

Prediction of Stress Using Machine
Learning for Aerospace Applications

a project presented to
The Faculty of the Department of Aerospace Engineering

San José State University

in partial fulfillment of the requirements for the degree
Master of Science in Aerospace Engineering

by

Nataliya Grigoryan

December 2022

approved by

Dr. Maria Chierichetti
Faculty Advisor

2

© 2022
Nataliya Grigoryan

ALL RIGHTS RESERVED

ABSTRACT

Prediction of Stress Using Machine Learning for Aerospace Applications

Nataliya Grigoryan

As machine learning is becoming omnipresent, applications in aerospace industry have
the potential to aid standard aircraft maintenance and reduce operating costs. Data driven
approaches allow for further additional utilization of past and present data within the industry. If
properly implemented, machine learning has the ability to significantly decrease computational
time and power when compared to traditional testing and FEA. Given input and output data from
equations of motion or Finite Element Analysis in Ansys, a supervised regression learning
approach is applied to several engineering systems. Systems included in the project are a spring
mass damper system, a static channel beam, and static wing with internal geometry and airfoil.
Linear regression, decision tree, random forest, and neural network algorithms are used for the
machine learning in MATLAB. Highest performing models among all cases explored are trained
with the random forest algorithm, with trained R2 values being larger than 0.99 for all cases.
Decision tree models have slightly lower R2 values compared to random forest models but show
milder overfitting. Linear regression was not ideal for any system as the models do not have
consistent performance among cases and tends to overfit or underfit data. Neural network models
show great potential but requires further study and fine tuning due to lack of consistency in
performance.

iv

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Dr. Maria Chierichetti for introducing me to
machine learning and her guidance throughout this project.

I am also grateful to my family and friends for their support.

v

Table of Contents

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES ... viii

LIST OF TABLES ... xiii

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Literature Review .. 1

1.3 Proposal ... 2

1.4 Methodology ... 2

2. Machine Learning Concepts ... 3

2.1 Introduction to Machine Learning ... 3

2.3 Brief History of Machine Learning ... 4

2.4 Assessing Quality of Algorithms .. 4

2.5 Linear Regression .. 5

2.6 Decision Trees ... 8

2.6.1 Random Forest .. 10

2.7 Neural Networks ... 11

3. Spring Mass Damper System .. 15

3.1 Problem Definition .. 15

3.2 Equations of Motion .. 15

3.3 Mathematical Modeling .. 17

3.4 Linear Regression Modeling ... 20

3.4.1 Training Model ... 20

3.4.2 Results .. 20

3.5 Decision Tree Modeling .. 26

3.5.1 Training Model ... 26

3.5.2 Results .. 27

3.6 Random Forest Modeling .. 31

3.6.1 Training Model ... 31

3.6.2 Results .. 31

3.7 Neural Network Modeling .. 39

vi

3.7.1 Training Model ... 39

3.7.2 Results .. 40

4. Static Analysis of Channel Beam ... 44

4.1 Problem Definition .. 44

4.2 Mathematical Modeling .. 47

4.3 Ansys Simulations ... 48

4.3.1 Point Load at Full Length ... 50

4.3.2 Point Load at ¾ Length .. 51

4.3.3 Point Load at ½ Length .. 52

4.3.4 Point Load at ¼ Length .. 54

4.3.5 Constant Distributed Load .. 55

4.3.6 Linear Distributed Pressure .. 57

4.3.7 Constant and Linear Distributed Pressure .. 58

4.3.8 Parabolic Distributed Pressure .. 60

4.2 Linear Regression Modeling ... 61

4.2.1 Training Model ... 61

4.2.2 Results .. 62

4.3 Decision Tree Modeling .. 65

4.3.1 Training Model ... 65

4.3.2 Results .. 65

4.4 Random Forest Modeling .. 69

4.4.1 Training Model ... 69

4.4.2 Results .. 69

4.5 Neural Network Modeling .. 72

4.5.1 Training Model ... 72

4.5.2 Results .. 73

5. Static Analysis of Wing Structure ... 79

5.1 Problem Definition .. 79

5.2 Ansys Simulations ... 82

5.3 Linear Regression Modeling ... 84

5.3.1 Training Model ... 84

5.3.2 Results .. 84

vii

5.4 Decision Tree Modeling .. 87

5.4.1 Training Model ... 87

5.4.2 Results .. 87

5.5 Random Forest Modeling .. 91

5.5.1 Training Model ... 91

5.5.2 Results .. 91

5.6 Neural Network Modeling .. 95

5.6.1 Training Model ... 95

5.6.2 Results .. 95

6. Conclusion .. 100

References ... 101

Appendix A – MATLAB Code for Three Degree Spring Mass Damper System 104

Appendix B – MATLAB Code for Static Channel Beam .. 120

Appendix C – MATLAB Code for Static Wing ... 125

viii

LIST OF FIGURES

Figure 2.1 – Linear fit for a given data set minimized by RSS [15]. .. 6
Figure 2.2 – PlayTennis decision tree representation [21]. .. 8
Figure 2.3 – Decision tree trained to predict miles per gallon of car. ... 9
Figure 2.4 – Random Forest trained to predict miles per gallon of car. 11
Figure 2.5 – Representation of the mathematical model for a neuron [24]. 12
Figure 2.6 – Neural network trained to predict miles per gallon of a car. 13
Figure 2.7 – Early-stopping point based on training and validation (test) sample errors [25]. 14
Figure 3.1 – Simple spring, damper, mass system. ... 15
Figure 3.2 – A three degree of freedom spring mass damper system with forcing functions. 15
Figure 3.3 – Free body diagram for mass 1. ... 16
Figure 3.4 – Free body diagram for mass 2. ... 16
Figure 3.5 – Free body diagram for mass 3. ... 17
Figure 3.6 – Displacement over time for all masses. .. 19
Figure 3.7 – Velocity over time for all masses. .. 19
Figure 3.8 – Acceleration over time for all masses. ... 20
Figure 3.9 – Training data vs model prediction for linear regression model trained with velocity
to predict acceleration of M1. ... 22
Figure 3.10 – Linear regression model trained with velocity to predict acceleration of M1. 22
Figure 3.11 – Enlarged view of linear regression model trained with velocity to predict
acceleration of M1. ... 23
Figure 3.12 – Training data vs model prediction for linear regression model trained with velocity
to predict displacement of M1. ... 24
Figure 3.13 – Training data vs model prediction for linear regression model trained with
acceleration to predict displacement of M3. ... 24
Figure 3.14 – Training data vs model prediction for linear regression model trained with
displacement to predict acceleration of M3. ... 25
Figure 3.15 – Linear regression model trained with displacement to predict acceleration of M3.
... 25
Figure 3.16 – Enlarged view of linear regression model trained with displacement to predict
acceleration of M3. ... 26
Figure 3.17 – Decision tree model trained with velocity to predict acceleration of M2. 28
Figure 3.19 – Enlarged view of decision tree model trained with displacement to predict
acceleration of M3. ... 29
Figure 3.20 – Training data vs model prediction for linear regression model trained with velocity
to predict acceleration of M2. ... 29
Figure 3.21 – Training data vs model prediction for linear regression model trained with
displacement to predict acceleration of M3. ... 30
Figure 3.22 – Decision tree model trained with displacement to predict acceleration of M3. 30
Figure 3.23 – Enlarged view of linear regression model trained with displacement to predict
acceleration of M3. ... 31
Figure 3.24 – Training data vs model prediction for linear regression model trained with
displacement to predict acceleration of M3. ... 33

ix

Figure 3.25 – Random forest model using the boosting method with 500 trees trained with
displacement to predict acceleration of M3. ... 34
Figure 3.26 – Training data vs model prediction for boosting random forest model trained with
velocity to predict acceleration of M2. ... 34
Figure 3.27 – Random forest model using the boosting method with 500 trees trained with
velocity to predict acceleration of M2. ... 35
Figure 3.28 – Enlarged view of random forest model using the boosting method with 500 trees
trained with velocity to predict acceleration of M2. ... 35
Figure 3.29 – Random forest model using the bagging method with 363 trees trained with
velocity to predict acceleration of M2. ... 37
Figure 3.30 – Enlarged view of random forest model using the bagging method with 363 trees
trained with velocity to predict acceleration of M2. ... 38
Figure 3.31 – Training data vs model prediction for bagging random forest model trained with
displacement to predict acceleration of M3. ... 38
Figure 3.32 – Enlarged view of bagging random forest model trained with displacement to
predict acceleration of M3. ... 39
Figure 3.33 – Diagram of neural network model created in MATLAB. 39
Figure 3.34 – Training data vs model prediction for neural network model trained with
acceleration to predict displacement of M1. ... 41
Figure 3.35 – Enlarged view of neural network model trained with acceleration to predict
displacement of M1. .. 42
Figure 3.36 – Enlarged view of neural network model trained with displacement to predict
acceleration of M1. ... 42
Figure 3.37 – Enlarged view of neural network model trained with displacement to predict
acceleration of M3. ... 43
Figure 4.1 – Dimensions of channel beam. ... 44
Figure 4.2 – Case 1: 100 N point load in the -y direction at free end, constant along x axis. 44
Figure 4.3 – Case 2: 100 N point load in the -y direction at three quarters length, constant along x
axis. ... 45
Figure 4.4 – Case 3: 100 N point load in the -y direction at half-length, constant along x axis. .. 45
Figure 4.5 – Case 4: 100 N point load in the -y direction at quarter length, constant along x axis.
... 45
Figure 4.6 – Case 5: Constant distributed load in the -y direction of 100 N/m from fixed end to
free end, constant along x axis. ... 46
Figure 4.7 – Case 6: Linear pressure in the -y direction varying along z axis from 100 Pa at fixed
end to 0 Pa at free end, constant along x axis. .. 46
Figure 4.8 – Case 7: Constant pressure in the -y direction of 100 Pa from fixed end to half-length
and linear pressure in the -y direction varying along z axis from 100 Pa at half-length to 0 Pa at
free end, constant along x axis. ... 46
Figure 4. 9 – Case 8: Parabolic pressure varying along z axis of 100 Pa at fixed end to 0 Pa at
free end, constant along x axis. ... 47
Figure 4.10 – Centroid and central axes of channel beam cross section. 47
Figure 4.11 – Geometry of beam in Ansys with coordinate system. .. 49

x

Figure 4.12 – Convergence history plot for beam with point load at full length. 50
Figure 4.13 – Stress (Pa) at fixed support of beam with point load at full length in Ansys. 51
Figure 4.14 – Convergence history plot for beam with point load at ¾ length. 52
Figure 4.15 – Stress (Pa) at fixed support of beam with point load at ¾ length in Ansys. 52
Figure 4.16 – Convergence history plot for beam with point load at ½ length. 53
Figure 4.17 – Stress (Pa) at fixed support of beam with point load at ½ length in Ansys. 54
Figure 4.18 – Convergence history plot for beam with point load at ¼ length. 55
Figure 4.19 – Stress (Pa) at fixed support of beam with point load at ¼ length in Ansys. 55
Figure 4.20 – Convergence history plot for beam with with constant distributed load. 56
Figure 4.21 – Stress (Pa) at fixed support of beam with constant distributed load in Ansys. 57
Figure 4.22 – Convergence history plot for beam with linear distributed pressure. 58
Figure 4.23 – Stress (Pa) at fixed support of beam with linear distributed pressure in Ansys. 58
Figure 4.24 – Convergence history plot for beam with constant and linear distributed pressure. 59
Figure 4.25 – Stress (Pa) at fixed support of beam with constant and linear distributed pressure in
Ansys. ... 60
Figure 4.26 – Convergence history plot for beam with parabolic distributed pressure. 61
Figure 4.27 – Stress (Pa) at fixed support of beam with parabolic distributed pressure in Ansys.
... 61
Figure 4.28 – Training data vs model prediction for linear regression model trained with
directional deformation to predict equivalent stress for beam with point load at full length. 63
Figure 4.29 – Linear regression model trained with directional deformation to predict equivalent
stress for beam with point load at full length. ... 63
Figure 4. 30– Training data vs model prediction for linear regression model trained with
directional deformation to predict equivalent stress for beam with linear pressure. 64
Figure 4.31 – Linear regression model trained with directional deformation to predict equivalent
stress for beam with constant and linear pressure. .. 65
Figure 4.32 – Training data vs model prediction for decision tree model trained with directional
deformation to predict equivalent stress for beam with a point load at ¼ length. 66
Figure 4.33 – Decision tree model trained with directional deformation to predict equivalent
stress for beam with a point load at ¼ length. .. 67
Figure 4.34 – Enlarged view of decision tree model trained with directional deformation to
predict equivalent stress for beam with a point load at ¼ length. ... 67
Figure 4.35 – Training data vs model prediction for decision tree model trained with directional
deformation to predict equivalent stress for beam with point load at ¾ length. 68
Figure 4.36 – Decision tree model trained with directional deformation to predict equivalent
stress for beam with point load at ¾ length. ... 69
Figure 4.37 – Enlarged view of decision tree model trained with directional deformation to
predict equivalent stress for beam with point load at ¾ length. ... 69
Figure 4.38 – Training data vs model prediction for random forest model trained with directional
deformation to predict equivalent stress for beam with point load at ¾ length. 70
Figure 4.39 – Training data vs model prediction for random forest model trained with directional
deformation to predict equivalent stress for beam with a point load at ¼ length. 71

xi

Figure 4.40 – Decision tree model trained with directional deformation to predict equivalent
stress for beam with a point load at ¼ length. .. 72
Figure 4.41 – Enlarged view of decision tree model trained with directional deformation to
predict equivalent stress for beam with point load at ¼ length. ... 72
Figure 4.42 – Training data vs model prediction for neural network model trained with
directional deformation to predict equivalent stress for beam with point load at full length. 74
Figure 4.43 – Neural network model trained with directional deformation to predict equivalent
stress for beam with point load at full length. ... 74
Figure 4.44 – Training data vs model prediction for neural network model trained with
directional deformation to predict equivalent stress for beam with point load at ¼ length. 75
Figure 4.45 – Neural network model trained with directional deformation to predict equivalent
stress for beam with point load at ¼ length. ... 75
Figure 4.46 – Training data vs model prediction for neural network model trained with
directional deformation to predict equivalent stress for beam with parabolic pressure. 76
Figure 4.47 – Neural network model trained with directional deformation to predict equivalent
stress for beam with parabolic pressure. ... 76
Figure 4.48 – Enlarged view of random forest model trained with directional deformation to
predict equivalent stress for beam with parabolic pressure. ... 77
Figure 4.49 – Neural network model trained with directional deformation to predict equivalent
stress for beam with linear pressure. ... 77
Figure 5.1 – Inner wing structure with two circular spars and a central I beam spar. 79
Figure 5.2 – Internal wing structure in xz plane. .. 80
Figure 5.3 – Wing structure geometry in xy plane with root and tip chords. 80
Figure 5.4 – Positions of spars along the ribs with respect to chord, shown on root rib. 80
Figure 5.5 – Dimensions of I beam on the root rib. .. 81
Figure 5.6 – Case 1: 10 N point load in the -y direction at tip (z=1.195 m), constant along x axis.
... 81
Figure 5.7 – Case 2: Constant distributed load in the -y direction of 10 N/m from root (z=0 m) to
tip (z=1.195 m), constant along x axis. ... 81
Figure 5.8 – Case 3: Linear pressure in the -y direction varying along z axis from 10 Pa at root
(z=0 m) to 0 Pa at tip (z=1.195 m), constant along x axis. ... 81
Figure 5.9 – Case 4: Constant pressure in the -y direction of 10 Pa from root (z=0 m) to half-
length and linear pressure in the -y direction varying along z axis from 10 Pa at half-length to 0
Pa at tip (z=1.195 m), constant along x axis. .. 82
Figure 5.10 – Case 5: Parabolic pressure varying along z axis of 10 Pa at root (z=0 m) to 0 Pa at
tip (z=1.195 m), constant along x axis. ... 82
Figure 5.11 – Case 6: Elliptical pressure varying along z axis of 10 Pa at root (z=0 m) to 0 Pa at
tip (z= 1.195 m), constant along x axis. .. 82
Figure 5.12 – Path on construction geometry from quarter chord on x axis of root rib (1) to
quarter chord on x axis of tip rib (2) along upper chamber on airfoil skin. 83
Figure 5.13 – Convergence history plot for wing with point load at full length. 84
Figure 5.14 – Training data vs model prediction for linear regression model trained with
directional deformation to predict equivalent stress for wing with point load at full length. 85

xii

Figure 5.15 – Linear regression model trained with directional deformation to predict equivalent
stress for wing with point load at full length. ... 86
Figure 5.16 – Training data vs model prediction for linear regression model trained with
directional deformation to predict equivalent stress for wing with linear pressure. 86
Figure 5.17 – Linear regression model trained with directional deformation to predict equivalent
stress for wing with linear pressure. ... 87
Figure 5.18 – Training data vs model prediction for decision tree model trained with directional
deformation to predict equivalent stress for wing with constant distributed load. 88
Figure 5.19 – Decision tree model trained with directional deformation to predict equivalent
stress for wing with constant distributed load. .. 89
Figure 5.20 – Enlarged view of decision tree model trained with directional deformation to
predict equivalent stress for wing with constant distributed load. .. 89
Figure 5.21– Training data vs model prediction for decision tree model trained with directional
deformation to predict equivalent stress for wing with constant and linear pressure. 90
Figure 5.22 – Decision tree model trained with directional deformation to predict equivalent
stress for wing with constant and linear pressure. .. 90
Figure 5.23 – Enlarged view of decision tree model trained with directional deformation to
predict equivalent stress for wing with constant and linear pressure. ... 91
Figure 5.24– Training data vs model prediction for random forest model trained with directional
deformation to predict equivalent stress for wing with constant distributed load. 92
Figure 5.25 – Training data vs model prediction for decision tree model trained with directional
deformation to predict equivalent stress for wing with constant and linear pressure. 93
Figure 5.26 – Random forest model trained with directional deformation to predict equivalent
stress for wing with constant distributed load. .. 93
Figure 5.27 – Enlarged view of random forest model trained with directional deformation to
predict equivalent stress for wing with constant distributed load. .. 94
Figure 5.28 – Random forest model trained with directional deformation to predict equivalent
stress for wing with constant and linear pressure. .. 94
Figure 5.29 – Enlarged view of random forest model trained with directional deformation to
predict equivalent stress for wing with constant and linear pressure. ... 95
Figure 5.30 – Training data vs model prediction for neural network model trained with
directional deformation to predict equivalent stress for wing with point load at full length. 96
Figure 5.31 – Neural network model trained with directional deformation to predict equivalent
stress for wing with point load at full length. ... 97
Figure 5.32 – Training data vs model prediction for neural network model trained with
directional deformation to predict equivalent stress for wing with linear pressure. 97
Figure 5.33 – Neural network model trained with directional deformation to predict equivalent
stress for wing with linear pressure. ... 98
Figure 5. 34 – Enlarged view of neural network model trained with directional deformation to
predict equivalent stress for wing with linear pressure. .. 98
Figure 5.35 – Neural network model trained with directional deformation to predict equivalent
stress for wing with elliptical pressure. ... 99

xiii

LIST OF TABLES

Table 3.1 – All combinations of predictor and response variables used for training linear
regression models, along with their respective R2 values. .. 20
Table 3.2 – All combinations of predictor and response variables used for training linear
regression models, sorted by ascending trained R2 values. .. 21
Table 3.3 – All combinations of predictor and response variables used for training decision tree
models, along with their respective R2 values. ... 27
Table 3.4 – All combinations of predictor and response variables used for training decision tree
models, sorted by ascending trained R2 values. .. 27
Table 3.5 – All combinations of predictor and response variables used for training random forest
models using boosting method with 500 trees, along with their respective R2 values. 32
Table 3.6– All combinations of predictor and response variables used for training random forest
models using boosting method with 500 trees, sorted by ascending trained R2 values. 32
Table 3.7 – All combinations of predictor and response variables used for training random forest
models using bagging method with 363 trees, along with their respective R2 values. 36
Table 3.8 – All combinations of predictor and response variables used for training random forest
models using bagging method with 363 trees, sorted by ascending trained R2 values. 36
Table 4.1 – Maximum analytical stress for each case simulated in Ansys. 48
Table 4.2 – Material properties for structural steel from Ansys. ... 49
Table 4.3 – Example of training data taken from Ansys for machine learning in MATLAB. 49
Table 4.4 – Convergence history for case with point load at full length. 50
Table 4.5 – Convergence history for case with point load at ¾ length. 51
Table 4.6 – Convergence history for case with point load at ½ length. 52
Table 4.7 – Convergence history for case with point load at ¼ length. 54
Table 4.8 – Convergence history for case with constant distributed load. 55
Table 4.9 – Convergence history for case with linear distributed pressure. 57
Table 4.10 – Convergence history for case with constant and linear distributed pressure. 58
Table 4.11 – Convergence history for case with parabolic distributed pressure. 60
Table 4.12 – All cases simulated in Ansys for a beam geometry using linear regression models,
along with their respective R2 values. ... 62
Table 4.13 – All cases simulated in Ansys for a beam geometry using linear regression models,
along with their respective R2 values, sorted by ascending trained R2 values. 62
Table 4.14– All cases simulated in Ansys for a beam geometry using decision tree models, along
with their respective R2 values. ... 65
Table 4.15 – All cases simulated in Ansys for a beam geometry using decision tree models,
along with their respective R2 values, sorted by ascending trained R2 values. 66
Table 4.16 – All cases simulated in Ansys for a beam geometry using random forest models,
along with their respective R2 values. ... 69
Table 4.17 – All cases simulated in Ansys for a beam geometry using random forest models,
along with their respective R2 values, sorted by ascending trained R2 values. 70
Table 4.18 – All cases simulated in Ansys for a beam geometry using neural network models,
along with their respective R2 values. ... 73

xiv

Table 4.19 – All cases simulated in Ansys for a beam geometry using neural network models,
along with their respective R2 values, sorted by ascending trained R2 values. 73
Table 5.1 – Specifications of ribs in wing structure geometry. .. 79
Table 5.2 – Convergence history for wing with point load at full length. 83
Table 5.3 – All cases simulated in Ansys for a wing geometry using linear regression models,
along with their respective R2 values. ... 84
Table 5.4 – All cases simulated in Ansys for a wing geometry using linear regression models,
along with their respective R2 values, sorted by ascending trained R2 values. 84
Table 5.5 – All cases simulated in Ansys for a wing geometry using decision tree models, along
with their respective R2 values. ... 87
Table 5.6 – All cases simulated in Ansys for a wing geometry using decision tree models, along
with their respective R2 values, sorted by ascending trained R2 values. 87
Table 5.7 – All cases simulated in Ansys for a wing geometry using random forest models, along
with their respective R2 values. ... 91
Table 5.8 – All cases simulated in Ansys for a wing geometry using random forest models,
along with their respective R2 values, sorted by ascending trained R2 values. 92
Table 5.9 – All cases simulated in Ansys for a wing geometry using neural network models,
along with their respective R2 values. ... 95
Table 5.10 – All cases simulated in Ansys for a wing geometry using neural network models,
along with their respective R2 values, sorted by ascending trained R2 values. 96

1

1. Introduction
1.1 Motivation

The aviation industry has been striving to reduce operating costs as the demand for air
travel continues to rise. Maintenance of aircraft is a crucial aspect of airworthiness and is
generally a very conservative process. Globally in 2018, maintenance, repair, and overhaul
accounted for about 10% of total annual operational costs of airlines [1]. Structural health
monitoring (SHM) has gained popularity as airline operators are actively driving its integration
in traditional maintenance procedures. Programs have introduced adaptations of SMH by
utilizing comparative vacuum monitoring sensors, which present challenges during preparation
and installation [2]. Finite element modeling has also been widely used for analyzing complex
systems, though it requires high computational power and time. Studies have demonstrated the
ability for machine learning techniques to accurately surrogate traditional Finite Element
Analysis (FEA), while also drastically reducing computational time [3]. If in-flight data, along
with finite element models, can provide sufficient data to train machine learning algorithms
further FEA would not be necessary. Traditionally, during certification, extensive testing is
conducted on wing loads to certify the design and airworthiness. Machine learning algorithms
could provide much more data and insight on the structural behavior of the wing and transform
maintenance procedures and timelines.

1.2 Literature Review

Engineering reliance has begun to shift from academic knowledge to artificial
intelligence in the last several decades. Intelligent systems assist, and at times replace, human
capabilities including, but not limited to, learning, optimization, recognition, and classification
[4]. As part of artificial intelligence, machine learning is a study where computer algorithms are
trained using data without relying on human mediation. Machine learning assists in data
processing and allows for valuable analysis; familiar examples include search engines, spam
classification, and self-driving cars. Design optimization of turbine discs utilizing surrogate
models demonstrated a decrease in computational time and cost due to the decreased number of
FEA required [5]. The optimal design illustrated the feasibility and validity of the method for
shape optimization problems [5].Studies have demonstrated that trained algorithms can operate
without compromising accuracy [6][7]. Learning algorithms with co-training and self-training
approaches for planetary exploration rovers with terrain classification showed an error reduction
of close to 8% when compared to a supervised approach [8]. Collaborations with aerospace
manufacturers have presented approaches of using machine learning to assist engineers during
the design process that could lead to savings in time and resources [9].

Machine learning has many categories and types of algorithms. Supervised learning is a
data driven regression approach that involves training an algorithm with collected data to predict
an output. Data driven approaches for analyzing higher-order beams have shown to reflect results
found through previous analytical models while not requiring specific assumptions [10]. This
type of approach takes advantage of previously collected data and allows engineers to
significantly reduce time cost when bypassing traditional analysis methods. The amount of data
necessary for a data driven approach directly correlates to the accuracy of the results obtained
[10]. The necessity, along with the high computational cost, of FEA has driven the development
of approaches that combine FEA with machine learning. This combination approach used for

2

measuring delamination damage of composite materials “allows rapid non-destructive analysis
for the iterative design of composites, accelerating the development of novel delamination-
resistant materials” [11]. More complex machine learning algorithms, such as deep learning or
neural networks, can more accurately fit data than other regression models. Deep learning
models have shown to significantly reduce computational time, obtaining stress distribution in
one second compared to thirty minutes with traditional FEA [3]. The study developed a machine
learning surrogate for FEA capable of estimating stress distributions with an error of less than
0.5% when compared to FEA results [3]. Finite element mesh size reduction is also possible
through neural network approaches, specifically for analyzing stress concentration where errors
were found to be about 0.0012% [12]. Though these algorithms are powerful and accurate, there
are cases where the model lacks generalizability. Efforts to overcome this obstacle were shown
in a study that presented a physics-based approach for structural health monitoring, “which
involves the integration of domain knowledge into the learning process” [13]. Machine learning
has already begun to be integrated into aircraft fatigue stress predictions as focus is now shifting
towards automated data processing and analysis for large amounts of complicated data [14]. As it
is possible to recreate stress spectrums flight by flight with machine learning techniques, other
applications include detecting corrosion and damage through image processing techniques [14].

1.3 Proposal

The objective of this project is to design a program that utilizes machine learning
algorithms along with finite element analysis for the prediction of stress in aerospace systems. A
supervised regression learning approach, with known input and output data, will map input
variables to some continuous function. Data will be collected by modeling structural dynamics
with discretized equations of motion as well as FEA of a beam and wing geometry. Several types
of algorithms will be tested and analyzed to determine which is able to accurately predict
behavior of systems. With appropriate training, these algorithms will provide insightful analysis
at a lower computational complexity.

1.4 Methodology

A three degree of freedom system is used for initial modeling. Displacement, velocity,
and acceleration in the system are solved for and used to train the machine learning algorithm. A
simple linear regression model is used as a starting point to predict several outputs given various
combinations of inputs. The algorithm is trained with 80% of the data taken from the initial
system to better assess the prediction. The accuracy is observed by the R2 value when comparing
the model prediction to the given output. The R2 value will be compared for all combinations of
inputs and outputs to spot the weak points of the machine learning. It is expected that a linear
regression model will not be the most accurate due to the complexity of the system, therefore
other algorithms with nonlinear terms and greater complexity will be explored. Further analysis
will be done on other systems such as a cantilever beam system and a wing under various loads.
A similar approach will be taken by starting with a simple linear regression model followed by
more complex algorithms such as decision tree, random forest, and neural network.

3

2. Machine Learning Concepts

2.1 Introduction to Machine Learning

Machine learning is a relatively new field of study of algorithms programmed to
automatically learn and improve with experience. The development of this field is strongly tied
to artificial intelligence and information theory, as well as statistics, control theory,
neurobiology, etc. Algorithms have already been incorporated into everyday life and have the
potential to greatly benefit various applications. With the ability to recognizes relationships in
large databases, machine learning can provide valuable information in fields such as engineering
or medical for example. Its ability to perform without human interference aids in areas where
human knowledge does not reach. This also aids in dynamic problems with varying inputs and
outputs. Though this form of artificial intelligence does not yet compare to human intelligence, it
is still able to efficiently learn and perform certain tasks including predictions, classifications,
image processing, regression, etc.

Machine learning problems can typically be categorized as either unsupervised or
supervised [15]. Unsupervised learning only uses predictor data without a given response to
predict future responses, whereas supervised learning is given a set of response data. The
variables used to train supervised algorithms allow problems to also be classified as either
regression or classification. Regression problems use quantitative variables that hold numerical
value and create a relationship between variables by mapping predictor variables to some
continuous function. Classification on the other hand follows a more qualitative approach where
the predictor variables are mapped into discrete responses. For example, image processing is
considered an unsupervised classification problem as there is no response data for the algorithms
to use when learning. Image processing may also be supervised if there is human assistance.
When beginning to design an approach, it is crucial to assess the type of problem at hand and
properly categorize it. The focus of this paper is on the design of an algorithm for the prediction
of stress, therefore the main approach to be discussed is supervised regression.

Data sets, including given input and output values, are used to train models. Input values
are independent variables, that are also referred to as the predictors, whereas output values are
dependent. The output can also be considered as the response variable, as it is compared to the
function the model produces. To assess performance of an algorithm, data sets are split into two
subsets: training data and test data. Training data is used by the algorithm to learn and create a
fit. Once a fit is created, it is evaluated using the test subset.

 Linear regression models solve for an interpretable mathematical relationship, allowing
humans to understand the relationship. Decision trees and neural networks are considered black
box models since the relationship is created directly by the algorithm and does not clearly
present the prediction function. Black box models are used for complex problems with
incomprehensible relationships between variables. For an approximation of a mathematical
relationship, there are parameters associated with variables in model. Different parameters result

4

in different function approximations, each of which will have different errors based on the fit.
Models solve a minimization model to find the parameters that result in the best fit. An iterative
approach minimizes the square difference of the predicted values and the training data. This is
termed as cost function, also referred to as mean squared error, and will be discussed in more
detail in a further section.

2.3 Brief History of Machine Learning

Many previously developed concepts have built the foundation of machine learning. The
earliest form of linear regression can be dated to the publication by Adrien-Marie Legendre in
1805 on the method of least squares. The technique introduced a procedure for using data to fit
linear equations and was quickly recognized by mathematicians and physicists, such as Carl
Friedrich Gauss who used the method of least squares to calculate orbits of celestial bodies. An
additional approach was proposed for qualitative predictions in 1936 by Fisher, who proposed
linear discriminant analysis which is used in supervised classification problems. In the late
1980’s, spoken word recognition and autonomous vehicles were utilizing machine learning
[16,17]. Not soon after, further development of human and animal learning models advanced
algorithms and allowed for human performance of backgammon at the world champions [18,19].

The first definition of machine learning was given by Arthur Samuel in 1959 as the
following: “field of study that gives computers the ability to learn without being explicitly
programmed” [20]. Throughout the evolution of this field, many other definitions were
introduced and there is still debate on how to fitly define machine learning. A more recent
definition was given in Tom Mitchells Machine Learning textbook: “a computer program is said
to learn from experience E with respect to some task T and performance measure P, if its
performance at tasks in T, as measured by P, improves experience E” [21].

2.4 Assessing Quality of Algorithms

Machine learning encompasses many different algorithms that vary in accuracy
depending on the problem type, therefore assessing the quality of these algorithms is crucial.
There are several measures used to assess the performance and accuracy of algorithms such as
mean squared error, root mean squared error, and R2 (R squared). Mean squared error (MSE)
evaluates how close the prediction is when compared to the given training data. In mathematical
terms MSE is the mean of the square of the difference between the data (𝑦!) and the prediction
(𝑓$(𝑥!)).

𝑀𝑆𝐸 =

1
𝑛-.𝑦! − 𝑓$(𝑥!)0

"
#

!$%

 (2.1)

This measures the average of square of the residuals (distance from the data to the
predicted function). Lower MSE values correlate with higher accuracy in the algorithm. Root
mean square error (RMSE) is the root of MSE and returns values in the same unit as the data and
predictor values. Though there is no clear correlation between machine learning methods and

Commented [NG1]: Waibel, Lee 1989- programs learn to
recognize spoken words

Commented [NG2]: Pomerleau 1989- detect fraudulent use
of credit cards, drive autonomous vehicles on public
highways

Commented [NG3]: Models of human and animal learning,
develop relationship to learning algorithms(Laird 1986,
Anderson 1991, Qin 1992, Chi & Bassock 1989, Ahn &
Brewer 1993)

Commented [NG4]: Tesauro 1992 – games such as
backgammon at performance of human world champions

5

MSE, evaluating MSE for test data may demonstrate which method will result in a smaller MSE
[15].

Another common measure of error is R2, which is the percentage of variance between
predicted data and independent variables. It is calculated with the residual sum of squares (RSS),
variance of training and response data, and the total sum of squares (TSS), variance within the
training data.

 𝑅" = 1 −
𝑅𝑆𝑆
𝑇𝑆𝑆 (2.2)

Values of R2 range between zero and one, where greater values typically indicate a better
fit. Although providing insight on the how well the model fits training data, this alone does not
give the necessary grounds for determining the quality of the model. No model can achieve a R2
value of one, as this would require the model to accurately predict all variance within the training
data.

Plotting the training data with the model prediction provides a visual representation of the
model’s performance. In an ideal case, where the model predicts all variance, the training data
and model prediction will be equal. This would be represented in the plots as a positive linear
trend with a slope of one.

2.5 Linear Regression

One of the most common and simple algorithms in machine learning is linear regression.
This approach approximates a relationship between the predictor variables in vector 𝒙 and the
quantitative response vector	𝒚	 as a linear relationship. Most applications of linear regression are
for interpolation and the prediction of future responses. The estimated linear relationship also
allows to find responses for data sets not within the training set. In cases where more than one
predictor is estimated, the simple linear regression model is expanded to the multiple linear
regression model. Given p number of predictor variables, the multiple linear regression approach
estimates beta coefficients so that [15]:

 𝒚 = 𝛽& + 𝛽%𝒙𝟏 + 𝛽"𝒙𝟐 +⋯𝛽)𝒙𝒑 + 𝜖 (2.3)

Unknown parameters in Eq. (2.3) include slope coefficients (𝛽)) for each predictor, as well as
intercept 𝛽& and an unpredictable error function 𝜖. This approach provides an equation that
allows for a quantitative and analytical understanding of the relationship between variables.

Training data produces estimates of 𝛽$+, that model the slope coefficients, and 𝒚:,
prediction of 𝒚, so that [15]:

𝒚: = 𝛽$& + 𝛽$%𝒙𝟏 + 𝛽$"𝒙𝟐 +⋯+ 𝛽$+𝒙𝑷 (2.4)

Given that the model is not able to predict 𝜖, the results will inherently include some error if the
predictor function fits the data to the best of its ability. Coefficients are estimated using n
observation sets of x and y measurements as training data [15]:

6

;𝑥%%, 𝑥%", … 𝑥%+, 𝑦%>, ;𝑥"%, 𝑥"", … 𝑥"+, 𝑦">, … , ;𝑥#%, 𝑥#", … 𝑥#+, 𝑦#>

For a given prediction of 𝒚 based on an ith set of observations, the residual is calculated using
Eq. (2.5) [15]:

 𝑒! = 𝑦! − 𝑦@! (2.5)

The residual sum of squares (RSS), Eq. (2.6) expanded into Eq. (2.7), is minimized using the
least squares approach.

𝑅𝑆𝑆 = 𝑒%" + 𝑒"" +⋯+ 𝑒#"

(2.6)

 𝑅𝑆𝑆 =-(𝑦! − 𝑦@!)"

#

!$%

=-;𝑦! − 𝛽$& + 𝛽$%𝑥!% + 𝛽$"𝑥!" +⋯+ 𝛽$+𝑥!)>
"

#

!$%

 (2.7)

Figure 2.1 – Linear fit for a given data set minimized by RSS [15].

 In Fig. 2.1, the blue line represents the linear fit determined for the observations
represented as red dots. This allows to predict response values to specific points that are not
included in the given data, inside or outside the domain. The error for each observation,
represented as a grey line, is minimized through the residual sum of squares. The fit is influenced
by the amount of given data, as well as the distribution of the data.

The complexity of multivariable regression is most easily represented through matrix
algebra. The 𝛽 estimates are optimized by taking the first derivative of Eq. (2.7) with respect to
each estimated 𝛽 variable and set to zero. This results in a system of equations that can be
represented in matrices.

For example, given three sets of observations (𝑥%%, 𝑦%), (𝑥"%, 𝑦"), and (𝑥-%, 𝑦-) the
prediction will be:

𝒚: = 𝛽$& + 𝛽$%𝒙𝟏
 (2.8)

The residual sum of squares for this example:

7

 𝑅𝑆𝑆 =-(𝑦! − 𝑦@!)"
#

!$%

= (𝑦% − 𝑦@%)" + (𝑦" − 𝑦@")" + (𝑦- − 𝑦@-)" (2.9)

To optimize the estimate 𝛽$&, the following derivative is taken:

𝑑(𝑅𝑆𝑆)
𝑑;𝛽$&>

= 2(𝑦% − 𝑦@%)
𝑑(−𝑦@%)
𝑑;𝛽$&>

+ 2(𝑦" − 𝑦@")
𝑑(−𝑦@")
𝑑;𝛽$&>

+ 2(𝑦- − 𝑦@-)
𝑑(−𝑦@-)
𝑑;𝛽$&>

= 0 (2.10)

 −2;𝑦% − 𝛽$& − 𝛽$%𝑥%%> − 2;𝑦" − 𝛽$& − 𝛽$%𝑥"%> − 2;𝑦- − 𝛽$& − 𝛽$%𝑥-%> = 0 (2.11)

 −𝑦% + 𝛽$& + 𝛽$%𝑥%% − 𝑦" + 𝛽$& + 𝛽$%𝑥"% − 𝑦- + 𝛽$& + 𝛽$%𝑥-% = 0

(2.12)

 3𝛽$& + 𝛽$%(𝑥%% + 𝑥"% + 𝑥-%) = 𝑦% + 𝑦" + 𝑦-

(2.13)

Similarly estimate 𝛽$% is optimized:

𝑑(𝑅𝑆𝑆)
𝑑;𝛽$%>

= 2(𝑦% − 𝑦@%)
𝑑(−𝑦@%)
𝑑;𝛽$%>

+ 2(𝑦" − 𝑦@")
𝑑(−𝑦@")
𝑑;𝛽$%>

+ 2(𝑦- − 𝑦@-)
𝑑(−𝑦@-)
𝑑;𝛽$%>

= 0 (2.14)

 𝑑(𝑅𝑆𝑆)

𝑑;𝛽$%>
= −2(𝑦% − 𝑦@%)(𝑥%%) − 2(𝑦" − 𝑦@")(𝑥"%) − 2(𝑦- − 𝑦@-)(𝑥-%) = 0 (2.15)

−;𝑦% − 𝛽$& − 𝛽$%𝑥%%>(𝑥%%) − ;𝑦" − 𝛽$& − 𝛽$%𝑥"%>(𝑥"%) − ;𝑦- − 𝛽$& − 𝛽$%𝑥-%>(𝑥-%) = 0 (2.16)

 𝑥%%𝛽$& + 𝛽$%𝑥%%" + 𝑥"%𝛽$& + 𝛽$%𝑥"%" + 𝑥-%𝛽$& +	𝛽$%𝑥-%" = 𝑥%%𝑦% + 𝑥"%𝑦" + 𝑥-%𝑦- (2.17)

 (𝑥%% + 𝑥"% + 𝑥-%)𝛽$& + (𝑥%%" + 𝑥"%" +	𝑥-%")𝛽$% = 𝑥%%𝑦% + 𝑥"%𝑦" + 𝑥-%𝑦- (2.17)

The estimates 𝛽$& and 𝛽$% are simultaneously solved for through matrix algebra using Eqs. (2.13)
and (2.17):

E
3 𝑥%% + 𝑥"% + 𝑥-%

(𝑥%% + 𝑥"% + 𝑥-% 𝑥%%" + 𝑥"%" +	𝑥-%" F G
𝛽$&
𝛽$%H

= I
𝑦% + 𝑦" + 𝑦-

𝑥%%𝑦% + 𝑥"%𝑦" + 𝑥-%𝑦-J
 (2.17)

 From Eq. (2.17), the 𝛽$& and 𝛽$% coefficients are then substituted into Eq. (2.8) to
determine the prediction 𝒚:.

The simple implementation of this method and low complexity and interpretation of
results is advantageous. This has led it to be one of the more common models with many
available resources. However due to its simplicity, it is more than likely that this method will
oversimplify problems. The assumption of a linear relationship between predictor and response
variables may inaccurately model the complexity of most engineering applications. This model

8

also possesses sensitivity to outliers in data, required attention to the training data set to enhance
the response prediction.

2.6 Decision Trees

Regression and classification are fundamental methods for decision trees. Compared to the
previously discussed linear regression, decision trees are a much simpler non-parametric method
for the approximation of discrete-valued functions [21]. The representation of a decision tree is
intelligible and consists of a root node, branches, internal nodes, and terminal nodes [15]. A
common example of a classification decision tree structure is the PlayTennis concept (figure
2.2), which determines whether conditions are suitable for playing tennis.

Figure 2.2 – PlayTennis decision tree representation [21].

 In figure 2.2, the decision tree starts at the root node “Outlook” and branches out the
terminal nodes, or leaves, “Yes” and “No”. Internal node “Humidity” tests attribute values
“High” and “Normal” to classify down to a terminal node. Following the branches, a sunny day
with high humidity will not be suitable for playing tennis. Whereas an overcast or rainy day with
weak winds would be suitable.

 Regression trees follow a similar approach, but create splits based on predictor values. A
simple example predicts miles per gallon of a car from displacement (𝑥1), horsepower (𝑥2), and
weight (𝑥3) predictors [22]. A simple decision tree trained with 3 splits in MATLAB using the
“carsmall” sample data set is seen below [22].

Outlook

Sunny Overcast

Yes
Humidity Wind

Yes Yes No No

Rain

High Normal Strong Weak

9

Figure 2.3 – Decision tree trained to predict miles per gallon of car.

 In this example, the first split is taken at the root node based on the displacement of the
car. The two resulting branches then determine the miles per gallon of the car based on weight
and horsepower. This regression tree only produces four predictions which will likely not be a
suitable model and require more branches.

Decision trees are created by dividing a predictor space and assigning predictions to
observations that fall in specific regions. For example, a given set of values 𝑋%, 𝑋", … , 𝑋+ will be
divided into J separate regions 𝑅%, 𝑅", … , 𝑅+ [15]. For the regression tree example above, the
predictor values are used to create four regions which are the terminal nodes. Every value of 𝑥
that falls into region 𝑅. will have the same response. These regions are constructed as high
dimensional rectangles, and are optimized for the lowest RSS by [15]:

--(𝑦! − 𝑦@/!)
"

!∈/!

1

.$%

 (2.18)

However, a recursive binary splitting approach is used instead, as minimizing the RSS is
computationally infeasible [15]. This approach is considered a top-down, greedy approach that
creates partitions from the root node and selects the best splits at each step [15]. Consider a
splitting point 𝑠 in regions 𝑅% and 𝑅" that minimize RSS. The split at 𝑠 is for a predictor 𝑋.
denoted as [15]:

𝑅%(𝑗, 𝑠) = N𝑋O𝑋. < 𝑠Q	, 𝑅"(𝑗, 𝑠) = N𝑋O𝑋. ≥ 𝑠Q	 (2.19)

The following equation is minimizing to find values of 𝑗 and 𝑠, where 𝑦@/! is the mean
response for training observations in 𝑅.(𝑗, 𝑠) [15]:

- (𝑦! − 𝑦@/")
"

!:	4#∈/"(.,7)

+ - (𝑦! − 𝑦@/$)
"

!:	4#∈/$(.,7)

 (2.20)

𝑥1 < 153.5		 △ 		𝑥1 ≥ 153.5 	

𝑥3 < 2162	 △ 		𝑥3 ≥ 2162 	 𝑥2 < 116	 △ 		𝑥3 ≥ 116	

33.7353 	 27.5517	 20.8333	 14.6875	

10

 This process is repeated for every predictor variable each time a region is split until the
terminal nodes are reached. The response for the terminal nodes is determined by the mean of
training observations in each of the regions.

 The accuracy of each attribute is determined by entropy (Eq. (2.21)), which measures the
uncertainty of a collection of observations. Across K classes, the proportion of observations in
the 𝑚th region from the 𝑘th class (�̂�9:) are used to measure the purity of the 𝑚th node [15]:

𝐷 = −-�̂�9:𝑙𝑜𝑔�̂�9:

;

:$%

 (2.21)

 This is used during the decision tree process to determine the quality of a split. In an
undesirable case where all observations belong to one class (�̂�9: = 1), the entropy will be 0 and
not the training set would not be suitable for machine learning.

2.6.1 Random Forest

 Improving the performance of the decision tree method is done by creating a random
“forest” of multiple decision trees until reaching terminal nodes. Each tree in the forest will
randomly build new data sets to use as training data, which is known as bootstrapping. The
decreases the sensitivity to the data set, as every tree is trained with a different data set. The
algorithm only considers subsets of predictors at each split, resulting in more reliable and
consistent trees [15]. From a full set of 𝑝 predictors, a random sample of 𝑚 predictors is used as
split candidates [15]. At each split, new samples of 𝑚 predictors are taken where 𝑚 ≈ \𝑝.
Small values of 𝑚 are beneficial for bigger data sets and tend to reduce errors. The results from
each tree are averaged, which is termed aggregation. Bootstrapping along with aggregation is
referred to as bagging and is a general process for reducing variance in the model. Another
approach for improving predictions that can be applied to models is boosting. Unlike bagging,
where trees are built parallel to each other, boosting builds trees sequentially [15]. This increases
the complexity of the model, as well as the accuracy.

 Consider the example from the regression tree, where the model is trained to predict
miles per gallon of a car. A random forest model will consist of multiple regression trees built
and trained with random sets of data and predictors. This increases diversification among the
trees and decreases the dependency of the model to the data. An example of a random forest with
three regression trees is seen in the figure below.

11

Figure 2.4 – Random Forest trained to predict miles per gallon of car.

 Each individual tree in a random forest is built using the process discussed in the
previous section. This method was designed to prevent overfitting therefore the number of trees
used is determined on a trial-and-error basis [23]. Increasing the number of trees has shown to
have no effect on the performance of the model [23].

Decision trees and random forest methods may be used for both classification and
regression problems. Though random forests possess a higher computational time, they increase
prediction accuracy. The bagging process in random forests also prevents overfitting for complex
data sets. Preprocessing data is not necessary as null values and outliers have little effect on the
performance of the method.

2.7 Neural Networks

 As decision trees resemble trees, neural networks resemble the nature and behavior of the
human brain. This method was influenced by the basic neuroscience finding that networks of
neurons drive mental activity through electrochemical activity [24]. In machine learning, these
neurons process inputs through an activation function and are connected by links to form a
network.

Result 3

𝑥3 < 2127.5	 △ 		𝑥3 ≥ 2127.5

𝑥1 < 3117.5	 △ 		𝑥1 ≥ 3117.5

𝑥2 < 89	 △ 		𝑥2 ≥ 89 𝑥2 < 142.5	 △ 		𝑥3 ≥ 142.5

23.7667 18.9545 14

𝑥1 < 153.5		 △ 		𝑥1 ≥ 153.5

𝑥3 < 2162	 △ 		𝑥3 ≥ 2162 𝑥2 < 116	 △ 		𝑥3 ≥ 116

33.7353 27.5517 20.8333 14.6875

𝑥3 < 3085.5		 △ 		𝑥3 ≥ 3085.5

𝑥3 < 2162	 △ 		𝑥3 ≥ 2162 𝑥2 < 115	 △ 		𝑥3 ≥ 115

33.3056 26.8143 19.2857 14.42

33.1786 28.875

Result 1 Result 2

Average Final Result

Data

12

Figure 2.5 – Representation of the mathematical model for a neuron [24].

 Consider neuron 𝑖 linked to neuron 𝑗, and its respective activation 𝑎!. The strength of
each link is determined by its numeric weight 𝑤!,.. The weight sum of the inputs for neuron 𝑗 is
defined as [24]:

𝑖𝑛. =-𝑤!,.

#

!$&

𝑎! (2.22)

 The output is then obtained by the activation function [24]:

𝑎. = 𝑔(𝑖𝑛.) = 𝑔 `-𝑤!,.

#

!$&

𝑎!a (2.23)

 The activation function is typically either a hard threshold (binary step function) or a
logistic function (sigmoid function), both of which allow for the representation of nonlinear
functions [24]. Sigmoid functions typically work well with classifications problems.

Once the neurons are established, the connection between them is created. This network
consists of multiple neurons within multiple layers. An input layer at the beginning contains as
many neurons as there are predictors. The output layer typically contains one neuron, the number
of response variables. Between the input and output layers are hidden layers that are defined by
the user as well as the number of neurons in each hidden layer. The hidden layers are optimized
by reducing the error of the model. A representation of a neural network trained to predict miles
per gallon from displacement, horsepower, and weight predictors is seen below. The model has
three hidden layers with varying numbers of neurons.

Input
Links

Activation
Function

Output Input
Function

Output
Links

- 	

			!#!

	

𝑔
𝑎.

𝑎. = 𝑔(𝑖𝑛.)

𝑎!
𝑤!,.

𝑎& = 1
Bias Weight

𝑤&,.

13

Figure 2.6 – Neural network trained to predict miles per gallon of a car.

A feed forward network connects neurons in one direction, where a neuron receives an
input from previous neurons and delivers output to the following neurons [24]. In a recurrent
network, outputs of neurons are fed back into its own inputs, which is more fitting for modeling
the brain [24]. The number of times the data passed through a model is measured in epochs. This
value is typically determined on a trial-and-error basis and is dependent on the dataset and
model. It has been observed that as the number of epochs in a model increase, the test data set
error will rapidly decrease then begin to increase after some point. This can be seen in Fig. 2.7 as
the early-stopping point, which identifies the onset of overfitting [25]. The terms validation and
test are usually interchangeable for data sets or samples that are used on a trained model for
performance analysis. Low numbers of epochs correspond to an underfitted model, whereas
epoch numbers after the early-stopping point correspond with overfitted models.

Hidden Layers Output Layer Input Layer

MPG

Displacement

Horsepower

Weight

14

Figure 2.7 – Early-stopping point based on training and validation (test) sample errors [25].

Mean
Square
Error

Number of Epochs

Early-
stopping

point
Training-

sample error

Validation-
sample error

15

3. Spring Mass Damper System
 It is common to model various engineering problems with spring mass damper systems.
A simple system will include just one spring (𝑘), one mass (𝑚), and one damper (𝑐), resulting in
a single degree of freedom system.

Figure 3.1 – Simple spring, damper, mass system.

 However, many engineering problems possess multiple degree of freedoms and require a
more complex systems for modeling. A multiple degree of freedom system is used for an initial
exploration of machine learning algorithms. Equations of motion will obtain the displacement,
velocity, and acceleration of each mass, which will serve as the training data. Linear regression,
decision tree, random forest, and neural network algorithms will be trained to compare the
capability of each algorithm. Each algorithm will be trained using displacement, velocity, or
acceleration data of all masses for various cases to predict the displacement, velocity, or
acceleration of a single mass. Various predictions will be analyzed to explore the implications of
such a complex system and the accuracy of the algorithms.

3.1 Problem Definition

 Consider a forced three degree of freedom system, as seen in Fig. 3.2 below.

Figure 3.2 – A three degree of freedom spring mass damper system with forcing functions.

 The system is characterized by:

𝑚% = 5	𝑘𝑔 𝑚 = 1	𝑘𝑔 𝑚- = 3	𝑘𝑔

	𝑐% = 1	𝑁𝑠 𝑚e 𝑐" = 1	𝑁𝑠 𝑚e 𝑐- = 2	𝑁𝑠 𝑚e

𝑘% = 1	𝑁 𝑚e 𝑘" = 1	𝑁 𝑚e 𝑘- = 2	𝑁 𝑚e

𝐹% = 0.5	sin	(15𝑡) 𝐹" = 0.7	cos	(15𝑡) 𝐹- = 0.1	sin	(15𝑡)

3.2 Equations of Motion

 The stiffness, dampness, and mass matrices for solving the necessary variables are
derived from the free body diagrams of each mass.

𝑘		

𝑐		

𝑚		

𝐹%	𝑘%	 𝑘"	 𝑘-	

𝑐%	 𝑐"	 𝑐-	

𝑚%	 𝑚"	 𝑚-	

𝐹"	 𝐹-	

16

Newton’s second law (Eq. (3.1)) is applied to each mass to derive the equation of motion
for each mass.

 𝛴𝐹 = 𝑚�̈� (3.1)

The motion of the first mass is related to the spring and damper connected to the fixed
support as well as the spring and damper connected to the second mass. The free body diagram
represents the forces acting on the first mass.

Figure 3.3 – Free body diagram for mass 1.

 From the free body diagram in Fig. 3.3:

 𝛴𝐹 = −𝑘%𝑥%−𝑐%�̇�% + 𝑘"(𝑥" − 𝑥%) + 𝑐"(�̇�" − �̇�%) + 𝐹% = 𝑚%�̈�% (3.2)

 𝑚%�̈�% + 𝑘%𝑥%+𝑐%�̇�% − 𝑘"(𝑥" − 𝑥%) − 𝑐"(�̇�" − �̇�%) = 𝐹% (3.3)

 𝑚%�̈�% + 𝑘%𝑥%+𝑐%�̇�% − 𝑘"𝑥" + 𝑘"𝑥% − 𝑐"�̇�"+𝑐"�̇�% = 𝐹% (3.4)

 (𝑚%)�̈�% + (𝑐%+𝑐")�̇�% + (−𝑐")�̇�" + (𝑘"+𝑘%)𝑥% + (−𝑘")𝑥" = 𝐹% (3.5)

 The identical approach is used for the second and third masses.

Figure 3.4 – Free body diagram for mass 2.

 From the free body diagram in Fig. 3.4:

𝛴𝐹 = −𝑘"(𝑥" − 𝑥%) − 𝑐"(�̇�" − �̇�%) 	+ 𝑘-(𝑥- − 𝑥") + 𝑐-(�̇�- − �̇�") + 𝐹" = 𝑚"�̈�" (3.6)

𝑚"�̈�" + 𝑘"(𝑥" − 𝑥%) + 𝑐"(�̇�" − �̇�%) − 𝑘-(𝑥- − 𝑥") − 𝑐-(�̇�- − �̇�") = 𝐹" (3.7)

𝑚"�̈�" + 𝑘"𝑥" − 𝑘"𝑥% + 𝑐"�̇�" − 𝑐"�̇�% − 𝑘-𝑥- + 𝑘-𝑥" − 𝑐-�̇�- + 𝑐-�̇�" = 𝐹" (3.8)

(𝑚!)�̈�! + (−𝑐!)�̇�" + (𝑐! + 𝑐#)�̇�! + (−𝑐#)�̇�# + (−𝑘!)𝑥" + (𝑘! + 𝑘#)𝑥! + (−𝑘#)𝑥# = 𝐹! (3.9)

𝑚%	𝑘%𝑥%	
𝑐%�̇�%	

𝐹%	
𝑘"(𝑥" − 𝑥%)	
𝑐"(�̇�" − �̇�%)	

𝑚"	
𝐹"	
𝑘-(𝑥- − 𝑥")	
𝑐-(�̇�- − �̇�")	

𝑘"(𝑥" − 𝑥%)	
𝑐"(�̇�" − �̇�%)	

17

Figure 3.5 – Free body diagram for mass 3.

 From the free body diagram in Fig. 3.5:

 𝛴𝐹 = −𝑘-(𝑥- − 𝑥") − 𝑐-(�̇�- − �̇�") + 𝐹- = 𝑚-�̈�- (3.10)

 𝑚-�̈�- + 𝑘-(𝑥- − 𝑥") + 𝑐-(�̇�- − �̇�") = 𝐹- (3.11)

 𝑚-�̈�- + 𝑘-𝑥- − 𝑘-𝑥" + 𝑐-�̇�- − 𝑐-�̇�" = 𝐹- (3.12)

 (𝑚-)�̈�- + (−𝑐-)�̇�" + (𝑐-)�̇�- + (−𝑘-)𝑥" + (𝑘-)𝑥- = 𝐹- (3.13)

 The system of Eqs. (3.5), (3.9), and (3.13) may be written in matrix form:

r

𝑚% 0 0
0 𝑚" 0
0 0 𝑚-

s r

�̈�%
�̈�"
�̈�-
s + r

𝑐%+𝑐" −𝑐" 0
−𝑐" 𝑐" + 𝑐- −𝑐-
0 −𝑐- 𝑐-

s r

�̇�%
�̇�"
�̇�-
s + r

𝑘% + 𝑘" −𝑘" 0
−𝑘" 𝑘" + 𝑘- −𝑘-
0 −𝑘- 𝑘-

s r

𝑥%
𝑥"
𝑥-s

= r

𝐹%
𝐹"
𝐹-
s

(3.13)

The mass, damper, and spring matrices will be used to solve this system.

𝑀 = r

𝑚% 0 0
0 𝑚" 0
0 0 𝑚-

s
(3.14)

𝐶 = r

𝑐%+𝑐" −𝑐" 0
−𝑐" 𝑐" + 𝑐- −𝑐-
0 −𝑐- 𝑐-

s
(3.15)

𝐾 = r

𝑘% + 𝑘" −𝑘" 0
−𝑘" 𝑘" + 𝑘- −𝑘-
0 −𝑘- 𝑘-

s
(3.16)

3.3 Mathematical Modeling

Machine learning models are trained with observational data, which will in this case be
solved from Eq. (3.13). The second order differential equation is converted to state space form
resulting in two first order differential equations. New variables are introduced to reduce the
order of the differential equation. Consider:

𝑚-	
𝐹-	

𝑘-(𝑥- − 𝑥")	
𝑐-(�̇�- − �̇�")	

18

𝑦% = 𝑥% 𝑦< = �̇�%

𝑦" = 𝑥" 𝑦= = �̇�"

𝑦- = 𝑥- 𝑦> = �̇�-

The derivative of these equations will allow for Eq. (3.13) to be rewritten in terms of the
newly introduced variables.

�̇�% = �̇�% = 𝑦< �̇�< = �̈�%

�̇�" = �̇�" = 𝑦= �̇�= = �̈�"

�̇�- = �̇�- = 𝑦> �̇�> = �̈�-

 From Eq. (3.13):

𝑀 r

�̈�%
�̈�"
�̈�-
s = r

𝐹%
𝐹"
𝐹-
s − 𝐶 r

�̇�%
�̇�"
�̇�-
s − 𝐾 r

𝑥%
𝑥"
𝑥-s

 (3.17)

 Which can be rewritten as:

𝑀 r

�̇�<
�̇�=
�̇�>
s = r

𝐹%
𝐹"
𝐹-
s − 𝐶 r

𝑦<
𝑦=
𝑦>s

− 𝐾 r

𝑦%
𝑦"
𝑦-s

 (3.18)

ODE45 is used in MATLAB to solve Eq. 3. (see Appendix A), over a span of two
seconds in 0.001 intervals. All initial conditions were set to zero. The resulting displacement,
velocity, and acceleration are shown in the figures below for all masses. These data sets will be
split for each model; 80% used as training data and 20% as testing data. A separate function is
created in the code for the data splitting.

19

Figure 3.6 – Displacement over time for all masses.

Figure 3.7 – Velocity over time for all masses.

20

Figure 3.8 – Acceleration over time for all masses.

3.4 Linear Regression Modeling

3.4.1 Training Model

The linear regression model was trained in MATLAB using the “fitlm” function. QR
decomposition is the main fitting algorithm and equations are estimated through M-estimation
and solved using iteratively reweighted least squares [26]. Once the model is trained, it is
evaluated using the “feval” function in MATLAB.

Models were trained with either displacement, velocity, or acceleration of all three
masses to predict the kinematics of each single mass. Models were not trained with the same
kinematics it was predicting, for example using displacement to predict displacement of a mass.
A total of 18 models were trained for every combination of predictor and response variables.

3.4.2 Results

 Performance was evaluated for each model using R2 values.

Table 3.1 – All combinations of predictor and response variables used for training linear
regression models, along with their respective R2 values.

Predictor Response Trained R2 Tested R2
Acceleration Displacement of M1 0.2467 0.2945
Acceleration Displacement of M2 0.5418 0.522
Acceleration Displacement of M3 0.7871 0.7801
Acceleration Velocity of M1 0.2598 0.3209
Acceleration Velocity of M2 0.0215 0.0266
Acceleration Velocity of M3 0.0238 0.0446

21

Velocity Displacement of M1 0.6266 0.6453
Velocity Displacement of M2 0.1009 0.1179
Velocity Displacement of M3 0.1933 0.2141
Velocity Acceleration of M1 0.0172 0.0404
Velocity Acceleration of M2 0.0601 0.0825
Velocity Acceleration of M3 0.2963 0.3194

Displacement Velocity of M1 0.2473 0.2754
Displacement Velocity of M2 0.4346 0.3835
Displacement Velocity of M3 0.7441 0.7495
Displacement Acceleration of M1 0.2356 0.3154
Displacement Acceleration of M2 0.2741 0.2152
Displacement Acceleration of M3 0.9981 0.9981

Table 3.2 – All combinations of predictor and response variables used for training linear
regression models, sorted by ascending trained R2 values.

Predictor Response Trained R2 Tested R2
Velocity Acceleration of M1 0.0172 0.0404

Acceleration Velocity of M2 0.0215 0.0266
Acceleration Velocity of M3 0.0238 0.0446

Velocity Acceleration of M2 0.0601 0.0825
Velocity Displacement of M2 0.1009 0.1179
Velocity Displacement of M3 0.1933 0.2141

Displacement Acceleration of M1 0.2356 0.3154
Acceleration Displacement of M1 0.2467 0.2945
Displacement Velocity of M1 0.2473 0.2754
Acceleration Velocity of M1 0.2598 0.3209
Displacement Acceleration of M2 0.2741 0.2152

Velocity Acceleration of M3 0.2963 0.3194
Displacement Velocity of M2 0.4346 0.3835
Acceleration Displacement of M2 0.5418 0.522

Velocity Displacement of M1 0.6266 0.6453
Displacement Velocity of M3 0.7441 0.7495
Acceleration Displacement of M3 0.7871 0.7801
Displacement Acceleration of M3 0.9981 0.9981

 Models with R2 values higher than 0.6 will be considered high performance. It is first
observed that no one predictor type can accurately model the response kinematics, nor are the
kinematics of any one mass easily modeled. The models with the lowest R2 values use velocity
to predict acceleration and vice versa. The models using acceleration to predict the velocity of
M1 and velocity to predict the acceleration of M3 have slightly higher values of R2. The model
with the lowest R2 value, using velocity predictors to predict the acceleration of M1, is seen in
Fig. 3.10. The enlarged view in Fig 3.11 shows that the model can follow the general trend of the
data but not in the correct amplitude or frequency. The low correlation between the training data
and the model prediction, seen in Fig. 3.9, confirms the low performance of the model.

22

Figure 3.9 – Training data vs model prediction for linear regression model trained with velocity

to predict acceleration of M1.

Figure 3.10 – Linear regression model trained with velocity to predict acceleration of M1.

23

Figure 3.11 – Enlarged view of linear regression model trained with velocity to predict

acceleration of M1.

 Four models showed high performance and ability to model the data. Three of the
highest performing models predicted the kinematics of mass 3:

• Using displacement to predict the velocity of M3
• Using acceleration to predict the displacement of M3
• Using displacement to predict the acceleration of M3

The other predicting displacement of M1 using velocity predictor variables. As R2 increases, the
observed data and model prediction have a stronger positive correlation, seen as a positive linear
slope in the following figures.

24

Figure 3.12 – Training data vs model prediction for linear regression model trained with velocity

to predict displacement of M1.

Figure 3.13 – Training data vs model prediction for linear regression model trained with

acceleration to predict displacement of M3.

25

Figure 3.14 – Training data vs model prediction for linear regression model trained with

displacement to predict acceleration of M3.

 The near perfect linear relationship between the data and model prediction shows the
high performance of the model. In Fig. 3.15, the training data is close to identical to the data with
small discrepancies. The discrepancies are shown in an enlarged view in Fig. 3.16.

Figure 3.15 – Linear regression model trained with displacement to predict acceleration of M3.

26

Figure 3.16 – Enlarged view of linear regression model trained with displacement to predict

acceleration of M3.

3.5 Decision Tree Modeling

3.5.1 Training Model

The decision tree models were trained in MATLAB using the “fitrtree” function, with all
name-value arguments left as default. For standard classification and regression trees, the node
splitting process follows a set of steps by default. The algorithm first computes with weighted
MSE (Eq. 3.19) of the response for a given node t [27]. The weight of observation 𝑗 (𝑤.) is by
default 1/𝑛	, where 𝑛 is the sample size.

𝜀? =-𝑤.(𝑦. − 𝑦x?)"

	

.∈@

(3.19)

 The algorithm then computes the probability that an observation is in each node (Eq.
(3.20)) [27].

𝑃(𝑇) =-𝑤.

	

.∈@

(3.20)

 Each predictor is a splitting candidate, and the elements of each predictor are sorted in
ascending order. The best split node is determined by maximizing the reduction of MSE of all
splitting options and choosing the node with the largest reduction [27].

 By default, the tree depth is controlled using MSE to merge any leaves whose sum MSE
is no larger the MSE of their parent node [27]. The maximum number of splits is by default one

27

less than the data sample size, and the default minimum leaf and parent size are one and ten
respectively [27]. The algorithm prunes the tree if the number of splits exceeds the maximum by
unsplitting the least successful branches [27].

3.5.2 Results

 The same 18 cases from the previous section were trained using the decision tree method.

Table 3.3 – All combinations of predictor and response variables used for training decision tree
models, along with their respective R2 values.

Predictor Response Trained R2 Tested R2
Acceleration Displacement of M1 0.8309 0.3736
Acceleration Displacement of M2 0.9356 0.5999
Acceleration Displacement of M3 0.9683 0.8335
Acceleration Velocity of M1 0.8108 0.2365
Acceleration Velocity of M2 0.7274 0.0594
Acceleration Velocity of M3 0.7493 0.1105

Velocity Displacement of M1 0.9508 0.7714
Velocity Displacement of M2 0.8711 0.354
Velocity Displacement of M3 0.8606 0.3889
Velocity Acceleration of M1 0.8304 0.407
Velocity Acceleration of M2 0.6965 0.0055
Velocity Acceleration of M3 0.8686 0.37

Displacement Velocity of M1 0.9362 0.6556
Displacement Velocity of M2 0.887 0.4755
Displacement Velocity of M3 0.9844 0.9268
Displacement Acceleration of M1 0.9433 0.7641
Displacement Acceleration of M2 0.9323 0.7199
Displacement Acceleration of M3 0.9955 0.9781

Table 3.4 – All combinations of predictor and response variables used for training decision tree
models, sorted by ascending trained R2 values.

Predictor Response Trained R2 Tested R2
Velocity Acceleration of M2 0.6965 0.0055

Acceleration Velocity of M2 0.7274 0.0594
Acceleration Velocity of M3 0.7493 0.1105
Acceleration Velocity of M1 0.8108 0.2365

Velocity Acceleration of M1 0.8304 0.407
Acceleration Displacement of M1 0.8309 0.3736

Velocity Displacement of M3 0.8606 0.3889
Velocity Acceleration of M3 0.8686 0.37
Velocity Displacement of M2 0.8711 0.354

Displacement Velocity of M2 0.887 0.4755
Displacement Acceleration of M2 0.9323 0.7199

28

Acceleration Displacement of M2 0.9356 0.5999
Displacement Velocity of M1 0.9362 0.6556
Displacement Acceleration of M1 0.9433 0.7641

Velocity Displacement of M1 0.9508 0.7714
Acceleration Displacement of M3 0.9683 0.8335
Displacement Velocity of M3 0.9844 0.9268
Displacement Acceleration of M3 0.9955 0.9781

The decision tree models produce significantly higher R2 values compared to the linear
regression models. All the decision tree models are considered high performance based on the
previously established R2 value of ≥0.6 for high performance models. The four highest
performing cases are the same as for linear regression:

• Using displacement to predict the velocity of M3
• Using acceleration to predict the displacement of M3
• Using displacement to predict the acceleration of M3

The lowest performing cases use velocity to predict acceleration and vice versa, as observed
in the linear regression models. For most cases, the tested R2 values are significantly lower than
the trained R2 values which is a sign of overfitting. This can be seen in Fig. 3.17 for the lowest
performance case, using velocity to predict the acceleration of M2, and especially in the enlarged
view in Fig. 3.18.

Figure 3.17 – Decision tree model trained with velocity to predict acceleration of M2.

29

Figure 3.18 – Enlarged view of decision tree model trained with displacement to predict

acceleration of M3.

The decision tree algorithm produces predictions with high noise, seen in Fig. 3.18, due
to its discrete nature. The discrete nature produces a tendency of the model to overfit the data.
The model overfits the data but is still able to follow it leading to a fairly strong correlation
between the data and model prediction, seen in Fig. 3.19.

Figure 3.19 – Training data vs model prediction for linear regression model trained with velocity

to predict acceleration of M2.

30

The highest performing model is the same as for linear regression method. Overall, the
model prediction had a strong positive correlation with the data, as seen in Fig. 3.20, but is not as
strong as in the linear regression model (Fig. 3.14).

Figure 3.20 – Training data vs model prediction for linear regression model trained with

displacement to predict acceleration of M3.

During the first second, the model prediction is much noisier than the linear regression
model and has more discrepancies. The noise reduces with time and the discrepancies lower.

Figure 3.21 – Decision tree model trained with displacement to predict acceleration of M3.

31

 As seen in Fig. 3.22, this decision tree model prediction is not as smooth as the prediction
from the linear regression model seen in Fig. 3.16. The model is still overfitting the data, though
not as severely as in Fig. 3.18 for the lowest performing model.

Figure 3.22 – Enlarged view of linear regression model trained with displacement to predict

acceleration of M3.

3.6 Random Forest Modeling

3.6.1 Training Model

The random forest models were trained in MATLAB using the “fitrensemble” function,
which returns a trained regression ensemble. Method, number of trees, and learning rate
parameters were initially optimized using the automatic “OptimizeHyperparameters” option for
the model using displacement to predict acceleration of M3. The optimized ensemble was
determined to use the least-squares boosting method, 500 number of trees, and a learning rate of
0.55246. The least-squares boosting method builds a new tree based on the difference between
the previously built trees and the response data so that the MSE is minimized [28].

The trained random forest models were expected to show an increase in performance.
The initial optimization resulted in majority of the models to significantly overfit. This was later
corrected with an additional optimization done on the worst performing model, using velocity for
the prediction of acceleration of M2. The optimized ensemble for this model uses the bagging
method with 363 trees.

3.6.2 Results

 The results from both optimizations were reviewed and compared.

32

Table 3.5 – All combinations of predictor and response variables used for training random forest
models using boosting method with 500 trees, along with their respective R2 values.

Predictor Response Trained R2 Tested R2
Acceleration Displacement of M1 0.9976 0.3859
Acceleration Displacement of M2 0.9988 0.6158
Acceleration Displacement of M3 0.9995 0.8425
Acceleration Velocity of M1 0.9968 0.2628
Acceleration Velocity of M2 0.9946 0.0478
Acceleration Velocity of M3 0.9955 0.1184

Velocity Displacement of M1 0.9993 0.7874
Velocity Displacement of M2 0.9979 0.3574
Velocity Displacement of M3 0.9983 0.4025
Velocity Acceleration of M1 0.9976 0.3907
Velocity Acceleration of M2 0.9945 0.0087
Velocity Acceleration of M3 0.9977 0.4343

Displacement Velocity of M1 0.9987 0.6447
Displacement Velocity of M2 0.998 0.4764
Displacement Velocity of M3 0.9998 0.928
Displacement Acceleration of M1 0.9996 0.8081
Displacement Acceleration of M2 0.9996 0.8281
Displacement Acceleration of M3 1 0.9926

Table 3.6– All combinations of predictor and response variables used for training random forest
models using boosting method with 500 trees, sorted by ascending trained R2 values.

Predictor Response Trained R2 Tested R2
Velocity Acceleration of M2 0.9945 0.0087

Acceleration Velocity of M2 0.9946 0.0478
Acceleration Velocity of M3 0.9955 0.1184
Acceleration Velocity of M1 0.9968 0.2628
Acceleration Displacement of M1 0.9976 0.3859

Velocity Acceleration of M1 0.9976 0.3907
Velocity Acceleration of M3 0.9977 0.4343
Velocity Displacement of M2 0.9979 0.3574

Displacement Velocity of M2 0.998 0.4764
Velocity Displacement of M3 0.9983 0.4025

Displacement Velocity of M1 0.9987 0.6447
Acceleration Displacement of M2 0.9988 0.6158

Velocity Displacement of M1 0.9993 0.7874
Acceleration Displacement of M3 0.9995 0.8425
Displacement Acceleration of M1 0.9996 0.8081
Displacement Acceleration of M2 0.9996 0.8281
Displacement Velocity of M3 0.9998 0.928
Displacement Acceleration of M3 1 0.9926

33

The initial optimization created models such that all the cases resulted in a trained R2
value of at least 0.99. Though this is ideal, the tested R2 values show that majority of the models
were overfit. The highest performing model, same as with the previous methods, used
displacement to predict the acceleration of M3. This was the only model to have resulted in a R2
value of one and had a near perfect correlation of the data and model prediction.

Figure 3.23 – Training data vs model prediction for linear regression model trained with

displacement to predict acceleration of M3.

 The discrepancies for this model are barely seen between 1.06 and 1.08 seconds in Fig.
3.24. No noticeable noise is seen in this model when compared with the decision tree model (Fig.
3.22). The prediction of this model is of higher performance than the linear regression mode in
Fig. 3.16 but has more misalignment of testing data to the model prediction.

34

Figure 3.24 – Random forest model using the boosting method with 500 trees trained with

displacement to predict acceleration of M3.

The lowest performing case used velocity to predict acceleration of M2 and had a strong
positive correlation between the data and model prediction (seen in Fig. 3.25).

Figure 3.25 – Training data vs model prediction for boosting random forest model trained with

velocity to predict acceleration of M2.

 The severe overfitting in this model is seen in the plot in Fig. 3.26.

35

Figure 3.26 – Random forest model using the boosting method with 500 trees trained with

velocity to predict acceleration of M2.

 The severity of the overfitting is seen in Fig. 3.27 where most of the testing data is not
aligned with the model prediction, therefore diminishing the accuracy of the model. This created
the need to reoptimize the model.

Figure 3.27 – Enlarged view of random forest model using the boosting method with 500 trees

trained with velocity to predict acceleration of M2.

36

 The worst model from Table 3.6 was optimized to reduce the overfitting. The newly
optimized model was determined to have a different algorithm for optimization and number of
trees; bagging with 363 trees. This decreased the trained R2 values, while increased the tested R2
values.

Table 3.7 – All combinations of predictor and response variables used for training random forest
models using bagging method with 363 trees, along with their respective R2 values.

Predictor Response Trained R2 Tested R2
Acceleration Displacement of M1 0.799 0.5403
Acceleration Displacement of M2 0.8859 0.7107
Acceleration Displacement of M3 0.944 0.8721
Acceleration Velocity of M1 0.7552 0.3898
Acceleration Velocity of M2 0.7049 0.1385
Acceleration Velocity of M3 0.7339 0.2486

Velocity Displacement of M1 0.9229 0.8383
Velocity Displacement of M2 0.8006 0.4778
Velocity Displacement of M3 0.8177 0.5273
Velocity Acceleration of M1 0.8068 0.5128
Velocity Acceleration of M2 0.6382 0.0441
Velocity Acceleration of M3 0.8097 0.5355

Displacement Velocity of M1 0.8955 0.7378
Displacement Velocity of M2 0.8315 0.6186
Displacement Velocity of M3 0.9729 0.9329
Displacement Acceleration of M1 0.9186 0.8357
Displacement Acceleration of M2 0.9035 0.7564
Displacement Acceleration of M3 0.9866 0.97

Table 3.8 – All combinations of predictor and response variables used for training random forest
models using bagging method with 363 trees, sorted by ascending trained R2 values.

Predictor Response Trained R2 Tested R2
Velocity Acceleration of M2 0.6382 0.0441

Acceleration Velocity of M2 0.7049 0.1385
Acceleration Velocity of M3 0.7339 0.2486
Acceleration Velocity of M1 0.7552 0.3898
Acceleration Displacement of M1 0.799 0.5403

Velocity Displacement of M2 0.8006 0.4778
Velocity Acceleration of M1 0.8068 0.5128
Velocity Acceleration of M3 0.8097 0.5355
Velocity Displacement of M3 0.8177 0.5273

Displacement Velocity of M2 0.8315 0.6186
Acceleration Displacement of M2 0.8859 0.7107
Displacement Velocity of M1 0.8955 0.7378
Displacement Acceleration of M2 0.9035 0.7564

37

Displacement Acceleration of M1 0.9186 0.8357
Velocity Displacement of M1 0.9229 0.8383

Acceleration Displacement of M3 0.944 0.8721
Displacement Velocity of M3 0.9729 0.9329
Displacement Acceleration of M3 0.9866 0.97

 Comparing to the boosting method models in Table 3.6, the lowest and highest
performing models kept their same level of performance compared to the rest. The tested R2
values increased significantly from the boosting method. An enlarged view of the lowest
performing model, using velocity to predict the acceleration of M2, showed that overfitting was
improved from the boosting method (Fig. 3.26). The model prediction did however loss its
accuracy, especially in the first half of the plot in Fig. 3.28.

Figure 3.28 – Random forest model using the bagging method with 363 trees trained with

velocity to predict acceleration of M2.

 The enlarged view of the model prediction also shows the model is has more noise than
the boosting method but is still able to follow the data. The testing data is also able to follow the
model prediction more closely than with the boosting method.

38

Figure 3.29 – Enlarged view of random forest model using the bagging method with 363 trees

trained with velocity to predict acceleration of M2.

The R2 values of the highest performing model were reduced with the second
optimization, resulting in a cloudier correlation of data and model prediction.

Figure 3.30 – Training data vs model prediction for bagging random forest model trained with

displacement to predict acceleration of M3.

39

The decision tree model (Fig. 3.22) is much noisier and overfit compared to the bagging
random forest model in Fig. 3.31. This model is similar to the linear regression model (Fig. 3.16)
having slightly more discrepancies and overfitting, and much less overfitting when compared to
the boosting method (Fig. 3.24).

Figure 3.31 – Enlarged view of bagging random forest model trained with displacement to

predict acceleration of M3.

3.7 Neural Network Modeling

3.7.1 Training Model

The neural network models were trained in MATLAB using the “fitnet” and “train”
functions. Given the hidden layer size, the “fitnet” function returns a function fitting neural
network that forms a generalization of the predictor response relationship [29]. Due to limited
computational power, the hidden layer size was constrained to two layers with between 0-50
neurons. The optimal hidden layer size was determined, by the maximum average trained R2
values for all 18 cases, to be one layer with 19 neurons and another with 40. The model is then
trained using the “train” function until the maximum number of epochs or the performance goal
is met [30].

Figure 3.32 – Diagram of neural network model created in MATLAB.

40

3.7.2 Results

 The same 18 cases from the previous section were trained using the decision tree model.

Table 3.9 – All combinations of predictor and response variables used for training neural
network models, along with their respective R2 values.

Predictor Response Trained R2 Tested R2
Acceleration Displacement of M1 0.0014 0.004
Acceleration Displacement of M2 0.4582 0.4355
Acceleration Displacement of M3 0.4505 0.4091
Acceleration Velocity of M1 0.0159 0.0309
Acceleration Velocity of M2 0.1697 0.0725
Acceleration Velocity of M3 0.3125 0.2753

Velocity Displacement of M1 0.2274 0.2706
Velocity Displacement of M2 0.1208 0.1443
Velocity Displacement of M3 0.0082 0.0058
Velocity Acceleration of M1 0.5402 0.5172
Velocity Acceleration of M2 0.1504 0.0376
Velocity Acceleration of M3 0.6268 0.4552

Displacement Velocity of M1 0.1114 0.1324
Displacement Velocity of M2 0.6573 0.6071
Displacement Velocity of M3 0.9571 0.9409
Displacement Acceleration of M1 0.8705 0.8494
Displacement Acceleration of M2 0.9669 0.9141
Displacement Acceleration of M3 0.9995 0.9993

Table 3.10 – All combinations of predictor and response variables used for training neural
network models, sorted by ascending trained R2 values.

Predictor Response Trained R2 Tested R2
Acceleration Displacement of M1 0.0014 0.004
Acceleration Displacement of M2 0.0082 0.0058

Velocity Acceleration of M1 0.0159 0.0309
Acceleration Displacement of M3 0.1114 0.1324

Velocity Displacement of M2 0.1208 0.1443
Acceleration Velocity of M3 0.1504 0.0376
Acceleration Velocity of M2 0.1697 0.0725

Velocity Displacement of M1 0.2274 0.2706
Velocity Displacement of M3 0.3125 0.2753
Velocity Acceleration of M3 0.4505 0.4091
Velocity Acceleration of M2 0.4582 0.4355

Displacement Velocity of M1 0.5402 0.5172
Acceleration Velocity of M1 0.6268 0.4552
Displacement Velocity of M2 0.6573 0.6071
Displacement Velocity of M3 0.8705 0.8494

41

Displacement Acceleration of M1 0.9571 0.9409
Displacement Acceleration of M2 0.9669 0.9141
Displacement Acceleration of M3 0.9995 0.9993

 In other methods, models using velocity to predict acceleration and vice versa performed
poorly. Interestingly, the neural networks method performed poorly for models using
acceleration to predict displacement. The highest performing models also differed from previous
methods. This was the only method whose highest performing models all used the same
predictor to predict one kinematic property of all three masses. The performance of the models is
more extremely distributed when compared to linear regression model. The lowest performing
neural network models had the lowest trained R2 values compared to Table 3.2. The overall
performance of neural network models does not compare to decision tree and random forest
methods, whose R2 values were all high performance.

 Another interesting observation with neural networks is the correlation between data and
model predictions. In previous methods, models with low R2 values tended to have the
correlation disbursed horizontally, whereas for neural networks the correlation is more vertical.

Figure 3.33 – Training data vs model prediction for neural network model trained with

acceleration to predict displacement of M1.

The low performing models had issues with following the data, as well as overfitting.
Other methods were at least able to follow the general trend of the data. The model using
acceleration to predict displacement was the lowest performing neural network model and was
only able to follow the concavity.

42

Figure 3.34 – Enlarged view of neural network model trained with acceleration to predict

displacement of M1.

 The difference between trained and tested R2 values signify that the models are
overfitting the data. This can be seen in Fig. 3.35 for the model using displacement to predict
acceleration of M2, the second-best performing model. The model is also much noisier than
decision tree and random forest models are similar values of R2.

Figure 3.35 – Enlarged view of neural network model trained with displacement to predict

acceleration of M1.

43

 The model with the highest R2 value, using displacement to predict acceleration of M3,
showed little overfitting and discrepancies.

Figure 3.36 – Enlarged view of neural network model trained with displacement to predict

acceleration of M3.

 This model performed better when compared to the linear regression (Fig. 3.16), decision
tree (Fig. 3.22), and bagging random forest (Fig. 3.31) models. The neural network model shows
a few discrepancies compared to the boosting random forest model (Fig. 3.24) but has much less
overfitting which may be more desirable in cases. More complex hidden layers may relieve the
noise and overfitting in all other models.

44

4. Static Analysis of Channel Beam
Structural behavior in engineering is commonly modeled with beams due to simplicity

and establishment in the field. Initial analysis of using machine learning stress predictions is
conducted with channel beam geometry. Training data is collected as stress and deformation of
the beam under various loading cases through Ansys simulations.

4.1 Problem Definition

 Performance of machine learning to predict stress is further explored through analysis of
a channel beam. The length of the beam is 1m, and all other dimensions of the cross section are
seen in Fig. 4.1.

Figure 4.1 – Dimensions of channel beam.

 The beam is fixed at z=0 m and will be analyzed through several cases with various loads
as seen in the following figures.

Figure 4.2 – Case 1: 100 N point load in the -y direction at free end, constant along x axis.

0.386 cm

0.424 cm

0.424 cm

4.45 cm

7.62 cm

x

y

x

y

z

y

45

Figure 4.3 – Case 2: 100 N point load in the -y direction at three quarters length, constant along x

axis.

Figure 4.4 – Case 3: 100 N point load in the -y direction at half-length, constant along x axis.

Figure 4.5 – Case 4: 100 N point load in the -y direction at quarter length, constant along x axis.

x

y

z

y

x

y

z

y

x

y

z

y

46

Figure 4.6 – Case 5: Constant distributed load in the -y direction of 100 N/m from fixed end to

free end, constant along x axis.

Figure 4.7 – Case 6: Linear pressure in the -y direction varying along z axis from 100 Pa at fixed

end to 0 Pa at free end, constant along x axis.

Figure 4.8 – Case 7: Constant pressure in the -y direction of 100 Pa from fixed end to half-length
and linear pressure in the -y direction varying along z axis from 100 Pa at half-length to 0 Pa at

free end, constant along x axis.

x

y

z

y

x

y

z

y

x

y

z

y

47

Figure 4. 9 – Case 8: Parabolic pressure varying along z axis of 100 Pa at fixed end to 0 Pa at

free end, constant along x axis.

4.2 Mathematical Modeling

 Simulations in Ansys are verified through analytical computations of stress. Stress is
calculated with the maximum moment (𝑀), distance from the neutral surface (𝑦), and moment of
inertia (𝐼).

 𝜎 = −
𝑀𝑦
𝐼 (4.1)

 Moment of the inertia is calculated with respect to the centroidal axis that is
perpendicular to the plane of the moment, in this case the x’ axis. The centroid of the beam is
seen in Fig. 4.2.

Figure 4.10 – Centroid and central axes of channel beam cross section.

x

y

z

y

1.393 cm

x

y

x’

y’
3.81 cm

48

 Moment of inertia is calculated as the sum of moment of inertias of all three sections
within the cross section. Eq. 4.2 is the equation for the moment of inertia of a rectangle along
with the parallel axis theorem, where 𝑑 is the perpendicular distance from the centroidal axis to
the centroid of the section.

 𝐼4 =
1
12𝑏ℎ

- + 𝐴𝑑" (4.2)

 𝐼4 = 2�
1
12 (4.45)(0.424)

- + (1.886)(3.598)"� +
1
12 (0.386)(6.772)

- (4.3)

𝐼4 = 58.88	𝑐𝑚< = 5.888 × 10AB𝑚<

 For each case, the maximum stress is calculated with Eq. 1 where the distance to the
neutral surface is 3.81 cm.

Table 4.1 – Maximum analytical stress for each case simulated in Ansys.

Load on Beam Maximum Analytical Stress

Point load at full length 6.480 × 10>	𝑃𝑎
Point load at ¾ length 4.860 × 10>	𝑃𝑎
Point load at ½ length 3.240 × 10>	𝑃𝑎
Point load at ¼ length 1.620 × 10>	𝑃𝑎

Constant distributed load 3.240 × 10>	𝑃𝑎
Linear distributed pressure 4.806 × 10<	𝑃𝑎

Constant and linear distributed pressure 8.410 × 10<	𝑃𝑎
Parabolic distributed pressure 7.205 × 10<	𝑃𝑎

4.3 Ansys Simulations

 The coordinate system was set at the outer bottom left corner, as shown in Fig. 4.10, with
the length of the beam along the z axis. The top face was split into four sections for application
of point loads along the beam. The top and bottom inner corners along the z axis were rounded
with a curvature of 0.1 cm to avoid stress singularities during the meshing process.

49

Figure 4.11 – Geometry of beam in Ansys with coordinate system.

The material was left at default as structural steel, properties provided in Table 4.2 below.

Table 4.2 – Material properties for structural steel from Ansys.

Density 7850	𝑘𝑔/𝑚-
Young’s Modulus 2 × 10%%	𝑃𝑎
Thermal Conductivity 60.5	𝑊/𝑚 ∙ ℃
Specific Heat 434	𝐽/𝑘𝑔 ∙ ℃
Tensile Yield Strength 2.5 × 10C	𝑃𝑎
Tensile Ultimate Strength 4.6 × 10C	𝑃𝑎

Each case is simulated in Ansys for deformation and stress analysis and the solution data
is exported for machine learning in MATLAB. The training data for MATLAB consists of the x,
y, and z coordinate of each node along with the respective deformation and stress at each node,
as seen in Table 4.3. The deformation analyzed is directional deformation in the plane
perpendicular to the axis on which the loading occurs on.

Table 4.3 – Example of training data taken from Ansys for machine learning in MATLAB.

x Coordinate (m) y Coordinate (m) z Coordinate (m) Deformation (m) Stress (Pa)
0.0039819 0.0026226 0.057236 -2.6784e-06 7880500

… … … … …

Mesh convergence is conducted using the convergence tool for each case based on the
maximum equivalent von Mises stress of the beam, with an allowable change of 1%. Final mesh
produced from the convergence is compared to the analytical calculations of maximum stress to
validate the refinement of the mesh. Analytically the maximum moment is located at the fixed
support, therefore the analytical stresses will be compared to the stresses at the top of the beam at
the fixed support in Ansys.

Commented [NG5]: Expand and explain databases used for
matlab

50

4.3.1 Point Load at Full Length

Table 4.4 – Convergence history for case with point load at full length.

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements
1 1.4606e+07 6333 2874
2 1.6056e+07 9.4554 12259 6233
3 1.9223e+07 17.957 43178 24524
4 2.5679e+07 29.89 97701 58949
5 2.9842e+07 13.843 216374 136252
6 3.2128e+07 7.3763 364411 234203
7 3.2027e+07 -0.31347 521234 340204

Figure 4.12 – Convergence history plot for beam with point load at full length.

51

The maximum analytical stress calculated for this case is about	6.480 × 10>	𝑃𝑎, which is
about a 8% increase to the value shown in the Ansys model below. Values within a 10% change
will be considered acceptable.

Figure 4.13 – Stress (Pa) at fixed support of beam with point load at full length in Ansys.

4.3.2 Point Load at ¾ Length

Table 4.5 – Convergence history for case with point load at ¾ length.

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements
1 1.0194e+07 6333 2874
2 1.0698e+07 4.822 32369 17721
3 1.2908e+07 18.727 105365 63532
4 1.5347e+07 17.265 148040 91425
5 1.9578e+07 24.225 293636 187569
6 2.6277e+07 29.218 442978 287304
7 3.3878e+07 25.272 862482 574720
8 4.4944 e+07 28.078 1537527 1044119
9 4.495 e+07 1.4455e-002 1642679 1117769

52

Figure 4.14 – Convergence history plot for beam with point load at ¾ length.

Maximum calculated stress is 4.860 × 10>	𝑃𝑎, less than a 1% increase compared to the
value from the Ansys simulation.

Figure 4.15 – Stress (Pa) at fixed support of beam with point load at ¾ length in Ansys.

4.3.3 Point Load at ½ Length

Table 4.6 – Convergence history for case with point load at ½ length.

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements
1 8.0161e+06 6333 2874

53

2 8.251e+06 3.2501 15372 8068
3 9.9848e+06 18.655 54661 31995
4 1.2981e+07 26.092 109242 67015
5 1.5368e+07 16.844 226712 144501
6 1.9562e+07 24.01 299049 192242
7 2.5042e+07 24.572 556050 366173
8 3.5341e+07 34.114 865798 578657
9 3.5359e+07 5.0679e-002 1193052 805813

Figure 4.16 – Convergence history plot for beam with point load at ½ length.

 The maximum analytical stress of 3.240 × 10>	𝑃𝑎 for this case is within 1% of the value
seen in the Ansys simulation below.

54

Figure 4.17 – Stress (Pa) at fixed support of beam with point load at ½ length in Ansys.

4.3.4 Point Load at ¼ Length

Table 4.7 – Convergence history for case with point load at ¼ length.

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements
1 6.359e+06 6333 2874
2 6.4602e+06 1.579 12207 6255
3 9.4802e+06 37.891 29239 16896
4 1.2041e+07 23.799 64733 39514
5 1.2954e+07 7.3023 153989 97698
6 1.3297e+07 2.6162 314370 205296
7 1.3172e+07 -0.94815 658551 441613

55

Figure 4.18 – Convergence history plot for beam with point load at ¼ length.

The stress from the Ansys simulation has about a 5% increase from the calculated
analytical values of 1.620 × 10>	𝑃𝑎.

Figure 4.19 – Stress (Pa) at fixed support of beam with point load at ¼ length in Ansys.

4.3.5 Constant Distributed Load

Table 4.8 – Convergence history for case with constant distributed load.

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements
1 7.2348e+06 6333 2874

56

2 7.6097e+06 5.051 18709 9904
3 9.363e+06 20.66 52317 30019
4 1.1777e+07 22.84 143415 88419
5 1.4702e+07 22.091 267338 170176
6 1.8885e+07 24.91 424649 274344
7 2.6933e+07 35.128 761828 505071
8 2.6977e+07 0.16576 1429300 968170

Figure 4.20 – Convergence history plot for beam with with constant distributed load.

The computed analytical stress of 3.240 × 10>	𝑃𝑎 for this case has less than a 1%
increase to the value observed in Ansys.

57

Figure 4.21 – Stress (Pa) at fixed support of beam with constant distributed load in Ansys.

4.3.6 Linear Distributed Pressure

Table 4.9 – Convergence history for case with linear distributed pressure.

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements
1 1.1699e+05 6333 2874
2 1.2392e+05 5.7558 9279 4522
3 1.616e+05 26.288 37755 21124
4 2.0608e+05 24.199 98029 58831
5 2.64e+05 24.639 192373 120319
6 3.3886e+05 24.835 318304 20307
7 4.4019e+05 26.015 670888 442683
8 4.4049e+05 6.796e-002 905717 603205

58

Figure 4.22 – Convergence history plot for beam with linear distributed pressure.

The observed stress in Ansys has less than a 2% increase from the analytical stress for
this case of 4.806 × 10<	𝑃𝑎.

Figure 4.23 – Stress (Pa) at fixed support of beam with linear distributed pressure in Ansys.

4.3.7 Constant and Linear Distributed Pressure

Table 4.10 – Convergence history for case with constant and linear distributed pressure.

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements
1 2.0111e+05 6333 2874

59

2 2.1234e+05 5.4357 10762 5357
3 2.7192e+05 24.606 43254 24361
4 3.5369e+05 26.139 122080 74187
5 4.4466e+05 22.79 252942 160065
6 5.668e+05 24.151 438898 283482
7 7.3293e+05 25.564 607594 398201
8 9.5329e+05 26.137 1020141 681358
9 1.2357e+06 25.6 1723286 1172367

10 1.6034e+06 25.905 2831432 1956309
11 2.0778e+06 25.777 3432829 2382161
12 2.0778e+06 -7.92e-005 3441851 2388617

Figure 4.24 – Convergence history plot for beam with constant and linear distributed pressure.

The analytical stress of 8.410 × 10<	𝑃𝑎 has less than 1% increase of the value
overserved in the Ansys simulation.

60

Figure 4.25 – Stress (Pa) at fixed support of beam with constant and linear distributed pressure in

Ansys.

4.3.8 Parabolic Distributed Pressure

Table 4.11 – Convergence history for case with parabolic distributed pressure.

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements
1 1.7257e+05 6333 2874
2 1.8236e+05 5.5161 10762 5357
3 2.345e+05 25.015 43785 24679
4 3.0651e+05 26.619 121374 73724
5 3.8939e+05 23.82 237627 149771
6 4.9354e+05 23.593 450737 290928
7 6.4e+05 25.841 858779 570575
8 6.4029e+05 4.5861e-002 1098320 734479

 Commented [NG6]: Redo plot

Load -> pressure

61

Figure 4.26 – Convergence history plot for beam with parabolic distributed pressure.

The analytical stress for this case of 7.205 × 10<	𝑃𝑎 compared to the value observed in
Ansys is about a 1% increase.

Figure 4.27 – Stress (Pa) at fixed support of beam with parabolic distributed pressure in Ansys.

4.2 Linear Regression Modeling

4.2.1 Training Model

The linear regression model was trained in MATLAB, as discussed in the previous
chapter, using the “fitlm” function.

62

Models are trained with directional deformation and the respective node locations to
predict equivalent stress. The performance of the model is plotted along each axis from the
coordinate system. Due to the small dimensions of the cross-section geometry, the x and y axis
plots have significantly less data than the z axis plots. The main plots used for analysis are for
the stress along z axes.

4.2.2 Results

 The R2 values are calculated for each model and the model prediction is plotted against
the Ansys data to evaluate the model’s performance for each case.

Table 4.12 – All cases simulated in Ansys for a beam geometry using linear regression models,
along with their respective R2 values.

Load on Beam Trained R2 Tested R2
Point load at full length 0.125633 0.126600
Point load at ¾ length 0.474600 0.474918
Point load at ½ length 0.463041 0.462181
Point load at ¼ length 0.247969 0.248528

Constant distributed load 0.519044 0.518328
Linear pressure 0.566604 0.568387

Constant and linear pressure 0.530843 0.534847
Parabolic pressure 0.561950 0.562508

Table 4.13 – All cases simulated in Ansys for a beam geometry using linear regression models,
along with their respective R2 values, sorted by ascending trained R2 values.

Load on Beam Trained R2 Tested R2
Point load at full length 0.125633 0.126600
Point load at ¼ length 0.247969 0.248528
Point load at ½ length 0.463041 0.462181
Point load at ¾ length 0.474600 0.474918

Constant distributed load 0.519044 0.518328
Constant and linear pressure 0.530843 0.534847

Parabolic pressure 0.561950 0.562508
Linear pressure 0.566604 0.568387

 Based on the previously established high performance threshold of a R2 value of 0.6, the
linear regression model does not show high performance for the prediction of stress for a beam
geometry. This is expected based on the observations of the performance of linear regression
models from the previous chapter. The point load cases show the lowest performance with low
R2 values, while the more complex distributed loads and pressure have higher performance.

 The lowest performing case with a point load at the full length fails to predict the stress.
Higher data values are underestimated through the model prediction resulting in the low
performance. Fig. 4.28 shows some accuracy in predicting values of between 0.4 and 0.6, which

63

corresponds with the lower residuals for those values in Fig. 4.29 as compared to the outer
residuals. The model does not overfit as the test data coincides with the training data.

Figure 4.28 – Training data vs model prediction for linear regression model trained with

directional deformation to predict equivalent stress for beam with point load at full length.

Figure 4.29 – Linear regression model trained with directional deformation to predict equivalent

stress for beam with point load at full length.

 Linear pressure loading shares similar difficulty in predicting stress as the point load at
full length, though having the highest R2 value of all loading cases. Fig. 4.30 exhibits

64

comparable behavior as seen in Fig. 4.28 in the underestimation of higher value data points.
Outliers in this plot are much scarcer and the model follows the general trend of the stress.

Figure 4. 30– Training data vs model prediction for linear regression model trained with

directional deformation to predict equivalent stress for beam with linear pressure.

 As seen in the worst performing loading case, the linear regression model in general has
limited ability to follow the complexity of these cases due to its linear nature. Prediction for the
linear pressure loading displays lower residuals throughout the entirety of the plot as opposed to
the high residuals at the outer ends of the plot seen in the lowest performing case. The prediction
tracks the negative slope of the stress but lacks the ability to predict more than that.

65

Figure 4.31 – Linear regression model trained with directional deformation to predict equivalent

stress for beam with constant and linear pressure.

 Stress in the beam exhibits more noise and the linear regression model is unable to
properly predict the stress. The complexity of the problem is not well represented in these
models as they tend to underfit the data. It should be noted that all linear regression models, even
those that show low performance, do not overfit as the testing data aligns with the trained data.

4.3 Decision Tree Modeling

4.3.1 Training Model

The decision tree model was trained in MATLAB using the “fitrtree” function. All
specifications of the function are discussed in the previous chapter.

4.3.2 Results

 All decision tree models have a R2 value over 0.99, therefore all models are of high
performance.

Table 4.14– All cases simulated in Ansys for a beam geometry using decision tree models, along
with their respective R2 values.

Load on Beam Trained R2 Tested R2
Point load at full length 0.996104 0.993641
Point load at ¾ length 0.994382 0.992902
Point load at ½ length 0.994931 0.993112
Point load at ¼ length 0.997460 0.996582

Constant distributed load 0.995256 0.993770
Linear pressure 0.995905 0.994308

66

Constant and linear pressure 0.995597 0.994776
Parabolic pressure 0.995748 0.994190

Table 4.15 – All cases simulated in Ansys for a beam geometry using decision tree models,
along with their respective R2 values, sorted by ascending trained R2 values.

Load on Beam Trained R2 Tested R2
Point load at ¾ length 0.994382 0.992902
Point load at ½ length 0.994931 0.993112

Constant distributed load 0.995256 0.993770
Constant and linear pressure 0.995597 0.994776

Parabolic pressure 0.995748 0.994190
Linear pressure 0.995905 0.994308

Point load at full length 0.996104 0.993641
Point load at ¼ length 0.997460 0.996582

 Compared to the linear regression models, the order of lowest to highest performing
models varies. Correlation between the data and model prediction seen in Fig. 4.32 for the
highest performing case with a point load at quarter length. The data set for this geometry is
much larger that from the previous section therefore the plot below has more outliers for such a
high R2 value. The distribution of the data points along the perfect model is constant and shows
no correlation to data value.

Figure 4.32 – Training data vs model prediction for decision tree model trained with directional

deformation to predict equivalent stress for beam with a point load at ¼ length.

 As expected, with the high R2 values for the decision tree models, the model can predict
the data with significantly higher accuracy than linear regression models. Though, in a magnified

67

view of the plot in Fig. 4.34, the piecewise nature of the model is seen to be unsuitable for the
scattered data. Overfitting is not seen in the model as the testing data falls in line with the trained
data.

Figure 4.33 – Decision tree model trained with directional deformation to predict equivalent

stress for beam with a point load at ¼ length.

Figure 4.34 – Enlarged view of decision tree model trained with directional deformation to

predict equivalent stress for beam with a point load at ¼ length.

68

 The case with the lowest performance has a high R2 value of 0.994, which is seen through
the adequate correlation between data and prediction seen in Fig. 4.35 below. As with the
previously discussed case, the inaccuracy increases as the data values increases.

Figure 4.35 – Training data vs model prediction for decision tree model trained with directional

deformation to predict equivalent stress for beam with point load at ¾ length.

The lower performance for this case, compared to others, is likely due to the higher noise
in the data. A closer view shows some overfitting in the regions where the models prediction
branches, but all other testing data follows the model.

69

Figure 4.36 – Decision tree model trained with directional deformation to predict equivalent
stress for beam with point load at ¾ length.

Figure 4.37 – Enlarged view of decision tree model trained with directional deformation to

predict equivalent stress for beam with point load at ¾ length.

 While the decision tree models produce higher R2 values, the binary nature of the model
does not fit best with the data used for training as it is not able to predict the intricacy of the data.

4.4 Random Forest Modeling

4.4.1 Training Model

The random forest models are trained in MATLAB using the “fitrensemble” function.
Due to sizable computational time and limited computational power, optimization was conducted
only on the first case. The model is optimized using the automatic “OptimizeHyperparameters”
option for the case with a point load at full length. The resulting optimized ensemble used the
bag method with 493 trees.

4.4.2 Results

 Random forest models perform significantly well comparable to the decision tree models,
as expected based on the results from the previous chapter. The highest and lowest performing
models are identical to those in the decision tree models.

Table 4.16 – All cases simulated in Ansys for a beam geometry using random forest models,
along with their respective R2 values.

Load on Beam Trained R2 Tested R2
Point load at full length 0.998012 0.996754
Point load at ¾ length 0.997757 0.996963

70

Point load at ½ length 0.998049 0.997052
Point load at ¼ length 0.999201 0.998882

Constant distributed load 0.997891 0.997053
Linear pressure 0.998092 0.997291

Constant and linear pressure 0.998128 0.997762
Parabolic pressure 0.998077 0.997234

Table 4.17 – All cases simulated in Ansys for a beam geometry using random forest models,
along with their respective R2 values, sorted by ascending trained R2 values.

Load on Beam Trained R2 Tested R2
Point load at ¾ length 0.997757 0.996963

Constant distributed load 0.997891 0.997053
Point load at full length 0.998012 0.996754
Point load at ½ length 0.998049 0.997052

Parabolic pressure 0.998077 0.997234
Linear pressure 0.998092 0.997291

Constant and linear pressure 0.998128 0.997762
Point load at ¼ length 0.999201 0.998882

 As with decision tree models, the lowest performing models show sufficient correlation
between data and prediction. Major outliers in the plot below hold less significance than those
seen in the previous chapter where the data size was much smaller. This model loses accuracy as
the data value increases.

Figure 4.38 – Training data vs model prediction for random forest model trained with directional

deformation to predict equivalent stress for beam with point load at ¾ length.

71

 Of all machine learning models for the static beam, the highest R2 value was found for
the random forest model for a beam with a constant and linear distributed pressure. The model
prediction falls closely along the perfect model line with a standard deviation, seen in Fig. 4.39.

Figure 4.39 – Training data vs model prediction for random forest model trained with directional

deformation to predict equivalent stress for beam with a point load at ¼ length.

 Compared to previous machine learning models, random forest is most suitable for the
data set used for training. Additional optimization, as in the previous chapter, was not necessary
as the initial optimization for this geometry did not overfit the data. Inaccuracies are seen in the
first half in the plot, but the model follows the data more competently than previous models.
Closer view of the plot shows the model does not overfit and the error in the model prediction.

72

Figure 4.40 – Decision tree model trained with directional deformation to predict equivalent

stress for beam with a point load at ¼ length.

Figure 4.41 – Enlarged view of decision tree model trained with directional deformation to

predict equivalent stress for beam with point load at ¼ length.

4.5 Neural Network Modeling

4.5.1 Training Model

The neural network model was trained in MATLAB using the “fitnet” and “train”
functions. Due to limited computational power, the hidden layer size was constrained to two

Commented [NG7]: Typo in figure

Commented [NG8]: Typo in figure

73

layers with between 0-50 neurons and optimization was conducted only on the first case. The
optimal hidden layer size was determined to be 50 neurons in the first layer and the other with
12. The “train” function trains the model until the maximum number of epochs or the
performance goal is met [30].

4.5.2 Results

 The performance of the neural network model more closely represents a normal
distribution among the cases when compared to previous models. Neural network modeling
produced the lowest performing model out of all previous cases, while the highest performing
case was no more accurate than any of the random forest models.

Table 4.18 – All cases simulated in Ansys for a beam geometry using neural network models,
along with their respective R2 values.

Load on Beam Trained R2 Tested R2
Point load at full length 0.074201 0.075263
Point load at ¾ length 0.659651 0.658877
Point load at ½ length 0.676182 0.675880
Point load at ¼ length 0.092502 0.094163

Constant distributed load 0.594866 0.594193
Linear pressure 0.978398 0.978428

Constant and linear pressure 0.891488 0.894147
Parabolic pressure 0.996953 0.996810

Table 4.19 – All cases simulated in Ansys for a beam geometry using neural network models,
along with their respective R2 values, sorted by ascending trained R2 values.

Load on Beam Trained R2 Tested R2
Point load at full length 0.074201 0.075263
Point load at ¼ length 0.092502 0.094163

Constant distributed load 0.594866 0.594193
Point load at ¾ length 0.659651 0.658877
Point load at ½ length 0.676182 0.675880

Constant and linear pressure 0.891488 0.894147
Linear pressure 0.978398 0.978428

Parabolic pressure 0.996953 0.996810

 No clear pattern is apparent for the performance of the cases, with majority being
considered high performance. Two models for point load cases produced the lowest R2 values,
less than 0.01, out of all models for this geometry. Fig. 4.42 shows zero correlation in the
distribution of the model prediction and data as smaller values are mostly overestimated and
larger values are underestimated. The model is not able to create any relation to the data as seen
in Figure 4.43 but does share a general negative slope with the data. As previously seen, the
testing data falls well along the neural network model and does not overfit.

74

Figure 4.42 – Training data vs model prediction for neural network model trained with

directional deformation to predict equivalent stress for beam with point load at full length.

Figure 4.43 – Neural network model trained with directional deformation to predict equivalent

stress for beam with point load at full length.

 The second lowest performing case with a point load at quarter length shared similar
characteristics in the relationship between the training data and model prediction. Smaller data
values are seen to be overpredicted, while the larger data values are underpredicted as seen in
Fig. 4.44 below. The prediction, as in the previous case does not follow the data in any capacity
and is therefore inadequate.

75

Figure 4.44 – Training data vs model prediction for neural network model trained with

directional deformation to predict equivalent stress for beam with point load at ¼ length.

Figure 4.45 – Neural network model trained with directional deformation to predict equivalent

stress for beam with point load at ¼ length.

 Neural network best predicted stress from a parabolic pressure, though with less accuracy
than any of the random forest models. The relationship between training data and model
prediction shows direct correlation between increase of data values and increase in prediction
error. The model tracks the training data and does not overfit, as seen in the enlarged view of the
plot in Fig. 4.48 where the model fits well between the peaks in the data training data.

76

Figure 4.46 – Training data vs model prediction for neural network model trained with
directional deformation to predict equivalent stress for beam with parabolic pressure.

Figure 4.47 – Neural network model trained with directional deformation to predict equivalent

stress for beam with parabolic pressure.

77

Figure 4.48 – Enlarged view of random forest model trained with directional deformation to

predict equivalent stress for beam with parabolic pressure.

 The model for the second-best performing case with linear pressure is less accurate but
mimics the trend of the training data.

Figure 4.49 – Neural network model trained with directional deformation to predict equivalent

stress for beam with linear pressure.

 Though the neural network models are smoother and show fewer testing data outliners
within the model prediction, it is the most unreliable due to the polarity of performance among

78

the cases. Significantly more computational time was taken for the training of neural network
models, which devalues this model as well.

79

5. Static Analysis of Wing Structure
 Understanding structural behavior of wings is crucial for maintenance during an aircraft’s
lifetime. Applicability of machine learning for aerospace applications to predict stress can be
analyzed through wing geometries. Single wing geometry is analyzed through Ansys to collect
training data of stress and deformation for machine learning models in MATLAB.

5.1 Problem Definition

 Geometry is constructed in SOLIDWORKS to include an internal wing structure and
airfoil skin based on the NACA 2412 airfoil. The internal wing structure consists of ribs, I beam
spar, and two circular spars. The coordinate system is set at the leading edge of the root rib with
the z axis along the length of the wing. The rib chord at the root is linearly decreased along the
ribs till the tip rib is 30% of the initial chord.

Table 5.1 – Specifications of ribs in wing structure geometry.

Total number of ribs 15
Distance between ribs 0.08 m

Thickness of ribs 0.005 m
Total length of wing 1.195 m

Chord at root rib 0.2 m
Chord at tip rib 0.06 m

Figure 5.1 – Inner wing structure with two circular spars and a central I beam spar.

x

y

z

80

Figure 5.2 – Internal wing structure in xz plane.

The airfoil skin is created by lofting two splines that are 105% of the root and tip ribs.
Outer dimensions of the chord are seen in Fig. 5.2. The airfoil is combined with the internal wing
structure in SOLIDWORKS to create a single part.

Figure 5.3 – Wing structure geometry in xy plane with root and tip chords.

Placement of the spars are determined by percent chord of the root and tip rib, seen in
Fig. 5.4 below. Spars are created using the boundary feature in SOLIDWORKS with the cross-
sectional sketches of the spars on the root and tip ribs, merging with all other ribs in between.
Both circular spars are uniform diameter of 0.004 m for all ribs.

Figure 5.4 – Positions of spars along the ribs with respect to chord, shown on root rib.

 Dimensions for the I-beam are shown in Fig. 5.5 for the root rib and are scaled with the
ribs, where the dimensions at the tip are 30% of those on the root rib.

z

x

1.195 m

6.3 cm

21 cm

x

y

.125c

x

y

.125c .25c

81

Figure 5.5 – Dimensions of I beam on the root rib.

 The wing is fixed at the root (z=0 m) and will be analyzed with various loads as seen in
the following figures.

Figure 5.6 – Case 1: 10 N point load in the -y direction at tip (z=1.195 m), constant along x axis.

Figure 5.7 – Case 2: Constant distributed load in the -y direction of 10 N/m from root (z=0 m) to

tip (z=1.195 m), constant along x axis.

Figure 5.8 – Case 3: Linear pressure in the -y direction varying along z axis from 10 Pa at root

(z=0 m) to 0 Pa at tip (z=1.195 m), constant along x axis.

2.26 cm

0.18 cm

1.2 cm

0.2 cm

x

y

z

y

x

y

z

y

x

y

z

y

82

Figure 5.9 – Case 4: Constant pressure in the -y direction of 10 Pa from root (z=0 m) to half-

length and linear pressure in the -y direction varying along z axis from 10 Pa at half-length to 0
Pa at tip (z=1.195 m), constant along x axis.

Figure 5.10 – Case 5: Parabolic pressure varying along z axis of 10 Pa at root (z=0 m) to 0 Pa at

tip (z=1.195 m), constant along x axis.

Figure 5.11 – Case 6: Elliptical pressure varying along z axis of 10 Pa at root (z=0 m) to 0 Pa at

tip (z= 1.195 m), constant along x axis.

5.2 Ansys Simulations

 Simulations for each case in Ansys are identical to those done in the previous chapter, but
with the new wing geometry. Material is kept as structural steel; properties can be found in Table
4.2. Training data is collected from Ansys as outlined in Table 4.3 including x, y, and z
coordinates along with the corresponding deformation and stress. Additionally, as the geometry
is more complex and the data size is significantly larger, a path is added on the geometry for the
plots produced to visualize the performance of the machine learning model. In Ansys, a path is
inserted in the construction geometry along the upper chamber at x=0.25c from the root rib to the
tip rib (seen in Fig. 5.12 below). Linearized deformation and stress data along the path is
combined with the general data collected for machine learning in MATLAB. Data is plotted
against the z coordinates along the path.

x

y

z

y

x

y

z

y

x

y

z

y

83

Figure 5.12 – Path on construction geometry from quarter chord on x axis of root rib (1) to

quarter chord on x axis of tip rib (2) along upper chamber on airfoil skin.

To save computational time, mesh convergence is conducted for once case with a point
load at full load. Due to the complexity of the geometry, convergence was manually done
through altering element size, resolution, and span angle center. The final mesh is used for all
cases simulated in Ansys.

Table 5.2 – Convergence history for wing with point load at full length.

Solution Number Equivalent Stress (Pa) Change (%) Nodes Elements
1 1.24707E+07 76,681 38,609
2 1.31202E+07 5.21 86,515 44,295
3 1.34239E+07 2.31 95,411 49,646
4 1.38056E+07 2.84 107,471 56,923
5 1.42516E+07 3.23 1,642,218 842,074
6 1.45611E+07 2.17 2,091,375 1,083,733
7 1.47407E+07 1.23 2,517,086 1,318,629
8 1.48408E+07 0.68 3,296,724 1,712,350

x

y

z

2

1 1

2

84

Figure 5.13 – Convergence history plot for wing with point load at full length.

5.3 Linear Regression Modeling

5.3.1 Training Model

The “fitlm” function in MATLAB is used for training linear regression models with
directional deformation to predict equivalent stress along the wing. The MATLAB function is
described in section 3.4.1.

5.3.2 Results

 Performance of linear regression models is similar to that seen with the beam geometry,
ranging in lower R2 values, and not meeting the high performance criteria. Model for point load
at full length and for linear pressure shows the lowest and highest R2 values respectively, as in
the previous chapter.

Table 5.3 – All cases simulated in Ansys for a wing geometry using linear regression models,
along with their respective R2 values.

Load on Wing Trained R2 Tested R2
Point load at full length 0.228413 0.228095

Constant distributed load 0.323227 0.322534
Linear pressure 0.576809 0.579178

Constant and linear pressure 0.557836 0.558601
Parabolic pressure 0.530406 0.530207
Elliptical pressure 0.420232 0.422938

Table 5.4 – All cases simulated in Ansys for a wing geometry using linear regression models,
along with their respective R2 values, sorted by ascending trained R2 values.

85

Load on Wing Trained R2 Tested R2
Point load at full length 0.228413 0.228095

Constant distributed load 0.323227 0.322534
Elliptical pressure 0.420232 0.422938
Parabolic pressure 0.530406 0.530207

Constant and linear pressure 0.557836 0.558601
Linear pressure 0.576809 0.579178

 As seen in the previous chapter, the linear regression models have difficulty with
correctly estimating the data. Fig. 5.14 shows the lack of correlation between the training data
and the model prediction, as well as the overestimation of smaller data values and
underestimation of higher data values.

Figure 5.14 – Training data vs model prediction for linear regression model trained with

directional deformation to predict equivalent stress for wing with point load at full length.

 This lack of correlation is translated to a poor model that is only able to follow the trend
of the data. Fig. 5.15 shows the model peaks at about the same point on the wing but is overall
underestimating the stress in the wing. The ribs in the wing are seen in the plot where the stress
suddenly decreases, which the model is not able to predict. The model is trained well enough to
not overfit, as the testing data falls along the model prediction.

86

Figure 5.15 – Linear regression model trained with directional deformation to predict equivalent

stress for wing with point load at full length.

 As performance increases, the underestimation of data values decreases as seen in Fig.
5.16 below. The highest performing case, for a linear pressure on the wing, shows a smaller error
in the amplitude of the model prediction. The nature of linear regression is not fit for the
complexity of the data as it is not able to follow the variation of stress along the wing.

Figure 5.16 – Training data vs model prediction for linear regression model trained with

directional deformation to predict equivalent stress for wing with linear pressure.

87

Figure 5.17 – Linear regression model trained with directional deformation to predict equivalent

stress for wing with linear pressure.

5.4 Decision Tree Modeling

5.4.1 Training Model

The function “fitrtree” is used in MATLAB for training decision tree models and is discussed
in section 3.5.1.

5.4.2 Results

 Decision tree models for the wing geometry are all high performance models as all R2
values are greater than 0.99, as observed with the beam geometry as well.

Table 5.5 – All cases simulated in Ansys for a wing geometry using decision tree models, along
with their respective R2 values.

Load on Wing Trained R2 Tested R2
Point load at full length 0.993965 0.991747

Constant distributed load 0.993717 0.991372
Linear pressure 0.995208 0.993246

Constant and linear pressure 0.995249 0.993561
Parabolic pressure 0.994954 0.993083
Elliptical pressure 0.994243 0.992218

Table 5.6 – All cases simulated in Ansys for a wing geometry using decision tree models, along
with their respective R2 values, sorted by ascending trained R2 values.

88

Load on Wing Trained R2 Tested R2
Constant distributed load 0.993717 0.991372
Point load at full length 0.993965 0.991747

Elliptical pressure 0.994243 0.992218
Parabolic pressure 0.994954 0.993083

Linear pressure 0.995208 0.993246
Constant and linear pressure 0.995249 0.993561

Compared to the linear regression models, the order of performance is comparable
considering the difference between the two lowest trained R2 values and two highest R2 values.
The case with the lowest trained R2 value is with a constant distributed load and is considered
high performance. Correlation between data and model prediction is much more consistent than
seen in linear regression models. The large size of the data allows for the outliers seen in Fig.
5.18 while also having a R2 value higher than 0.99.

Figure 5.18 – Training data vs model prediction for decision tree model trained with directional

deformation to predict equivalent stress for wing with constant distributed load.

 Decision tree models predict stress along the wing with significantly higher accuracy than
linear regression models, especially stress at the location of the ribs. The model is overall less
smooth than linear regression models, but accurately predicts the behavior of the data.
Discrepancies are more visibly present at the root of the wing, which is also where testing data
tends to fall out of the model prediction. Testing data outliers throughout the model prediction
suggest overfitting within the model. In an enlarged view of the plot, the rough behavior of the
prediction is seen as well as the testing data outliers.

89

Figure 5.19 – Decision tree model trained with directional deformation to predict equivalent

stress for wing with constant distributed load.

Figure 5.20 – Enlarged view of decision tree model trained with directional deformation to

predict equivalent stress for wing with constant distributed load.

 Since the difference between the decision tree model R2 values has higher significant
figures, the difference between correlation of data and model prediction is minute. The
correlation for the highest performing model with constant and linear pressure in Fig. 5.21
compared to Fig. 5.18 is much denser but has similar outliers.

90

Figure 5.21– Training data vs model prediction for decision tree model trained with directional

deformation to predict equivalent stress for wing with constant and linear pressure.

 The highest performing model is smoother and is less overfit than the lowest performing
model, as the testing data falls more in line with the model prediction. The roughness of the
model is fairly similar to the data itself as seen in Fig. 5.23.

Figure 5.22 – Decision tree model trained with directional deformation to predict equivalent

stress for wing with constant and linear pressure.

91

Figure 5.23 – Enlarged view of decision tree model trained with directional deformation to

predict equivalent stress for wing with constant and linear pressure.

 The nature of the model is seen in the plots as the model prediction is rough. Compared
to linear regression models, the decision tree method is more prone to overfit. Decision tree
models are overall well equipt as observed with the high R2 values for all cases and the ability to
predict the complex nature of the data.

5.5 Random Forest Modeling

5.5.1 Training Model

 The function “fitrensemble” is used in MATLAB to train random forest models, along
with the automatic optimization of hyperparameters. Optimization is done with the point load at
full length of the wing case to reduction computational time, resulting in an ensemble using the
bag method with 309 trees.

5.5.2 Results

 Random forest performance is observed to be the highest out of all other machine
learning methods explored. Compared to the decision tree method, random forest models have
larger R2 values and are more accurate.

Table 5.7 – All cases simulated in Ansys for a wing geometry using random forest models, along
with their respective R2 values.

Load on Wing Trained R2 Tested R2
Point load at full length 0.996682 0.995510

Constant distributed load 0.996605 0.995452
Linear pressure 0.997404 0.996351

92

Constant and linear pressure 0.997412 0.996505
Parabolic pressure 0.997290 0.996350
Elliptical pressure 0.996901 0.995857

Table 5.8 – All cases simulated in Ansys for a wing geometry using random forest models,
along with their respective R2 values, sorted by ascending trained R2 values.

Load on Wing Trained R2 Tested R2
Constant distributed load 0.996605 0.995452
Point load at full length 0.996682 0.995510

Elliptical pressure 0.996901 0.995857
Parabolic pressure 0.997290 0.996350

Linear pressure 0.997404 0.996351
Constant and linear pressure 0.997412 0.996505

 Considering the small difference between the R2 values for random forest cases,
negligible differences are seen in the correlations of data and model predictions between cases.
The correlation is denser than decision tree models and shows fewer major outliers. The
correlation for the lowest performing case with a constant distributed load (Fig. 5.24) shows
similarity to the correlation for the highest performing case with a constant and linear pressure
(Fig. 5.25).

Figure 5.24– Training data vs model prediction for random forest model trained with directional

deformation to predict equivalent stress for wing with constant distributed load.

93

Figure 5.25 – Training data vs model prediction for decision tree model trained with directional

deformation to predict equivalent stress for wing with constant and linear pressure.

 The lowest performing model prediction for constant distributed load is seen in Fig. 5.26
below. Random forest models are overall smoother and follows the data with higher accuracy.
An enlarged view of the prediction shows the minor difference between the data and prediction.

Figure 5.26 – Random forest model trained with directional deformation to predict equivalent

stress for wing with constant distributed load.

94

Figure 5.27 – Enlarged view of random forest model trained with directional deformation to

predict equivalent stress for wing with constant distributed load.

 Testing data aligns more closely with the model prediction as the R2 value of the model
increases. The highest performing model with a constant and linear pressure is less overfit, as
trained and testing data discrepancies are only seen around z=0.5m in Fig. 5.28 below.

Figure 5.28 – Random forest model trained with directional deformation to predict equivalent

stress for wing with constant and linear pressure.

95

 In an enlarged view of the model with constant and linear pressure, the model prediction
and testing data are seen to be more closely aligned with the data.

Figure 5.29 – Enlarged view of random forest model trained with directional deformation to

predict equivalent stress for wing with constant and linear pressure.

 Random forest models are most consistent with performance, being able to accurately
model any data presented so far. Some overfitting is observed, but no more than seen in decision
tree models.

5.6 Neural Network Modeling

5.6.1 Training Model

 Functions “fitnet” and “train” are used in MATLAB to train the neural network models,
as in previous chapters. First case with point load at full length was used for optimization of
hidden layer size of two layers with 0-25 neurons due to the large size of training data. Optimal
hidden layer size was determined to be 23 neurons in the first layer and 22 in the second layer

5.6.2 Results

 In previous chapters, neural networks models vary in performance among the cases
whereas for the wing geometry the performance is much more consistent. All R2 values are
greater than 0.9, allowing neural network models to be more comparable to decision tree models
than previously observed.

Table 5.9 – All cases simulated in Ansys for a wing geometry using neural network models,
along with their respective R2 values.

Load on Wing Trained R2 Tested R2
Point load at full length 0.905259 0.904510

96

Constant distributed load 0.962638 0.962641
Linear pressure 0.977113 0.977310

Constant and linear pressure 0.973369 0.973347
Parabolic pressure 0.969541 0.969912
Elliptical pressure 0.959893 0.959767

Table 5.10 – All cases simulated in Ansys for a wing geometry using neural network models,
along with their respective R2 values, sorted by ascending trained R2 values.

Load on Wing Trained R2 Tested R2
Point load at full length 0.905259 0.904510

Elliptical pressure 0.959893 0.959767
Constant distributed load 0.962638 0.962641

Parabolic pressure 0.969541 0.969912
Constant and linear pressure 0.973369 0.973347

Linear pressure 0.977113 0.977310

 The order of performance is similar to the performance of linear regression models,
difference being the order of elliptical pressure and constant distributed load. Neural network
models tend to overestimate data values more than any other model type, as seen in Fig. 5.30 for
the lowest performing case, though still has a large R2 value.

Figure 5.30 – Training data vs model prediction for neural network model trained with

directional deformation to predict equivalent stress for wing with point load at full length.

 The model prediction for stress in the wing with a point load at full length shows
resemblance to linear regression models. Though the accuracy of the model following the
amplitude of the stress is higher, it is still unable to estimate the intricacies of the data at the rib
locations. The model shows little to no overfitting, as the testing data aligns with the trained data.

97

Figure 5.31 – Neural network model trained with directional deformation to predict equivalent

stress for wing with point load at full length.

 Correlation of data and model prediction is still irregular for the highest performing case
with linear pressure but is much denser along the perfect model line. Much less overestimation is
seen in Fig. 5.32, but outliers show no clear pattern. Outliers are more underestimated for larger
data values when compared to Fig. 5.30.

Figure 5.32 – Training data vs model prediction for neural network model trained with

directional deformation to predict equivalent stress for wing with linear pressure.

98

 Though with a higher R2 value the model is able to estimate the changes of stress where
the ribs are located, the accuracy does not compare to decision tree or random forest models. An
error in the model prediction is also evident for the stress values between the ribs, where the
behavior of the data is incorrectly predicted. The higher R2 value also increases the error in the
alignment of trained and testing data, as seen in an enlarged view of the plot in Fig. 5.34.

Figure 5.33 – Neural network model trained with directional deformation to predict equivalent

stress for wing with linear pressure.

Figure 5. 34 – Enlarged view of neural network model trained with directional deformation to

predict equivalent stress for wing with linear pressure.

99

All neural network models show the same prediction error of stress between ribs. The
case with R2 value closest to the average R2 of the cases for the wing geometry is that with
elliptical pressure. The model for this case highlights the positive correlation between an increase
in R2 and inaccuracy of predicting the specific behavior of the data.

Figure 5.35 – Neural network model trained with directional deformation to predict equivalent
stress for wing with elliptical pressure.

 Accuracy of neural network models bear a resemblance to linear regression models,
though having consistent R2 values closer to decision tree and random forest models. Though the
prediction shows close similarity to the data, the error within the prediction greatly diminishes
the suitability of the model for this type of data.

100

6. Conclusion
Machine learning applications explored within this project show fairly consistent results

regarding performance of linear regression, decision tree, random forest, and neural network
algorithms. Data is collected from discretized equations of motion, for a three degree of freedom
system, and FEA in Ansys, for a beam and wing geometry, for supervised regression learning.
Decision tree and random forest models prove to be adequate for the training data collected,
while linear regression and neural network models show poor performance.

The linear regression algorithm produced the most trained R2 values below the high
performance threshold of 0.6. In rare cases was the algorithm able to properly predict the data in
the spring mass damper system models. The data vs. model prediction plots for linear regression
show a tendency to overestimate and underestimate data values. Though the model does not
track the training data, the testing data is seen to perfectly align with the model prediction, as
expected based on the nature of the linear regression algorithm. All decision tree models fit
within the high performance threshold and was able to adequately track training data. The lowest
performing decision tree model showcase the noisy nature of the algorithm, as well as the
tendency to overfit as the testing data did not align with the model prediction. Cases for the beam
and wing geometry all have trained R2 values larger than 0.99 and show little overfitting in the
model plots. Random forest models are very similar to decision tree models, though have higher
performance and less noise in the model prediction. Overfitting is seen to decrease as R2
increases in the spring mass damper models, whereas little overfitting is seen in the beam and
wing geometry models. Of all algorithms, random forest is optimal for prediction of engineering
data presented in this project. Performance of neural networks models is comparable to linear
regression, as well as the behavior of the prediction. The tendency to overestimate and
underestimate data is overserved in neural network models and the testing data rarely misaligns
with the model prediction. The algorithm was not able to properly predict the full complexity of
stress in a wing.

 Capabilities of random forest and decision tree models to predict engineering data is
promising for further applications of machine learning in the aerospace industry. Neural network
models likely did not perform to the best extent due to the high computational power and time
necessary for training models. Further optimization and exploration of neural network models
may demonstrate similar capabilities as random forest models.

101

References

[1] International Air Transport Association. Airline Maintenance Cost Executive
Commentary. 2019.

[2] Piotrowski, D., Roach, D., Melton, A., Bohler, J., Rice, T., Neidigk, S., and Linn, J.
“Implementation of Structural Health Monitoring (SHM) into an Airline Maintenance
Program.” Structural Health Monitoring, 2015, pp. 2727–2733.
https://doi.org/10.12783/shm2015/338.

[3] Liang, L., Liu, M., Martin, C., and Sun, W. “A Deep Learning Approach to Estimate
Stress Distribution: A Fast and Accurate Surrogate of Finite-Element Analysis.” Journal
of the Royal Society Interface, Vol. 15, No. 138, 2018.
https://doi.org/10.1098/rsif.2017.0844.

[4] Krishnakumar, K., “Intelligent Systems for Aerospace Engineering: An Overview,”
Research and Technology Organisation Educational Notes 22 on Intelligent Systems for
Aeronautics, Rhode-Saint-Genèse, Belgium, May 2002.

[5] Huang, Z., Wang, C., Chen, J., and Tian, H. “Optimal Design of Aeroengine Turbine Disc
Based on Kriging Surrogate Models.” Computers & Structures, Vol. 89, No. 1–2, 2011,
pp. 27–37. https://doi.org/10.1016/j.compstruc.2010.07.010.

[6] Naranjo-Pérez, J., Infantes, M., Fernando Jiménez-Alonso, J., and Sáez, A. “A
Collaborative Machine Learning-Optimization Algorithm to Improve the Finite Element
Model Updating of Civil Engineering Structures.” Engineering Structures, Vol. 225,
2020. https://doi.org/10.1016/j.engstruct.2020.111327.

[7] Yang, F., and Ren, J. “Reliability Analysis Based on Optimization Random Forest Model
and MCMC.” CMES - Computer Modeling in Engineering and Sciences, Vol. 125, No. 2,
2020, pp. 801–814. https://doi.org/10.32604/cmes.2020.08889.

[8] Otsu, K., Ono, M., Fuchs, T. J., Baldwin, I., and Kubota, T. “Autonomous Terrain
Classification with Co-and Self-Training Approach.” IEEE Robotics and Automation
Letters, Vol. 1, No. 2, 2016, pp. 814–819. https://doi.org/10.1109/LRA.2016.2525040.

[9] Bertoni, A., Hallstedt, S. I., Dasari, S. K., and Andersson, P. “Integration of Value and
Sustainability Assessment in Design Space Exploration by Machine Learning: An
Aerospace Application.” Design Science, Vol. 6, 2020.
https://doi.org/10.1017/dsj.2019.29.

[10] Shin, D., and Kim, Y. Y. “Data-Driven Approach for a One-Dimensional Thin-Walled
Beam Analysis.” Computers and Structures, Vol. 231, 2020.
https://doi.org/10.1016/j.compstruc.2020.106207.

[11] Jacobs, E. W., Yang, C., Demir, K. G., and Gu, G. X. “Vibrational Detection of
Delamination in Composites Using a Combined Finite Element Analysis and Machine

102

Learning Approach.” Journal of Applied Physics, Vol. 128, No. 12, 2020.
https://doi.org/10.1063/5.0015648.

[12] Chow, W. T. Supervised Learning for Finite Element Analysis of Holes Under Tensile
Load. In Mechanisms and Machine Science, Springer, 2020, pp. 1329–1339.

[13] Yuan, F.-G., Zargar, S. A., Chen, Q., and Wang, S. Machine Learning for Structural
Health Monitoring: Challenges and Opportunities. No. v 11379, 2020, pp. 2.

[14] O’Higgins, E., Graham, K., Daverschot, D., and Baris, J. Machine Learning Application
on Aircraft Fatigue Stress Predictions. 2020.

[15] James, G., Witten, D., Hastie, T., and Tibshirani, R. An Introduction to Statistical
Learning. Springer Science+Business Media, New York, 2013.

[16] Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. “Phoneme
Recognition Using Time-Delay Neural Networks.” IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. 37, No. 3, 1989, pp. 328–339.
https://doi.org/10.1109/29.21701.

[17] Pomerleau, D. A. Alvinn: An Autonomous Land Vehicle in a Neural Network.
https://apps.dtic.mil/sti/citations/ADA218975. Accessed Oct. 4, 2021.

[18] Anderson, J. R. “The Adaptive Nature of Human Categorization.” Psychological Review,
Vol. 98, No. 3, 1991.

[19] Tesauro, G. “Temporal Difference Learning of Backgammon Strategy.” Machine
Learning Proceedings 1992, 1992, pp. 451–457. https://doi.org/10.1016/B978-1-55860-
247-2.50063-2.

[20] Samuel, A. L. “Some Studies in Machine Learning Using the Game of Checkers.” IBM
Journal of Research and Development, Vol. 3, No. 3, 1959, pp. 210–229.
https://doi.org/10.1147/RD.33.0210.

[21] Mitchell, T. Machine Learning. McGraw Hill, 1997.

[22] Fit Binary Decision Tree for Regression - MATLAB Fitrtree.
https://www.mathworks.com/help/stats/fitrtree.html. Accessed Nov. 15, 2021.

[23] Oshiro, T. M., Perez, P. S., and Baranauskas, J. A. “How Many Trees in a Random
Forest?” Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 7376 LNAI, 2012, pp.
154–168. https://doi.org/10.1007/978-3-642-31537-4_13.

[24] Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach. Upper Saddle
River, New Jersey, 2010.

[25] Haykin, S. Neural Networks and Learning Machines. Pearson Education, Upper Saddle
River, New Jersey, 2009.

103

[26] Fit Linear Regression Model - MATLAB Fitlm.
https://www.mathworks.com/help/stats/fitlm.html#mw_1721ca5a-8938-44ad-8366-
f59bec7b00a9. Accessed Aug. 19, 2021.

[27] Fit Binary Decision Tree for Regression - MATLAB Fitrtree.
https://www.mathworks.com/help/stats/fitrtree.html#bunrdhe-1. Accessed Aug. 19, 2021.

[28] Ensemble Algorithms - MATLAB & Simulink.
https://www.mathworks.com/help/stats/ensemble-algorithms.html#bsw8av_. Accessed
Sep. 14, 2021.

[29] Function Fitting Neural Network - MATLAB Fitnet.
https://www.mathworks.com/help/deeplearning/ref/fitnet.html#bu2xeyw-2. Accessed Oct.
31, 2021.

[30] Train Shallow Neural Network - MATLAB Train.
https://www.mathworks.com/help/deeplearning/ref/network.train.html#d123e185291.
Accessed Oct. 31, 2021.

104

Appendix A – MATLAB Code for Three Degree Spring Mass Damper System

3DOF Mass Spring Damper System

% masses (kg)

m1 = 5; m2 = 1; m3 = 3;

% dampers (Ns/m)

c1 = 1; c2 = 1; c3 = 2;

% springs (N/m)

k1 = 700000; k2 = 10000; k3 = 50000;

% F(1) = sine @15 Hz, amplitude of 0.5

f1_a = 0.5; f1_hz = 15;

% F(2) = cosin @15 Hz, amplitude of 0.7

f2_a = 0.7; f2_hz = 15;

% F(3) = sine @15 Hz, amplitude of 0.1

f3_a = 0.1; f3_hz = 15;

% Matrices of ODE

M = diag([m1,m2,m3]);

C = ([c1+c2 -c2 0;

 -c2 c2+c3 -c3;

 0 -c3 c3]);

K = ([k1+k2 -k2 0;

 -k2 k2+k3 -k3;

 0 -k3 k3]);

% ode45 setup

tspan = 0:0.001:2;

x0 = [0; 0; 0; 0; 0; 0];

[t,x] = ode45(@(t,x) integration(t,x, M, C, K, f1_a, f2_a, f3_a, f1_hz, f2_hz, f3_hz), tspan,

x0);

for i=1:length(tspan)

 dxdt_tr(:,i) = integration(t(i),x(i,:).', M, C, K, f1_a, f2_a, f3_a, f1_hz, f2_hz, f3_hz);

end

dxdt = dxdt_tr.';

% data processing

p_m1 = x(:,1); p_m2 = x(:,2); p_m3 = x(:,3);

v_m1 = x(:,4); v_m2 = x(:,5); v_m3 = x(:,6);

a_m1 = dxdt(:,4); a_m2 = dxdt(:,5); a_m3 = dxdt(:,6);

data = [p_m1, p_m2, p_m3, v_m1, v_m2, v_m3, a_m1, a_m2, a_m3,];

105

% percent of data used for training

p = 0.8;

[xtrain, xval, ttrain, tval] = partition(p, t, data);

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(t, p_m1, 'Linewidth', 3)

hold on

plot(t,p_m2, 'g', 'Linewidth', 3)

hold on

plot(t,p_m3,'r', 'Linewidth', 3)

title('Displacement')

xlabel('Time (s)')

legend('m1','m2','m3')

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(t,v_m1, 'Linewidth', 3)

hold on

plot(t,v_m2, 'g', 'Linewidth', 3)

hold on

plot(t,v_m3,'r', 'Linewidth', 3)

title('Velocity')

xlabel('Time (s)')

legend('m1','m2','m3')

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(t,a_m1, 'Linewidth', 3)

hold on

plot(t,a_m2, 'g', 'Linewidth', 3)

hold on

plot(t,a_m3,'r', 'Linewidth', 3)

title('Acceleration')

xlabel('Time (s)')

legend('m1','m2','m3')

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

Decision Tree

%Acceleration to Solve for Displacement

%using Acceleration to solve for Displacement of M1

dectre(xtrain(:,7:9), xtrain(:,1), xval(:,7:9), xval(:,1), ttrain, tval, 'Acceleration',

106

'Displacement', 'M1')

%using Acceleration to solve for Displacement of M2

dectre(xtrain(:,7:9), xtrain(:,2), xval(:,7:9), xval(:,2), ttrain, tval, 'Acceleration',

'Displacement', 'M2')

%using Acceleration to solve for Displacement of M3

dectre(xtrain(:,7:9), xtrain(:,3), xval(:,7:9), xval(:,3), ttrain, tval, 'Acceleration',

'Displacement', 'M3')

%Acceleration to Solve for Velocity

%using Acceleration to solve for Velocity of M1

dectre(xtrain(:,7:9), xtrain(:,4), xval(:,7:9), xval(:,4), ttrain, tval, 'Acceleration',

'Velocity', 'M1')

%using Acceleration to solve for Velocity of M2

dectre(xtrain(:,7:9), xtrain(:,5), xval(:,7:9), xval(:,5), ttrain, tval, 'Acceleration',

'Velocity', 'M2')

%using Acceleration to solve for Velocity of M3

dectre(xtrain(:,7:9), xtrain(:,6), xval(:,7:9), xval(:,6), ttrain, tval, 'Acceleration',

'Velocity', 'M3')

%Velocity to Solve for Displacement

%using Velocity to solve for Displacement of M1

dectre(xtrain(:,4:6), xtrain(:,1), xval(:,4:6), xval(:,1), ttrain, tval, 'Velocity',

'Displacement', 'M1')

%using Velocity to solve for Displacement of M2

dectre(xtrain(:,4:6), xtrain(:,2), xval(:,4:6), xval(:,2), ttrain, tval, 'Velocity',

'Displacement', 'M2')

%using Velocity to solve for Displacement of M3

dectre(xtrain(:,4:6), xtrain(:,3), xval(:,4:6), xval(:,3), ttrain, tval, 'Velocity',

'Displacement', 'M3')

%Velocity to Solve for Acceleration

%using Velocity to solve for Acceleration of M1

dectre(xtrain(:,4:6), xtrain(:,7), xval(:,4:6), xval(:,7), ttrain, tval, 'Velocity',

'Acceleration', 'M1')

%using Velocity to solve for Acceleration of M2

dectre(xtrain(:,4:6), xtrain(:,8), xval(:,4:6), xval(:,8), ttrain, tval, 'Velocity',

'Acceleration', 'M2')

%using Velocity to solve for Acceleration of M3

dectre(xtrain(:,4:6), xtrain(:,9), xval(:,4:6), xval(:,9), ttrain, tval, 'Velocity',

'Acceleration', 'M3')

%Displacement to Solve for Velocity

%using Displacement to solve for Velocity of M1

dectre(xtrain(:,1:3), xtrain(:,4), xval(:,1:3), xval(:,4), ttrain, tval, 'Acceleration',

'Velocity', 'M1')

%using Displacement to solve for Velocity of M2

dectre(xtrain(:,1:3), xtrain(:,5), xval(:,1:3), xval(:,5), ttrain, tval, 'Acceleration',

'Velocity', 'M2')

%using Displacement to solve for Velocity of M3

dectre(xtrain(:,1:3), xtrain(:,6), xval(:,1:3), xval(:,6), ttrain, tval, 'Acceleration',

'Velocity', 'M3')

%Displacement to Solve for Acceleration

%using Displacement to solve for Acceleration of M1

107

dectre(xtrain(:,1:3), xtrain(:,7), xval(:,1:3), xval(:,7), ttrain, tval, 'Displacement',

'Acceleration', 'M1')

%using Displacement to solve for Acceleration of M2

dectre(xtrain(:,1:3), xtrain(:,8), xval(:,1:3), xval(:,8), ttrain, tval, 'Displacement',

'Acceleration', 'M2')

%using Displacement to solve for Acceleration of M3

dectre(xtrain(:,1:3), xtrain(:,9), xval(:,1:3), xval(:,9), ttrain, tval, 'Displacement',

'Acceleration', 'M3')

Random Forest (LSBoost)

%Acceleration to Solve for Displacement

%using Acceleration to solve for Displacement of M1

ranforlsb(xtrain(:,7:9), xtrain(:,1), xval(:,7:9), xval(:,1), ttrain, tval, 'Acceleration',

'Displacement', 'M1')

%using Acceleration to solve for Displacement of M2

ranforlsb(xtrain(:,7:9), xtrain(:,2), xval(:,7:9), xval(:,2), ttrain, tval, 'Acceleration',

'Displacement', 'M2')

%using Acceleration to solve for Displacement of M3

ranforlsb(xtrain(:,7:9), xtrain(:,3), xval(:,7:9), xval(:,3),ttrain, tval, 'Acceleration',

'Displacement', 'M3')

%Acceleration to Solve for Velocity

%using Acceleration to solve for Velocity of M1

ranforlsb(xtrain(:,7:9), xtrain(:,4), xval(:,7:9), xval(:,4), ttrain, tval, 'Acceleration',

'Velocity', 'M1')

%using Acceleration to solve for Velocity of M2

ranforlsb(xtrain(:,7:9), xtrain(:,5), xval(:,7:9), xval(:,5), ttrain, tval, 'Acceleration',

'Velocity', 'M2')

%using Acceleration to solve for Velocity of M3

ranforlsb(xtrain(:,7:9), xtrain(:,6), xval(:,7:9), xval(:,6), ttrain, tval, 'Acceleration',

'Velocity', 'M3')

%Velocity to Solve for Displacement

%using Velocity to solve for Displacement of M1

ranforlsb(xtrain(:,4:6), xtrain(:,1), xval(:,4:6), xval(:,1), ttrain, tval, 'Velocity',

'Displacement', 'M1')

%using Velocity to solve for Displacement of M2

ranforlsb(xtrain(:,4:6), xtrain(:,2), xval(:,4:6), xval(:,2), ttrain, tval, 'Velocity',

'Displacement', 'M2')

%using Velocity to solve for Displacement of M3

ranforlsb(xtrain(:,4:6), xtrain(:,3), xval(:,4:6), xval(:,3), ttrain, tval, 'Velocity',

'Displacement', 'M3')

%Velocity to Solve for Acceleration

%using Velocity to solve for Acceleration of M1

ranforlsb(xtrain(:,4:6), xtrain(:,7), xval(:,4:6), xval(:,7), ttrain, tval, 'Velocity',

'Acceleration', 'M1')

%using Velocity to solve for Acceleration of M2

ranforlsb(xtrain(:,4:6), xtrain(:,8), xval(:,4:6), xval(:,8), ttrain, tval, 'Velocity',

'Acceleration', 'M2')

%using Velocity to solve for Acceleration of M3

108

ranforlsb(xtrain(:,4:6), xtrain(:,9), xval(:,4:6), xval(:,9), ttrain, tval, 'Velocity',

'Acceleration', 'M3')

%Displacement to Solve for Velocity

%using Displacement to solve for Velocity of M1

ranforlsb(xtrain(:,1:3), xtrain(:,4), xval(:,1:3), xval(:,4), ttrain, tval, 'Acceleration',

'Velocity', 'M1')

%using Displacement to solve for Velocity of M2

ranforlsb(xtrain(:,1:3), xtrain(:,5), xval(:,1:3), xval(:,5), ttrain, tval, 'Acceleration',

'Velocity', 'M2')

%using Displacement to solve for Velocity of M3

ranforlsb(xtrain(:,1:3), xtrain(:,6), xval(:,1:3), xval(:,6), ttrain, tval, 'Acceleration',

'Velocity', 'M3')

%Displacement to Solve for Acceleration

%using Displacement to solve for Acceleration of M1

ranforlsb(xtrain(:,1:3), xtrain(:,7), xval(:,1:3), xval(:,7), ttrain, tval, 'Displacement',

'Acceleration', 'M1')

%using Displacement to solve for Acceleration of M2

ranforlsb(xtrain(:,1:3), xtrain(:,8), xval(:,1:3), xval(:,8), ttrain, tval, 'Displacement',

'Acceleration', 'M2')

%using Displacement to solve for Acceleration of M3

ranforlsb(xtrain(:,1:3), xtrain(:,9), xval(:,1:3), xval(:,9), ttrain, tval, 'Displacement',

'Acceleration', 'M3')

Random Forest (Bag Method)

%Acceleration to Solve for Displacement

%using Acceleration to solve for Displacement of M1

ranforbag(xtrain(:,7:9), xtrain(:,1), xval(:,7:9), xval(:,1), ttrain, tval, 'Acceleration',

'Displacement', 'M1')

%using Acceleration to solve for Displacement of M2

ranforbag(xtrain(:,7:9), xtrain(:,2), xval(:,7:9), xval(:,2), ttrain, tval, 'Acceleration',

'Displacement', 'M2')

%using Acceleration to solve for Displacement of M3

ranforbag(xtrain(:,7:9), xtrain(:,3), xval(:,7:9), xval(:,3),ttrain, tval, 'Acceleration',

'Displacement', 'M3')

%Acceleration to Solve for Velocity

%using Acceleration to solve for Velocity of M1

ranforbag(xtrain(:,7:9), xtrain(:,4), xval(:,7:9), xval(:,4), ttrain, tval, 'Acceleration',

'Velocity', 'M1')

%using Acceleration to solve for Velocity of M2

ranforbag(xtrain(:,7:9), xtrain(:,5), xval(:,7:9), xval(:,5), ttrain, tval, 'Acceleration',

'Velocity', 'M2')

%using Acceleration to solve for Velocity of M3

ranforbag(xtrain(:,7:9), xtrain(:,6), xval(:,7:9), xval(:,6), ttrain, tval, 'Acceleration',

'Velocity', 'M3')

%Velocity to Solve for Displacement

%using Velocity to solve for Displacement of M1

ranforbag(xtrain(:,4:6), xtrain(:,1), xval(:,4:6), xval(:,1), ttrain, tval, 'Velocity',

109

'Displacement', 'M1')

%using Velocity to solve for Displacement of M2

ranforbag(xtrain(:,4:6), xtrain(:,2), xval(:,4:6), xval(:,2), ttrain, tval, 'Velocity',

'Displacement', 'M2')

%using Velocity to solve for Displacement of M3

ranforbag(xtrain(:,4:6), xtrain(:,3), xval(:,4:6), xval(:,3), ttrain, tval, 'Velocity',

'Displacement', 'M3')

%Velocity to Solve for Acceleration

%using Velocity to solve for Acceleration of M1

ranforbag(xtrain(:,4:6), xtrain(:,7), xval(:,4:6), xval(:,7), ttrain, tval, 'Velocity',

'Acceleration', 'M1')

%using Velocity to solve for Acceleration of M2

ranforbag(xtrain(:,4:6), xtrain(:,8), xval(:,4:6), xval(:,8), ttrain, tval, 'Velocity',

'Acceleration', 'M2')

%using Velocity to solve for Acceleration of M3

ranforbag(xtrain(:,4:6), xtrain(:,9), xval(:,4:6), xval(:,9), ttrain, tval, 'Velocity',

'Acceleration', 'M3')

%Displacement to Solve for Velocity

%using Displacement to solve for Velocity of M1

ranforbag(xtrain(:,1:3), xtrain(:,4), xval(:,1:3), xval(:,4), ttrain, tval, 'Acceleration',

'Velocity', 'M1')

%using Displacement to solve for Velocity of M2

ranforbag(xtrain(:,1:3), xtrain(:,5), xval(:,1:3), xval(:,5), ttrain, tval, 'Acceleration',

'Velocity', 'M2')

%using Displacement to solve for Velocity of M3

ranforbag(xtrain(:,1:3), xtrain(:,6), xval(:,1:3), xval(:,6), ttrain, tval, 'Acceleration',

'Velocity', 'M3')

%Displacement to Solve for Acceleration

%using Displacement to solve for Acceleration of M1

ranforbag(xtrain(:,1:3), xtrain(:,7), xval(:,1:3), xval(:,7), ttrain, tval, 'Displacement',

'Acceleration', 'M1')

%using Displacement to solve for Acceleration of M2

ranforbag(xtrain(:,1:3), xtrain(:,8), xval(:,1:3), xval(:,8), ttrain, tval, 'Displacement',

'Acceleration', 'M2')

%using Displacement to solve for Acceleration of M3

ranforbag(xtrain(:,1:3), xtrain(:,9), xval(:,1:3), xval(:,9), ttrain, tval, 'Displacement',

'Acceleration', 'M3')

Neural Network

% hidden layers

hl = [19 40];

%Acceleration to Solve for Displacement

%using Acceleration to solve for Displacement of M1

neunet(xtrain(:,7:9), xtrain(:,1), xval(:,7:9), xval(:,1), hl, ttrain, tval, 'Acceleration',

'Displacement', 'M1')

%using Acceleration to solve for Displacement of M2

neunet(xtrain(:,7:9), xtrain(:,2), xval(:,7:9), xval(:,2), hl, ttrain, tval, 'Acceleration',

110

'Displacement', 'M2')

%using Acceleration to solve for Displacement of M3

neunet(xtrain(:,7:9), xtrain(:,3), xval(:,7:9), xval(:,3), hl, ttrain, tval, 'Acceleration',

'Displacement', 'M3')

%Acceleration to Solve for Velocity

%using Acceleration to solve for Velocity of M1

neunet(xtrain(:,7:9), xtrain(:,4), xval(:,7:9), xval(:,4), hl, ttrain, tval, 'Acceleration',

'Velocity', 'M1')

%using Acceleration to solve for Velocity of M2

neunet(xtrain(:,7:9), xtrain(:,5), xval(:,7:9), xval(:,5), hl, ttrain, tval, 'Acceleration',

'Velocity', 'M2')

%using Acceleration to solve for Velocity of M3

neunet(xtrain(:,7:9), xtrain(:,6), xval(:,7:9), xval(:,6), hl, ttrain, tval, 'Acceleration',

'Velocity', 'M3')

%Velocity to Solve for Displacement

%using Velocity to solve for Displacement of M1

neunet(xtrain(:,4:6), xtrain(:,1), xval(:,4:6), xval(:,1), hl, ttrain, tval, 'Velocity',

'Displacement', 'M1')

%using Velocity to solve for Displacement of M2

neunet(xtrain(:,4:6), xtrain(:,2), xval(:,4:6), xval(:,2), hl, ttrain, tval, 'Velocity',

'Displacement', 'M2')

%using Velocity to solve for Displacement of M3

neunet(xtrain(:,4:6), xtrain(:,3), xval(:,4:6), xval(:,3), hl, ttrain, tval, 'Velocity',

'Displacement', 'M3')

%Velocity to Solve for Acceleration

%using Velocity to solve for Acceleration of M1

neunet(xtrain(:,4:6), xtrain(:,7), xval(:,4:6), xval(:,7), hl, ttrain, tval, 'Velocity',

'Acceleration', 'M1')

%using Velocity to solve for Acceleration of M2

neunet(xtrain(:,4:6), xtrain(:,8), xval(:,4:6), xval(:,8), hl, ttrain, tval, 'Velocity',

'Acceleration', 'M2')

%using Velocity to solve for Acceleration of M3

neunet(xtrain(:,4:6), xtrain(:,9), xval(:,4:6), xval(:,9), hl, ttrain, tval, 'Velocity',

'Acceleration', 'M3')

%Displacement to Solve for Velocity

%using Displacement to solve for Velocity of M1

neunet(xtrain(:,1:3), xtrain(:,4), xval(:,1:3), xval(:,4), hl, ttrain, tval, 'Acceleration',

'Velocity', 'M1')

%using Displacement to solve for Velocity of M2

neunet(xtrain(:,1:3), xtrain(:,5), xval(:,1:3), xval(:,5), hl, ttrain, tval, 'Acceleration',

'Velocity', 'M2')

%using Displacement to solve for Velocity of M3

neunet(xtrain(:,1:3), xtrain(:,6), xval(:,1:3), xval(:,6), hl, ttrain, tval, 'Acceleration',

'Velocity', 'M3')

%Displacement to Solve for Acceleration

%using Displacement to solve for Acceleration of M1

neunet(xtrain(:,1:3), xtrain(:,7), xval(:,1:3), xval(:,7), hl, ttrain, tval, 'Displacement',

'Acceleration', 'M1')

%using Displacement to solve for Acceleration of M2

111

neunet(xtrain(:,1:3), xtrain(:,8), xval(:,1:3), xval(:,8), hl, ttrain, tval, 'Displacement',

'Acceleration', 'M2')

%using Displacement to solve for Acceleration of M3

neunet(xtrain(:,1:3), xtrain(:,9), xval(:,1:3), xval(:,9), hl, ttrain, tval, 'Displacement',

'Acceleration', 'M3')

function [xtrain, xval, ttrain, tval] = partition(p, t, x)

k = length(t);

idx = randperm(k);

ttrain = t(idx(1:round(p*k)),:);

tval = t(idx(round(p*k)+1:end),:);

xtrain = x(idx(1:round(p*k)),:);

xval = x(idx(round(p*k)+1:end),:);

end

function solvelr = linreg(a, d, b, c, ttrain, tval, training, predicting, mass)

% linear regression model

% a - train data | d - predictor variable | b - test data

data = sortrows([ttrain,d]);

mdl = fitlm(a, d);

Y = feval(mdl,a);

trained = sortrows([ttrain, Y]);

yfit = feval(mdl,b);

tested = sortrows([tval, yfit]);

RMSE = sqrt(mean((Y - d).^2));

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25)

hold on

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3)

axis equal

daspect([1 1 1])

grid on

set(gca,'FontSize',22)

legend('','perfect model')

xlabel('Data')

ylabel('Model Prediction')

title('Linear Regression')

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

112

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data');

xlabel('Time (s)')

if strcmp(predicting,'Displacement')

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

title('Linear Regression')

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

% PLOT FOR ENLARGED VIEW

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data')

xlabel('Time (s)')

xlim([1 1.2])

if strcmp(predicting,'Displacement')

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

title('Linear Regression')

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

snapnow

close all

end

function solvedt = dectre(a, d, b, c, ttrain, tval, training, predicting, mass)

113

% decision tree model

% a - train data | d - predictor variable | b - test data

data = sortrows([ttrain,d]);

mdl = fitrtree(a, d);

Y = predict(mdl,a);

trained = sortrows([ttrain, Y]);

yfit = predict(mdl,b);

tested = sortrows([tval, yfit]);

RMSE = sqrt(mean((Y - d).^2));

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25)

hold on

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3)

axis equal

daspect([1 1 1])

grid on

set(gca,'FontSize',22)

legend('','perfect model')

xlabel('Data')

ylabel('Model Prediction')

title('Decision Tree')

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data');

xlabel('Time (s)')

if strcmp(predicting,'Displacement')

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

title('Decision Tree')

114

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

% PLOT FOR ENLARGED VIEW

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data')

xlabel('Time (s)')

xlim([1 1.2])

if strcmp(predicting,'Displacement')

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

title('Decision Tree')

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

snapnow

close all

end

function solverflsb = ranforlsb(a, d, b, c, ttrain, tval, training, predicting, mass)

% random forest model (lsboost method)

% a - train data | d - predictor variable | b - test data

data = sortrows([ttrain,d]);

mdl = fitrensemble(a, d, 'NumLearningCycles', 500, 'LearnRate',0.55246);

Y = predict(mdl,a);

trained = sortrows([ttrain, Y]);

yfit = predict(mdl,b);

tested = sortrows([tval, yfit]);

RMSE = sqrt(mean((Y - d).^2));

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

115

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25)

hold on

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3)

axis equal

daspect([1 1 1])

grid on

set(gca,'FontSize',22)

legend('','perfect model')

xlabel('Data')

ylabel('Model Prediction')

title({'Random Forest','LSBoost Method'})

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data');

xlabel('Time (s)')

if strcmp(predicting,'Displacement')

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

title({'Random Forest','LSBoost Method'})

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

% PLOT FOR ENLARGED VIEW

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), "k.", 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data')

xlabel('Time (s)')

xlim([1 1.2])

if strcmp(predicting,'Displacement')

116

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

title({'Random Forest','LSBoost Method'})

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

snapnow

close all

end

function solverfbag = ranforbag(a, d, b, c, ttrain, tval, training, predicting, mass)

% random forest model (bag method)

% a - train data | d - predictor variable | b - test data

data = sortrows([ttrain,d]);

mdl = fitrensemble(a, d,'Method', 'Bag', 'NumLearningCycles', 363);

Y = predict(mdl,a);

trained = sortrows([ttrain, Y]);

yfit = predict(mdl,b);

tested = sortrows([tval, yfit]);

RMSE = sqrt(mean((Y - d).^2));

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25)

hold on

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3)

axis equal

daspect([1 1 1])

grid on

set(gca,'FontSize',22)

legend('','perfect model')

xlabel('Data')

ylabel('Model Prediction')

title({'Random Forest','Bag Method'})

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

117

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data');

xlabel('Time (s)')

if strcmp(predicting,'Displacement')

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

title({'Random Forest','Bag Method'})

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

% PLOT FOR ENLARGED VIEW

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), "k.", 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data')

xlabel('Time (s)')

xlim([1 1.2])

if strcmp(predicting,'Displacement')

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

title({'Random Forest','Bag Method'})

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

snapnow

close all

end

function solvenn = neunet(a, d, b, c, hl, ttrain, tval, training, predicting, mass)

118

% neural network model

% a - training data | d - predictor variable | b - test data

data = sortrows([ttrain,d]);

net = fitnet(hl);

net = train(net, a', d');

Y = net(a');

trained = sortrows([ttrain, Y']);

yfit = net(b');

tested = sortrows([tval, yfit']);

RMSE = sqrt(mean((Y' - d).^2));

R2_trained = corr(Y', d).^2;

R2_tested = corr(yfit', c).^2;

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,2), trained(:,2),'.b', 'MarkerSize',25)

hold on

plot(data(:,2), data(:,2), 'k', 'Linewidth', 3)

axis equal

daspect([1 1 1])

grid on

set(gca,'FontSize',22)

legend('','perfect model')

xlabel('Data')

ylabel('Model Prediction')

title('Neural Network')

subtitle(["Trained with "+training+" to Predict "+predicting+" of "+mass+"",""])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data');

xlabel('Time (s)')

if strcmp(predicting,'Displacement')

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

119

title('Neural Network')

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

% PLOT FOR ENLARGED VIEW

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(data(:,1), data(:,2),'b', 'Linewidth', 3)

hold on

plot(trained(:,1), trained(:,2), 'r', 'Linewidth', 3)

hold on

plot(tested(:,1), tested(:,2), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

legend('data', 'training data', 'testing data')

xlabel('Time (s)')

xlim([1 1.2])

if strcmp(predicting,'Displacement')

 y = 'Displacement (m)';

elseif strcmp(predicting,'Velocity')

 y = 'Velocity (m/s)';

elseif strcmp(predicting, 'Acceleration')

 y = 'Acceleration (m/s^2)';

end

ylabel(""+y+"")

title('Neural Network')

subtitle(['Trained with ',training,' to Predict ',predicting,' of ',mass,''])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

snapnow

close all

end

function dxdt = integration(t,x, M, C, K, f1_a, f2_a, f3_a, f1_hz, f2_hz, f3_hz)

F = [f1_a*sin(f1_hz*2*pi*t);

 f2_a*cos(f2_hz*2*pi*t);

 f3_a*sin(f3_hz*2*pi*t)];

dxdt = zeros(size(x));

dxdt(1:3) = x(4:6);

dxdt(4:6) = M\(F - C*x(4:6) - K*x(1:3));

end

120

Appendix B – MATLAB Code for Static Channel Beam

% percent of data used for training

p = 0.8;

% hidden layers for neural network

hl = [50 12];

% point load of 100 N at 1 m

ml('SBpl100DD.txt', 'SBpl100ES.txt', p, 'Point Load at Full Length', hl)

% point load of 100 N at 0.75 m

ml('SBpl75DD.txt', 'SBpl75ES.txt', p, 'Point Load at 3/4 Length', hl)

% point load of 100 N at 0.5 m

ml('SBpl50DD.txt', 'SBpl50ES.txt', p, 'Point Load at 1/2 Length', hl)

% point load of 100 N at 0.25 m

ml('SBpl25DD.txt', 'SBpl25ES.txt', p, 'Point Load at 1/4 Length', hl)

% constant distributed load of 100 N/m

ml('SBcdlDD.txt', 'SBcdlES.txt', p, 'Constant Distributed Load', hl)

% linear distributed load of 100 Pa at 0 m to 0 Pa at 1 m

ml('SBldlDD.txt', 'SBldlES.txt', p, 'Linear Distributed Load ', hl)

% constant distributed load of 100 Pa at 0-0.5 m + linear distributed load of

% 100 Pa at 0.5 m to 0 Pa at 1 m

ml('SBcldlDD.txt', 'SBcldlES.txt', p, 'Constant and Linear Distributed Load', hl)

% parabolic distributed load 100 Pa at 0 m to 0 Pa at 1 m

ml('SBpdlDD.txt', 'SBpdlES.txt', p, 'Parabolic Distributed Load', hl)

function [dtrain, dval] = partition(p, x)

k = length(x);

idx = randperm(k);

dtrain = x(idx(1:round(p*k)),:);

dval = x(idx(round(p*k)+1:end),:);

end

function solvelr = linreg(a, d, b, c, load)

% linear regression model

% a - train data | d - predictor variable | b - test data

size(a,1)

mdl = fitlm(a, d);

Y = feval(mdl,a);

yfit = feval(mdl,b);

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

fprintf('LR TRAINED %s for : %f\n', load, R2_trained)

121

fprintf('LR TESTED %s for : %f\n', load, R2_tested)

pltm(d, Y, 'Linear Regression', 'none', load)

plt(a, d, Y, b, c, yfit, 'X', 'Linear Regression', 'none', load)

plt(a, d, Y, b, c, yfit, 'Y', 'Linear Regression', 'none', load)

plt(a, d, Y, b, c, yfit, 'Z', 'Linear Regression', 'none', load)

end

function solvedt = dectre(a, d, b, c, load)

% decision tree model

% a - train data | d - predictor variable | b - test data

mdl = fitrtree(a, d);

Y = predict(mdl,a);

yfit = predict(mdl,b);

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

fprintf('DT TRAINED %s for : %f\n', load, R2_trained)

fprintf('DT TESTED %s for : %f\n', load, R2_tested)

pltm(d, Y, 'Decision Tree', 'none', load)

plt(a, d, Y, b, c, yfit, 'X', 'Decision Tree', 'none', load)

plt(a, d, Y, b, c, yfit, 'Y', 'Decision Tree', 'none', load)

plt(a, d, Y, b, c, yfit, 'Z', 'Decision Tree', 'none', load)

end

function solverf = ranfor(a, d, b, c, load)

% random forest model (bag method)

% a - train data | d - predictor variable | b - test data

mdl = fitrensemble(a, d,'Method', 'Bag', 'NumLearningCycles', 493);

Y = predict(mdl,a);

yfit = predict(mdl,b);

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

fprintf('RF TRAINED %s for : %f\n', load, R2_trained)

fprintf('RF TESTED %s for : %f\n', load, R2_tested)

pltm(d, Y, 'Random Forest', 'Bag Method', load)

plt(a, d, Y, b, c, yfit, 'X', 'Random Forest', 'Bag Method', load)

plt(a, d, Y, b, c, yfit, 'Y', 'Random Forest', 'Bag Method', load)

plt(a, d, Y, b, c, yfit, 'Z', 'Random Forest', 'Bag Method', load)

end

function solvenn = neunet(a, d, b, c, load, hl)

% neural network model

122

% a - training data | d - predictor variable | b - test data

net = fitnet(hl);

net = train(net, a', d');

Y = net(a');

yfit = net(b');

R2_trained = corr(Y', d).^2;

R2_tested = corr(yfit', c).^2;

fprintf('NN TRAINED %s for : %f\n', load, R2_trained)

fprintf('NN TESTED %s for : %f\n', load, R2_tested)

pltm(d, Y', 'Neural Network', 'none', load)

plt(a, d, Y', b, c, yfit', 'X', 'Neural Network', 'none', load)

plt(a, d, Y', b, c, yfit', 'Y', 'Neural Network', 'none', load)

plt(a, d, Y', b, c, yfit', 'Z', 'Neural Network', 'none', load)

end

function pltm = pltm(d, Y, model, method, load)

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(d, Y,'.b', 'MarkerSize',25)

hold on

plot(d, d, 'k', 'Linewidth', 3)

axis equal

daspect([1 1 1])

grid on

set(gca,'FontSize',22)

legend('','perfect model')

xlabel('Data')

ylabel('Model Prediction')

if strcmp(method,'none')

 title([model])

else

 title({model,method})

end

subtitle([load])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

snapnow

close all

end

function plt = plt(a, d, Y, b, c, yfit, saxis, model, method, load)

if strcmp(saxis,'X')

 i = 1;

 j = 2;

 k = 3;

123

elseif strcmp(saxis,'Y')

 i = 2;

 j = 1;

 k = 3;

elseif strcmp(saxis,'Z')

 i = 3;

 j = 1;

 k = 2;

end

pltdata = [a,d,Y];

plta = pltdata(pltdata(:,j)==0,:);

pltb = plta(plta(:,k)==0,:);

pltfinal = sortrows(pltb,i);

testeddata = [b,c,yfit];

tplta = testeddata(testeddata(:,j)==0,:);

tpltb = tplta(tplta(:,k)==0,:);

tpltfinal = sortrows(tpltb,i);

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(pltfinal(:,i), pltfinal(:,5), 'b', 'LineWidth', 3)

hold on

plot(pltfinal(:,i), pltfinal(:,6), 'r', 'LineWidth', 3)

hold on

plot(tpltfinal(:,i), tpltfinal(:,6), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

if strcmp(method,'none')

 title([model])

else

 title({model,method})

end

subtitle(['Stress Along ',saxis,' Axis with ',load,''])

xlabel(['',axis,' Axis (m)'])

ylabel('Stress (Pa)')

legend('data','trained data', 'testing data')

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

if strcmp(saxis,'Z')

 figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

 plot(pltfinal(:,i), pltfinal(:,5), 'b', 'LineWidth', 3)

 hold on

 plot(pltfinal(:,i), pltfinal(:,6), 'r', 'LineWidth', 3)

 hold on

 plot(tpltfinal(:,i), tpltfinal(:,6), 'k.', 'MarkerSize',25, 'Linewidth', 3)

 set(gca,'FontSize',22)

 if strcmp(method,'none')

 title([model])

124

 else

 title({model,method})

 end

 subtitle(['Stress Along ',saxis,' Axis with ',load,''])

 xlim([0.5 0.6])

 xlabel(['',axis,' Axis (m)'])

 ylabel('Stress (Pa)')

 legend('data','trained data', 'testing data')

 hold on

 set(gca,'FontSize',35)

 set(gca,'fontname','times')

 set(gca,'linewidth',2)

 set(gca,'LooseInset',get(gca,'TightInset'))

end

snapnow

close all

end

function learn = ml(deformation, stress, p, load, hl)

A = importdata(deformation);

B = importdata(stress);

% x | y | z | deformation | stress

data = [A.data(:,2:5), B.data(:,5)];

assignin('base','data',data)

% percentage of data to be used for training

[dtrain, dval] = partition(p, data);

a = dtrain(:,1:4);

d = dtrain(:,5);

b = dval(:,1:4);

c = dval(:,5);

linreg(a, d, b, c, load)

dectre(a, d, b, c, load)

ranfor(a, d, b, c, load)

neunet(a, d, b, c, load, hl)

end

125

Appendix C – MATLAB Code for Static Wing

% percent of data used for training

p = 0.8;

% hidden layers for neural network

hl = [23 22];

% point load of 10 N at Full Length

ml('Wpl10DD.txt','Wpl10ES.txt','Wpl10DDpath.txt','Wpl10ESpath.txt', p, 'Point Load at Full

Length', hl)

% constant distributed load of 10 N/m

ml('WcdlDD.txt','WcdlES.txt','WcdlDDpath.txt','WcdlESpath.txt', p, 'Constant Distributed Load',

hl)

% linear pressure of 10 Pa at 0 m to 0 Pa at full length

ml('WlpDD.txt','WlpES.txt','WlpDDpath.txt','WlpESpath.txt', p, 'Linear Pressure', hl)

% constant pressure of 10 Pa at 0-0.5 m + linear pressure of

% 10 Pa at 0.5 m to 0 Pa at full length

ml('WclpDD.txt','WclpES.txt','WclpDDpath.txt','WclpESpath.txt', p, 'Constant and Linear

Pressure', hl)

% parabolic pressure 10 Pa at 0 m to 0 Pa at full length

ml('WppDD.txt','WppES.txt','WppDDpath.txt','WppESpath.txt', p, 'Parabolic Pressure', hl)

% elliptical pressure 10 Pa at 0 m to 0 Pa at full length

ml('WepDD.txt','WepES.txt','WepDDpath.txt','WepESpath.txt', p, 'Elliptical Pressure', hl)

function [dtrain, dval] = partition(p, x)

k = length(x);

idx = randperm(k);

dtrain = x(idx(1:round(p*k)),:);

dval = x(idx(round(p*k)+1:end),:);

end

function solvelr = linreg(a, d, b, c, pdata, load)

% linear regression model

% a - train data | d - predictor variable | b - test data

mdl = fitlm(a, d);

Y = feval(mdl,a);

yfit = feval(mdl,b);

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

fprintf('LR TRAINED %s for : %f\n', load, R2_trained)

fprintf('LR TESTED %s for : %f\n', load, R2_tested)

pltm(d, Y, 'Linear Regression', 'none', load)

plt(a, d, Y, b, c, pdata, yfit, 'Linear Regression', 'none', load)

126

end

function solvedt = dectre(a, d, b, c, pdata, load)

% decision tree model

% a - train data | d - predictor variable | b - test data

mdl = fitrtree(a, d);

Y = predict(mdl,a);

yfit = predict(mdl,b);

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

fprintf('DT TRAINED %s for : %f\n', load, R2_trained)

fprintf('DT TESTED %s for : %f\n', load, R2_tested)

pltm(d, Y, 'Decision Tree', 'none', load)

plt(a, d, Y, b, c, pdata, yfit, 'Decision Tree', 'none', load)

end

function solverf = ranfor(a, d, b, c, pdata, load)

% random forest model (bag method)

% a - train data | d - predictor variable | b - test data

mdl = fitrensemble(a, d,'Method', 'Bag', 'NumLearningCycles', 309);

Y = predict(mdl,a);

yfit = predict(mdl,b);

R2_trained = corr(Y, d).^2;

R2_tested = corr(yfit, c).^2;

fprintf('RF TRAINED %s for : %f\n', load, R2_trained)

fprintf('RF TESTED %s for : %f\n', load, R2_tested)

pltm(d, Y, 'Random Forest', 'Bag Method', load)

plt(a, d, Y, b, c, pdata, yfit, 'Random Forest', 'Bag Method', load)

end

function solvenn = neunet(a, d, b, c, pdata, load, hl)

% neural network model

% a - training data | d - predictor variable | b - test data

net = fitnet(hl);

net = train(net, a', d');

Y = net(a');

yfit = net(b');

R2_trained = corr(Y', d).^2;

R2_tested = corr(yfit', c).^2;

127

fprintf('NN TRAINED %s for : %f\n', load, R2_trained)

fprintf('NN TESTED %s for : %f\n', load, R2_tested)

pltm(d, Y', 'Neural Network', 'none', load)

plt(a, d, Y', b, c, pdata, yfit', 'Neural Network', 'none', load)

end

function pltm = pltm(d, Y, model, method, load)

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(d, Y,'.b', 'MarkerSize',25)

hold on

plot(d, d, 'k', 'Linewidth', 3)

axis equal

daspect([1 1 1])

grid on

set(gca,'FontSize',22)

legend('','perfect model')

xlabel('Data')

ylabel('Model Prediction')

if strcmp(method,'none')

 title([model])

else

 title({model,method})

end

subtitle([load])

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

snapnow

close all

end

function plt = plt(a, d, Y, b, c, pdata, yfit, model, method, load)

ploted = [a,d,Y];

idx = find(ismember(ploted(:,1:3),pdata(:,1:3),'rows'));

pltdata = sortrows(ploted(idx,:),3);

tested = [b,c,yfit];

idx = find(ismember(tested(:,1:3),pdata(:,1:3),'rows'));

testeddata = sortrows(tested(idx,:),3);

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(pltdata(:,3), pltdata(:,5), 'b', 'LineWidth', 3)

hold on

plot(pltdata(:,3), pltdata(:,6), 'r', 'LineWidth', 3)

hold on

plot(testeddata(:,3), testeddata(:,6), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

if strcmp(method,'none')

 title([model])

else

128

 title({model,method})

end

subtitle(['Stress Along Path on Wing with ',load,''])

xlabel(['Z Coordiante (m)'])

ylabel('Stress (Pa)')

legend('data','trained data', 'testing data')

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

% enlarged view

figure('Units', 'pixels', 'Position', [0 0 1920 1080]);

plot(pltdata(:,3), pltdata(:,5), 'b', 'LineWidth', 3)

hold on

plot(pltdata(:,3), pltdata(:,6), 'r', 'LineWidth', 3)

hold on

plot(testeddata(:,3), testeddata(:,6), 'k.', 'MarkerSize',25, 'Linewidth', 3)

set(gca,'FontSize',22)

if strcmp(method,'none')

 title([model])

else

 title({model,method})

end

subtitle(['Stress Along Path on Wing with ',load,''])

xlim([0.5 0.7])

xlabel(['Z Coordinate (m)'])

ylabel('Stress (Pa)')

legend('data','trained data', 'testing data')

set(gca,'FontSize',35)

set(gca,'fontname','times')

set(gca,'linewidth',2)

set(gca,'LooseInset',get(gca,'TightInset'))

snapnow

close all

end

function learn = ml(deformation, stress, pd, ps, p, load, hl)

fA = importdata(deformation);

fB = importdata(stress);

pA = importdata(pd);

pB = importdata(ps);

% x | y | z | deformation | stress

fdata = [fA.data(:,2:5), fB.data(:,5)];

pdata = [pA.data(:,2:5), pB.data(:,5)];

data = [fdata;pdata];

% percentage of data to be used for training

[dtrain, dval] = partition(p, data);

129

a = dtrain(:,1:4);

d = dtrain(:,5);

b = dval(:,1:4);

c = dval(:,5);

linreg(a, d, b, c, pdata, load)

dectre(a, d, b, c, pdata, load)

ranfor(a, d, b, c, pdata, load)

neunet(a, d, b, c, pdata, load, hl)

end

