mathcal{M}_{i}}$, is the sensible enthalpy per unit mass. Furthermore, according to reference [4], chapter 11, the sensible enthalpy can be calculated directly from the internal energies of the molecules or atoms.

For atoms, internal energy per unit mass:

$$
e=\frac{3}{2} R T+e_{\text {elec }}
$$

For molecules, internal energy per unit mass:

$$
e=e_{\text {translational }}+e_{\text {rotational }}+e_{\text {vibrational }}+e_{\text {electronic }}
$$

$$
e=\frac{3}{2} R T+R T+\frac{\frac{\hbar v}{K T}}{\mathrm{e}^{\frac{\hbar v}{K T}}-1} R T+e_{\text {elec }}
$$

Where the vibrational energy term contains plank's constant (\hbar), fundamental vibrational frequency of a molecule (v), and Boltzmann's constant (K).

Recall the second law of thermodynamics:

$$
h=e+p V \rightarrow h=e+R T
$$

The sensible enthalpy for atoms becomes:

$$
h=\frac{5}{2} R T+e_{\text {elec }}
$$

Sensible enthalpy for molecules:

$$
h=R T\left(\frac{7}{2}+\frac{\frac{\hbar v}{K T}}{\mathrm{e}^{\frac{\hbar v}{K T}}-1}\right)+e_{\text {elec }}
$$

It would be extremely cumbersome to include and calculate the sensible enthalpy taking into consideration each molecule's fundamental vibrational frequency; luckily the JANAF tables provide the sensible and heat of formation data for each species being considered. The tables are provided in Appendix D. Finally, equations (26) and (27) are now known and can be solved to determine the pressure at each point in the characteristic mesh.

References

[1] Martin, J., "Ramjet Propulsion for Single-Stage-to-Orbit Vehicles," Journal of Spacecraft and Rockets, Vol. 15, No. 5, NASA Langley Research Center, Hampton Va., October 1978.
[2] Heiser, W., Pratt, D., "Hypersonic Airbreathing Propulsion," $5^{\text {th }}$ ed., AIAA, Washington, DC.
[3] Anderson, J. D., "Fundamentals of Aerodynamics," McGraw-Hill Education, $6^{\text {th }}$ ed., New York, NY, 2017.
[4] Anderson, J. D., "Hypersonic and High-Temperature Gas Dynamics," AIAA Education Series, $2^{\text {nd }}$ edition, Washington, D.C., 2006.
[5] Gordon S., Zeleznik, F. J., Huff, V. N., "A General Method for Automatic Computation of Equilibrium Compositions and Theoretical Rocket Performance of Propellants," NASA Technical Note, NASA TN D-132, Washington, D.C., October 1959.
[6] Craig, R. R. "Applying the Method of Characteristics to Analyze the Flow Field of a Chemically Reacting Gas in A Two-Dimensional or an Axisymmetric Nozzle", NASA Technical Report, AFAPL-TR-65-20, April 1965.
[7] Lick, W., "Inviscid Flow of a Reacting Mixture of Gases Around a Blunt Body," Pierce Hall, Harvard University, Cambridge, Mass, April 1959.
[8] Farley, J. M., Campbell, C. E., "Performance of Several Method-of-Characteristics Exhaust Nozzles," Lewis Research Center, NASA TN D-293, Cleveland, Ohio, October 1960.
[9] Lezberg, E., "Recombination of Hydrogen-Air Combustion Products," Lewis Research Center, NASA TN D-1052, Cleveland, Ohio, August 1961.
[10] Wegner, P.P., "Supersonic Nozzle Flow with a Reacting Gas Mixture," AIP Physics of Fluids, Vol. 2, No. 264 (2012).
[11] Yumusak, M., "Design Optimization of Rocket Nozzles in Chemically Reacting Flows," Elsevier, 65 (2012), pp. 25-34.
[12] Yamaguchi, T. Hizawa, T., Ichikawa, T., Kudo T., "Development and verification of a supersonic nozzle with rectangular cross section at a Mach number of 2.8 for a scramjet model combustor," Institute of Fluid Science, Tohoku university, November 2018.
[13] Han, S. "Numerical Analysis of Thermo-chemical Non-equilibrium Flows in a Model Scramjet Engine," MDPI Energies, January 2020.
[14] Zhang, S. Li, X., "Research progress on active thermal protection for hypersonic vehicles," Elsevier, Progress in Aerospace Science, No 119 (2020).
[15] Shen, J. Lu, "The thermo-chemical non-equilibrium scale effects of the high enthalpy nozzle," Advances in Aerodynamics, China Academy of Aerospace and Aerodynamics Beijing, China, 2020.
[16] McBride, B.J., Gordon, S., Reno, M.A., "Thermodynamic Data for Fifty Reference Elements," NASA Technical Paper 3287, January 1993.
[17] Anderson, J. D., "Modern Compressible Flow with Historical Perspective," McGraw-Hill, $3^{\text {rd }}$ ed., New York, New York, 2003.
[18] Wang, H., "Combustion Chemistry," Princeton-CEFRC Summer School on Combustion, Stanford University, June 2015.
[19] Ludwig, C. B., Sulzmann, K. G. P., "Chemical Kinetics in Shock-Heated Air," Armed Services Technical Information Agency, Arlington, Virginia, AD 257-971, February 1961.
[20] Serauskas, B. "GRI-3.0 Program," Gas Research Institute, obtained from: combustion.berkeley.edu/gri-mech/data/frames.html
[21] Aguilar, E., MATLAB CEA Calling Function, San Jose State University, 2019.
[22] Tianfeng, L., Yiguang J., Chung, L. K., "Complex CSP for Chemistry Reduction and Analysis," The Combustion Institute, Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 2001.

Appendix A: Method of Characteristics with Reaction Rates Derivation

Note that this derivation is the same in [6] but shown here with more detailed steps and clarifications. Beginning with the continuity, momentum, and energy equations in terms of coordinate system shown below:

- Continuity Equation: $\rho \frac{\partial V}{\partial \xi}+V \frac{\partial \rho}{\partial \xi}+\rho V \frac{\partial \theta}{\partial \eta}=0$
- Momentum Equation: $\rho V \frac{\partial V}{\partial \xi}+\frac{\partial P}{\partial \xi}=0$
- Momentum Equation: $\rho V^{2} \frac{\partial \theta}{\partial \xi}+\frac{\partial P}{\partial \eta}=0$
- Energy Equation: $\frac{\partial h}{\partial \xi}+V \frac{\partial V}{\partial \xi}=0$

Mass fractions with respect to streamline:

$$
\frac{\partial Y_{i}}{\partial \xi}=\frac{\dot{Y}}{V}
$$

Reaction rate equation in terms of mole fractions, this form is needed for CEA:

$$
\dot{\chi}=\left(v_{i}^{\prime}-v_{i}^{\prime \prime}\right)\left\{k_{f} \prod_{i=1}^{N}\left(\chi_{i}\right)^{v_{i^{\prime}}}-k_{b} \prod_{i=1}^{N}\left(\chi_{i}\right)^{v_{i} i^{\prime \prime}}\right\}
$$

From the perfect gas law, we have the general partial derivative of density with respect to the streamline from general chain rule:

$$
\frac{\partial \rho}{\partial \xi}=\frac{\partial \rho}{\partial P} \frac{\partial P}{\partial \xi}+\frac{\partial \rho}{\partial T} \frac{\partial T}{\partial \xi}+\frac{\partial \rho}{\partial Y_{i}} \frac{\partial Y_{i}}{\partial \xi}
$$

Below are some useful transformations of the perfect gas law:

$$
\rho=\frac{P}{\mathcal{R} T \frac{\sum_{i} Y_{i}}{\sum_{i} \mathcal{M}_{i}}} \Rightarrow P=\frac{\rho \mathcal{R} T}{\mathcal{M}_{m i x}} \text {, where } \mathcal{M}_{m i x}=\frac{\sum_{i} \mathcal{M}_{i}}{\sum_{i} Y_{i}} \Rightarrow \rho=\frac{P \mathcal{M}_{m i x}}{\mathcal{R} T}
$$

Taking the partial derivative against each state variable, we have the following

$$
\text { simplifications for } \frac{\partial \rho}{\partial \xi} \text { : }
$$

$$
\begin{gathered}
\frac{\partial \rho}{\partial P}=\frac{\mathcal{M}_{m i x}}{\mathcal{R} T} ; \quad \frac{\partial \rho}{\partial T}=\frac{-\rho}{T} ; \quad \frac{\partial \rho}{\partial Y_{i}}=\frac{-\rho}{\sum_{i} Y_{i}}=\frac{-\rho\left(\frac{1}{\sum \mathcal{M}_{i}}\right)}{\left(\sum \frac{Y_{i}}{\mathcal{M}_{i}}\right)} \\
\frac{\partial \rho}{\partial \xi}=\frac{\mathcal{M}_{m i x}}{\mathcal{R} T} \frac{\partial P}{\partial \xi}-\frac{\rho}{T} \frac{\partial T}{\partial \xi}-\frac{\rho\left(\frac{1}{\sum \mathcal{M}_{i}}\right)}{\left(\sum \frac{Y_{i}}{\mathcal{M}_{i}}\right)} \frac{\partial Y_{i}}{\partial \xi}
\end{gathered}
$$

The above equation is substituted into the continuity equation highlighted in red below:

$$
\begin{gathered}
\rho \frac{\partial V}{\partial \xi}+V \frac{\partial \rho}{\partial \xi}+\rho V \frac{\partial \theta}{\partial \eta}=0 \\
\rho \frac{\partial V}{\partial \xi}+V\left(\frac{\mathcal{M}_{m i x}}{\mathcal{R} T} \frac{\partial P}{\partial \xi}-\frac{\rho}{T} \frac{\partial T}{\partial \xi}-\frac{\rho\left(\frac{1}{\sum \mathcal{M}_{i}}\right)}{\left(\sum \frac{Y_{i}}{\mathcal{M}_{i}}\right)} \frac{\partial Y_{i}}{\partial \xi}\right)+\rho V \frac{\partial \theta}{\partial \eta}=0
\end{gathered}
$$

After simplification of the above equation, now must simplify $\frac{\partial T}{\partial \xi}$. The goal is to reduce the number of variables in the equation below:

$$
\rho \frac{\partial V}{\partial \xi}+\rho V\left(\frac{1}{P} \frac{\partial P}{\partial \xi}-\frac{1}{T} \frac{\partial T}{\partial \xi}-\frac{1}{\sum Y_{i}} \frac{\partial Y_{i}}{\partial \xi}\right)+\rho V \frac{\partial \theta}{\partial \eta}=0
$$

Evaluating the partial derivative of the energy equation along a streamline:

$$
\frac{\partial h}{\partial \xi}=\sum_{i} h_{i} \frac{\partial Y_{i}}{\partial \xi}+\sum_{i} Y_{i} \frac{\partial h_{i}}{\partial \xi}
$$

Shifting focus to $\frac{\partial h_{i}}{\partial \xi}$, to obtain $\frac{\partial T}{\partial \xi^{\xi}}$:

$$
\frac{\partial h_{i}}{\partial \xi}=\frac{\partial h_{i}}{\partial T} \frac{\partial T}{\partial \xi}=C_{p_{i}} \frac{\partial T}{\partial \xi}
$$

*Note that $\frac{\partial h_{i}}{\partial T}$ is by definition $\left(\frac{\partial h_{i}}{\partial T}\right)_{P=\text { const. }}=C_{p_{i}}$ Substituting $\frac{\partial h_{i}}{\partial \xi}$ simplification into the energy equation:

$$
\frac{\partial h}{\partial \xi}=\sum_{i} h_{i} \frac{\partial Y_{i}}{\partial \xi}+\sum_{i} Y_{i} C_{p_{i}} \frac{\partial T}{\partial \xi}
$$

Then rearranging the energy equation in terms of $\frac{\partial T}{\partial \xi}$:

$$
\begin{gathered}
\frac{\partial h}{\partial \xi}+V \frac{\partial V}{\partial \xi}=0 \Rightarrow \sum_{i} h_{i} \frac{\partial Y_{i}}{\partial \xi}+\sum_{i} Y_{i} C_{p_{i}} \frac{\partial T}{\partial \xi}+V \frac{\partial V}{\partial \xi}=0 \\
\frac{\partial T}{\partial \xi}=-\frac{\sum_{i} h_{i}}{C_{p_{m i x}}} \frac{\partial Y_{i}}{\partial \xi}-\frac{V}{C_{p_{m i x}}} \frac{\partial V}{\partial \xi}
\end{gathered}
$$

Substituting $\frac{\partial T}{\partial \xi}$ into the continuity equation and combining like terms:

$$
\begin{gathered}
\rho \frac{\partial V}{\partial \xi}+\rho V\left(\frac{1}{P} \frac{\partial P}{\partial \xi}+\frac{1}{T}\left(\frac{\sum_{i} h_{i}}{C_{p_{m i x}}} \frac{\partial Y_{i}}{\partial \xi}+\frac{V}{C_{p_{m i x}}} \frac{\partial V}{\partial \xi}\right)-\frac{1}{\sum Y_{i}} \frac{\partial Y_{i}}{\partial \xi}\right)+\rho V \frac{\partial \theta}{\partial \eta}=0 \\
\left(\rho+\frac{\rho V^{2}}{T C_{p_{\text {mix }}}}\right) \frac{\partial V}{\partial \xi}+\frac{\rho V}{P} \frac{\partial P}{\partial \xi}+\rho V\left(\frac{\sum_{i} h_{i}}{T C_{p_{m i x}}}-\frac{1}{\sum Y_{i}}\right) \frac{\partial Y_{i}}{\partial \xi}+\rho V \frac{\partial \theta}{\partial \eta}=0
\end{gathered}
$$

Utilizing the first momentum equation, $\frac{\partial V}{\partial \xi}$ can be simplified in terms of $\frac{\partial P}{\partial \xi}$:

$$
\frac{\partial V}{\partial \xi}=-\frac{1}{\rho V} \frac{\partial P}{\partial \xi}
$$

Finally, $\frac{\partial Y_{i}}{\partial \xi}$, can be changed into a constant value:

$$
\left(-\frac{1}{V}-\frac{V}{T C_{p_{m i x}}}+\frac{\rho V}{P}\right) \frac{\partial P}{\partial \xi}+\rho V\left(\frac{\sum_{i} h_{i}}{T C_{p_{m i x}}}-\frac{1}{\sum Y_{i}}\right) \frac{\partial Y_{i}}{\partial \xi}+\rho V \frac{\partial \theta}{\partial \eta}=0
$$

$$
\frac{\partial Y_{i}}{\partial \xi}=\frac{\dot{Y}_{l}}{V}
$$

$$
\left(-\frac{1}{V}-\frac{V}{T C_{p_{m i x}}}+\frac{\rho V}{P}\right) \frac{\partial P}{\partial \xi}+\rho V \frac{\partial \theta}{\partial \eta}+\rho \dot{Y}_{l}\left(\frac{\sum_{i} h_{i}}{T C_{p_{m i x}}}-\frac{1}{\sum Y_{i}}\right)=0
$$

Now manipulating equations for matrix form:

$$
\begin{gathered}
\left(-\frac{1}{V}-\frac{V}{T C_{p_{m i x}}}+\frac{\rho V}{P}\right) \frac{\partial P}{\partial \xi}+0 \frac{\partial P}{\partial \eta}+0 \frac{\partial \theta}{\partial \xi}+\rho V \frac{\partial \theta}{\partial \eta}=-\rho \dot{Y}_{l}\left(\frac{\sum_{i} h_{i}}{T C_{p_{m i x}}}-\frac{1}{\sum Y_{i}}\right) \\
A \frac{\partial P}{\partial \xi}+0 \frac{\partial P}{\partial \eta}+0 \frac{\partial \theta}{\partial \xi}+\rho V \frac{\partial \theta}{\partial \eta}=B \\
0 \frac{\partial P}{\partial \xi}+1 \frac{\partial P}{\partial \eta}+\rho V^{2} \frac{\partial \theta}{\partial \xi}+0 \frac{\partial \theta}{\partial \eta}=0 \\
\partial \xi \frac{\partial P}{\partial \xi}+\partial \eta \frac{\partial P}{\partial \eta}+0 \frac{\partial \theta}{\partial \xi}+0 \frac{\partial \theta}{\partial \eta}=d P \\
0 \frac{\partial P}{\partial \xi}+0 \frac{\partial P}{\partial \eta}+\partial \xi \frac{\partial \theta}{\partial \xi}+\frac{\partial \eta}{} \frac{\partial \theta}{\partial \eta}=d \theta \\
{\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & 1 & \rho V^{2} \\
\partial \xi & \partial \eta & 0 \\
0 & 0 & \partial \xi \\
0 & \partial \eta
\end{array}\right]\left[\begin{array}{l}
\frac{\partial P}{\partial \xi} \\
\frac{\partial P}{\partial \eta} \\
\frac{\partial \theta}{\partial \xi} \\
\frac{\partial \theta}{\partial \eta}
\end{array}\right]=\left[\begin{array}{c}
B \\
0 \\
d P \\
d \theta
\end{array}\right]}
\end{gathered}
$$

Need to solve unknown variable, $\frac{\partial P}{\partial \eta}$, with Cramer's rule. The denominator needs to be zero for the solution to be indeterminate and discontinuous, which is also the characteristics lines for nonequilibrium and TCE:

$$
\frac{\partial P}{\partial \eta}=\frac{N}{D}=\frac{\left[\begin{array}{cccc}
A & B & 0 & \rho V \\
0 & 0 & \rho V^{2} & 0 \\
\partial \xi & d P & 0 & 0 \\
0 & d \theta & \partial \xi & \partial \eta
\end{array}\right]}{\left[\begin{array}{cccc}
A & 0 & 0 & \rho V \\
0 & 1 & \rho V^{2} & 0 \\
\partial \xi & \partial \eta & 0 & 0 \\
0 & 0 & \partial \xi & \partial \eta
\end{array}\right]}
$$

Solving the determinate for the denominator:

$$
\begin{gathered}
\operatorname{det}\left(\left[\begin{array}{cccc}
A & 0 & 0 & \rho V \\
0 & 1 & \rho V^{2} & 0 \\
\partial \xi & \partial \eta & 0 & 0 \\
0 & 0 & \partial \xi & \partial \eta
\end{array}\right]\right)=0 \\
A\left[\begin{array}{ccc}
1 & \rho V^{2} & 0 \\
\partial \eta & 0 & 0 \\
0 & \partial \xi & \partial \eta
\end{array}\right]-\rho V\left[\begin{array}{ccc}
0 & 1 & \rho V^{2} \\
\partial \xi & \partial \eta & 0 \\
0 & 0 & \partial \xi
\end{array}\right]=0 \\
A\left(1\left[\begin{array}{cc}
0 & 0 \\
\partial \xi & \partial \eta
\end{array}\right]-\rho V^{2}\left[\begin{array}{cc}
\partial \eta & 0 \\
0 & \partial \eta
\end{array}\right]\right)-\rho V\left(-\partial \xi\left[\begin{array}{cc}
1 & \rho V^{2} \\
0 & \partial \xi
\end{array}\right]\right)=0 \\
-A \rho V^{2} \partial \eta^{2}+\rho V \partial \xi^{2}=0 \\
A \rho V^{2} \partial \eta^{2}=\rho V \partial \xi^{2}
\end{gathered}
$$

Rearranging in terms of $\frac{\partial \eta}{\partial \xi}$:

$$
\frac{\partial \eta}{\partial \xi}= \pm \sqrt{\frac{1}{A V}}= \pm \frac{1}{\sqrt{\frac{\rho V^{2}}{P}-\frac{V^{2}}{T C_{p}}-1}}= \pm \frac{1}{\sqrt{\frac{C_{P} M-\mathcal{R}}{\mathcal{R} T C_{p}} V^{2}-1}}
$$

*Note: definition of frozen speed of sound: $a_{f}=\frac{\mathcal{R} T C_{p}}{C_{P} \mathcal{M}-\mathcal{R}}$

$$
\frac{\partial \eta}{\partial \xi}= \pm \frac{1}{\sqrt{M_{f}^{2}-1}}= \pm \tan \mu_{f}
$$

Now solving numerator in terms of $\frac{\partial P}{\partial \eta}$, using Cramer's rule:

$$
\begin{gathered}
\operatorname{det}\left(\left[\begin{array}{cccc}
A & B & 0 & \rho V \\
0 & 0 & \rho V^{2} & 0 \\
\partial \xi & d P & 0 & 0 \\
0 & d \theta & \partial \xi & \partial \eta
\end{array}\right]\right)=0 \\
A\left[\begin{array}{ccc}
0 & \rho V^{2} & 0 \\
d P & 0 & 0 \\
d \theta & \partial \xi & \partial \eta
\end{array}\right]+\partial \xi\left[\begin{array}{ccc}
B & 0 & \rho V \\
0 & \rho V^{2} & 0 \\
d \theta & \partial \xi & \partial \eta
\end{array}\right]=0 \\
A\left(-\rho V^{2}\left[\begin{array}{cc}
d P & 0 \\
d \theta & \partial \eta
\end{array}\right]\right)+\partial \xi\left(B\left[\begin{array}{cc}
\rho V^{2} & 0 \\
\partial \xi & \partial \eta
\end{array}\right]+d \theta\left[\begin{array}{cc}
0 & \rho V \\
\rho V^{2} & 0
\end{array}\right]\right)=0 \\
-A \rho V^{2} d P \partial \eta+B \rho V^{2} \partial \eta \partial \xi-\rho^{2} V^{3} d \theta \partial \xi=0
\end{gathered}
$$

Simplifying further:

$$
\begin{gathered}
-A \rho V^{2} d P+\rho V^{2}\left(B \partial \xi-\rho V d \theta \frac{\partial \eta}{\partial \xi}\right)=0 \\
\frac{A V}{\rho V^{2}} d P+d \theta \frac{\partial \eta}{\partial \xi}=\frac{B}{\rho V} \partial \xi
\end{gathered}
$$

*Recall: $\tan ^{2} \mu_{f}=\frac{1}{A V}$, and $\frac{\partial \eta}{\partial \xi}= \pm \tan \mu_{f}$

$$
\frac{d P}{\rho \mathrm{~V}^{2} \tan ^{2} \mu_{f}} \pm \frac{d \theta}{\tan \mu_{f}}=\frac{B}{\rho V} \partial \xi
$$

Multiplying by $\tan \mu_{f}$:

$$
\frac{d P}{\rho V^{2} \tan \mu_{f}} \pm d \theta=\frac{B \tan \mu_{f}}{\rho V} \partial \xi
$$

Where $\partial \xi=\operatorname{dccos} \mu_{f}$ from coordinate system:

$$
\frac{d P}{\rho V^{2} \tan \mu_{f}} \pm d \theta=\frac{B \sin \mu_{f}}{\rho V} d c
$$

Also, from geometry, $\sin \mu_{f}=\frac{1}{M_{f}}=\frac{a_{f}}{V}$

$$
\frac{d P}{\rho V^{2} \tan \mu_{f}} \pm d \theta=\frac{B a_{f}}{\rho V^{2}} d c
$$

Arrive at the final equations defining the characteristic lines:

$$
\begin{aligned}
\frac{d P}{\rho V^{2} \tan \mu_{f}} \pm d \theta & =\frac{a_{f}}{V} d c\left(\frac{1}{V \sum Y_{i}} \dot{Y}_{l}-\frac{\sum_{i} h_{i}}{C_{p_{m i x}} T V} \dot{Y}_{l}\right) \\
\frac{d x}{d y} & =\tan \left(\theta+\mu_{f}\right)
\end{aligned}
$$

Appendix B: MoC Contour Nozzle Code

```
function [Wall_Points, T_wall] = MoC_Analysis(M_e, gamma, Tc, Pc, rc, a_f,
P t, T t, C Lines, Throat Radius)
%% 2D M
%% Code Created by Michael Sandoval
%% Inital Conditions
% ***Nomenclature***
% M_e = Exit Mach Number
% Gämma = Specific Heat Ratio
% Tc = Chamber Total Temperature
% Pc = Chamber Total Pressure
% rc = Chamber Density
% a_f = Throat Speed of Sound
% P_t = Throat Static Pressure
% T_t = Throat Static Temperature
% C_Lines = User defined number of Characteristic Lines
% Throat_Radius = Radius of the throat
% Wall_Points = Wall (x,y) coordinates
% T_wall = Temperature at the wall
% Gamma Constants
y_a = sqrt((gamma+1)/(gamma-1));
y_b = sqrt((gamma-1)/(gamma+1));
%% Solving for divergence angle of the nozzle and initial theta increments
nu_e = ((y_a)*(atand(y_b*sqrt((M_e (M2-1))))-atand(sqrt (M_ (M^2-1)));
Thēta_max = nu_e
DThet\overline{a_1 = Theta_max - fix(Theta_max);}
% C_input = inpūt('Number of Chāracteristic Lines: ');
C = 1:C_Lines;
dTheta = fix(Theta_max)/C(end);
%% Solving & Defining MoC Points
% Grid Points
GP = 1:(0.5*(C_Lines^2 + 3*C_Lines));
% Wall Points
WP = zeros(1,length(C));
for i = 1:length(C)
    WP(i) = 0.5*( (2*C (end) +3)*i - i^2 );
end
WP = [0 WP];
% Symmetry Points
SP = zeros(1,length(C));
for i = 1:length(C)
    if i == 1
        SP(i) = GP(1);
```

```
    else
    SP(i) = WP(i)+1;
    end
end
WP(1) = [];
% Characteristic node matrix
AA = zeros(C (end),WP(1));
for i = 1:C(end)
        A = SP(i):WP(i);
        AA(i,i:end) = A;
end
[rows, columns] = size(AA);
SP(1) = [];
% Solving for Theta, Mu, K_p, and K_m
Theta = zeros(C (end),WP(1));
Nu = zeros(C (end),WP(1));
K_p = zeros(C (end),WP(1));
K_m = zeros(C (end),WP(1));
Mu = zeros(C (end),WP(1));
M = zeros(C (end),WP(1));
for i = 1:rows
    for ii = 1:columns
            if AA(i,ii) == 0
            Theta(i,ii) = 0;
            Nu(i,ii) = NaN;
            K_p(i,ii) = 0;
            K_m(i,ii) = 0;
            M(i,ii) = 0;
            Mu(i,ii) = 0;
        elseif any(SP(:) == AA(i,ii))
            Theta(i,ii) = 0;
            K_m(i,ii) = K_m(i-1,ii);
            Nu(i,ii) = K_m(i,ii) - Theta(i,ii);
            K_p(i,ii) = Theta(i,ii) - Nu(i,ii);
        elsei\overline{f}}\mathrm{ any(WP(:) == AA(i,ii))
            Theta(i,ii) = Theta(i,ii-1);
            K_p(i,ii) = K_p(i,ii-1);
            Nu(i,ii) = Theta(i,ii) - K_p(i,ii);
            K_m(i,ii) = Theta(i,ii) + Nu(i,ii);
        elsei\overline{f}}\operatorname{any(C(:) == AA(i,ii))
            if C(1) == AA(i,ii)
                Theta(i,ii) = DTheta_1;
                Nu(i,ii) = DTheta_1;
                K_p(i,ii) = 0;
                K_m(i,ii) = Theta(i,ii)+Nu(i,ii);
            else
                Theta(i,ii) = dTheta*ii;
                Nu(i,ii) = Theta(i,ii);
                K_p(i,ii) = 0;
                K_m(i,ii) = Theta(i,ii)+Nu(i,ii);
```

```
                end
        else
            K_p(i,ii) = K_p(i, ii-1);
            K_m(i,ii) = K_m(i-1,ii);
                Theta(i,ii) = 0.5*(K_m(i,ii) + K_p(i,ii));
                Nu(i,ii) = 0.5*(K_m(i,ii)-K_p(i,ii));
        end
    end
end
% Manipulating Data for Aerospace Toolbox
for i = 1:rows
    for ii = 1:columns
        if isnan(Nu(i,ii))
            Nu(i,ii) = 1;
        else
        end
    end
end
A = size(Nu);
% Aerospace Toolbox: Prandtl-Meyer Expansion Fan Function
for i = 1:A(1)
    for ii = 1:A(2)
        [M(i,ii), Nu(i,ii), Mu(i,ii)] = flowprandtlmeyer(gamma, Nu(i,ii),
'nu');
    end
end
%% Solving and Plotting Points
S_p = zeros(C (end),WP(1));
S_m = zeros(C (end),WP(1));
% Slopes of characteristic lines
for i = 1:rows
    for ii = 1:columns
        if AA(i,ii) == 0
            S_m(i,ii) = 0;
            S_p(i,ii) = 0;
        elsei\overline{f}}\operatorname{any(C(:) == AA(i,ii))
            S_m(i,ii) = tand( Theta(i,ii) - Mu(i,ii) );
            S_p(i,ii) = tand( 0.5*(Theta(i,ii) + Theta(i,ii+1) + Mu(i,ii) +
Mu(i,ii+1)) );
    elseif any(WP(:) == AA(i,ii))
        if WP(1) == AA(i,ii)
            S_m(i,ii) = 0;
            S_p(i,ii) = tand( Theta(i,ii) );
        else
            S m(i,ii) = 0;
            S_p(i,ii) = tand( 0.5*(Theta(i,ii) + Theta(i-1,ii)) );
            end
        else
        S_m(i,ii) = tand( 0.5*(Theta(i,ii) + Theta(i-1,ii) - Mu(i,ii) -
Mu(i-1,ii)) );
```

Mu(i,ii+1))); end
end
end

```
x = zeros(C (end),WP(1));
y = zeros(C (end),WP(1));
x_0 = 0;
Tx_Tc = zeros(C(end),WP(1));
Px_Pc = zeros(C(end),WP(1));
rx_rc = zeros(C(end),WP(1));
Vx = zeros(C (end),WP(1));
Tx = zeros(C (end),WP(1));
Px = zeros(C (end),WP(1));
rx = zeros(C (end),WP(1));
```

\% (x,y) coordinates for each characteristic node
for $i=1$:rows
for ii = 1:columns
if $A A(i, i i)==0$
$x(i, i i)=N a N ;$
$y(i, i i)=N a N ;$
elseif any(C(:) == AA(i,ii))
if $C(1)==A A(i, i i)$
x(i,ii) = x_0 - (Throat_Radius/S_m(i,ii));
$y(i, i i)=0$;
else
$x(i, i i)=\left(\right.$ Throat_Radius $-y(i, i i-1)+S _p(i, i i-1) * x(i, i i-1)$

- S_m(i,ii)*x_0)/(S_p(i,ii-1) - S_m(i,ii));
$y(i, i \bar{i})=S _m(i, i i)^{\star}\left(x(i, i i)-x _0\right)+$ Throat_Radius;
end
elseif any(WP(:) == AA(i,ii))
if $W P(1)==A A(i, i i)$
$x(i, i i)=(y(i, i i-1)-$ Throat_Radius + S_p(i,ii)*x_0 -
S_p(i,ii-1)*x(i,ii-1))/ (S_p(i,ii) - S_p(i,ii-1));
$y(i, i i)=S _p(i, i i-1) *(x(i, i i)-x(i, i i-1))+y(i, i i-1) ;$
else
$x(i, i i)=\left(y(i, i i-1)-y(i-1, i i)+S _p(i, i i) * x(i-1, i i)-\right.$
S_p(i,ii-1)*x(i,ii-1))/ (S_p(i,ii) - S_p(i,ii-1));
$y(i, i i)=S _p(i, i i-1) *(x(i, i i)-x(i, i i-1))+y(i, i i-1) ;$
end
elseif any(SP(:) == AA(i,ii))
$x(i, i i)=x(i-1, i i)-\left(y(i-1, i i) / S _m(i, i i)\right) ;$
$y(i, i i)=0 ;$
else
$x(i, i i)=\left(y(i-1, i i)-y(i, i i-1)-S _m(i, i i) * x(i-1, i i)+\right.$
S_p(i,ii-1)*x(i,ii-1)) / (S_p(i,ii-1) - S_m(i,ii));
$y(i, i i)=S _m(i, \bar{i} i) *(x(i, i i)=x(i-1, i i))+y(i-1, i i) ;$
end
Tx_Tc(i,ii) $=(1+0.5 *(g a m m a-1) *(M(i, i i) \wedge 2))^{\wedge}-1 ;$
$P x_{-} P c(i, i i)=\left(1+0.5^{*}(\text { gamma-1)*(M(i,ii)^2) })^{\wedge}(-g a m m a /(g a m m a-\right.$
1));
rx_rc(i,ii) $=\left(1+0.5^{*}(g a m m a-1) *(M(i, i i) \wedge 2)\right)^{\wedge}(-1 /(g a m m a-1))$;
Vx(i,ii) $=M(i, i i) * a_{-}$;

```
        Tx(i,ii) = Tx_Tc(i,ii)*Tc;
        Px(i,ii) = Px PC(i,ii)*Pc;
        rx(i,ii) = rx_rc(i,ii)*rc;
    end
end
% Characteristic Mesh Plot
for i = 1:rows
    for ii = 1:columns
        if isnan(x(i,ii)) || isnan(y(i,ii))
        elseif any(C(:) == AA(i,ii))
            subplot(3,2,1)
            plot([x_0,x(i,ii)], [Throat_Radius,y(i,ii)],'-
O','color','#0072BD')
            hold on
    plot([x(i,ii),x(i,ii+1)],[y(i,ii),y(i,ii+1)],'-
O','color','#0072BD')
            hold on
        elseif any(WP(:) == AA(i,ii))
            if WP(1) == AA(i,ii)
                            plot([x_0,x(i,ii)],[Throat_Radius,y(i,ii)],'-
','color','#77AC30','LineWidth',2)
                    hold on
        else
            plot([x(i-1,ii),x(i,ii)],[y(i-1,ii),y(i,ii)],'-
O','color','#77AC30','LineWidth',2)
            hold on
            plot([x(i,ii-1),x(i,ii)],[y(i,ii-1),y(i,ii)],'-
o','color','#0072BD')
            hold on
        end
        else
            plot([x(i,ii),x(i,ii+1)],[y(i,ii),y(i,ii+1)],'-
O','color','#0072BD')
            hold on
            plot([x(i-1,ii),x(i,ii)],[y(i-1,ii),y(i,ii)],'-
O','color','#0072BD')
            end
    end
end
xlim([0,x(end,end)])
ylim([0,y(end,end)])
xlabel('x position')
ylabel('y position')
title('Nozzle Contour in CPG')
grid on
grid minor
x_wall = [x_0; x(:,end)];
y_wall = [Thॅroat_Radius; y(:,end)];
Wall_Points = [x_wall, y_wall];
%% Various Plots for Analysis
Px_s = zeros(1,length(SP)); % Pressure along symmetry line
```

```
Px_PC_s = zeros(1,length(SP)); % Pressure ratio along symmetry line
Tx_TC_s = zeros(1,length(SP)); % Temperature ratio along symmetry line
rx_rc_s = zeros(1,length(SP)); % Density ratio along the symmetry line
M_s = zeros(1,length(SP)); % Mach number along symmetry line
x_sym = zeros(1,length(SP)); % x location along symmetry line
% Critical Conditions
M_t = 1;
T\overline{t}}\textrm{TC}=(1+0.5*(gamma-1)*(M t^2) ) ^-1;
Pt_Pc = ( 1 + 0.5*(gamma-1)* (M_t^2) )^(-gamma/(gamma-1));
rt_rc = ( 1 + 0.5*(gamma-1)*(M_t^2) )^(-1/(gamma-1));
% Extracting data from symmetry line
for i = 1:length(SP)
    A = find(SP(i) == AA(:,:));
    Tx_Tc_s(i) = Tx_Tc(A);
    Px_Pc_s(i) = Px_Pc(A);
    rx_rc_s(i) = rx_rc(A);
    Px_s(\overline{i}) = Px(A);
    M_s(i) = M(A);
    x_sym(i) = x(A);
end
% Manipulating data for contour plots and line graphs
Px_s = [P_t Px_s]';
Px_Pc_s = [Pt_Pc Px_Pc_s]';
Tx_Tc_s = [Tt_Tc Tx_Tc_s]';
rx_rc_s = [rt_rc rx_rc_s]';
M_\overline{s}
x_sym = [0- x_symm'';
Px_curve = fit(x_sym, Px_s, 'smoothingspline', 'Normalize', 'on');
x_M = zeros(1, (C (end)+1));
x_M(:) = x_0;
x = [\overline{x_M; x];}
Y_M = zeros(1, (C (end)+1));
y_M(:) = Throat_Radius;
Y = [y_M; y];
Tt_M = zeros(1, (C (end)+1));
Tt-M(:) = T t;
Tx }= [\overline{T}t_M; Tx]
X = zeros(C(end),WP(1));
Y = zeros(C(end),WP(1));
for i = 1:(rows+1)
    for ii = 1:columns
        if isnan(x(i,ii)) || isnan(y(i,ii))
        else
            [X(i,ii),Y(i,ii)] = meshgrid(x(i,ii),y(i,ii));
            hold on
        end
```

end
end

```
Tx curve = fit(x(:,end), Tx(:,end), 'smoothingspline', 'Normalize', 'on');
T_wall = Tx(:,end);
M_M = zeros(1, (C (end)+1));
M_M(:) = 1;
M = [M_M; M];
subplot(3,2,2)
plot(x_sym,Px_Pc_s)
hold on
plot(x_sym,Tx_Tc_s)
hold on
plot(x_sym,rx_rc_s)
hold on
plot(x_sym,M_s)
xlim([\overline{0}
ylim([0 M_s(end)])
ylim([0 Tx_Tc_s(1)])
title('Isentropic Ratios and Mach Number')
xlabel('x position along symmetry')
ylabel('Ratios')
legend('Pressure Ratio','Temperature Ratio','Density Ratio')
grid on
grid minor
subplot(3,2,3)
plot(Tx_curve,x(:,end), Tx(:,end))
hold on
plot(x(:,end), Tx(:,end),'--b')
xlim([0 x(end,end)])
ylim([Tx(end,end) T_t])
title('Hot Gas Side Wall Temperature [K]')
xlabel('x position of wall')
ylabel('Temperature [K]')
legend('Temperature Data','Temperature Curve Fit', 'Temperature Data Plot')
grid on
grid minor
subplot(3,2,4)
plot(Px_curve,x_sym, Px_s)
hold on
plot(x_sym, Px_s,'--b')
xlim([0 x_sym(end)])
ylim([Px_s(end) P_t])
title('Pressure along Symmetry [atm]')
xlabel('x position along symmetry')
ylabel('Pressure [atm]')
legend('Pressure Data','Pressure Curve Fit', 'Pressure Data Plot')
grid on
grid minor
subplot(3,2,5)
contourf(X,Y,Tx,500,'Fill','on','LineColor','none');
```

```
hold on
plot(x(:,end),y(:,end),'-k','LineWidth',2)
title('Temperature in Nozzle')
xlabel('x position')
ylabel('y position')
xlim([0,x(end,end)])
ylim([0,y(end, end)+0.5])
cc = colorbar;
cc.Label.String = ('Temperature [K]');
subplot(3,2,6)
contourf(X,Y,M,500,'Fill','on','LineColor','none');
hold on
plot(x(:,end),y(:,end),'-k','LineWidth', 2)
title('Mach Number in Nozzle')
xlabel('x position')
ylabel('y position')
xlim([0,x(end,end)])
ylim([0,y(end,end)])
cc = colorbar;
cc.Label.String = ('Mach Number');
```


Appendix C: CEA Calling Scripts for MATLAB [20]

 C.1) Script for CEA Rocket Problem```
function [CD, TD, ED, moles_x, caseNamesRkt, dataRkt] = ceaRkt(ExitType, A,
OF, P_Oc, Ox, T_Ox, Fuel, T_F)
%% This function ceaRkt.m was created by Edgar Aguliar, and modified by
Michael Sandoval
% Modifications include:
% - Including all data at chamber, throat, and exit
% - Includes usaer input of fuel/oxidizer and exit type
% - More comments, modified input script
% INPUTS:
% - AeAt = Supersonic area ratio
% - P 0c = Chamber total pressure
% - T_Ox = Initial total temperature of the oxidizer
% - T_F = Initial total temperature of the fuel
% - O\overline{x}}=\mathrm{ Script of oxidizer type
% - Fuel = Script of oxidizer type
% - OF = Oxidizer/fuel mixture ratio by weight
% - ExitType = 'AeAt' or 'Pi/Pe'
% OUTPUTS:
% - CD = Chamber Data
% - TD = Throat Data
% - ED = Exit Data
% - caseNames = Names of each row of data
%% Creating text file to read into CEA
% fopen opens the file name '1511.inp' and '1512.inp' for writing acess 'w'
% 'w' opens or creates a new file for writing. Discards existing contents
executeTP1 = fopen('1511.inp','w');
executeTP1file = fopen('1512.inp','w');
fprintf(executeTP1, sprintf('problem o/f=%f,\n',OF));
fprintf(executeTP1, sprintf('\t rocket equilibrium tcest,k=3800\n'));
fprintf(executeTP1, sprintf('\t p,atm=%f,\n', P_0c));
if strcmpi(ExitType, 'AeAt')
 fprintf(executeTP1, sprintf('\t sup,ae/at=%f,\n', A));
else
 fprintf(executeTP1, sprintf('\t pi/p=%f,\n', A));
end
fprintf(executeTP1, sprintf('react\n'));
fprintf(executeTP1, sprintf('\t fuel=%s wt=100 t,k=%f\n',Fuel, T_F));
fprintf(executeTP1, sprintf('\t oxid=%s wt=100 t,k=%f\n', Ox, T_Ox));
fprintf(executeTP1, sprintf('output short\n'));
fprintf(executeTP1, sprintf('end\n'));
% Writing the executeable file for computer command
fprintf(executeTP1file, sprintf('1511\n'));
fclose(executeTP1);
```

```
fclose(executeTP1file);
% MATLAB calls Operating System to use Command: redirecting "<" input file
system('FCEA2.exe < 1512.inp');
% MATLAB opens the output file created by the execution of 1512.inp in
FEA2.exe
% 'rt' opens the file for reading in text mode
fid = fopen('1511.out', 'rt');
% Textscan looks into 1511.out to find all the data in particular pattern
% shown below:
data_cell = textscan(fid,'%s%s%f%f%f','delimiter',',','delimiter','\t',...
 'delimiter','\t', 'delimiter','\t');
fclose(fid);
%% Locating CEA data in output file
dataRkt = data_cell{1}
B = length(dataRkt);
% Finding first value of output
locator = strfind(dataRkt,'P, BAR');
index = find(~cellfun(@isempty, locator));
n = B - index; % Number of CEA output lines to check
caseData_chamber = zeros(n,1);
caseData_throat = zeros(n,1);
caseData_exit = zeros(n,1);
%% Extracting data from output file
% Extracting exit data
for ii = 1:n
 dataSplit = split(dataRkt{ii + index - 1});
 caseValues_exit = dataSplit{end};
 blank - = length(caseValues_exit);
 if blank == 1
 caseValues_exit = [];
 end
 % Names of each output
 if ii <= 13
 caseNamesRkt(ii, 1) = {strcat(dataSplit{1},{' '},dataSplit{2})};
 else
 caseNamesRkt(ii, 1) = {dataSplit(1)};
 end
 checkPos = strfind(caseValues_exit,'+');
 checkNeg = strfind(caseValues_exit,'-');
```

```
 % Converting all expontintial data from CEA to read with MATLAB
 if isempty(checkPos) == 1 && isempty(checkNeg) == 1
 caseData_exit(ii) = str2double(caseValues_exit);
 elseif isempty(checkPos) == 0 && isempty(checkNeg) == 0 &&
length(checkNeg) == 2
 Z = [caseValues_exit(1:6), 'e', caseValues_exit(7:end)];
 caseData_exit(i\overline{i}) = str2double(Z);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 &&
length(checkNeg) == 2
 Z = [caseValues_exit(1:6), 'e', caseValues_exit(7:end)];
 caseData_exit(ii) = str2double(Z);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 7
 Z = [caseValues exit(1:6), 'e', caseValues exit(7:end)];
 caseData exit(i\overline{i}) = str2double(Z);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0
 caseData_exit(ii) = str2double(caseValues_exit);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 1
 Z = [caseValues_exit(1:6), 'e', caseValues_exit(7:end)];
 caseData_exit(i\overline{i}) = str2double(Z);
 elseif isempty(checkPos) == 0 && isempty(checkNeg) == 1 && checkNeg == 7
 Z = [caseValues_exit(1:6), 'e', caseValues_exit(7:end)];
 caseData_exit(i\overline{i}) = str2double(Z);
 end
 ED = caseData_exit(~isnan(caseData_exit));
```

end
\% Extracting throat data
for ii = 1:n
dataSplit $=$ split(dataRkt\{ii + index - 1\});
caseValues_throat = dataSplit\{end-1\};
blank $=$ length(caseValues_throat);
if blank == 1
caseValues_throat = [];
end
checkPos = strfind(caseValues_throat,'+');
checkNeg = strfind(caseValues_throat,'-');
if isempty(checkPos) == 1 \&\& isempty(checkNeg) == 1
caseData_throat(ii) = str2double(caseValues_throat);
elseif isempty(checkPos) == 0 \&\& isempty(checkNeg) == 0 \&\&
length (checkNeg) == 2
Z = [caseValues_throat(1:6), 'e', caseValues_throat(7:end)];
caseData_throat(ii) = str2double(Z);
elseif isempty(checkPos) == $1 \& \&$ isempty (checkNeg) $==0 \& \&$
length (checkNeg) == 2
Z = [caseValues_throat(1:6), 'e', caseValues_throat(7:end)];
caseData_throat(ii) = str2double(Z);
elseif isempty (checkPos) $==1$ \&\& isempty (checkNeg) $==0$ \&\& checkNeg $==7$
Z $=$ [caseValues_throat(1:6), 'e', caseValues_throat(7:end)];
caseData_throat(ii) = str2double(Z);

```
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0
 caseData throat(ii) = str2double(caseValues throat);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 1
 Z = [caseValues_throat(1:6), 'e', caseValues_throat(7:end)];
 caseData_throat(ii) = str2double(Z);
 elseif isempty(checkPos) == 0 && isempty(checkNeg) == 1 && checkNeg == 7
 Z = [caseValues_throat(1:6), 'e', caseValues_throat(7:end)];
 caseData_throat(ii) = str2double(Z);
 end
 TD = caseData_throat(~isnan(caseData_throat));
end
% Extracting chamber data
for ii = 1:n
 dataSplit = split(dataRkt{ii + index - 1});
 if length(dataSplit) == 2 || length(dataSplit) == 1
 continue
 elseif ii == 3
 caseValues_chamber = dataSplit{end-3};
 else
 caseValues_chamber = dataSplit{end-2};
 end
 blank = length(caseValues_chamber);
 if blank == 1
 caseValues_chamber = [];
 end
 checkPos = strfind(caseValues chamber,'+');
 checkNeg = strfind(caseValues_chamber,'-');
 if isempty(checkPos) == 1 && isempty(checkNeg) == 1
 caseData_chamber(ii) = str2double(caseValues_chamber);
 elseif isempty(checkPos) == 0 && isempty(checkNeg) == 0 &&
length(checkNeg) == 2
 Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)];
 caseData_chamber(ii) = str2double(Z);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 &&
length(checkNeg) == 2
 Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)];
 caseData_chamber(ii) = str2double(Z);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 7
 Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)];
 caseData_chamber(ii) = str2double(Z);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0
 caseData_chamber(ii) = str2double(caseValues_chamber);
 elseif isemp\overline{ty(checkPos) == 1 && isempty(checkNeg})== 0 && checkNeg == 1
 Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)];
 caseData_chamber(ii) = str2double(Z);
 elseif isempty(checkPos) == 0 && isempty(checkNeg) == 1 && checkNeg == 7
```

```
 Z = [caseValues_chamber(1:6), 'e', caseValues_chamber(7:end)];
 caseData_chamber(ii) = str2double(Z);
 end
CD = caseData_chamber(~isnan(caseData_chamber));
end
moles_x = 0;
% Converting CEA Rkt case names cell into a string array for indexing
caseNamesRkt = string(caseNamesRkt);
for k = 1:length(TD)
 if strcmp(caseNamesRkt(k),'MOLE')
 caseNamesRkt(k) = [];
 elseif strcmp(caseNamesRkt(k), 'PERFORMANCE')
 caseNamesRkt(k) = [];
 elseif strcmp(caseNamesRkt(k), '*')
 caseNamesRkt(k) = [];
 else
 end
end
% Finding the index for each species from caseNamesRkt
H_i = find(strcmp(caseNamesRkt, '*H'));
H2
H2\overline{O}}\mathbf{i}=\mathrm{ find(strcmp(caseNamesRkt, 'H2O'));
NO_\overline{i}= find(strcmp(caseNamesRkt, '*NO'));
N2_i = find(strcmp(caseNamesRkt, '*N2'));
N_i= find(strcmp(caseNamesRkt, '*N'));
O_i = find(strcmp(caseNamesRkt, '*O'));
O\overline{H}_i = find(strcmp(caseNamesRkt, '*OH'));
O2_i = find(strcmp(caseNamesRkt, '*O2'));
% "Packaging" results into cells to find any empty cells, []
moles_x = {TD(H_i), TD(H2_i), TD(H2O_i), TD(NO_i), TD(N2_i), TD(N_i),
TD(O_i), TD(OH_i), TD(O2_i)};
% Placing zero for empty arrays
for i = 1:length(moles_x)
 if isempty(moles_x{i})
 moles_x{i} = 0;
 end
end
% Converting cells to array
moles_x = cell2mat(moles_x);
% Remōving scientific notation for scripting into CEA
moles_x = compose("%.5f", moles_x);
delete *inp
delete *out
end
```

```
C.2) Script for CEA Temperature and Pressure Problem
function [n, x_data, moles_x, caseNamesTP] = ceaTP(T, P, species, moles_x)
% fopen opens the file name '1511.inp' and '1512.inp' for writing acess 'w'
% 'w' opens or creates a new file for writing. Discards existing contents
executeTP1 = fopen('1511.inp','w');
executeTP1file = fopen('1512.inp','w');
% sprintf formats data into string, fprintf writes data into a text file
fprintf(executeTP1, sprintf('problem \n'));
fprintf(executeTP1, sprintf('\t tp t,k=%d, p,atm=%d,\n',T,P));
fprintf(executeTP1, sprintf('react\n'));
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(1),
moles_x(1), T));
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(2),
moles_x(2), T));
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(3),
moles_x(3), T));
fprint̄f(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(4),
moles_x(4), T));
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(5),
moles_x(5), T));
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(6),
moles_x(6), T));
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(7),
moles_x(7), T));
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(8),
moles_x(8), T));
fprintf(executeTP1, sprintf('\t name=%s moles=%s t,k = %d\n', species(9),
moles_x(9), T));
fprint̄f(executeTP1, sprintf('output short\n'));
fprintf(executeTP1, sprintf('end\n'));
fprintf(executeTP1file, sprintf('1511\n'));
fclose(executeTP1);
fclose(executeTP1file);
% MATLAB calls Operating System to use Command: redirecting "<" input file
system('FCEA2.exe < 1512.inp');
% MATLAB opens the output file created by the execution of 1512.inp in
FEA2.exe
% 'rt' opens the file for reading in text mode
fid = fopen('1511.out', 'rt');
% Textscan looks into 1511.out to find all the data in particular pattern
% shown below:
data_cell = textscan(fid,'%s%s%f%f%f','delimiter',',','delimiter','\t',...
 'delimiter','\t', 'delimiter','\t');
fclose(fid);
dataTP = data_cell{1}
B = length(da\overline{taTP);}
```

```
% Finding first value of output
locator = strfind(dataTP,'P, BAR');
index = find(~cellfun(@isempty, locator));
n = B - index; % Number of CEA output lines to check
x_data = zeros(n,1);
% Extracting data from output file
for ii = 1:n
 dataSplit = split(dataTP{ii + index - 1});
 caseValues = dataSplit{end};
 blank = length(caseValues);
 if blank == 1
 caseValues = dataSplit{(end - 1)};
 end
 % Text of output. Used to see what data is being checked
 if ii <= 13
 caseNamesTP(ii, 1) = {strcat(dataSplit{1},{' '},dataSplit{2})};
 else
 caseNamesTP(ii, 1) = {dataSplit(1)};
 end
 checkPos = strfind(caseValues,'+');
 checkNeg = strfind(caseValues,'-');
 if isempty(checkPos) == 1 && isempty(checkNeg) == 1
 x_data(ii) = str2double(caseValues);
 elseif isempty(checkPos) == 0 && isempty(checkNeg) == 0 &&
length(checkNeg) == 2
 Z = [caseValues(1:6), 'e', caseValues(7:end)];
 x_data(ii) = str2double(Z);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 &&
length(checkNeg) == 2
 Z = [caseValues(1:6), 'e', caseValues(7:end)];
 x_data(ii) = str2double(Z);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 7
 Z = [caseValues(1:6), 'e', caseValues(7:end)];
 x_data(ii) = str2double(Z);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0
 x_data(ii) = str2double(caseValues);
 elseif isempty(checkPos) == 1 && isempty(checkNeg) == 0 && checkNeg == 1
 Z = [caseValues(1:6), 'e', caseValues(7:end)];
 x_data(ii) = str2double(Z);
 elseif isempty(checkPos) == 0 && isempty(checkNeg) == 1 && checkNeg == 7
 Z = [caseValues(1:6), 'e', caseValues(7:end)];
```

```
 x_data(ii) = str2double(Z);
 end
end
caseNamesTP = string(caseNamesTP);
for j = 1:length(caseNamesTP)
 if strcmp(caseNamesTP,'MOLE')
 caseNamesTP(j) = [];
 else
 end
end
H_i_TP = find(strcmp(caseNamesTP, '*H'));
H2__i_TP = find(strcmp(caseNamesTP, '*H2'));
H2O_i_TP = find(strcmp(caseNamesTP, 'H2O'));
NO_\overline{i}_\overline{TP}= find(strcmp(caseNamesTP, '*NO'));
N2_i_TP = find(strcmp(caseNamesTP, '*N2'));
N_\overline{i}}\overline{\textrm{TP}}=\mathrm{ find(strcmp(caseNamesTP, '*N'));
O_i_TP = find(strcmp(caseNamesTP, '*O'));
O\overline{H}_\overline{i}_TP = find(strcmp(caseNamesTP, '*OH'));
O2_i_TP = find(strcmp(caseNamesTP, '*O2'));
moles_x = {x_data(H_i_TP), x_data(H2_i_TP), x_data(H2O_i_TP),
x_data(NO_i_TP), x_data(N2_i_TP), x_data(N_i_TP), x_data(O_i_TP),
x_data(OH_i_TP), x_data(O2_i_TP)};
for i = 1:length(moles_x)
 if isempty(moles_x{i}) || isnan(moles_x{i})
 moles_x{i} = 0;
 end
end
moles_x = cell2mat(moles_x);
moles_x = compose("%.5f",
x_data = x_data(~isnan(x_data));
delete *inp
delete *out
end
```

Appendix D: JANAF Tables for Species $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{O}, \mathrm{H}, \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$
D.1) Hydrogen (H) (gas)

| T(K) | Cp | 5 | -[G-H(Tr)] | H-H(Tr) | delta-f H | Delta-f G | $\log \mathbf{K f}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | INFINITE | -6.197 | 216.035 | 216.035 | INFINITE |
| 100 | 20.786 | 92.009 | 133.197 | -4.119 | 216.614 | 212.45 | -110.972 |
| 200 | 20.786 | 106.417 | 116.618 | -2.04 | 217.346 | 208.004 | -54.325 |
| 250 | 20.786 | 111.055 | 115.059 | -1.001 | 217.687 | 205.629 | -42.964 |
| 298.15 | 20.786 | 114.716 | 114.716 | 0 | 217.999 | 203.278 | -35.613 |
| 300 | 20.786 | 114.845 | 114.717 | 0.038 | 218.011 | 203.186 | -35.378 |
| 350 | 20.786 | 118.049 | 114.97 | 1.078 | 218.326 | 200.69 | -29.951 |
| 400 | 20.786 | 120.825 | 115.532 | 2.117 | 218.637 | 198.15 | -25.876 |
| 450 | 20.786 | 123.273 | 116.259 | 3.156 | 218.946 | 195.57 | -22.701 |
| 500 | 20.786 | 125.463 | 117.072 | 4.196 | 219.254 | 192.957 | -20.158 |
| 600 | 20.786 | 129.253 | 118.796 | 6.274 | 219.868 | 187.64 | -16.335 |
| 700 | 20.786 | 132.457 | 120.524 | 8.353 | 220.478 | 182.22 | -13.597 |
| 800 | 20.786 | 135.232 | 122.193 | 10.431 | 221.08 | 176.713 | -11.538 |
| 900 | 20.786 | 137.681 | 123.781 | 12.51 | 221.671 | 171.132 | -9.932 |
| 1000 | 20.786 | 139.871 | 125.282 | 14.589 | 222.248 | 165.485 | -8.644 |
| 1100 | 20.786 | 141.852 | 126.7 | 16.667 | 222.807 | 159.782 | -7.587 |
| 1200 | 20.786 | 143.66 | 128.039 | 18.746 | 223.346 | 154.028 | -6.705 |
| 1300 | 20.786 | 145.324 | 129.305 | 20.824 | 223.865 | 148.23 | -5.956 |
| 1400 | 20.786 | 146.865 | 130.505 | 22.903 | 224.361 | 142.394 | -5.313 |
| 1500 | 20.786 | 148.299 | 131.644 | 24.982 | 224.836 | 136.522 | -4.754 |
| 1600 | 20.786 | 149.64 | 132.728 | 27.06 | 225.289 | 130.62 | -4.264 |
| 1700 | 20.786 | 150.9 | 133.76 | 29.139 | 225.721 | 124.689 | -3.831 |
| 1800 | 20.786 | 152.088 | 134.745 | 31.217 | 226.132 | 118.734 | -3.446 |
| 1900 | 20.786 | 153.212 | 135.688 | 33.296 | 226.525 | 112.757 | -3.1 |
| 2000 | 20.786 | 154.278 | 136.591 | 35.375 | 226.898 | 106.76 | -2.788 |
| 2100 | 20.786 | 155.293 | 137.458 | 37.453 | 227.254 | 100.744 | -2.506 |
| 2200 | 20.786 | 156.26 | 138.291 | 39.532 | 227.593 | 94.712 | -2.249 |
| 2300 | 20.786 | 157.184 | 139.092 | 41.61 | 227.916 | 88.664 | -2.014 |
| 2400 | 20.786 | 158.068 | 139.864 | 43.689 | 228.224 | 82.603 | -1.798 |
| 2500 | 20.786 | 158.917 | 140.61 | 45.768 | 228.518 | 76.53 | -1.599 |
| 2600 | 20.786 | 159.732 | 141.33 | 47.846 | 228.798 | 70.444 | -1.415 |
| 2700 | 20.786 | 160.516 | 142.026 | 49.925 | 229.064 | 64.349 | -1.245 |
| 2800 | 20.786 | 161.272 | 142.7 | 52.004 | 229.318 | 58.243 | -1.087 |
| 2900 | 20.786 | 162.002 | 143.353 | 54.082 | 229.56 | 52.129 | -0.939 |
| 3000 | 20.786 | 162.706 | 143.986 | 56.161 | 229.79 | 46.007 | -0.801 |
| 3100 | 20.786 | 163.388 | 144.601 | 58.239 | 230.008 | 39.877 | -0.672 |
| 3200 | 20.786 | 164.048 | 145.199 | 60.318 | 230.216 | 33.741 | -0.551 |
| 3300 | 20.786 | 164.688 | 145.78 | 62.397 | 230.413 | 27.598 | -0.437 |
| 3400 | 20.786 | 165.308 | 146.345 | 64.475 | 230.599 | 21.449 | -0.33 |
| 3500 | 20.786 | 165.911 | 146.895 | 66.554 | 230.776 | 15.295 | -0.228 |
| 3600 | 20.786 | 166.496 | 147.432 | 68.632 | 230.942 | 9.136 | -0.133 |
| 3700 | 20.786 | 167.066 | 147.955 | 70.711 | 231.098 | 2.973 | -0.042 |
| 3800 | 20.786 | 167.62 | 148.465 | 72.79 | 231.244 | -3.195 | 0.044 |
| 3900 | 20.786 | 168.16 | 148.963 | 74.868 | 231.381 | -9.366 | 0.125 |
| 4000 | 20.786 | 168.686 | 149.45 | 76.947 | 231.509 | -15.541 | 0.203 |
| 4100 | 20.786 | 169.2 | 149.925 | 79.025 | 231.627 | -21.718 | 0.277 |
| 4200 | 20.786 | 169.7 | 150.39 | 81.104 | 231.736 | -27.899 | 0.347 |
| 4300 | 20.786 | 170.19 | 150.845 | 83.183 | 231.836 | -34.082 | 0.414 |
| 4400 | 20.786 | 170.667 | 151.29 | 85.261 | 231.927 | -40.267 | 0.478 |
| 4500 | 20.786 | 171.135 | 151.726 | 87.34 | 232.009 | -46.454 | 0.539 |
| 4600 | 20.786 | 171.591 | 152.153 | 89.418 | 232.082 | -52.643 | 0.598 |
| 4700 | 20.786 | 172.038 | 152.571 | 91.497 | 232.147 | -58.834 | 0.654 |
| 4800 | 20.786 | 172.476 | 152.981 | 93.576 | 232.204 | -65.025 | 0.708 |
| 4900 | 20.786 | 172.905 | 153.383 | 95.654 | 232.253 | -71.218 | 0.759 |
| 5000 | 20.786 | 173.325 | 153.778 | 97.733 | 232.294 | -77.412 | 0.809 |
| 5100 | 20.786 | 173.736 | 154.165 | 99.811 | 232.327 | -83.606 | 0.856 |
| 5200 | 20.786 | 174.14 | 154.546 | 101.89 | 232.353 | -89.801 | 0.902 |
| 5300 | 20.786 | 174.536 | 154.919 | 103.969 | 232.373 | -95.997 | 0.946 |
| 5400 | 20.786 | 174.924 | 155.286 | 106.047 | 232.386 | -102.192 | 0.989 |
| 5500 | 20.786 | 175.306 | 155.646 | 108.126 | 232.392 | -108.389 | 1.029 |
| 5600 | 20.786 | 175.68 | 156.001 | 110.204 | 232.393 | -114.584 | 1.069 |
| 5700 | 20.786 | 176.048 | 156.349 | 112.283 | 232.389 | -120.78 | 1.107 |
| 5800 | 20.786 | 176.41 | 156.692 | 114.362 | 232.379 | -126.976 | 1.144 |
| 5900 | 20.786 | 176.765 | 157.029 | 116.44 | 232.365 | -133.172 | 1.179 |
| 6000 | 20.786 | 177.114 | 157.361 | 118.519 | 232.348 | -139.368 | 1.213 |

D.2) Oxygen (O) (gas)

| T(K) | Cp | 5 | -[G-H(Tr)]/T | $\mathrm{H}-\mathrm{H}(\mathrm{Tr})$ | delta-f H | Delta-f G | $\log$ Kf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | INFINITE | -6.725 | 246.79 | 246.79 | INFINITE |
| 100 | 23.703 | 135.947 | 181.131 | -4.518 | 247.544 | 242.615 | -126.729 |
| 200 | 22.734 | 152.153 | 163.085 | -2.186 | 248.421 | 237.339 | -61.986 |
| 250 | 22.246 | 157.17 | 161.421 | -1.063 | 248.816 | 234.522 | -49.001 |
| 298.15 | 21.911 | 161.058 | 161.058 | 0 | 249.173 | 231.736 | -40.599 |
| 300 | 21.901 | 161.194 | 161.059 | 0.041 | 249.187 | 231.628 | -40.33 |
| 350 | 21.657 | 164.551 | 161.324 | 1.129 | 249.537 | 228.673 | -34.128 |
| 400 | 21.482 | 167.43 | 161.912 | 2.207 | 249.868 | 225.67 | -29.469 |
| 450 | 21.354 | 169.953 | 162.668 | 3.278 | 250.18 | 222.626 | -25.842 |
| 500 | 21.257 | 172.197 | 163.511 | 4.343 | 250.474 | 219.549 | -22.936 |
| 600 | 21.124 | 176.06 | 165.291 | 6.462 | 251.013 | 213.312 | -18.57 |
| 700 | 21.04 | 179.31 | 167.067 | 8.57 | 251.494 | 206.99 | -15.446 |
| 800 | 20.984 | 182.116 | 168.777 | 10.671 | 251.926 | 200.602 | -13.098 |
| 900 | 20.944 | 184.585 | 170.399 | 12.767 | 252.32 | 194.163 | -11.269 |
| 1000 | 20.915 | 186.79 | 171.93 | 14.86 | 252.682 | 187.681 | -9.803 |
| 1100 | 20.893 | 188.782 | 173.373 | 16.95 | 253.018 | 181.165 | -8.603 |
| 1200 | 20.877 | 190.599 | 174.734 | 19.039 | 253.332 | 174.619 | -7.601 |
| 1300 | 20.864 | 192.27 | 176.019 | 21.126 | 253.627 | 168.047 | -6.752 |
| 1400 | 20.853 | 193.816 | 177.236 | 23.212 | 253.906 | 161.453 | -6.024 |
| 1500 | 20.845 | 195.254 | 178.39 | 25.296 | 254.171 | 154.84 | -5.392 |
| 1600 | 20.838 | 196.599 | 179.486 | 27.381 | 254.421 | 148.21 | -4.839 |
| 1700 | 20.833 | 197.862 | 180.53 | 29.464 | 254.659 | 141.564 | -4.35 |
| 1800 | 20.83 | 199.053 | 181.527 | 31.547 | 254.884 | 134.905 | -3.915 |
| 1900 | 20.827 | 200.179 | 182.479 | 33.63 | 255.097 | 128.234 | -3.525 |
| 2000 | 20.826 | 201.247 | 183.391 | 35.713 | 255.299 | 121.552 | -3.175 |
| 2100 | 20.827 | 202.263 | 184.266 | 37.796 | 255.488 | 114.86 | -2.857 |
| 2200 | 20.83 | 203.232 | 185.106 | 39.878 | 255.667 | 108.159 | -2.568 |
| 2300 | 20.835 | 204.158 | 185.914 | 41.962 | 255.835 | 101.45 | -2.304 |
| 2400 | 20.841 | 205.045 | 186.693 | 44.045 | 255.992 | 94.734 | -2.062 |
| 2500 | 20.851 | 205.896 | 187.444 | 46.13 | 256.139 | 88.012 | -1.839 |
| 2600 | 20.862 | 206.714 | 188.17 | 48.216 | 256.277 | 81.284 | -1.633 |
| 2700 | 20.877 | 207.502 | 188.871 | 50.303 | 256.405 | 74.551 | -1.442 |
| 2800 | 20.894 | 208.261 | 189.55 | 52.391 | 256.525 | 67.814 | -1.265 |
| 2900 | 20.914 | 208.995 | 190.208 | 54.481 | 256.637 | 61.072 | -1.1 |
| 3000 | 20.937 | 209.704 | 190.846 | 56.574 | 256.741 | 54.327 | -0.946 |
| 3100 | 20.963 | 210.391 | 191.466 | 58.669 | 256.838 | 47.578 | -0.802 |
| 3200 | 20.991 | 211.057 | 192.068 | 60.767 | 256.929 | 40.826 | -0.666 |
| 3300 | 21.022 | 211.704 | 192.653 | 62.867 | 257.014 | 34.071 | -0.539 |
| 3400 | 21.056 | 212.332 | 193.223 | 64.971 | 257.094 | 27.315 | -0.42 |
| 3500 | 21.092 | 212.943 | 193.777 | 67.079 | 257.169 | 20.555 | -0.307 |
| 3600 | 21.13 | 213.537 | 194.318 | 69.19 | 257.241 | 13.794 | -0.2 |
| 3700 | 21.17 | 214.117 | 194.845 | 71.305 | 257.309 | 7.03 | -0.099 |
| 3800 | 21.213 | 214.682 | 195.36 | 73.424 | 257.373 | 0.265 | -0.004 |
| 3900 | 21.257 | 215.234 | 195.862 | 75.547 | 257.436 | -6.501 | 0.087 |
| 4000 | 21.302 | 215.772 | 196.353 | 77.675 | 257.496 | -13.27 | 0.173 |
| 4100 | 21.349 | 216.299 | 196.834 | 79.808 | 257.554 | -20.04 | 0.255 |
| 4200 | 21.397 | 216.814 | 197.303 | 81.945 | 257.611 | -26.811 | 0.333 |
| 4300 | 21.445 | 217.318 | 197.763 | 84.087 | 257.666 | -33.583 | 0.408 |
| 4400 | 21.495 | 217.812 | 198.213 | 86.234 | 257.72 | -40.358 | 0.479 |
| 4500 | 21.545 | 218.295 | 198.654 | 88.386 | 257.773 | -47.133 | 0.547 |
| 4600 | 21.596 | 218.769 | 199.086 | 90.543 | 257.825 | -53.909 | 0.612 |
| 4700 | 21.647 | 219.234 | 199.51 | 92.705 | 257.876 | -60.687 | 0.674 |
| 4800 | 21.697 | 219.69 | 199.925 | 94.872 | 257.926 | -67.465 | 0.734 |
| 4900 | 21.748 | 220.138 | 200.333 | 97.045 | 257.974 | -74.244 | 0.791 |
| 5000 | 21.799 | 220.578 | 200.734 | 99.222 | 258.021 | -81.025 | 0.846 |
| 5100 | 21.849 | 221.01 | 201.127 | 101.405 | 258.066 | -87.806 | 0.899 |
| 5200 | 21.899 | 221.435 | 201.514 | 103.592 | 258.11 | -94.589 | 0.95 |
| 5300 | 21.949 | 221.853 | 201.893 | 105.784 | 258.15 | -101.371 | 0.999 |
| 5400 | 21.997 | 222.264 | 202.267 | 107.982 | 258.189 | -108.155 | 1.046 |
| 5500 | 22.045 | 222.668 | 202.634 | 110.184 | 258.224 | -114.94 | 1.092 |
| 5600 | 22.093 | 223.065 | 202.995 | 112.391 | 258.255 | -121.725 | 1.135 |
| 5700 | 22.139 | 223.457 | 203.351 | 114.602 | 258.282 | -128.51 | 1.178 |
| 5800 | 22.184 | 223.842 | 203.701 | 116.818 | 258.304 | -135.296 | 1.218 |
| 5900 | 22.229 | 224.222 | 204.046 | 119.039 | 258.321 | -142.083 | 1.258 |
| 6000 | 22.273 | 224.596 | 204.385 | 121.264 | 258.332 | -148.869 | 1.296 |

D.3) Diatomic Oxygen (O2) (gas)

| T(K) | $\mathrm{CP}_{\mathrm{p}}$ | 5 | -[G-H(Tr)]/T | $\mathrm{H}-\mathrm{H}(\mathrm{Tr})$ | delta-f H | Delta-f G | $\log \mathbf{K f}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | INFINITE | -8.683 | 0 | 0 | 0 |
| 100 | 29.106 | 173.307 | 231.094 | -5.779 | 0 | 0 | 0 |
| 200 | 29.126 | 193.485 | 207.823 | -2.868 | 0 | 0 | 0 |
| 250 | 29.201 | 199.99 | 205.63 | -1.41 | 0 | 0 | 0 |
| 298.15 | 29.376 | 205.147 | 205.147 | 0 | 0 | 0 | 0 |
| 300 | 29.385 | 205.329 | 205.148 | 0.054 | 0 | 0 | 0 |
| 350 | 29.694 | 209.88 | 205.506 | 1.531 | 0 | 0 | 0 |
| 400 | 30.106 | 213.871 | 206.308 | 3.025 | 0 | 0 | 0 |
| 450 | 30.584 | 217.445 | 207.35 | 4.543 | 0 | 0 | 0 |
| 500 | 31.091 | 220.693 | 208.524 | 6.084 | 0 | 0 | 0 |
| 600 | 32.09 | 226.451 | 211.044 | 9.244 | 0 | 0 | 0 |
| 700 | 32.981 | 231.466 | 213.611 | 12.499 | 0 | 0 | 0 |
| 800 | 33.733 | 235.921 | 216.126 | 15.835 | 0 | 0 | 0 |
| 900 | 34.355 | 239.931 | 218.552 | 19.241 | 0 | 0 | 0 |
| 1000 | 34.87 | 243.578 | 220.875 | 22.703 | 0 | 0 | 0 |
| 1100 | 35.3 | 246.922 | 223.093 | 26.212 | 0 | 0 | 0 |
| 1200 | 35.667 | 250.01 | 225.209 | 29.761 | 0 | 0 | 0 |
| 1300 | 35.988 | 252.878 | 227.229 | 33.344 | 0 | 0 | 0 |
| 1400 | 36.277 | 255.556 | 229.158 | 36.957 | 0 | 0 | 0 |
| 1500 | 36.544 | 258.068 | 231.002 | 40.599 | 0 | 0 | 0 |
| 1600 | 36.796 | 260.434 | 232.768 | 44.266 | 0 | 0 | 0 |
| 1700 | 37.04 | 262.672 | 234.462 | 47.958 | 0 | 0 | 0 |
| 1800 | 37.277 | 264.796 | 236.089 | 51.673 | 0 | 0 | 0 |
| 1900 | 37.51 | 266.818 | 237.653 | 55.413 | 0 | 0 | 0 |
| 2000 | 37.741 | 268.748 | 239.16 | 59.175 | 0 | 0 | 0 |
| 2100 | 37.969 | 270.595 | 240.613 | 62.961 | 0 | 0 | 0 |
| 2200 | 38.195 | 272.366 | 242.017 | 66.769 | 0 | 0 | 0 |
| 2300 | 38.419 | 274.069 | 243.374 | 70.6 | 0 | 0 | 0 |
| 2400 | 38.639 | 275.709 | 244.687 | 74.453 | 0 | 0 | 0 |
| 2500 | 38.856 | 277.29 | 245.959 | 78.328 | 0 | 0 | 0 |
| 2600 | 39.068 | 278.819 | 247.194 | 82.224 | 0 | 0 | 0 |
| 2700 | 39.276 | 280.297 | 248.393 | 86.141 | 0 | 0 | 0 |
| 2800 | 39.478 | 281.729 | 249.558 | 90.079 | 0 | 0 | 0 |
| 2900 | 39.674 | 283.118 | 250.691 | 94.036 | 0 | 0 | 0 |
| 3000 | 39.864 | 284.466 | 251.795 | 98.013 | 0 | 0 | 0 |
| 3100 | 40.048 | 285.776 | 252.87 | 102.009 | 0 | 0 | 0 |
| 3200 | 40.225 | 287.05 | 253.918 | 106.023 | 0 | 0 | 0 |
| 3300 | 40.395 | 288.291 | 254.941 | 110.054 | 0 | 0 | 0 |
| 3400 | 40.559 | 289.499 | 255.94 | 114.102 | 0 | 0 | 0 |
| 3500 | 40.716 | 290.677 | 256.916 | 118.165 | 0 | 0 | 0 |
| 3600 | 40.868 | 291.826 | 257.87 | 122.245 | 0 | 0 | 0 |
| 3700 | 41.013 | 292.948 | 258.802 | 126.339 | 0 | 0 | 0 |
| 3800 | 41.154 | 294.044 | 259.716 | 130.447 | 0 | 0 | 0 |
| 3900 | 41.289 | 295.115 | 260.61 | 134.569 | 0 | 0 | 0 |
| 4000 | 41.421 | 296.162 | 261.485 | 138.705 | 0 | 0 | 0 |
| 4100 | 41.549 | 297.186 | 262.344 | 142.854 | 0 | 0 | 0 |
| 4200 | 41.674 | 298.189 | 263.185 | 147.015 | 0 | 0 | 0 |
| 4300 | 41.798 | 299.171 | 264.011 | 151.188 | 0 | 0 | 0 |
| 4400 | 41.92 | 300.133 | 264.821 | 155.374 | 0 | 0 | 0 |
| 4500 | 42.042 | 301.076 | 265.616 | 159.572 | 0 | 0 | 0 |
| 4600 | 42.164 | 302.002 | 266.397 | 163.783 | 0 | 0 | 0 |
| 4700 | 42.287 | 302.91 | 267.164 | 168.005 | 0 | 0 | 0 |
| 4800 | 42.413 | 303.801 | 267.918 | 172.24 | 0 | 0 | 0 |
| 4900 | 42.542 | 304.677 | 268.66 | 176.488 | 0 | 0 | 0 |
| 5000 | 42.675 | 305.538 | 269.389 | 180.749 | 0 | 0 | 0 |
| 5100 | 42.813 | 306.385 | 270.106 | 185.023 | 0 | 0 | 0 |
| 5200 | 42.956 | 307.217 | 270.811 | 189.311 | 0 | 0 | 0 |
| 5300 | 43.105 | 308.037 | 271.506 | 193.614 | 0 | 0 | 0 |
| 5400 | 43.262 | 308.844 | 272.19 | 197.933 | 0 | 0 | 0 |
| 5500 | 43.426 | 309.639 | 272.864 | 202.267 | 0 | 0 | 0 |
| 5600 | 43.599 | 310.424 | 273.527 | 206.618 | 0 | 0 | 0 |
| 5700 | 43.781 | 311.197 | 274.181 | 210.987 | 0 | 0 | 0 |
| 5800 | 43.973 | 311.96 | 274.826 | 215.375 | 0 | 0 | 0 |
| 5900 | 44.175 | 312.713 | 275.462 | 219.782 | 0 | 0 | 0 |
| 6000 | 44.387 | 313.457 | 276.089 | 224.21 | 0 | 0 | 0 |

D.4) Diatomic Hydrogen (H2) (gas)

| T(K) | $\mathrm{CP}_{\text {P }}$ | 5 | -[G-H(Tr)]/T | H-H(Tr) | delta-f H | Delta-f G | $\log \mathbf{K} \mathbf{F}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | INFINITE | -8.467 | 0 | 0 | 0 |
| 100 | 28.154 | 100.727 | 155.408 | -5.468 | 0 | 0 | 0 |
| 200 | 27.447 | 119.412 | 133.284 | -2.774 | 0 | 0 | 0 |
| 250 | 28.344 | 125.64 | 131.152 | -1.378 | 0 | 0 | 0 |
| 298.15 | 28.836 | 130.68 | 130.68 | 0 | 0 | 0 | 0 |
| 300 | 28.849 | 130.858 | 130.68 | 0.053 | 0 | 0 | 0 |
| 350 | 29.081 | 135.325 | 131.032 | 1.502 | 0 | 0 | 0 |
| 400 | 29.181 | 139.216 | 131.817 | 2.959 | 0 | 0 | 0 |
| 450 | 29.229 | 142.656 | 132.834 | 4.42 | 0 | 0 | 0 |
| 500 | 29.26 | 145.737 | 133.973 | 5.882 | 0 | 0 | 0 |
| 600 | 29.327 | 151.077 | 136.392 | 8.811 | 0 | 0 | 0 |
| 700 | 29.441 | 155.606 | 138.822 | 11.749 | 0 | 0 | 0 |
| 800 | 29.624 | 159.548 | 141.171 | 14.702 | 0 | 0 | 0 |
| 900 | 29.881 | 163.051 | 143.411 | 17.676 | 0 | 0 | 0 |
| 1000 | 30.205 | 166.216 | 145.536 | 20.68 | 0 | 0 | 0 |
| 1100 | 30.581 | 169.112 | 147.549 | 23.719 | 0 | 0 | 0 |
| 1200 | 30.992 | 171.79 | 149.459 | 26.797 | 0 | 0 | 0 |
| 1300 | 31.423 | 174.288 | 151.274 | 29.918 | 0 | 0 | 0 |
| 1400 | 31.861 | 176.633 | 153.003 | 33.082 | 0 | 0 | 0 |
| 1500 | 32.298 | 178.846 | 154.652 | 36.29 | 0 | 0 | 0 |
| 1600 | 32.725 | 180.944 | 156.231 | 39.541 | 0 | 0 | 0 |
| 1700 | 33.139 | 182.94 | 157.743 | 42.835 | 0 | 0 | 0 |
| 1800 | 33.537 | 184.846 | 159.197 | 46.169 | 0 | 0 | 0 |
| 1900 | 33.917 | 186.669 | 160.595 | 49.541 | 0 | 0 | 0 |
| 2000 | 34.28 | 188.418 | 161.943 | 52.951 | 0 | 0 | 0 |
| 2100 | 34.624 | 190.099 | 163.244 | 56.397 | 0 | 0 | 0 |
| 2200 | 34.952 | 191.718 | 164.501 | 59.876 | 0 | 0 | 0 |
| 2300 | 35.263 | 193.278 | 165.719 | 63.387 | 0 | 0 | 0 |
| 2400 | 35.559 | 194.785 | 166.899 | 66.928 | 0 | 0 | 0 |
| 2500 | 35.842 | 196.243 | 168.044 | 70.498 | 0 | 0 | 0 |
| 2600 | 36.111 | 197.654 | 169.155 | 74.096 | 0 | 0 | 0 |
| 2700 | 36.37 | 199.021 | 170.236 | 77.72 | 0 | 0 | 0 |
| 2800 | 36.618 | 200.349 | 171.288 | 81.369 | 0 | 0 | 0 |
| 2900 | 36.856 | 201.638 | 172.313 | 85.043 | 0 | 0 | 0 |
| 3000 | 37.087 | 202.891 | 173.311 | 88.74 | 0 | 0 | 0 |
| 3100 | 37.311 | 204.111 | 174.285 | 92.46 | 0 | 0 | 0 |
| 3200 | 37.528 | 205.299 | 175.236 | 96.202 | 0 | 0 | 0 |
| 3300 | 37.74 | 206.457 | 176.164 | 99.966 | 0 | 0 | 0 |
| 3400 | 37.946 | 207.587 | 177.072 | 103.75 | 0 | 0 | 0 |
| 3500 | 38.149 | 208.69 | 177.96 | 107.555 | 0 | 0 | 0 |
| 3600 | 38.348 | 209.767 | 178.828 | 111.38 | 0 | 0 | 0 |
| 3700 | 38.544 | 210.821 | 179.679 | 115.224 | 0 | 0 | 0 |
| 3800 | 38.738 | 211.851 | 180.512 | 119.089 | 0 | 0 | 0 |
| 3900 | 38.928 | 212.86 | 181.328 | 122.972 | 0 | 0 | 0 |
| 4000 | 39.116 | 213.848 | 182.129 | 126.874 | 0 | 0 | 0 |
| 4100 | 39.301 | 214.816 | 182.915 | 130.795 | 0 | 0 | 0 |
| 4200 | 39.484 | 215.765 | 183.686 | 134.734 | 0 | 0 | 0 |
| 4300 | 39.665 | 216.696 | 184.442 | 138.692 | 0 | 0 | 0 |
| 4400 | 39.842 | 217.61 | 185.186 | 142.667 | 0 | 0 | 0 |
| 4500 | 40.017 | 218.508 | 185.916 | 146.66 | 0 | 0 | 0 |
| 4600 | 40.188 | 219.389 | 186.635 | 150.67 | 0 | 0 | 0 |
| 4700 | 40.355 | 220.255 | 187.341 | 154.698 | 0 | 0 | 0 |
| 4800 | 40.518 | 221.106 | 188.035 | 158.741 | 0 | 0 | 0 |
| 4900 | 40.676 | 221.943 | 188.719 | 162.801 | 0 | 0 | 0 |
| 5000 | 40.829 | 222.767 | 189.392 | 166.876 | 0 | 0 | 0 |
| 5100 | 40.976 | 223.577 | 190.054 | 170.967 | 0 | 0 | 0 |
| 5200 | 41.117 | 224.374 | 190.706 | 175.071 | 0 | 0 | 0 |
| 5300 | 41.252 | 225.158 | 191.349 | 179.19 | 0 | 0 | 0 |
| 5400 | 41.379 | 225.931 | 191.982 | 183.322 | 0 | 0 | 0 |
| 5500 | 41.498 | 226.691 | 192.606 | 187.465 | 0 | 0 | 0 |
| 5600 | 41.609 | 227.44 | 193.222 | 191.621 | 0 | 0 | 0 |
| 5700 | 41.712 | 228.177 | 193.829 | 195.787 | 0 | 0 | 0 |
| 5800 | 41.806 | 228.903 | 194.427 | 199.963 | 0 | 0 | 0 |
| 5900 | 41.89 | 229.619 | 195.017 | 204.148 | 0 | 0 | 0 |
| 6000 | 41.965 | 230.323 | 195.6 | 208.341 | 0 | 0 | 0 |

D.5) Water (H2O) (gas)

| T(K) | Cp | 5 | -[G-H(Tr)]/T | $\mathrm{H}-\mathrm{H}\left(\mathrm{Tr}_{\mathbf{r}}\right)$ | delta-f H | Delta-f G | $\log$ Kf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | INFINITE | -9.904 | -238.921 | -238.921 | INFINITE |
| 100 | 33.299 | 152.388 | 218.534 | -6.615 | -240.083 | -236.584 | 123.579 |
| 200 | 33.349 | 175.485 | 191.896 | -3.282 | -240.9 | -232.766 | 60.792 |
| 298.15 | 33.59 | 188.834 | 188.834 | 0 | -241.826 | -228.582 | 40.047 |
| 300 | 33.596 | 189.042 | 188.835 | 0.062 | -241.844 | -228.5 | 39.785 |
| 400 | 34.262 | 198.788 | 190.159 | 3.452 | -242.846 | -223.901 | 29.238 |
| 500 | 35.226 | 206.534 | 192.685 | 6.925 | -243.826 | -219.051 | 22.884 |
| 600 | 36.325 | 213.052 | 195.55 | 10.501 | -244.758 | -214.007 | 18.631 |
| 700 | 37.495 | 218.739 | 198.465 | 14.192 | -245.632 | -208.812 | 15.582 |
| 800 | 38.721 | 223.825 | 201.322 | 18.002 | -246.443 | -203.496 | 13.287 |
| 900 | 39.987 | 228.459 | 204.084 | 21.938 | -247.185 | -198.083 | 11.496 |
| 1000 | 41.268 | 232.738 | 206.738 | 26 | -247.857 | -192.59 | 10.06 |
| 1100 | 42.536 | 236.731 | 209.285 | 30.191 | -248.46 | -187.033 | 8.881 |
| 1200 | 43.768 | 240.485 | 211.73 | 34.506 | -248.997 | -181.425 | 7.897 |
| 1300 | 44.945 | 244.035 | 214.08 | 38.942 | -249.473 | -175.774 | 7.063 |
| 1400 | 46.054 | 247.407 | 216.341 | 43.493 | -249.894 | -170.089 | 6.346 |
| 1500 | 47.09 | 250.62 | 218.52 | 48.151 | -250.265 | -164.376 | 5.724 |
| 1600 | 48.05 | 253.69 | 220.623 | 52.908 | -250.592 | -158.639 | 5.179 |
| 1700 | 48.935 | 256.63 | 222.655 | 57.758 | -250.881 | -152.883 | 4.698 |
| 1800 | 49.749 | 259.451 | 224.621 | 62.693 | -251.138 | -147.111 | 4.269 |
| 1900 | 50.496 | 262.161 | 226.526 | 67.706 | -251.368 | -141.325 | 3.885 |
| 2000 | 51.18 | 264.769 | 228.374 | 72.79 | -251.575 | -135.528 | 3.54 |
| 2100 | 51.823 | 267.282 | 230.167 | 77.941 | -251.762 | -129.721 | 3.227 |
| 2200 | 52.408 | 269.706 | 231.909 | 83.153 | -251.934 | -123.905 | 2.942 |
| 2300 | 52.947 | 272.048 | 233.604 | 88.421 | -252.092 | -118.082 | 2.682 |
| 2400 | 53.444 | 274.312 | 235.253 | 93.741 | -252.239 | -112.252 | 2.443 |
| 2500 | 53.904 | 276.503 | 236.86 | 99.108 | -252.379 | -106.416 | 2.223 |
| 2600 | 54.329 | 278.625 | 238.425 | 104.52 | -252.513 | -100.575 | 2.021 |
| 2700 | 54.723 | 280.683 | 239.952 | 109.973 | -252.643 | -94.729 | 1.833 |
| 2800 | 55.089 | 282.68 | 241.443 | 115.464 | -252.771 | -88.878 | 1.658 |
| 2900 | 55.43 | 284.619 | 242.899 | 120.99 | -252.897 | -83.023 | 1.495 |
| 3000 | 55.748 | 286.504 | 244.321 | 126.549 | -253.024 | -77.163 | 1.344 |
| 3100 | 56.044 | 288.337 | 245.711 | 132.139 | -253.152 | -71.298 | 1.201 |
| 3200 | 56.323 | 290.12 | 247.071 | 137.757 | -253.282 | -65.43 | 1.068 |
| 3300 | 56.583 | 291.858 | 248.402 | 143.403 | -253.416 | -59.558 | 0.943 |
| 3400 | 56.828 | 293.55 | 249.705 | 149.073 | -253.553 | -53.681 | 0.825 |
| 3500 | 57.058 | 295.201 | 250.982 | 154.768 | -253.696 | -47.801 | 0.713 |
| 3600 | 57.276 | 296.812 | 252.233 | 160.485 | -253.844 | -41.916 | 0.608 |
| 3700 | 57.48 | 298.384 | 253.459 | 166.222 | -253.997 | -36.027 | 0.509 |
| 3800 | 57.675 | 299.919 | 254.661 | 171.98 | -254.158 | -30.133 | 0.414 |
| 3900 | 57.859 | 301.42 | 255.841 | 177.757 | -254.326 | -24.236 | 0.325 |
| 4000 | 58.033 | 302.887 | 256.999 | 183.552 | -254.501 | -18.334 | 0.239 |
| 4100 | 58.199 | 304.322 | 258.136 | 189.363 | -254.684 | -12.427 | 0.158 |
| 4200 | 58.357 | 305.726 | 259.252 | 195.191 | -254.876 | -6.516 | 0.081 |
| 4300 | 58.507 | 307.101 | 260.349 | 201.034 | -255.078 | -0.6 | 0.007 |
| 4400 | 58.65 | 308.448 | 261.427 | 206.892 | -255.288 | 5.32 | -0.063 |
| 4500 | 58.787 | 309.767 | 262.486 | 212.764 | -255.508 | 11.245 | -0.131 |
| 4600 | 58.918 | 311.061 | 263.528 | 218.65 | -255.738 | 17.175 | -0.195 |
| 4700 | 59.044 | 312.329 | 264.553 | 224.548 | -255.978 | 23.111 | -0.257 |
| 4800 | 59.164 | 313.574 | 265.562 | 230.458 | -256.229 | 29.052 | -0.316 |
| 4900 | 59.275 | 314.795 | 266.554 | 236.38 | -256.491 | 34.998 | -0.373 |
| 5000 | 59.39 | 315.993 | 267.531 | 242.313 | -256.763 | 40.949 | -0.428 |
| 5100 | 59.509 | 317.171 | 268.493 | 248.258 | -257.046 | 46.906 | -0.48 |
| 5200 | 59.628 | 318.327 | 269.44 | 254.215 | -257.338 | 52.869 | -0.531 |
| 5300 | 59.746 | 319.464 | 270.373 | 260.184 | -257.639 | 58.838 | -0.58 |
| 5400 | 59.864 | 320.582 | 271.293 | 266.164 | -257.95 | 64.811 | -0.627 |
| 5500 | 59.982 | 321.682 | 272.199 | 272.157 | -258.268 | 70.791 | -0.672 |
| 5600 | 60.1 | 322.764 | 273.092 | 278.161 | -258.595 | 76.777 | -0.716 |
| 5700 | 60.218 | 323.828 | 273.973 | 284.177 | -258.93 | 82.769 | -0.758 |
| 5800 | 60.335 | 324.877 | 274.841 | 290.204 | -259.272 | 88.767 | -0.799 |
| 5900 | 60.453 | 325.909 | 275.698 | 296.244 | -259.621 | 94.77 | -0.839 |
| 6000 | 60.571 | 326.926 | 276.544 | 302.295 | -259.977 | 100.78 | -0.877 |

D.6) Hydroxyl (OH) (gas)

| T(K) | Cp | 5 | -[G-H(Tr)]/T | $\mathrm{H}-\mathrm{H}(\mathrm{Tr})$ | delta-f H | Delta-f G | $\log$ Kf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | INFINITE | -9.172 | 38.39 | 38.39 | INFINITE |
| 100 | 32.627 | 149.59 | 210.98 | -6.139 | 38.471 | 37.214 | -19.438 |
| 200 | 30.777 | 171.592 | 186.471 | -2.976 | 38.832 | 35.803 | -9.351 |
| 250 | 30.283 | 178.402 | 184.204 | -1.45 | 38.93 | 35.033 | -7.32 |
| 298.15 | 29.986 | 183.708 | 183.708 | 0 | 38.987 | 34.277 | -6.005 |
| 300 | 29.977 | 183.894 | 183.709 | 0.055 | 38.988 | 34.248 | -5.963 |
| 350 | 29.78 | 188.499 | 184.073 | 1.549 | 39.019 | 33.455 | -4.993 |
| 400 | 29.65 | 192.466 | 184.88 | 3.035 | 39.029 | 32.66 | -4.265 |
| 450 | 29.567 | 195.954 | 185.921 | 4.515 | 39.02 | 31.864 | -3.699 |
| 500 | 29.521 | 199.066 | 187.082 | 5.992 | 38.995 | 31.07 | -3.246 |
| 600 | 29.527 | 204.447 | 189.542 | 8.943 | 38.902 | 29.493 | -2.568 |
| 700 | 29.663 | 209.007 | 192.005 | 11.902 | 38.764 | 27.935 | -2.085 |
| 800 | 29.917 | 212.983 | 194.384 | 14.88 | 38.598 | 26.399 | -1.724 |
| 900 | 30.264 | 216.526 | 196.651 | 17.888 | 38.416 | 24.884 | -1.444 |
| 1000 | 30.676 | 219.736 | 198.801 | 20.935 | 38.23 | 23.391 | -1.222 |
| 1100 | 31.124 | 222.68 | 200.84 | 24.024 | 38.046 | 21.916 | -1.041 |
| 1200 | 31.586 | 225.408 | 202.775 | 27.16 | 37.867 | 20.458 | -0.891 |
| 1300 | 32.046 | 227.955 | 204.615 | 30.342 | 37.697 | 19.014 | -0.764 |
| 1400 | 32.492 | 230.346 | 206.368 | 33.569 | 37.535 | 17.583 | -0.656 |
| 1500 | 32.917 | 232.602 | 208.043 | 36.839 | 37.381 | 16.163 | -0.563 |
| 1600 | 33.319 | 234.74 | 209.645 | 40.151 | 37.234 | 14.753 | -0.482 |
| 1700 | 33.694 | 236.771 | 211.182 | 43.502 | 37.093 | 13.352 | -0.41 |
| 1800 | 34.044 | 238.707 | 212.657 | 46.889 | 36.955 | 11.96 | -0.347 |
| 1900 | 34.369 | 240.557 | 214.078 | 50.31 | 36.819 | 10.575 | -0.291 |
| 2000 | 34.67 | 242.327 | 215.446 | 53.762 | 36.685 | 9.197 | -0.24 |
| 2100 | 34.95 | 244.026 | 216.767 | 57.243 | 36.551 | 7.826 | -0.195 |
| 2200 | 35.209 | 245.658 | 218.043 | 60.752 | 36.416 | 6.462 | -0.153 |
| 2300 | 35.449 | 247.228 | 219.278 | 64.285 | 36.278 | 5.103 | -0.116 |
| 2400 | 35.673 | 248.741 | 220.474 | 67.841 | 36.137 | 3.75 | -0.082 |
| 2500 | 35.881 | 250.202 | 221.635 | 71.419 | 35.992 | 2.404 | -0.05 |
| 2600 | 36.075 | 251.613 | 222.761 | 75.017 | 35.843 | 1.063 | -0.021 |
| 2700 | 36.256 | 252.978 | 223.855 | 78.633 | 35.689 | -0.271 | 0.005 |
| 2800 | 36.426 | 254.3 | 224.918 | 82.267 | 35.53 | -1.6 | 0.03 |
| 2900 | 36.586 | 255.581 | 225.954 | 85.918 | 35.365 | -2.924 | 0.053 |
| 3000 | 36.736 | 256.824 | 226.962 | 89.584 | 35.194 | -4.241 | 0.074 |
| 3100 | 36.878 | 258.031 | 227.945 | 93.265 | 35.017 | -5.552 | 0.094 |
| 3200 | 37.013 | 259.203 | 228.904 | 96.96 | 34.834 | -6.858 | 0.112 |
| 3300 | 37.14 | 260.344 | 229.839 | 100.667 | 34.644 | -8.158 | 0.129 |
| 3400 | 37.261 | 261.455 | 230.753 | 104.387 | 34.448 | -9.452 | 0.145 |
| 3500 | 37.376 | 262.537 | 231.645 | 108.119 | 34.246 | -10.741 | 0.16 |
| 3600 | 37.486 | 263.591 | 232.518 | 111.863 | 34.037 | -12.023 | 0.174 |
| 3700 | 37.592 | 264.62 | 233.372 | 115.617 | 33.821 | -13.3 | 0.188 |
| 3800 | 37.693 | 265.624 | 234.208 | 119.381 | 33.599 | -14.57 | 0.2 |
| 3900 | 37.791 | 266.604 | 235.026 | 123.155 | 33.371 | -15.834 | 0.212 |
| 4000 | 37.885 | 267.562 | 235.827 | 126.939 | 33.136 | -17.093 | 0.223 |
| 4100 | 37.976 | 268.499 | 236.613 | 130.732 | 32.894 | -18.346 | 0.234 |
| 4200 | 38.064 | 269.415 | 237.383 | 134.534 | 32.646 | -19.593 | 0.244 |
| 4300 | 38.15 | 270.311 | 238.138 | 138.345 | 32.391 | -20.833 | 0.253 |
| 4400 | 38.233 | 271.189 | 238.879 | 142.164 | 32.13 | -22.068 | 0.262 |
| 4500 | 38.315 | 272.05 | 239.607 | 145.991 | 31.862 | -23.297 | 0.27 |
| 4600 | 38.394 | 272.893 | 240.322 | 149.827 | 31.587 | -24.52 | 0.278 |
| 4700 | 38.472 | 273.719 | 241.023 | 153.67 | 31.305 | -25.737 | 0.286 |
| 4800 | 38.549 | 274.53 | 241.713 | 157.521 | 31.017 | -26.947 | 0.293 |
| 4900 | 38.625 | 275.326 | 242.391 | 161.38 | 30.722 | -28.152 | 0.3 |
| 5000 | 38.699 | 276.107 | 243.057 | 165.246 | 30.42 | -29.35 | 0.307 |
| 5100 | 38.773 | 276.874 | 243.713 | 169.12 | 30.111 | -30.542 | 0.313 |
| 5200 | 38.846 | 277.627 | 244.358 | 173.001 | 29.796 | -31.729 | 0.319 |
| 5300 | 38.919 | 278.368 | 244.993 | 176.889 | 29.473 | -32.909 | 0.324 |
| 5400 | 38.991 | 279.096 | 245.617 | 180.784 | 29.144 | -34.083 | 0.33 |
| 5500 | 39.062 | 279.812 | 246.233 | 184.687 | 28.807 | -35.251 | 0.335 |
| 5600 | 39.134 | 280.517 | 246.839 | 188.597 | 28.464 | -36.412 | 0.34 |
| 5700 | 39.206 | 281.21 | 247.436 | 192.514 | 28.113 | -37.568 | 0.344 |
| 5800 | 39.278 | 281.892 | 248.024 | 196.438 | 27.756 | -38.716 | 0.349 |
| 5900 | 39.35 | 282.564 | 248.604 | 200.369 | 27.391 | -39.86 | 0.353 |
| 6000 | 39.423 | 283.226 | 249.175 | 204.308 | 27.019 | -40.997 | 0.357 |

## Appendix E: Thermochemical Equilibrium Nozzle Design Code

```
%% 2D TCE Method of Characteristics
%% Code created by Michael Sandoval
close all; clear; clc; fclose('all');
%% Initial data CEA rocket problem in equilibrium
P_0c = 10; % [atm] Chamber pressure
ExitType = "AeAt"; % Exit type for CEA
A = 2.5; % Exit type entry for CEA
OF = 34.29623; % Mixture ratio
Ox = "Air"; % Oxidizer type
T_Ox = 600; % [K] Oxidizer temperature
Füel = "H2"; % Fuel type
T_F = 298.15; % {K] Fuel temperature
% Species being considered for TCE calculation
species = ["H", "H2", "H2O", "NO", "N2", "N", "O", "OH", "O2"];
% FUNCTION: CEA(Rkt) Problem
[CD, TD, ED, moles_Throat, caseNamesRkt, dataRkt] = ceaRkt(ExitType, A, OF,
P_0c, Ox, T_Ox, Fuel, T_F);
%% Data from CEA Rkt are the initial conditions to calculate MoC in CPG
% This data will be used as the first iteration for every point in the
flowfield
gamma = TD(12); % Throat gamma
M_e = ED(14); % Exit mach number
T\overline{C}}=\textrm{CD}(2); % [K] Chamber temperature
Pc = P_0c; % [atm] Chamber pressure
rc =C\overline{D}(3); % [kg/m^3] Chamber density
a_f = TD(13); % [m/s^2] Frozen speed of sound at throat
H_t = CD(4)*1000; % [J/kg] Total enthalpy (same everywhere)
Throat_Height = 0.0508; % [m] Throat radius
C_Lines = 10; % Number of characteristic lines
% FUNCTION: MoC_Analysis (CPG)
[Wall_Points, x, y, Theta_x, Mu_x, Nu_x, K_p, K_m, M_x, P_x, T_x, r_x, V_x] =
```



```
% FUNCTION: CEA(T,P) Problem
[n, x_data, moles_x, caseNamesTP] = ceaTP(T_x(1,1), P_x(1,1), species,
moles_Throat);
% Throat conditions
y_a = Throat_Height; % [m] Throat height
x_a = 0; % [m] Throat x coordinate
P_a = TD(1)*0.986923; % [Bar to atm] Throat pressure
r\overline{ho_a = TD(3); % [kg/m^3] Throat density}
V_a}= = TD(19); % [m/s] Throat velocity
Mū_a = 89; % [deg] Wave angle (not sure if this is a good
assumption)
Theta_a = 0; % [deg]
```

```
% Universial gas constant
R_u = 8314; % [J/kg*mol*k]
%% Point 2 iteration
k = 1; % Index for cells
iterations = 100; % Number of iterations
% Formating data for iterations
T = cell(1,1,iterations);
P = cell(1,1,iterations);
V = cell(1,1,iterations);
Mu = cell(1,1,iterations);
rho = cell(1,1,iterations);
h = cell(1,1,iterations);
Theta = cell(1,1,iterations);
moles = cell(1,1,iterations);
x_point = cell(1,1,iterations);
y_point = cell(1,1,iterations);
ratio_1 = cell(1,1,iterations);
ratio_2 = cell(1,1,iterations);
% First iteration initial conditions
P(1) = {P_x(1,2)};
T(1) = {T_x(1,1)};
V(1) = {V_x(1,1)};
Mu(1) = {Mu_x (1,1) };
rho(1) = {r_\overline{x}(1,1)};
h(1) = {x_data(4)*1000};
Theta(1) = {Theta_x(1,1)};
moles(1) = {moles_x};
x_point(1) = {0};
y_point(1) = {0};
while k < iterations+1
% Slopes for x and y equations
N_Slope = tand(0.5*(Theta{1,1,k} + Theta_a - Mu{1,1,k} - Mu_a));
P_Slope = tand(0.5*(Theta{1,1,k} + Theta_x(1,1) + Mu{1,1,k} + Mu_x(1,1)));
% Next iteration [x,y] coordinates for point 2
x_point{1,1,k+1} = (y_a - y(1,1) - x_a*N_Slope + x(1,1)*P_Slope)/(P_Slope
- N_Slope);
y_point{1,1,k+1} = y(1,1) + (x_point{1,1,k} - x(1,1))*P_Slope;
% Values for pressure equation
A1 = 0.5* ((rho{1,1,k}* (V{1,1,k}^2)*tand (Mu{1,1,k})) + (
r_x(1,1)*(V_x(1,1)^2)*tand(Mu_x(1,1))));
```



```
rho_a*(V_a^2)*tand (Mu_a)));
% Next iteration of pressure and theta for point 2
P{1,1,k+1} = (Theta_x(1,1) - Theta_a + (101325*P_x(1,1)/A1) +
(101325*P_a/AA))/((1/A1) + (1/AA));
Theta{1,1,k+1} = Theta_x(1,1) - ((P{1,1,k+1} - 101325*P_x(1,1))/A1);
```

```
% Prime values, linear interpolation of conditions between point a and point
1
x_prime = 0.5*(x (1,1)+x_a);
y_prime = y(1,1) + (x_prime - x(1,1))*((y_a - y(1,1))/(x_a - x(1,1)));
V_prime = V_x(1,1) + (x_prime - x(1,1))*((V_a - V_x(1,1))/(x_a - x(1,1))
);
rho_prime = r_x(1,1) + (x_prime - x(1,1))*((rho_a - r_x(1,1))/(x_a - x(1,1))
);
P_prime = 101325*(P_x(1,1) + (x_prime - x(1,1))*((P_a - P_x(1,1))/(x_a -
x(1,1))));
% Average velocity and density between point 2' and 2
V_avg = 0.5*(V{1,1,k} + V_prime);
rho_avg = 0.5*(rho{1,1,k} + rho_prime);
% Calculation of velocity at point 2
V{1,1,k+1} = V prime - ((P{1,1,k+1} - P_prime)/(V avg*rho_avg));
% V{1,1,k+1} =
% V{1,1,k+1} = sqrt(2*(H_t - h{1,1,k}));
% Velocity components and interpolated velocity for point 2'
v_2 = V{1,1,k+1}*sind(Theta{1,1,k+1});
v_1 = V_x(1,1)*sind(Theta_x(1,1));
v_a = V_a*sind(Theta_a);
v_p = v_1 + (x_prime-- x(1,1))*((v_a-v_1)/(x_a-x(1,1)));
u_2 = V{1,1,k+1}* cosd(Theta{1,1,k+1});
u_1 = V_x(1,1)*cosd(Theta_x(1,1));
u_a = V_a*cosd(Theta_a);
u_p = u_1 + (x_prime - x(1,1))*((u_a-u_1)/(x_a-x(1,1)));
% Average velocity between point 2' and 2
v2_avg = 0.5*(v_2 + v_p);
u2_avg = 0.5*(u_2 + u_p);
ratio_1{1,1,k} = v2_avg/u2_avg;
ratio_2{1,1,k} = (y_point{\overline{1},1,k} - y_prime)/(x_point{1,1,k}-x_prime);
% New data
Cp = x_data(11)*1000;
T{1,1,k+1} = T_x(1,1) + ((V_x(1,1)^2) - (V{1,1,k+1}^2))/(2*Cp);
rho{1,1,k+1} = (P{1,1,k+1}*x_data(8))/(R_u*T{1,1,k+1});
Mu{1,1,k+1} = asind(a_f/V{1,1,k+1});
P{1,1,k+1} = P{1,1,k+1}*9.86923e-6;
% [x_data, moles_x, caseNamesTP] = CeaTP(T{1,1,k+1}, P{1,1,k+1}, species,
moles_x{1,1,k});
%h{1,1,k+1} = x_data(4)*1000;
% rho{1,1,k+1} = x_data(3);
k = k + 1;
end
```

