

1

Development of a Visual Inertial Odometry

Positioning System for Autonomous Interplanetary

Drone State Estimation

A project presented to

The Faculty of the Department of Aerospace Engineering

San Jose State University

In partial fulfillment of the requirements for the degree

Master of Science in Aerospace Engineering

by

Steven Rispoli

May 2021

Approved by

Dr. Periklis Papadopoulous
Faculty Advisor

2

Table of Contents

Contents

Abstract ... 4

Acknowledgements ... 5

Nomenclature .. 6

List of Figures ... 11

1 Introduction ... 12

1.1 Motivation ... 12

1.2 Literature Review .. 13

1.2.1 Improvement and Applications of VO .. 13

1.2.1.1 Drone Use Cases ... 16

1.2.1.2 Interplanetary VO ... 18

1.2.2 Interplanetary Drones .. 20

1.2.3 Supporting Hardware for VIO .. 22

1.3 Proposal... 24

1.4 Methodology ... 25

2 Drone Systems .. 27

2.1 Drone Hardware .. 27

2.2 Drone Software ... 27

2.3 Supporting Drone Systems.. 29

3 Computer Vision Algorithms .. 29

3.1 Camera Model ... 29

3.1.1 Extension to Stereoscopic Calibration .. 32

3.2 Distortion Model ... 33

3.3 Stereoscopic Camera Model ... 34

3.4 Stereoscopic Correspondence ... 36

3

3.5 VIO Algorithm .. 38

4 Results ... 39

4

Abstract

Autonomous vehicles such as interplanetary drones are an expanding topic of interest.

Autonomous vehicles such as the Ingenuity Helicopter are making history and inspiring a new

era of space exploration. Traditional autonomous vehicles such as the Mars Exploration Rovers

used Visual Odometry to know their own position. However, visual Odometry is very

computationally intensive producing motion estimates every few minutes. Interplanetary drones

need Visual Odometry systems that produce motion estimates at a much faster rate. This paper

will develop a Visual Odometry system for an autonomous drone to extrapolate the performance

of these systems. These estimates will be able to help predict the functionality of similar systems

on Ingenuity and other interplanetary drones in development.

5

Acknowledgements

 I would like to thank my parents for supporting me from the beginnings of my college

journey to the end of Graduate school. Thank you for the sacrifices that you made as I had to

prioritize my schooling over spending time with both of you. I would also like to thank my

friends who have shared in my journey in and out of school. I would also like to thank my

Advisor Dr. Periklis Papadopoulos for believing in me and pushing me to go the extra mile to

succeed. Without all of you I wouldn’t be where I am today.

6

Nomenclature

Symbol Definition Units (SI)

𝐴 Intrinsic Camera Matrix --------

𝐴′ Intrinsic Camera Matrix for Camera 2 in a Stereoscopic

Pair

𝐵 Stereoscopic Camera Baseline cm

𝑐 Principal Point Coordinate Pixels

𝐷 Pixel Depth --------

𝑓 Focal Length --------

𝐹 Feature --------

𝑗 Homogenous Camera Coordinate Pixels

𝑘𝑛 Radial Distortion Coefficient --------

�̆� Image Projection of 𝑃 --------

𝑂 Camera Center --------

𝑝 2D Point --------

𝑝𝑛 Tangential Distortion Coefficient --------

𝑃 3D Point --------

𝑄 Matched Feature Inlier Clique --------

7

𝑟 Distance Between Pixels --------

𝑟𝑥𝑦 Rotation Transformation --------

𝑅 Rotation Matrix --------

𝑅′ Rotation Matrix of Camera 2 --------

𝑅𝑠 Rotation Transformation from Camera 2 to Camera 1 in a

Stereoscopic Pair

𝑠 Arbitrary Projective Transformation Scaling --------

𝑠𝑛 Thin Prism Distortion Coefficient --------

𝑡𝑥,𝑦,𝑧 Translation Transformation --------

𝑡 Translation Matrix --------

𝑡′ Translation Matrix of Camera 2 --------

𝑡𝑠 Translation Transformation from Camera 2 to Camera 1

in a Stereoscopic Pair

𝑢 Image Width Pixels

𝑣 Image Height Pixels

𝑥′ Normalized Camera X Coordinate Pixels

𝑥′′ Distortion Corrected Camera X Coordinate Pixels

𝑥𝑂 2D Stereoscopic Camera Coordinate Pixels

𝑋 3D Point X Coordinate --------

8

𝑦′ Normalized Camera Y Coordinate Pixels

𝑦′′ Distortion Corrected Camera Y Coordinate Pixels

𝑌 3D Point Y Coordinate --------

𝑍 3D Point Z Coordinate --------

Greek Symbols

휀 Reprojection Error --------

𝜌 Camera Projection Matrix --------

𝜔 Homogenous World Coordinate Pixels

Subscripts

()𝑎 Image Frame a --------

()𝑏 Image Frame b --------

()𝑐 Camera Frame --------

()𝑤 World Frame --------

()𝑥 X-Axis --------

()𝑦 Y-Axis --------

Acronyms

DAPRA Defense Advanced Research Projects Agency --------

9

EKF Extended Kalman Filter --------

EOM Equations of Motion --------

FAA Federal Aviation Administration --------

FPGA Field-Programmable Gate Array --------

IMU Inertial Measurement Unit --------

FPS Frames Per Second

GPS Global Positioning System --------

JPL Jet Propulsion Laboratory --------

KITTI Karlsruhe Institute of Technology and Toyota

Technological Institute

LET Linear Electron Transfer --------

OKVIS Open Keyframe-based Visual-Inertial SLAM --------

OpenCV Open Computer Vision --------

MER Mars Exploration Rovers --------

MSL Mars Science Laboratory --------

RAM Random Access Memory --------

RGB Red Green Blue Image Format --------

RGBD Red Green Blue + Depth Image Format --------

RLS Recursive Least Squares --------

10

SBC Single Board Computer --------

SGBM Semi-Global Block Matching --------

SLAM Simultaneous Localization and Mapping --------

VIO Visual Inertial Odometry --------

VO Visual Odometry --------

11

List of Figures

Figure 1: Ingenuity Engineering Model Design 21

Figure 2 – Pinhole Camera Model Visualization 32

Figure 3 – The Effect of Distortion k_1 on an Undistorted Image 34

Figure 4 – Stereoscopic Camera Model Visualization 35

Figure 5 – Average Execution Time of the Tested Devices. There are 2 data points at 1.43GHz

and 2.26GHz for standalone and HITL. 41

Figure 6 – VO Estimate Rate of the Tested Devices. There are 2 data points at 1.43GHz and

2.26GHz for standalone and HITL. 42

12

1 Introduction

1.1 Motivation

Interplanetary drones are an exciting field of research. With the successful flights of

Ingenuity, JPL’s Mars helicopter, a new era of aviation is emerging. However, this new era of

aviation brings new challenges with it. These drones cannot be flown by a human pilot due to the

delay in the commands reaching the drone on these far away planets. Flight on other planets will

require these new aircraft to be autonomous.

A large challenge for autonomous drones is the measurement of accurate state data such

as its position and velocity. Earthbound autonomous drones face the same problem as

interplanetary drones in that they both do not have access to GPS. Autonomous drones on Earth

must fly indoors where GPS signals are weak, and interplanetary drones will not have access to

GPS at all. Linear acceleration sensors from IMU’s can be used to extrapolate velocity and

position of the drone, but they are not very reliable. Error in measurement causes sensor drift to

accumulate quickly over time, rendering the data useless. Traditionally, GPS would correct the

IMU drift for the drone’s control system, but without GPS other methods must be used to correct

the IMU data.

Visual odometry, or VO, is one such way to correct IMU drift. VO uses an optical sensor

like a camera, to measure the egomotion of the camera. A VO system when combined with a

traditional IMU is called a Visual Inertial Odometry system or VIO system. VIO systems can be

comprised of 1 or multiple cameras. A single camera VIO system is less complex; however,

scale estimation is difficult. Multiple camera setups, such as a stereoscopic camera allow VIO

13

systems to accurately measure the 3D motion that a singular camera setup cannot. VIO will give

position and velocity data that has much less drift then the IMU alone.

1.2 Literature Review

One the first times VO was done was back in 1976 by PhD students at Stanford. Hans

Moravec and Donald Gennery developed a visual system to track the movement of an electric

vehicle. The system worked by sending the camera images wirelessly to a server which did the

VO calculations. There are 4 steps to their VO system. First an interest operator determines areas

in the image that will be easily identifiable from image to image to track. Then the binary search

correlator attempts to find the features from the interest operator. Matches of the features in

consecutive frames are sent to the high-resolution correlator to improve upon the matches

accuracy. Finally, the camera solver uses the improved matches from the high-resolution

correlator to calculate the camera position in both frames to find how far the vehicle has travelled

(Moravec, 1976).

1.2.1 Improvement and Applications of VO

Jiawei Mo and Junaed Sattar point out a downfall of monocular VO, such as that

mentioned above. Monocular VO can track the movement in only 2 directions. It lacks the depth

perception necessary for the tracking of full 3D motion. To gain movement information in the

third dimension, they proposed a stereoscopic approach. They use one camera for traditional VO

while the other allows the system to fuse the third dimensions motion with that of the monocular

VO. In previous work the fusion of monocular VO with a second camera is done by stereoscopic

matching. Stereoscopic matching is computationally expensive however, so Mo and Sattar

replaced stereoscopic matching with a scale optimizer which performs calculations on a single

14

pixel location instead of the region around the projected pixel. This allows scale optimization to

be more computationally efficient. The scale improvement saw a decrease in computational time

versus the stereoscopic matching implementation during testing with the KITTI computer vision

dataset. It also saw lower rotational error, but higher translational error. However, the

translational error is still below 3.2% compared with the ground truth data. Overall, Mo and

Sattar proposed a novel approach to extend monocular VO to work in 3D. It is also less

computationally intensive compared to other 3D VO implementations (Mo, 2019).

Stereoscopic VO has been investigated as well. In 2008, Andrew Howard developed a

stereoscopic VO system at JPL for DARPA and NASA. His algorithm took rectified disparity

maps from a stereoscopic camera as inputs. It used a feature detector and feature matcher to

reduce the amount of data being processed before reducing the features even farther by

processing only the matching inliers. To calculate the egomotion of the camera a transformation

was found that minimizes the reprojection error from stereoscopic frame to frame using the

Levenberg-Marquardt least-squares algorithm. Transformations that produce an error below a

threshold value are verified and transformations that don’t meet the threshold are ignored and

discarded. Two tests were done. The first was on a Boston Dynamics BigDog platform. Tests

were performed at three different resolutions, at two different frame rates, across three different

trajectories for a total of 24 runs. The resolutions were 160x120, 329x249, and 640x480,

framerates were 30Hz and 15Hz and there were 2 ovular trajectories and one out and back. The

2D and 3D root mean square error decreases as resolution increases and framerate decreases.

However, the increase in resolution also lead to a double in computation time from the lowest to

highest frame rates. The improvement from resolution is intuitive but the increase in accuracy

from the decrease in framerate is not. This is because the noise integrated from the

15

transformations in the VO algorithm does not add up as quickly with lower framerates. However,

Howard notes that there is a lower bound for this decrease in framerate to improve accuracy due

to the travel of the features from frame to frame. The second test was conducted on DARPA’s

LAGR vehicle. The LAGR vehicle is a platform to assess the slip during ground traversing. VO

is used to check the wheel odometry where a discrepancy means that slip is occurring. This test

had four trajectories with two different resolutions with two pairs of stereoscopic cameras. The

data from the VO algorithm was compared to data from an onboard IMU performing IMU

odometry. The 2D and 3D error from the VO system after about 400 meters of travel was about 1

meter or 0.25% as opposed to the IMU error which was about 17 meters or 4.4%. However, the

VO system reported several failures where the VO system was not able to produce a

transformation under the error threshold. This was due to the slow write speed of the data logger

and failure of the stereoscopic disparity matching. Neither f these are faults of the VO algorithm,

but of the other supporting systems. Overall, the VO system developed by Howard proved to be

accurate in both the tests, and much better than IMU odometry alone.

A further improvement upon VO integrates an IMU into the system to perform VIO.

Vladyslav Usenko, Jakob Engel, Jörg Stückler, and Daniel Cremers, use an IMU to correct for

drift between the camera frames. This allows the faster IMU to give the VIO system information

between camera frames. IMU drift in their approach was mitigated as well, as the motion

measured by the IMU between frames integrated from frame to frame instead of IMU

measurement. Additionally, Usenko et al. marginalize information between keyframes out. This

reduces the amount of calculations that need to be done to estimate the pose in each frame. Then

finally, their VO portion uses both the static stereoscopic from both cameras and the temporal

stereoscopic images over time. This allows the depth map to be constructed and tracked as the

16

camera moves. During testing versus IMU coupling that is fused with a standalone VO system,

Usenko et al.’s VIO system is superior. With a dataset collected by a drone, The VIO system

outperformed the fused VIO, particularly when there was significant motion blur. This held true

for both rotation and translation over a course of 40 meters, as well as over time on a course of

over 1140 meters. Another test on a dataset taken from a car was also done to test the VIO

systems qualitative results, as it was able to successfully track the movement of the car in a

challenging optical environment (Usenko, 2016).

1.2.1.1 Drone Use Cases

An early use of VIO to feed a drone’s flight controller was done by Farid Kendoul,

Kenzo Nonami, Isabelle Fantoni, and Rogelio Lozano. In their work, a VO system was fused

with an IMU to provide state data to a drone. A subsequent adaptive control system was also

developed for autonomous flight for the drone. As their work was done early, their VO system is

older and less advanced than some of the newer VIO systems in the papers mentioned above. It

is a monocular system that uses a RLS algorithm that is fused with the IMU and barometer data

through a linear Kalman Filter. That data is then fed into a hierarchical control system that

separates translational and rotational control. The drone itself is based on an Ascending

Technologies GmbH quadrotor drone kit. It uses a Gumstix micro-controller with the console-st

and wifistix expansion boards, running a Linux environment. It is responsible for the bulk of the

computing, including the VIO fusion and flight controller. Additionally, an AVR micro-

controller is used to turn the Gumstix commands into PWM output for the motors, as well as

manager emergency tasks such as landing. The drone also has a MNAV100CA combination

IMU GPS and barometric sensor. The MNAV100CA interfaces with the Gumstix micro-

controller to feed it the sensor data through an RS-232 serial link. As for the camera, it is a

17

RangeVision KX-171 analog camera with transmitters and receivers for wireless interface with a

laptop. The laptop acts as a ground control station and is used to give commands to the drone. It

also does some VIO image processing from the video feed sent from the drone. The drone itself

does additional VIO calculations and fusions and runs the flight controller. Testing the drone in

autonomous flight saw a 2 meter max error in the 3D position estimate. However, Kendoul et al.

attribute this error to windy flight conditions. That being said, the drone was successfully able to

fly autonomously and track reference angles. An additional test to fly a pre-determined trajectory

was also done. In that test GPS data was unavailable, but the drone was still able to fly the

trajectory due to the VO algorithm. However, they do note that over time they still see drift in the

VO data. (Kendoul, 2009).

Building inspection is another area where VIO on drones is a key system. Duarte

Dornellas, Filipe Rosa, Alexandre Bernardino, Ricardo Ribeiro and Jose Santos-Victor

developed a drone system to autonomously take pictures of buildings in areas where GPS signal

is inconsistent. They used the open source Kalibr and OKVIS libraries to calibrate and design

their VIO system. The drone used a PixHawk as the flight computer, and a Nvidia Jetson TX2 as

the VIO processor. Additionally, an Arduino Nano was used to trigger the IMU and stereoscopic

camera readings. The MAVLink 2.0 protocol was used for communication between the PixHawk

and the TX2. Additionally, ArduPilot’s Mission Planner was used as the ground station basis.

The stereoscopic setup was composed of 2 FLIR/Point Grey BFLY-U3-05S2M-CS cameras with

Fujinon YF2.8A-2 lenses mounted to each. The IMU used was an XSens MTx-28A33G35. Both

had API’s but the IMU does not have Linux support. For their VIO system, the cameras were

operating at 20 Hz while the IMU operated at 200 Hz to maintain synchronization. During tests

of flight, the drone flew 2 pre-planned trajectories. The first flight had ground truth data and it

18

was observed that the translation error averaged 0.021 meters with a peak under 0.05 meters,

while the orientation error averaged 2.183 degrees with a peak below 5 degrees. The second

flight showed similar results, however there was a large spike in the orientation error due to an

error in the ground truth capture. Two additional flights were conducted outside, which

compared the VIO position data to GPS data taken during the flight. Both flights showed drift in

the VIO data compared to the GPS data. However, the GPS data was not reliable in the second

outdoor flight and aid by the VIO system gave better results than the GPS alone. Overall,

Dornellas et al. quantitatively showed that VIO could be used on a drone to fill in the gaps of

poor GPS signal (Dornellas, 2019).

1.2.1.2 Interplanetary VO

Visual Odometry does have some precedence in interplanetary use as well. Both MER

utilized VO for portions of the autonomous driving that was instructing. Wheel encoders were

used successfully on level rigid surfaces but were found to exceed the 10% per 100 meters drift

required. A VO system had been developed for use on the MER but had not gone through the

operational readiness tests. However, it was able to work successfully to track the rover’s

motion. However, the computation time was so long it increased the autonomous drive speed by

an order of magnitude. Comparing the VO with the traditional wheel odometry on an identical

test rover the VO system for the MER was much lower than wheel odometry. During a test over

slip inducing terrain, wheel odometry exceeded the 10% error after only 1.4 of the 2.45 meter

distance. VO, however, saw error around 1% at the end of the 2.45 meters. To achieve these

results there were some constraints that needed to be met. Due to the rover’s slow CPU, the VO

calculations took up to 3 minutes for each image pair. This dramatically increased the time it

took to traverse land. It also put more stress on the VO algorithm to be as accurate as possible.

19

As well, the long computation time necessitated that the human driver decides what to image for

the VO calculation, so that the feature detector has enough data to track. Due to these challenges

VO was only used in very specific situations consisting of short steep slippery terrain.

Regardless of these limitations, VO proved to be an effective tool for the MER to safely and

accurately traverse the Martian landscape (Maimone, 2007).

Building upon the success of VO on the MER, VO was implemented on the MSL

Curiosity rover as well. Curiosity saw a large improvement on its VO computation time over the

MER. This was not only due to a newer generation CPU, but the introduction of a FPGA as a

vision co-processor. During tests in Curiosity’s development, Howard et al. used a Xylinx Virtex

5 FPGA to assess its performance over MER’s VO implementation. The results of the tests

showed a vast improvement over MER’s implementation. The stereoscopic calculations took

about 24 to 30 seconds on the RAD6000 CPU found on the MER compared to 0.005 seconds on

the FPGA accelerated setup. The performance gains continued to be stable as increasing the

resolution of the images from a width of 256 to 1024 pixels only saw the FPGA take 0.082

seconds to do the stereoscopic calculation. Additionally, a test of the whole VO system was

done. The MER analog completed the visual odometry calculations in about 160 seconds while

the FPGA as a co-processor took 0.016. However, only the feature detection and matching were

run on the FPGA and following calculations would have to be done on a separate CPU (Howard,

2012).

The Mars 2020 Perseverance rover see’s additional improvements over Curiosity’s VO

hardware and programming. Perseverance adds an additional RAD750 CPU and Vertex 5 FPGA.

As well as this, the calculations have been parallelized. This results in the VO that took 65

seconds on Curiosity to take a total of 9.8 seconds on Perseverance. This increase in VO

20

calculation, among other penalizations, increased Perseverance speed to about 100 meters per

hour compared to Curiosity’s roughly 15 meters per hour (Rieber, 2018).

1.2.2 Interplanetary Drones

Perseverance is not the only vehicle that just landed on Mars. The Ingenuity helicopter is

travelling to Mars alongside Perseverance. Ingenuity is a technology demonstrator used to assess

the viability of drone operations on Mars. It will be the first vehicle to attempt powered flight on

Mars. Ingenuity is planned to fly daily during a period of 30 Sols. The planned flight duration

will be up to 90 seconds and cover up to 300 meters at altitudes between 3 and 10 meters. At the

time of writing this paper, Ingenuity has made 4 successful flights with additional flights

scheduled.

The drone is built around a central structural tube. The electronics from the avionics bay

sits at the base of the tube. The wires from the electronic bay are fed up to the top of the tube.

The top of the drone is where the co-axial counter rotating blades are as well as the solar panel

and antenna. Figure 1 shows an illustration of the drone with some labels.

21

Figure 1: Ingenuity Engineering Model Design

It has a complex avionics system that ensures safe flight for the helicopter. Its primary

processor is a Qualcomm SnapdragonTM 801 processor at 2.26 GHz with 2 GB of RAM and 32

GB of Flash memory. It has 2 identical Texas Instruments Hercules TMS570LC43x automotive

processors at 300 MHz with their own 512 KB of RAM and 4 MB of flash memory. These are

redundant processors that receive and process identical. These perform flight control functions

that are critical to the operation of the drone. During flight one of the two will be the primary

processor while the other is waiting to be hot-swapped in case a fault causes the primary to

restart.

To perform the mission critical tasks, Ingenuity utilizes a military grade radiation

hardened ProASIC3L FPGA from MicroSemi. It performs all the I/O to the sensors, actuators,

22

and fault management functions. It also does the hot-swap of the Hercules microcontrollers.

Specifically, it runs the flight controller including an altitude control loop, the rotor system

controller, waypoint guidance, sensor I/O from the IMU altimeter and inclinometer. It also

manages the current and temperature telemetry. In addition, it does the time system management,

power management, and thermal controls. All communication of the various systems are done

via the FPGA which also stores and restores data to the processors when they have to recover

after a fault. Additionally, triple module redundancy has been implemented to critical flip-flops

to further protect against data faults.

Ingenuity has a variety of sensors to keep the drone safe during flight. Unlike the

processors and FPGA the sensors are commercial off the shelf. Ingenuity has 2 Bosch Sensortec

BMI-160 IMUS, a MuRata SCA 100T-D02 inclinometer, and a Garmin Lidar-Lite-V3 with a

range of 10 meters. The camera used for navigation is an Omnivision OV7251 camera with a

resolution of 640x480, a global shutter, and a field of view of 133x100 degrees. Ingenuity also

has a Return to Earth camera that is used to collect high resolution images to send back to Earth.

Its is a Sony IMX214 with a resolution of 4208x3120, a rolling shutter, and a field of view of

47x47 degrees. There is a slight overlap between the navigation camera and the Return to Earth

camera as well that allows for feature registration post processing on Earth (Balaram, 2018).

1.2.3 Supporting Hardware for VIO

There are 3 types of processors that can be used on an interplanetary drone. These are the

CPU, GPU, and FPGA. Each of them have strengths and weaknesses that need to be considered

when deciding which one to use. CPUs are the easiest of the 3 to work with. They are easily

reprogrammable and are the most versatile of the 3. They have an extensive flight heritage,

23

including the MER, which used the radiation hardened RAD6600 (Cheng, 2006). The RAD

series of CPUs is the premiere line of radiation hardened CPUs. Currently the most capable RAD

series CPU is the RAD750. Even though it is the cutting edge for space processors it is an order

of magnitude behind cutting edge of contemporary processors in terms of processor speed.

GPUs are a processor that is starting to gain popularity for heavy computational tasks.

Generally its individual clock speed is slower than a CPU, however, they have many more cores

than CPUs. This large amount of cores is the main draw for GPUs. This allows them to

parallelize many small processes, and run them concurrently instead of serially like with CPUs.

GPUs are generally more difficult to program, but the performance benefits justify the extra

effort. Unlike the RAD series of CPUs, there are no commercially available radiation hardened

GPUs. This could become a problem for interplanetary use as they will be much more

susceptible to faults.

FPGAs are a unique type of processor that can have its hardware reprogrammed to

perform a specific task at the hardware level. Like CPUs, FPGAs also have an extensive flight

heritage with several lines of radiation hardened FPGAs from Xilinx. Unlike CPUs, once the

FPGA has been programmed to do its specific task, it can only perform that task until it is

reprogrammed to do another. Additionally, it is much more difficult to program FPGAs

compared to GPUs and CPUs. Fortunately, the increase in computational time minimizes these

drawbacks.

Paulo Ricardo Possa et al (2013) compared the performance of a CPU, GPU, and FPGA

of edge and corner detection both of which are important for feature detection. They compared

an Intel Core2 Duo E6600, CPU at 2.4 GHz, a GeForce GTX 580 at1 54 GHz, and a Cyclone IV

EP4CE115 FPGA configured at 242 MHz for the Canny edge detector and 232 MHz for the

24

Harris corner detector. For the edge detector, the FPGA ran the algorithm 1.92 – 0.93 times

faster than the GPU and 27.3 – 23.3 times faster than the CPU, as the image size increased from

512x512 to 3936x3936 pixels. Additionally, the energy consumption of the FPGA was 154 – 167

times more energy efficient than the GPU, and 94 – 102 times more energy efficient than the

CPU, as the image size increased from 512x512 to 3936x3936 pixels. For the corner detector, the

FPGA ran the algorithm 2.02 – 0.96 times faster than the GPU and 17.4 – 20.9 times faster than

the CPU, as the image size increased from 512x512 to 3936x3936 pixels. Additionally, the

energy consumption of the FPGA was 154 – 166 times more energy efficient than the GPU, and

94 – 101 times more energy efficient than the CPU, as the image size increased from 512x512 to

3936x3936 pixels. However, none of these processors tested were radiation hardened so the

comparison isn’t a direct comparison for an interplanetary drone use case. That said, Ingenuity

has a non-radiation hardened CPUs and was able to fly multiple successful flights.

1.3 Proposal

The goal of this project is to extrapolate the performance of Earth based VIO systems to

an interplanetary drone. A VIO system will be developed on a more conventional embedded

system rather than with an FPGA. Additionally, this project does not look to improve on existing

VIO but to implement an existing VIO system for benchmarking. Both performance and

efficiency of the implemented VIO will be conducted, then based on a variety of factors, will be

expanded to make an approximation of the performance that can be expected on an

interplanetary drone.

There are three success criteria for this project as follows.

1. Complete Success Criteria:

25

a. A VIO system will be implemented and flown on the Theia drone and in

the virtual simulator. Tests will be performed to assess the execution time

of the VIO system on the actual drone during flight. Groundtruth from the

simulator will be used to assess the accuracy of the algorithm. From these

tests a feasibility study will extrapolate these results to hardware that is

likely to appear on other interplanetary drones.

2. Partial Success Criteria:

a. A VIO system will be implemented and tested in the virtual simulator.

Tests will be performed to assess the execution time of the VIO system on

the actual drone during flight. Groundtruth from the simulator will be used

to assess the accuracy of the algorithm. From these tests a feasibility study

will extrapolate these results to hardware that is likely to appear on other

interplanetary drones.

3. Minimum Success Criteria:

a. A VO system will be implemented and tested with a stereoscopic camera

setup. Tests will be performed to assess the execution time of the VO

system. A feasibility study will extrapolate these results to hardware that is

likely to appear on other interplanetary drones.

1.4 Methodology

There are two major parts to the completion of this project. The first part is to implement

a VIO system that will allow a testing drone to achieve autonomous flight without receiving state

26

data from a GPS. The second part is to take the results from the first part to approximate

expected VIO results.

Part I: Validation of VIO on an Autonomous Drone

1. Specify test drone embedded flight computer.

2. Identify VO/VIO algorithms that are best suited for autonomous flight.

3. Implement the identified VO/VIO algorithm in C++. Add IMU fusion in the case the

identified algorithm is VO only.

4. Deploy the C++ VIO code to the test drone/simulator.

5. Test the VIO under manual control to compare with GPS data in flight, or

groundtruth data from the virtual simulator.

6. Make adjustments to the VIO system if it does not achieve a reasonable error.

7. Test the VIO on the test drone for a predetermined autonomous flight.

Part II: Extrapolate Autonomous VIO Performance to Interplanetary Performance

1. Determine hardware that will likely be used for interplanetary drones.

2. Compare performance criteria of selected hardware with the hardware used on the test

drone.

3. Investigate performance tradeoffs between different processor architectures.

4. Use the performance tradeoffs study to scale test drone VIO performance to an

interplanetary drone.

5. Discuss the viability of VIO as a real time system on interplanetary drones

27

2 Drone Systems

For this paper, a VIO system will be built and deployed to demonstrate the effectiveness

of a VIO system as a form of state estimation for an autonomous drone. The drone test platform

is a racing drone that was developed to emulate the drones in the Lockheed Martin-Drone Racing

League AlphaPilot RacerAI drone. Theia, the drone used is the same one in built by Walter

Harper Steven Rispoli and Brayan Mendez (2020). The design and hardware of the drone will be

briefly explained in the following sections as well as the underlying software.

2.1 Drone Hardware

Like the AlphaPilot RacerAI, Theia has a forward biased quadcopter design rather than

the X quadcopter design. The drone features 1380KV motors with 60 Amp 5S electronic speed

controllers fitted to 7x4x3 propellers. It features a BNO055 IMU and ultrasonic sensor for

orientation and altitude determination. In addition, it uses two Arducam BO200 cameras

mounted to form a stereoscopic pair. Its flight controller is a distributed system comprised of 2

SBC’s. The SBC’s used are a Raspberry Pi 4 and an Nvidia Jetson Nano. They communicate

through a peer to peer ethernet connection. The Pi was chosen for its fast processor speed of 1.5

GHz and its large 4 GB of RAM. The Jetson Nano was chosen to process more intensive

applications. It features a 64-bit 1.43 GHz processor 4 GB of RAM and a 128-core Maxwell

GPU.

2.2 Drone Software

The Raspberry Pi 4 runs a headless Ubuntu 16 operating system. It runs the internal

messaging system that allows the other software packages to communicate with each other. It

28

utilizes TCP/IP sockets to transmit byte data in a multithreaded Client-Server model. It runs

faster than any of the other software packages at 1000Hz and can be adapted to handle fixed and

varying data package sizes. The control system is a set of sub-controllers for translational and

rotational control. It features cascade P, PD, and PID controllers, as well as anti-windup

clamping, output saturation, and filtered derivative methods to improve stability. Currently, the

control system is linearized about the hover condition so fast movement may create less stable

conditions. However, for autonomous flight, the speed will likely be low enough to mitigate the

unwanted behavior. The control system uses the messaging client to communicate with a motor

mixing algorithm, that interfaces with the drone’s motors. Currently, the only state feedback to

the controller is the IMU. The IMU alone builds up too much error to be useful as the only form

of state estimation. GPS is also ineffective as there is not FAA licensing for autonomous drones.

That is why VIO is so important for autonomous flight.

Beyond the Raspberry Pi, the Jetson Nano runs a Linux for Tegra version of Ubuntu that

is tailored for Nvidia Jetson SBCs. The Jetson Nano handles the stereoscopic camera calculations

and was also used for object detection, however for this paper the object detection module will

be ignored. The stereoscopic camera utilizes the OpenCV C++ library to produce a depth map of

the environment in front of the drone. Coupled with the object detection module, the camera

system would generate waypoints for the control system to fly to. However, the coupling has yet

to be implemented before fully autonomous flight can be achieved. The VIO system would be

primarily run on the Jetson Nano to leverage the parallelization capability of the Maxwell GPU.

Using OpenCV’s CUDA library the VIO algorithm will be deployed on the GPU.

29

2.3 Supporting Drone Systems

Beyond the onboard hardware and software, there is a Linux server that runs a virtual

simulator for the drone. The server has a first generation 12-core Threadripper 1920x CPU with a

maximum speed of 4 GHz. It has two GPUs, a GTX 1080 and a P102-100 and 64 GB of 3000

MHz DDR4 RAM. The server runs a flight simulator built in Unity 3D. It utilized the Nvidia

PhysX engine to do the physics modelling. The EOMs were derived for Theia and implemented

in the flight simulator. The flight controller can be validated on the server through the flight

simulator. The internal messaging system communicates with the flight controller and the

simulator and graphs the controller results on the server. Additionally, the cameras are modelled

in the simulator and the object detection and depth modules work in the simulator as well. The

simulator is also capable of operating with a hardware in the loop capacity, where the controller

commands are sent to the drone, as if it were flying through the simulator. This capability

provided additional validation that Theia would be flight capable with a satisfactory state

estimation system.

3 Computer Vision Algorithms

OpenCV is the basis for much of the code for the VIO algorithm. It has implementations

for numerous computer vision algorithms. The important models that need to be understood to

put the VIO algorithm into context are the camera model, distortion model, and stereoscopic

camera model.

3.1 Camera Model

OpenCV uses a simplified version of Zhang’s (Zhang, 2000) pinhole camera model

30

𝑠 𝑝 = 𝐴[𝑅|𝑡]𝑃𝑤 (3.1)

Where, 𝑝 is a specific pixel in the image, 𝐴 is the intrinsic camera matrix, 𝑅 is the rotation matrix

from the camera to world frame, 𝑡 is the translation vector from the camera to world frame, 𝑃𝑤 is

the 3D world coordinate of the specific pixel, 𝑠 is the arbitrary scaling of the projective

transformation. Zhang’s model projects the 3D world coordinates in an image to their respective

location in the camera image coordinates. 𝐴 is comprised of the focal lengths 𝑓𝑥 and 𝑓𝑦 and the

coordinates of the principle point (𝑐𝑥, 𝑐𝑦) in pixels

𝐴 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] (3.2)

This matrix is specific to the optics of the camera meaning that it can be used as a constant for

every image if the camera is the same It is also able to project 3D camera coordinates to 2D

camera coordinates

𝑝 = 𝐴𝑃𝑐 (3.3)

Expanding equation 3.3 gives

𝑠 [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [
𝑋𝑐

𝑌𝑐

𝑍𝑐

] (3.4)

The transformation between the camera frame and the world frame in 3D is done with the joint

[𝑅|𝑡] extrinsic rotation-translation matrix

𝑃𝑐 = [
𝑅 𝑡
0 1

] 𝑃𝑤 (3.5)

Expanding equation 3.5 gives

31

[

𝑋𝑐

𝑌𝑐

𝑍𝑐

1

] = [

𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

0 0 0 1

] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] (3.6)

Furthermore equation 3.6 can be rewritten in a normalized manner where 𝑥′ =
𝑋𝑐

𝑍𝑐
 and 𝑦′ =

𝑌𝑐

𝑍𝑐

𝑍𝑐 [
𝑥′
𝑦′
1

] = [

𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] (3.7)

Equation 3.1 can be fully expanded to be

𝑠 [
𝑢
𝑣
1

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡𝑥

𝑟21 𝑟22 𝑟23 𝑡𝑦

𝑟31 𝑟32 𝑟33 𝑡𝑧

] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] (3.8)

Examining equation 3.8 we can make the following simplifications

[
𝑢
𝑣

] = [
𝑓𝑥

𝑋𝑐

𝑍𝑐
+ 𝑐𝑥

𝑓𝑦
𝑌𝑐

𝑍𝑐
+ 𝑐𝑦

] (3.9)

Where

[
𝑋𝑐

𝑌𝑐

𝑍𝑐

] = [𝑅|𝑡] [

𝑋𝑤

𝑌𝑤

𝑍𝑤

1

] (3.10)

Figure 2 helps to visualize equations 3.1 through 3.10. It helps to explain the pinhole model that

is used by OpenCV. The red ray traces a line through the pinhole at the origin of the camera

frame, through the 2D point (𝑢, 𝑣) on the image, to the 3D point 𝑃 = (𝑋𝑤, 𝑌𝑤, 𝑍𝑤). The boxes on

the plane 𝑢𝑣 represent the pixels in the image to the point (𝑢, 𝑣). The point (𝑢, 𝑣) is the only

dimensional quantity in the model, the other variables all derive their dimensions from the

32

projective transformation scaling 𝑠. However, finding 𝑠 can be difficult so another method to

find the image scale must be used.

Figure 2 – Pinhole Camera Model Visualization

3.1.1 Extension to Stereoscopic Calibration

Zhang (Zhang, 2009) extended his model for camera calibration to stereoscopic cameras to

support other projects he was working on at the time. In his stereo model the second camera

would be denoted with a ′. The transform between cameras is (𝑅𝑠, 𝑡𝑠) such that (𝑅′, 𝑡′) = (𝑅, 𝑡) ∙
(𝑅𝑠, 𝑡𝑠). This relationship is shown more precisely in equations 3.11 and 3.12.

 𝑅′ = 𝑅𝑅𝑠 (3.11)

 𝑡′ = 𝑅𝑡𝑠 + 𝑡 (3.12)

To find (𝑅𝑠, 𝑡𝑠) the cost function in equation 3.13 is minimized.

33

∑ ∑ [𝛿𝑖𝑗‖𝑝𝑖𝑗 − �̆�(𝐴, 𝑘1, 𝑘2, 𝑅𝑖, 𝑡𝑖, 𝑃𝑗)‖
2

+ 𝛿′𝑖𝑗‖𝑝′𝑖𝑗 −𝑚
𝑗=1

𝑛
𝑖=1

�̆�(𝐴′, 𝑘′1, 𝑘′2, 𝑅′𝑖 , 𝑡′𝑖 , 𝑃𝑗)‖
2

] (3.13)

In equation 3.13 𝛿𝑖𝑗 and 𝛿′𝑖𝑗 are Booleans denoting if the point 𝑗 is visible to the camera.

3.2 Distortion Model

The distortion model used in OpenCV is a combined version of the Brown-Conrady

model (Brown, 1966) and the Fitzgibbon division model (Fitzgibbon, 2001). The combined

model includes the radial and tangential distortion terms as well as the thin prism model as seen

in Wang (Wang, 1992). The full OpenCV model is as follows

[
𝑢
𝑣

] = [
𝑓𝑥𝑥′′ + 𝑐𝑥

𝑓𝑦𝑦′′ + 𝑐𝑦
] (3.14)

Where

[
𝑥′′
𝑦′′

] = [
𝑥′

1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6

1+𝑘4𝑟2+𝑘5𝑟4+𝑘6𝑟6 + 2𝑝1𝑥′𝑦′ + 𝑝2(𝑟2 + 2𝑥′2) + 𝑠1𝑟2 + 𝑠2𝑟4

𝑦′
1+𝑘1𝑟2+𝑘2𝑟4+𝑘3𝑟6

1+𝑘4𝑟2+𝑘5𝑟4+𝑘6𝑟6 + 2𝑝2𝑥′𝑦′ + 𝑝1(𝑟2 + 2𝑦′2) + 𝑠3𝑟2 + 𝑠4𝑟4
]

 (3.15)

And

 𝑟2 = 𝑥2 + 𝑦2 (3.16)

These models ignore the higher order terms past 𝑟6. OpenCV’s implementation also uses a

simplified version when 𝑘3 is 0. As noted by Zhang (Zhang, 2000) the distortion is

predominantly dominated by the first two terms in the radial distortion model. Thus equation

3.12 simplifies to

34

 [
𝑥′′
𝑦′′

] = [
𝑥′(1 + 𝑘1𝑟2 + 𝑘2𝑟4+𝑘3𝑟6)

𝑦′(1 + 𝑘1𝑟2 + 𝑘2𝑟4+𝑘3𝑟6)
] (3.17)

Figure 3 shows the effect of the first distortion coefficient on an image. As can be seen, negative

values indicate that there is barrel distortion and positive values give pincushion distortion. An

undistorted image will have a value of 0 for all the distortion terms.

Figure 3 – The Effect of Distortion 𝑘1 on an Undistorted Image

3.3 Stereoscopic Camera Model

The stereoscopic camera model allows for the measurement of depth within an image.

Every pixel in the image with some exceptions will be abled to be paired with a depth reading,

allowing for a 3D point cloud to be constructed that represents the scene in the image. This depth

is inversely proportional to the disparity between the pixel of the object in one camera image

compared to the other camera. Figure 4 gives a visualization of this geometry. Using similar

triangles gives us the following relationship (Fidler, 2015)

𝐵

𝐷
=

𝐵+ 𝑥𝑂−𝑥𝑂′

𝐷−𝑓
 (3.18)

35

After some simplification we get

𝐷 =
𝐵𝑓

𝑥𝑂−𝑥𝑂′ (3.19)

The disparity in the images is given by 𝑥𝑂 − 𝑥𝑂′. However, since depth is tied to one pixel, the

stereoscopic model projects the depth to only one of the camera views. Additionally, This model

assumes that the images from the two camera are rectified so that there is no vertical translation

or any rotations between the images.

Figure 4 – Stereoscopic Camera Model Visualization

36

3.4 Stereoscopic Correspondence

The stereoscopic correspondence algorithm used in OpenCV is based on Heiko

Hirschmuller’s (2008) paper Stereo Processing by Semiglobal Matching and Mutual

Information. His algorithm for stereo correspondence is based on a pixelwise matching of

Mutual Information between images. It would use a variety of 1D constraints to approximate a

global 2D smoothness constraint.

The first step is to match pixels using a cost function. Images are assumed to have been

rectified so that their epipolar lines match but it is not required. The cost of the calculation is

based on Mutual information 𝑀𝐼, defined by the entropy 𝐻, of the 2 images shown in 3.20:

 𝑀𝐼𝐼1,𝐼2
= ∑ 𝑚𝑖𝐼1,𝐼2

(𝐼1𝑝
𝐼2𝑝

)𝑝 (3.20)

Where 𝑚𝑖𝐼1,𝐼2
:

 𝑚𝑖𝐼1,𝐼2
(𝑗, 𝑘) = ℎ𝐼1

(𝑖) + ℎ𝐼2
(𝑘) − ℎ𝐼1,𝐼2

(𝑗, 𝑘) (3.21)

This leads to the cost function with pixel intensity 𝐼𝑏𝑝 and correspondence 𝐼𝑚𝑞:

 𝐶𝑀𝐼(𝑝, 𝑑) = −𝑚𝑖𝐼𝑏,𝑓𝐷(𝐼𝑚)
(𝐼𝑏𝑝𝐼𝑚𝑞) (3.22)

Where q is the base image with disparity 𝑑:

 𝑞 = 𝑒𝑏𝑚(𝑝, 𝑑) (3.23)

The second step is cost aggregation. This prevents wrong pixelwise matches that have

lower costa than the correct matches. The matching costs are aggregated in 1D from all

directions equally. The cost 𝑆(𝑝, 𝑑) at pixel 𝑝 with disparity 𝑑 is given by (3.24):

 𝑆(𝑝, 𝑑) = ∑ 𝐿𝑟𝑟 (𝑝, 𝑑) (3.24)

37

Where 𝐿𝑟(𝑝, 𝑑) is the cost along each path calculated by where 𝑟is the direction of the

pixel and 𝑃1and 𝑃2are constant penalties:

 𝐿𝑟(𝑝, 𝑑) = 𝐶(𝑝, 𝑑) + 𝑚𝑖𝑛(𝐿𝑟(𝑝 − 𝑟, 𝑑), 𝐿𝑟(𝑝 − 𝑟, 𝑑 − 1) + 𝑃1, 𝐿𝑟(𝑝 − 𝑟, 𝑑 +

1) + 𝑃1, 𝐿𝑟(𝑝 − 𝑟, 𝑖) + 𝑃2𝑖
𝑚𝑖𝑛) − 𝐿𝑟(𝑝 − 𝑟, 𝑘)𝑘

𝑚𝑖𝑛 (3.25)

Step 3 is the computation of disparities. 𝐷𝑏is the disparity of the image while 𝐷𝑚 is the

disparity of the match. Disparity is the disparity that minimizes (3.24). If the disparities differ

they are marked as invalid.

 Step 4 is a refinement of the disparity image as errors can still be present. Peaks in the

disparity image are filtered out by segmenting the image and setting the disparity to invalid

where variance within the segment are above a certain threshold. Areas with low texture often

lead to areas of inconsistent disparity. These areas are assumed to have some correct disparities

and the low texture areas are segmented as well. A hypothesis of best fitting planes is proposed

that best matches the segments. The cost aggregation function is used to find the plane that best

matches the segments. This plane sets the disparity values in the segments of low texture. Steps 2

and 3 as well as the peak filtering may accidentally create invalid disparities where there should

not be. To undo these invalidations, the depth image is interpolated depending on whether the

invalidation is caused by a mismatch or an occlusion. Mismatches are determined by the

consistency check that matches the epipolar lines of the images. For occluded images the

interpolation is done from the occlude. For mismatched images, neighboring occluded pixels are

found and the mismatched pixel is treated as occluded.

38

3.5 VIO Algorithm

The VIO algorithm will be a blend of the VO algorithm in Howard (2008) and Usenko

(2016). It will be heavily based on the algorithm by Howard, with keyframe and IMU integration

from Usenko’s algorithm. Both algorithms find the position of the drone by minimizing the

reprojection error of a transformation between camera frame to camera frame. However, there

are a lot of steps that need to be taken before this transformation can be found.

Howards formula requires inputs of the raw rectified and disparity images. Luckily, the

depth module deployed on Theia already calculates these images from the stereoscopic camera.

Using the prefiltered and disparity images a set of features is found that contains the pixel

location and the world location. This is done for consecutive images so that the translation can be

found between the two times the images were taken. After the initial set of features is found the

successive set becomes the first feature set. This means that for every image after the first two

only one feature set needs to be calculated for the current image. Next a score matrix is

calculated from the feature sets using a sum of absolute differences calculation where lower

scores are desirable. The score matrix then matches features from frame to frame and puts the

pair into a matching matrix. After the matching matrix is created some of the matches are filtered

out by comparing the world locations of the features and thresholding them out. Matches that

meet the threshold are put into a binary consistence matrix represented as ones. After the

consistence matrix is found the maximum inlier set is found. The maximal clique of the

consistence matrix is found, and compatible matches of sets in the maximal clique are found and

added to the inlier set. At this point the motion of the camera can be estimated by using the

matches in the clique. A translation that minimizes the reprojection error of a transformation

39

between frames is found using the Levenberg-Marquardt least-squares algorithm. The Error

equation is given as

휀 = ∑ (𝑗𝑎 − 𝜌∆𝜔𝑏)2 + (𝑗𝑏 − 𝜌∆−1𝜔𝑎)2
(𝐹𝑎,𝐹𝑏)∈𝑄 (4.1)

Where

 휀 is the reprojection error

 𝐹 is a feature in the image

 𝑄 is the clique of the matched feature inliers

 𝑗 is the homogenous image coordinates

 𝜔 is the homogenous world coordinates

 𝜌 is the camera projection matrix

 ∆ is the transformation between image a and b.

If there are enough points in the clique, the co-linearity is close to one, and the reprojection error

휀 is below a certain threshold the transformation ∆ is valid. The transformation ∆ is calculating

the egomotion of the stereoscopic camera, which in turn measures the movement of the drone.

4 Results
Overall, successful trajectory estimates were not able to be achieved. There are bugs in the

code that are preventing correct estimates from being calculated. The first suspected cause of the

problem is the input to the VO function in OpenCV. The RGBD Odometry object is meant to use

input from a Microsoft Kinect camera. The Microsoft Kinect captures RGBD images with a

depth assigned to each pixel. This implementation however the depth map is calculated from a

stereoscopic pair of images. Then the depth map is packaged with its corresponding image so

40

that it can be used by the RGBD Odometry object. It is possible that the assignment of the depth

image to the RGB image from the stereoscopic camera has not been implemented correctly and

is causing the RGBD Odometry object to give undefined behavior.

The second suspected cause is that the cameras were not calibrated correctly. At the and of

the calibration cycle the accuracy of the calibration is given by the RMSE of the calculations.

The general guideline for camera calibration is to get an RMSE below 1, or below 2 if not

possible. However, the calibration process is an iterative process that differs with every set of

calibration images. This can lead to false positive in the calibration where low RMSE values

below 1 are calculated, but the resulting calibration is visibly incorrect with more distortion than

the initial images. After tests were done it was found that the depth map coming from the SGBM

object was giving depth results that were not consistent for the image. A new calibration was

performed and the depth map was much more consistent, producing a depth image that was

human readable.

Nevertheless, the complete pipeline from image input to odometry output is complete and

runs. Even though correct estimates were not able to be found, an analysis of the execution time

of the VO algorithm can be done. Execution times on 4 different devices were logged and

averaged to give performance estimates for similar drone systems. The 4 devices are:

 Nvidia Jetson Nano @1.43GHz

 Nvidia Jetson Nano HITL @1.43GHz

 Nvidia Jetson Xavier @2.26GHz

 Nvidia Jetson Xavier HITL @2.26GHz

 Laptop based Intel i7 5700HQ @2.7GHz

41

 Desktop based AMD Ryzen 9 3950X @ 3.5GHz.

The devices included are both desktop level and embedded system level. Additionally, the 2

Jetson devices were run distributed in a HITL mode with another device handling the supporting

systems, and as a standalone device running the VO as well as the communication server.

Figure 5 – Average Execution Time of the Tested Devices. There are 2 data points at

1.43GHz and 2.26GHz for standalone and HITL.

0

100

200

300

400

500

600

0 0.5 1 1.5 2 2.5 3 3.5 4

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e
(m

s)

Processor Speed (GHz)

Average VO Execution Time for Various Devices

42

Figure 6 – VO Estimate Rate of the Tested Devices. There are 2 data points at 1.43GHz and

2.26GHz for standalone and HITL.

Figure 5 shows the results of the average VO execution times, while Figure 6 shows the rate

at which the estimates are calculated. The 2 embedded devices the Nvidia Jetson Nano and the

Nvidia Jetson Xavier have update rates of about 2 and 3 estimates per second. The laptop

processor runs at about 7 FPS while the desktop processor runs at about 14 FPS. Using the

results from Paulo Ricardo Possa et al (2013) this could increase by up to about 2 times with use

of a GPU and up to about 27 times with an FPGA. For the embedded Jetson devices that would

give update rates of 4-6 FPS with a GPU or 54-81 FPS with an FPGA. These are only estimates

however and are not entirely representative of results that one would expect if actually

implemented. Paulo Ricardo Possa et al (2013) only focused on corner and edge detectors in

their paper, leaving out a multitude of other calculations in the VO algorithm that are not

included in these performance gain estimates.

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3 3.5 4

V
O

 E
st

im
at

e
R

at
e

(F
P

S)

Processor Speed (GHz)

VO Estimate Rate for Various Devices

43

For an interplanetary drone, the update rates from Figure 6 for the HITL tests are too low to

be used confidently in autonomous systems. Ingenuity flies at about 2 meters per second. Update

rates on the low end mean that the drone would travel 1 meter between estimates. IMU

integration for a VIO system can gap the downtime between estimates of the VO system. The

drawback of IMU integration, however, is that drift accumulates very fast. An IMU running at 80

Hz would propagate drift through 39 estimations before being corrected by the VO update in this

scenario.

44

References

Balaram, B., Canham, T., Duncan, C., Grip, H. F., Johnson, W., Maki, J., . . . Zhu, D. (2018).

Mars Helicopter Technology Demonstrator. 2018 AIAA Atmospheric Flight Mechanics

Conference. doi:10.2514/6.2018-0023

Brown, D. C. (1966). Decentering Distortion of Lenses.

Cheng, Y., Maimone, M. W., & Matthies, L. (2006). Visual odometry on the Mars exploration

rovers - a tool to ensure accurate driving and science imaging. IEEE Robotics &

Automation Magazine, 13(2), 54–62. https://doi.org/10.1109/mra.2006.1638016

Dornellas, D., Rosa, F., Bernardino, A., Ribeiro, R., & Santos-Victor, J. (2019). GPS emulation

via visual-inertial odometry for inspection drones. 2019 19th International Conference on

Advanced Robotics (ICAR). doi:10.1109/icar46387.2019.8981597

Fidler, S. (2015). Depth from Stereo. Lecture.

Fitzgibbon, A. (2001). Simultaneous linear estimation of multiple view geometry and lens

distortion. Proceedings of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. CVPR 2001, 1, I.

Guertin, S. M. (2019). Radiation Effects on ARM Devices (pp. 18-21, Rep.). Pasadena,

California: Jet Propulsion Laboratory California Institute of Technology.

Hirschmuller, H. (2008). Stereo processing By Semiglobal matching and mutual information.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 328–341.

https://doi.org/10.1109/tpami.2007.1166

Howard, A. (2008). Real-Time Stereoscopic Visual Odometry for Autonomous Ground

Vehicles. IEEE International Conference on Intelligent Robots and Systems.

45

Howard, T. M, Morfopoulos, A, Morrison, J, Kuwata, Y, Villalpando, C, Matthies, L, &

McHenry, M. (2012). Enabling continuous planetary rover navigation through FPGA

stereoscopic and visual odometry. 1–9. https://doi.org/10.1109/AERO.2012.6187041

Kendoul, Farid, Nonami, Kenzo, Fantoni, Isabelle, & Lozano, Rogelio. (2009). An adaptive

vision-based autopilot for mini flying machines guidance, navigation and

control. Autonomous Robots, 27(3), 165–188. https://doi.org/10.1007/s10514-009-9135-x

LaBel, K. A. (2009). Proton Single Event Effects (SEE) Guideline (p. 2, Rep.). NASA Electronic

Parts and Packaging Program.

Maimone, M., Cheng, Y., & Matthies, L. (2007). Two years of Visual Odometry on the Mars

Exploration Rovers. Journal of Field Robotics, 24(3), 169-186. doi:10.1002/rob.20184

Mo, J., & Sattar, J. (2019). Extending Monocular Visual Odometry to Stereoscopic Camera

Systems by Scale optimization. 2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). doi:10.1109/iros40897.2019.8968272

Moravec, H. (1976). Cart Project Progress Report (pp. 1-13, Rep.). Stanford, CA: Stanford

University.

Rieber, R. (2018). AutoNavigation: Intuitive Autonomy on Mars and at Sea The mobility system

for Mars-2020 (pp. 12-14, Rep.). Pasadena, California: Jet Propulsion Laboratory

California Institute of Technology.

https://doi.org/10.1007/s10514-009-9135-x

46

Usenko, V., Engel, J., Stuckler, J., & Cremers, D. (2016). Direct visual-inertial odometry with

stereoscopic cameras. 2016 IEEE International Conference on Robotics and Automation

(ICRA). doi:10.1109/icra.2016.7487335

Wang, J., Cohen, P., & Herniou, M. (1992). Camera Calibration with Distortion Models and

Accuracy Evaluation. IEEE Transactions On Pattern Analysis and Machine Intelligence,

14(10).

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. doi:10.1109/34.888718

Zhang, Z. (2009). CAMERA CALIBRATION.

