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ABSTRACT

This project explores the feasibility and advantages of integrating magnetic
actuators and controllers into modern aircraft control systems, offering a novel
alternative to conventional and electromechanical mechanisms. Traditional systems,
while advanced, remain susceptible to hardware failures, software glitches, and
environmental disturbances that compromise reliability and safety. By employing
electromagnetic control elements, this project proposes a solution that enhances input
precision, reduces failure points, and improves response time. Detailed analytical
methods were employed, including the derivation of an aircraft’s equations of motion
based on Newton’s laws, which incorporate both translational and rotational dynamics
alongside aerodynamic stability parameters and a comprehensive six-degrees-of-
freedom model. These equations were subsequently linearized using a perturbation
model and implemented in MATLAB for simulation strict flight conditions.

A baseline control system was established using a combination of PID, LQR,
and dynamic inversion controllers to regulate the aileron, rudder, and elevator
responses. Following system optimization, magnetic controllers were integrated into
the simulation framework, with parameters systematically tailored for each control
surface, yielding demonstrable improvements in system responsiveness and
stabilization time. Recent literature further supports the potential of magnetic actuation,
highlighting reduced system weight, enhanced durability, and superior precision
compared to traditional control methods, a trend increasingly noted in both manned and
unmanned aerial vehicle applications. This project extends that research by not only
validating the theoretical benefits through simulation but also by addressing the
practical challenges of physical implementation.

In addition to simulation-based validation, the study discusses the importance of
high-fidelity testing methodologies such as wind tunnel experiments and high-altitude
performance simulations, which are critical for confirming the real-world applicability
of magnetic control systems. Future work is outlined to include the development of
scaled prototypes and comprehensive dynamic testing environments to rigorously
assess system performance under varied operational conditions. By providing a solid
theoretical foundation coupled with promising simulation results, this research
establishes a viable pathway for the integration of magnetic actuators into aerospace
control systems, potentially revolutionizing aircraft safety, efficiency, and overall
design innovation.
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Chapter 1: Introduction, Literature Review, and Methodology

1.1: Motivation

Modern control mechanisms operate with a collection of mechanical parts such as rods,
pulleys, and cables to transmit the pilot’s inputs from the control deck to the desired control
surfaces. These flight mechanisms, originally designed to be hydromechanical, have over time
been improved to implement the use of electric motors, digital computers, and optical cables.
These control systems vary from aircraft to other aircrafts, such as helicopters using a tilting
rotor to course correct the vehicle to their desired location, along with some aircrafts using
weight shifting mechanics, what is commonly seen in these aircrafts are a hybrid of electrical and
pneumatic control systems to provide precise feedback to the pilot. These control inputs are both
implemented in larger aircraft to boost the control reactions of aircraft by simulated means to
improve the actuation and error reduction of the controller output. Though it sems to be a
problem that has been mitigated, there are problems such as hardware failures, environmental
factors, software glitches and other complexities that can induce the likelihood of unforeseen
errors in flight. Many of these problems require continuous monitoring and testing to maintain
the reliability and safety of these systems, however using a new type f of control mechanism, this
may mitigate many of these problems entirely. This project aims to take the control mechanisms
that are often used to another degree by analyzing the use of electro-magnets to accelerate the
inputs provided by the controller. This idea of magnetic controls came to mind, as providing an
electrical current through magnetic latches allows for an exact precision of inputs that can be
toggled directly by the pilot, reducing points of failure, and mitigating any component failure.

1.2 Literature Review

As discussed in the motivation of the project, many aircrafts use fly-by-wire systems. This
allows for the pilot’s inputs to be converted into signals which are interpreted by the control
computers and adjust the actuators to move said control surfaces. Within these control systems
there are sensors that automatically adjust and provide tactile feedback to the pilots. In fly-
bywire systems, these are conversely converted into electrical signals and enable an automatic
adjustment to enhance the performance of the flying vehicle. Redundancy measurements are
implemented to prevent critical failures, along with multiple backup systems for a safe flight. For
the references reviewed, the implementation of magnetic control systems can be separated into a
list below:

» Direct actuator control with magnets

* Magnetic Suspension systems

* Magnetic Propulsion Systems

* Thermal Implementation of magnetic controls
* Damping systems with magnetic controls



1.2.1 Direct actuator Control with magnets

To further conduct research on how to implement and analyze magnetic controls in flight
systems, prior research must be looked at to come up with an effective approach and proposal to
solving this problem. One research article dated as far back as 1990, titled, “A magnetic Attitude
Control System for precision pointing of the rolling GP-B spacecraft” published by Acta
Astronautica. This research paper discusses the development of an algorithm built for magnetic
attitude control of a spinning aircraft. This requires a real time measurement of the local
magnetic field. To obtain this algorithm a Kalman filter-like estimator is used to obtain the local
field by applying a dithering current to the magnetic rods. The algorithm eliminates the need for
magnetometers, along with guaranteeing colocation of actuators and sensors, removing points of
critical failure for measurements. As a result, the controller achieves a twenty-millisecond
pointing accuracy with the algorithm without the need for measurements from the
magnetometer.[ 1] Other forms of literature continue the application of magnets in controls, with a
paper published in 2023. This presented an attitude control experiment where the authors
introduce angular momentum control law (AMCL) to control a spinning spacecraft system with
magnetic torques:. It discusses how ACMLS is different from conventional control methods, as it
offers simultaneous feedback control for both parameters based on angular momentum error
from the desired target. This differs from conventional methods which alternate between
regulating the spin rate and spin axis orientation independently. The study delves into analyzing
the steady state and asymptotic characteristics of angular momentum error, considering both
unsaturated and saturated magnetic moments. A dedicated testbed consisting of magnetic
torquers and geomagnetic field simulator, constructed with three Helmholtz coils is used to
empirically assess the AMCL’s performance. This replicates a time variant magnetic field like
what is experimented in orbit. From there the effectiveness of the AMCL, and the behavior of the
testbed is evaluated using two ground experiments focusing on spine rate and spin axis
orientation control.[2] The findings are then compared and analyzed against the numerical
simulation results, proving the success of the desired spacecraft states. The observed steady-state
and asymptotic behaviors viewed align closely with the estimations derived from numerical
simulations, and overall demonstrate the capability in appropriately regulating the spin motion of
a spacecraft.

Another work discusses the performance of a new magnetic control algorithm for the
UPMSat-2 Satellite. This control law is derived from the B-dot methodology, enables the satellite
to orient one axis normal to the orbital plane while reaching the specified angular velocity,
dispensing the need for attitude determination. The authors assess the performance of this control
law using the initial housekeeping data obtained since the satellite’s launch in September of
2020. The control’s operational integrity was validated with data from sun sensors and
magnetometers are employed, along with thermal analysis of external satellite temperatures,
ensuring adherence to the intended attitude and angular velocity parameters. From there, the
experiment concludes with the proposed control law represents a straightforward and efficient
alternative to managing small satellite attitude.[3] These references each use magnetic control



patterns and uses them to optimize the overall control parameters used for both spacecrafts and
aircrafts, however other references use magnets for applications outside of the aerospace
industry.

Additional research on direct actuator controls is also conducted, along with the use of
permanent magnet synchronous motors (PMSMs) and model reference systems are used in
tandem to provide high stability and response. This can be used in electric vehicles, industrial
machines, and household appliances, with limitations based on motor sensitivity computational
demands and stability. The researchers propose to integrate a Virtual Rotary-Axis High
Frequency Signal Injection and a feed forward decoupling algorithm to improve their
identification accuracy and performance, demonstrating greater stability, less disturbance, and
accuracy. This decoupling algorithm has resulted in a similar model that identifies its limitations.
Along with the feedforward algorithm providing a four to five percent identification accuracy in
sensor-based control and an 8.1 percent increase in sensor less control. This showed that the
integration of FFD algorithms provides a comprehensive system which is suitable for real world
applications, increases the stability and accuracy in motor and control systems.[15] Another
research article provides a three level speed control of an offshore wind turbine system with as
little computation as possible; stating that conventional turbine control systems generate large
inertia. This is then addressed by adding additional weighing for the torque changes into the cost
function improving the performance of control and eliminating integral action. It uses modified
switching state formulas based on optimal states reducing iterations from 27 to 7 thus changing
the frequency without the constraint. As a result the simulations of a 1.5 MW permanent magnet
synchronous generator based wind turbine demonstrates an effective speed control with differing
wind profiles and improved performances compared to the conventional control methods,
reducing computation, switch optimization and increase in speed prediction of high inertia
systems.[16]

1.2.2 Magnetic Suspension systems

One research paper titled “Contactless control of Suspended loads for offshore
installations: Proof of Concept using Magnetic Interaction” (2024) provides an implementation
of magnetic control systems for motion compensation. This research article discusses the
progress of contactless motion compensation by researching a magnetically controlled pendulum.
This was invested and researched upon for the current offshore wind turbines being installed and
positioned, requiring methods of mechanical equipment attached to lifted components by human
interaction. The methods used in the article entails the interplay between the magnetic pendulum
and an electromagnetic actuator, with two control modes being considered: the imposition of a
desired motion to the mass and lessening the motion from a set pivot simulation. In the paper, the
computational model is authenticated and calibrated through experiments and demonstrates the
predictive capabilities, along with an effective governance of a broad range of frequencies and
amplitudes. The control parameters are identified as they are associated with techniques such as
separation distance between magnets and the controller saturation. The regional parameters for



effective control in the experiment depend on the characteristics of the excitation. Along with the
force amplitude of the contactless actuator is comparable to the currently used active tugger line
control systems. This experiment also provides sources for the added benefit of both attractive
and repelling forces. From the paper the discoveries pave the path for further advancement of
non-touch control techniques with the potential to enhance productivity of offshore wind turbine
installations.4 Another paper that applies magnets for suspension, discusses control moment
gyros (CMG) which is a crucial actuator in spacecraft altitude control for its precision and
substantial moment output. For highspeed rotors, magnetically suspended control moment gyros
(MSCMGQ) are used to employ magnetic bearing support and offer frictionless operation, higher
precision in operation and extend the lifespan of actuators. During CMG operation the moving
gimbal effect causes a rapid increase in power consumption due to increase in control current,
hybrid magnetic bearings (HMG) are used to enhance their efficiency using permanent magnets
to generate bias magnetic fields and minimizing power consumption. To address this even
further, gimbal angular velocity feedforward (GAVF) method, which involves establishing a
model of the HMB-rotor system, deflecting the rotor using gimbal angular velocity and HMB
stiffness. An adaptive compensation approach based GAVF method is then used to maintain the
overall system performance under parameter fluctuations. From this the proposed method
effectively reduces the power consumption during moment output, as validated through
experimental and simulation results.[5] Another reference that contributes to magnetic
suspension is the use of balancing objects and vehicles in a wind tunnel. The Publication by
Experimental Thermal and Fluid Science discusses the effects of magnetic suspension and
balancing system installed on a wind tunnel on a slanted cylinder afterbody. The range of critical
Reynolds numbers in the dummy strut used in the first experiment shows that as the Reynolds
number decreases, and the variation depends on the location of the strut in the tunnel. The size of
the separation bubble and recirculation region changes depending on the location of the strut on
the wake of the center plane. Weak vortices were observed to be formed behind the strut in the
experiment, changing the wake structure. This change according to the researchers affects the
variation of the vortices core wandering, as well as becoming a factor in power spectral density
peaks observed in prior studies.

The overall results showed that characteristics in correlation to the critical Reynolds
number where the aerodynamic forces and flow field chances significantly. From these results it
1s suggested that strut support strongly interferes with the flow around the test model and must
be carefully considered. From the research its assumed that though there is a magnetic force that
interacts with the wake produced in experiments, the effects generated have an overall
performance increase when compared to a regular strut support.[6] Analyzing these research
papers provides that the results in each paper provide a proof of concept of magnetic support
systems that require less human contact and the feedforward system used can be applied to safely
control both spacecrafts and aircrafts with little to no points of failure.



1.2.3 Magnetic Propulsion Systems

Next, viewing the propulsive capabilities of magnetic controls, this next paper talks about
a special functionality that is viewed in a thin-film soft magnetic strip at an inclined magnetic
anisotropy angle, enabling a switching of magnetic domains with a surface normal field with a
certain distribution element. The switching occurs between single and multi-domains along with
configurations adjacent to narrow strips. The article discusses how the magnetic permeability of
AC fields experiences a significant change within the frequency ranges of 10 kHz to 10 MHz as
a function of the distributed magnetic field strength. The article investigates the correspondence
of alternating current permeability and the magnetic domain as a function of the intensity of the
distributed field. This article confirms that as the intensity of the distributed magnetic field
increases the Landu-Lifshitz-like multi-domain area, extends on a clustered narrow strip, aligns
with the variations of permeability. The results in the article provide a potential application to
uses such as a tunable inductor, sensors for memorizing and detecting disturbed magnetic fields
generated by nanoparticles, and lastly it can be applied for electromagnetic shielding.[7] Another
source applies magnets not to the direct propulsion capabilities, but the implementing a magnetic
bearing. This paper presents a magnetic bearing switched reluctance motor (MBSRM) that
allows for two degrees of freedom and suspension consisting of a switched reluctance motor as
well as an active magnetic bearing. This motor will have a three phased armature windings and
biased winding of the active magnetic bearing (ABM) which is simultaneously fed with a
modified asymmetric half bridge converter. While in operation, the rotational torque in the SRM
and flux creates an electromagnetic force in the active magnetic bearing concurrently. The
researchers outline the operational principle and structure of the MBSRM along with the
validation and formulation of suspending forces using finite element analysis. The paper
additionally details the proposed half bridge converter and presents the simulation which results
in both the biased winding and three phase armature windings through magnetic field circuit
coupling simulation. The result of this paper shows that after a prototype is developed, and
experimental results confirm the feasibility and effectiveness of the converter design.[8] These
designs and implementations use the physical application of magnets to improve the performance
capabilities of aircrafts however researchers have provided external methods of improving he
propulsive capabilities of magnets. Published by Aerospace Science and Technology proposes a
magnetic controlled inlet design for airbreathing hypersonic vehicles. The report discusses the
implementation of electromagnetic source terms to the Euler equations of motion, developing an
algorithm coupled with electromagnetic field/hypersonic flow field as a numerical design tool.
The authors constructed a quasi-one-dimensional simplified model of the magnetic inlet to
examine the performance under different conditions of leading shock angles and magnetic field
under compression. From these experiments the researchers found that the combination of a
weak leading-edge shock and strong magnetic field can obtain a better effect of compression.
Three inlets were designed under the magnetic field with the induction intensity varying between
0.05, 0.08 and 0.1 tesla, allowing for the inlets to have a contraction ratio of about 1.5, and the
wall chape being insensitive to the magnetic induction intensity variation. The inlets were tested
at an inflow Mach number of 10 and the exit Mach number is reduced to Mach 5 or Mach 2.5,



when the magnetic induction intensity is adjusted from 0.05 to 0.1 tesla. The results presented
show that there is no reflected shock in the inner channel of the inlet and the complex shock
layer interaction in the inlet is relieved. Lastly the experiment showed that the energy lost in the
pressure recovery can be transformed into electrical energy magneto-hydrodynamic generator
(MHD) energy extraction equipment, using it to accelerate the overall nozzle flow of the
designed inlet.[9] In conclusion with the performance capabilities, we can see that the
implementation of inducing magnets, impacts the overall propulsive capabilities of a vehicle
moving through a fluid medium at high speeds, where inputs are crucial in moment to moment
interactions. This interaction in hypothesis is then increased drastic measure depending on the
frequency at which magnets are implemented under higher Mach numbers.

1.2.4 Thermal Implementation of magnetic controls

In research, magnetic systems implemented in aircrafts and spacecrafts have thermal
capabilities which affect the thermodynamics of aircrafts in high speeds. One paper discusses the
considerable applications, published by Applied Surface Science in 2023. This presents a post
growth annealing method aimed to manipulate the Curie Temperature and magnetic anisotropy of
Cr2Te3 van der Waals ferromagnetic thin films. The as grown Cr2Te3 films display a Curie
temperature of approximately 170K with an out of plane magnetic easy axis. However, through
high temperature ex-situ x-situ annealing (300 — 400 °C), significant changes occur: the Curie
temperature increases notably to around 300 K, and the magnetic easy axis reorients to the
inplane direction. Analyses of electronic, chemical, and structural properties indicate that the
expansion of the c-axis lattice constant during annealing is responsible for modulating the
magnetic properties of the Cr2Te3 film. These findings highlight the efficacy of ex-situ annealing
in controlling the magnetic characteristics of van der Waals ferromagnetic thin films. Moreover,
the emergence of room temperature ferromagnetic ordering post-annealing, coupled with its
resilience to subsequent thermal processes, suggests the potential suitability of Cr2Te3 thin films
for applications in spintronic devices based on van der Waals materials.[10] Another source
provides another application of magnets in thermal capabilities, where the researchers discovered
a considerable applications of magnetohydrodynamic heat shield systems to complex geometries
that induce a shock wave or boundary layer interaction associated with high heat loads. The
MHD heat shield systems were proven to be highly effective in hypersonic blunt nose bodies,
and since it lacked deep research into large size models in high enthalpy conditions the
researchers attempted to experiment and apply said systems to modern hypersonic bodies.
Partially ionized flows of hollow cylinders and flare coupling of these fields were numerically
analyze using a thermochemical nonequilibrium solver to investigate the possibility and
mechanism controls. These consisted of eleven species reaction model and a Park two
temperature model based on the low magneto-Reynolds assumption. The authors stated that a
fully implicit block lower-upper symmetric Gauss-Seidel algorithm was developed to address the
numerical stiffness initiated by the large difference in characteristic time of grid refinement and
thermochemical non-equilibrium in the boundary layer and interaction medium. This improved
the accelerating rate, and the solver was validated using case solving MHD control of flow



around a typical reentry vehicle, as well as the measured hollow cylinder/flare data and double
cone for a high enthalpy tunnel. From there a parametric study of high enthalpy flow over a
hollow cylinder was experimented and the MHD control was separated into three categories.
Ntype control led to the largest reduction in the peak value of total heat flux along a wall surface,
obtained by using a uniform magnetic field. This means that the peak heat flux and peak skin
friction coefficient was reduced to around twenty percent and forty-eight percent. From there two
local MHD interaction parameters were introduced for the purpose of mechanical examination
and can function as a reliable gauge for MHD controllability assessment. This shows that the
conceptual findings illustrated the Lorentz force acting opposing to the streamline direction,
prompted by external magnetic field and ionized flow emerged as a pivotal element affecting
local heat flux regulation. In conclusion the outcomes of this experiment establish a groundwork
for devising MHD experiment within a high enthalpy wind tunnel test.[11] In these applications,
many of these tests can be referred to and applied in a morphing aircraft and applied to nonlinear
dynamic traits and interferences associated with shape changing wings.[12]

1.2.5 Damping systems with magnetic controls

Lastly, this reference that was reviewed for this project provides a method of damping
using magnets. This article presented by Mechanical Systems and Signal Processing, volume
202, discusses the discusses an innovative resolution of a magnetorheological sting support
system used to combat the vulnerability of wind flow resonance. Using a combination of Euler
Bernoulli Bean and Kelvin-Voigt element, a vibration reduction mechanism is explained and
developed, along with the relationship between the stiffness and damping of the
magnetorheological damper (MRD), the natural frequency and damping ratio characteristics
being illustrated. To control the stiffness and damping feature for the system an annular squeeze
feature was implemented in the MRD design accounting for the factors of low influence on sting
shape, wind flow, and magnetic circuit requirements. The report also entails the optimizations
made to the system considering the target magnetic field and low power consumption as the main
objectives. The effectiveness of the structure design and optimization are tested on the
manufactured MRD, showing the characteristics that satisfy the vibrational control of the system.
The controllability and fail-safe property were then verified through wind tunnel and laboratory
tests, along with the on-off control tests conducted in various impulse excitation and a resonance
peak attenuated by about twenty-seven decibels, and passively attenuated at seventeen decibels.
The experiment showed that magnetorheological sting support is capable of suppressing
vibrations effectively.[13] In contrast to the thermal capabilities of magnets in an aircraft,
damping capabilities seem to apply modern control mechanisms to magnets to reduce the
generated resonance from tests. This application can be applied to not only test equipment such
as wind tunnels as discussed, but as well as reduce additional structural vibrations that occur in
hypersonic flight.

This next article shows that magnets used in motor systems can be used to control the
vibrations using a passive device using shunt damping. This is researched upon to protect against



micro-cracks due to the low flux between the rotor, stator and airgap; researchers are able to
model a procedure for electromagnetic shunt damping. The damping forces are generated from a
combination of rotor movement providing a magnetic flux, and the electric currents induced in
the windings provided by a device, which is then converted into heat energy. The results state
that a permanent magnet thickness and several windings turns provides an optimal value of
electrical resistance and thus is mathematically proven through simulations.[17] Additionally, a
permanent magnet linear synchronous motor can be applied to a precision equipment, and
applied to active vibrational absorption systems. Researchers state that the design is important for
the special requirements for the response speed, temperature, installation and the bandwidth, and
in result, the performance is effectively analyzed in combination with proposed design
objectives. [18]

1.2.6 Conclusion

In conclusion to the research, there are more than a handful of applications that magnets
have to aircraft, spacecrafts, and objects generating a thermodynamic property. The references
provide proof of concept, simulations, and applications of magnets to real life tools and parts that
can improve the capabilities of modern controls. Magnetic Actuators provided a direct line of
controls applications to the instantaneous response that magnetic controls with a current will
generate, along with negating many of the points of failure mechanical controls must deal with.
Suspension mechanisms reduce the human error that can occur within both aeronautical and civil
works of engineering. Magnetic bearings in motors, in-plane magnetization and magnetically
suspended gyros provide an excellent application to propulsive capabilities of magnets, and lastly
the thermal capabilities that coincide with the propulsive capabilities, inducing and effecting the
shockwave and boundary layer provides additional methods of how magnetic fields impact the
overall controllability and performance of a given aircraft.

1.3 Project Proposal

In the industry of aerospace engineering the constant evolution of aircraft and spacecraft
performance is an innovation many companies aim to achieve. Based on the prior literature, there
are still improvements that can be made in the control technologies of aerial vehicles. One point
of interest that is frequently discussed is the integration of magnetic technologies into control
systems. Magnetic Actuators offer a potential benefit to aircraft and spacecrafts as they would be
lighter than conventional control systems, improved precision, and increased reliability in critical
moments. The direction of this project aims to explore the advantages and feasibility of
incorporating magnetic control switches and actuators into modern aircraft and spacecraft control
systems.

Objectives:

* Investigate existing research on magnetic actuation and the application to aircraft control.
* Design and develop a prototype aircraft control system designated for magnetic actuators.



Evaluate the reliability, efficiency, and performance of magnetic based control systems
through simulation and testing.

Assess the potential benefits and challenges of implementing magnetic actuators in
commercial or military aircraft and spacecrafts.

Methodology:

Conduct a comprehensive review of academic and industrial literature on magnetic
actuation along with its relevance to aircraft control systems.

Collaborate with professors and advisors to design a prototype aircraft control system
incorporating magnetic actuators.

Develop a functional prototype using advanced modeling and simulation tools using
magnetic control systems.

Perform tests in controlled environments to assess the reliability, efficiency, and overall
performance of magnetic actuators, then compare them to traditional control methods.
Analyze the collected data from testing to determine the advantages and limitations of
magnetic actuation in aircraft control systems.

Timeline

This project is estimated to take the current year to conduct, develop, test, and analyze the
integration of magnetic control systems. The current expectation of this projected timeline is listed

below:

Development of a prototype control system featuring magnetic actuators
Comprehensive analysis of the performance and efficiency of magnetic based control
systems.

Identify the potential applications of integrating magnets into control systems.

Provide insights of the challenges and limitations of implementing said control systems.
Provide recommendations for further research and development in the field of magnetic
actuation for aerospace applications.

Conclusion

Integrating magnetic actuators and controllers into aircrafts systems could potentially

revolutionize the aerospace industry. Reducing the weight, improving the precision, and
enhancing the reliability of aircraft controls systems with magnets could lead to more efficient
and safer aircraft design and controllability. This, if applied correctly would provide a clear path
for future exploration of magnetic technologies in the engineering industry creating new
innovations for aircraft. In conclusion, this project seeks to explore the potential of magnetic
actuators and control systems in aircrafts, aiming to develop a prototype, then evaluate its
performance in comparison to traditional control mechanisms. The insight provided from
research will contribute to the advancement of aerospace engineering and future developments in
aircraft design and technology.



Chapter 2: Prototype Magnetic Aircraft Control System Design

2.1 Introduction

This section of the report will entail the approach of prototyping the design of a magnetic
aircraft control system, along with what elements and systems were used to generate the right
design approach for the control system. To properly approach the controls design, we need to
understand the foundations of modern aircraft controls. In flight, aircraft are meant to be stable,
as it will return to a steady state configuration when encountering a perturbation such as a gust of
wind, or direct turbulence. The steady state configuration allows for an aircraft to correct and
maneuver itself under large changes in the flight orientation. From the steady state configuration,
the control system can be tuned by measuring the frequency of the output signal of a neutrally
stable system, which is used to set the integral and derivative settings on the controller.

The frequency measurement of the output signal, then tuning it to operate under stable
conditions is an example of classical controls, which are still used in modern aircraft to this day.
However, using classical control methods alone provides no improvement to modern aircraft, as
the cost function of the human or pilot inputs outweigh the total energy required to register said
input. With mathematics, this can be solved with a system of equations, which can be linearized
to find coefficients to get precise values for tracking the general input of any aircraft, and then
applied toa non-linear full tracking system identification (SYS-ID) to optimize the computational
method of approach. When analyzing these optimized controller systems, linear quadratic
regulators (LQR) are utilized to provide a robust solution to modern aircraft.

Upon analyzing both classical and modern control systems, this has been observed,
recorded and improved upon by engineers and designers over the last century. These
optimizations of steady flight conditions start with defined system requirements such as a
balance of the necessary thrust, drag, lift and weight. Balancing these four conditions allows for
an aircraft to have no acceleration when in flight. Due to the purposes of many aircraft being
used for different reasons, the conditions of each aircraft are different, and can cause
disturbances to how an aircraft is operating. For this portion of the report the prototyping phase,
this will account for using modern aircraft control systems and applying magnetic parameters
which were listed in previous applications from prior research.

2.2 Problem description

Based on the steady flight conditions listed above, we can design and model a robust
control system aimed to ensure stability and performance accounting for disturbances and
uncertainties in the system parameter or external disturbances. We know that stability in aircraft
exists in two forms: Static stability, and dynamic stability. Static stability depends on the steady
state of the aircraft before and after a disturbance and dynamic stability which occurs when the
control system corrects the aircraft in operation under external disturbances over a period.
External disturbances that affect the stability of an aircraft can occur in all directions, however,
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the two primary axes that are measured. These two axes are the longitudinal and lateral
directional states, which can be measured, then controlled and optimized with any given flight
characteristics of an aircratft.

To optimally design a control system for longitudinal and lateral directions, we can
generate a program to view an open loop and closed loop stability analysis where the actuation of
each simulated controller is near instant to provide an accurate representation of magnetic
controls. For the prototype of the control system an open lop stability analysis is observed as this
will determine if the aircraft is stable without any input, meaning the aircraft will return to a
steady state condition after acting with a perturbation. From an open loop stability analysis, all
aircraft should be longitudinally and laterally stable to ensure a smooth flight and minimize the
overall work and or cost of the pilot. Then controllability of the system is determined, designed
in association with the desired aircraft and then optimized.

2.3 Computational Controls Set Up

To provide the conditions needed for a control analysis, we will need the translational and
rotational equations of motion needed to map the characteristics of a conventional aircraft. We
can list the flight parameters needed for an aircraft, using rigid body notations.

 Linear Velocity (m/s): V" E/B=Ubx+Vby+Wh, (2.1)
*  Angular Velocity(m/s): w” E/B=Pbx+Qby+Rb: (2.2)
* Aerodynamic Force (N): F a= Xbx+Yby+Zb: (2.3)
 Thrust Force (N): “F 7t = XrBx +Y1By +Z7b:2 (2.4)
* Aerodynamic Moment (N/m): M~ 4= LBx+Mby+ N B (2.5)
*  Thrust moment (N/m): M~ r= Lrbx+Mrby+ N'rb; (2.6)

Here the notation of the cartesian coordinates is represented in the B frame with respect to the
Earth. With these parameters we can first define the translational Equations of motion
Represented with a rigid body notation.
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2.3.1 Translational Equations of Motion
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Figure 1:Reference frame of aircraft.

The equations of motion can be broken down with the sum of the forces under a
symmetrical body. We can assume that in the diagram, the N frame used for reference to the body
frame is the same as the Earth’s Reference frame, due to the assumption of a short flight time, as
well as mitigating the overall change in mass. Applying Newton’s Second law, we can define a

summation of forces modeled as so:

SFE = ZH(mVE/P) = m - (VP/P) + (@77 x VE/P) @.7)

The additional component (w™ E/B XV~ E/B) accounts for the summation of converting
the total velocity from the B-frame of the aircraft to the E-frame in symmetry to the motion of
the earth. We recall that in the list of parameters there is the linear and rotational velocities
defined, thus can substitute the equations 2.1 and 2.2 into equation 2.7 to obtain the sum of the

forces.
U, ~ .o
.bx bx y bz
XF=m-|[Vo|+|[P @ R (2.8)
W, u v w
b, b, b,
Where: P Q R|=@QW=RV)bx—(Pw—RU)by+(PV—-QU)b: (2.9)
u v w

Substituting and combining like terms, we can define translational equations of motion:
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bx =Fx=m(U +QW —RV)
by = Fy=m(V +RU—-PW) (2.10)
bz = F,= m(W +PV—-QU)

2.3.2 Rotational Equations of Motion

The rotational equations of motions follow a similar process to the translational motions;
however, this is computed with the sum of the moments present in the system, which is defined
as so:

B B B
M = %(HE/%) = %(HE/BO> + (wE/B XHE/BO> (2.11)
Where H is the angular momentum acting on the body. H can be expressed as the cross

product of the moment of inertial and the angular velocity acting from the earth frame to the
body frame. Listed as so:

—>E/£ Ixx IF Ixz P
H'5o=1 x of/B =g Ly %=z||Q
Iy, ’Iﬁ I,;| LR

(2.12)
Separating the cross product into a system of equations we can see that the moment of
inertia in the Iy and Iy, components are negligible as it is assumed that the aircraft is a
symmetrical body, so linearizing the equation with the cross product will be simplified to the
equation below:

B

H/Bo= (LxP+12R) B +(1,yQ) By +(IxzP+12zR) - (2.13)
5/ b b "
(wE/B X H Bo) = P Q R (214)
IxxP + Isz Iyy Isz + I,,R

Once defined we can combine like terms and use the assumption that all inertial terms do not
change with time, thus expanding and solving the sum of moments in the system below:

b, M, LxP + I,R + (I, — 1,y))QR + L,,PQ
b,|=|My|=|L,,0 + Uyx — I,)PR + I,,(R* — P?) (2.15)
bl (M) |1,P+ L R + (L, — L, )PQ — L,QR

With the system fully defined, we see that the pitching moment is coupled with the yaw
and roll moment of the aircraft. Here we can define these rotational angles using NASA’s
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standard Euler rotational angles, y for yaw angle, ® for pitch, ¢ for roll each about the ézey,& éx
frame. Using these angles, we can map out the angular velocity rate with respect to the Euler
Angles to obtain the kinematic differential equations.
P 1 0 —sinf 1[¢
[Q] = [0 cos¢p singcosO||9 (2.16)
R 0 —sing cosBcosdl|y
2.3.4 Linearization

Next after deriving the necessary equations of motion from our parameters. The equations
must be linearized to better suit the optimal control system which will be written in the program.
To start, a Perturbation equation will be implemented, to model the dynamics of an aircraft with
respect to steady state conditions. We can assume these steady state flight conditions are constant
thrust, constant altitude (lift is equal to weight), and constant velocity (thrust is equal to drag).
We can define these perturbation terms with lowercase variables of the initial parameters,
including linear velocity angular velocity, and their rates respectively.

e U=Ui+tuV=VitvW=Wi+w

* P=Pitp, Q=0itq, R=R;+r

e U=Ui+uy,V=Vi+yW=Wi+w

s Y=Y 1+Y0=014+60,0=P1+¢

s X=Xa+fxY=Y1+fy,Z=Z1+f-

o Xr=Xni+frYr=YT1+fTy,ZT=ZT1+fT:

e L=L1+IM=Mi+mN =N1+n

e Lr=Lri+lr,Mr= Mr1+me,NT= NT1+nT

We can substitute the perturbation parameters with the equations of motion along with

implementing mathematical assumptions, we can assume that the product two small numbers
become negligible, as well as the use of small angle approximations to simplify linear velocity

rates. To compute the rest of the linearization of the equations of motion additional Steady flight
conditions that are needed for further simplification would be these considerations:

* No steady State Lateral velocity (V;=0)

» No steady state vertical velocity (W;=0)

* No steady state roll angle (®1=0)

* No steady state angular velocity (P1=Q1=R1=P1=01=¥1=0)

With these straight flight conditions, we can also assume that the relationship between the
linear velocity in the Z axis is related to the product of the angle of attack and the freestream
velocity, thus modifying w to include alpha (o). Now the equations above can be simplified to
negate a handful of unknown variables, providing a simplified set of equations:

(i) —mgBlcosO1+fx=m(u) (2.17)
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(W) —mg0O(sinf1)+f-=mui(ad —q) (2.18)
m = Iyy(q4) (2.19)
q=0 (2.20)

2.3.5 Dimensional Stability and Control Derivatives

With the equations of motion simplified, we need to develop the abstract terms such as fx
fy f, and so forth, as we want to know what they represent and make them tangible with what
affects those terms. These values, to obtain them will need aircraft data such as mass, geometry,
and inertial dynamics to clarify their meanings. Looking at equation 2.17.1 for example, we can
see that the force fx is affected by their angle of attack, the thrust, forward velocity, and the
elevator deflection. Each of these terms can be defined as derivatives representative of each
effect. We can also use the assumption that the dynamic pressure and the wing area on an aircraft
remains constant throughout flight. Once computed will provide a frequency representing, the
change in X with respect to the free stream velocity:

u mdu

1 dx 1 -

man = mu, [15(=Cp, — 2Cp,)] (2.21)
Where Cp,and Cp; represent dynamic coefficients with respect to the speed of sound and

the lift of the aircraft respectively, computed with the perturbation method explained above. This

calculation can be repeated for X with respect to angle of attack, elevator deflection, on all axis.

Lastly these derivative substitutions will also be used to compute the pitching moment equations

expressed with their rates and coefficient terms:

o ==~ [G5(—Cp, — C,)] (2.22)
Xse = o2 = —2[q,sCp, ] (2.23)
Zy = o [d,5(=Ci, — 2C,)] (2.24)
Za = ~[G,5(—Ci, — Cp)] (2.25)
Zse =+ Ci s (2.26)
Zy = % Iy (2.27)
M, = Iyylul [G15¢(Cpm,, + 2Cpm))] (2.28)
M, = <c,, (2.29)
yy



gisc?

My = 520 Cy, (2.30)

M, = M (2.31)
a7 21u; Ma :

Ms, = %CM% (2.32)

Finally with the stability derivatives defined (2.23-2.32), we can incorporate them into
the decoupled equations representative of the rate of airspeed, angle of attack, pitch rate, and roll
rate into a summation of equations. Similarly, these calculations can be repeated in the lateral
directional equations of motion to obtain the decoupled equations representative of the roll rate,
side slip rate, and yaw rate. The equations of motion in state space form are represented below,
with the complete computation being referenced at Appendix A.

. Xu Xa 0 ) [ Xé‘e ]
u Zu Za o ([ | Zs= |
a U U a U
| = 1 1 (] +] 1 6, (2.33)
q MyZy, MyZy, q MyZse| €
! |l(Mu+—U1) (Mo +222) My + M, 0J|9 [M5e+ = J
0 0 1 0 0
0 1 0 0 01
¢ 0 Lp Ly L. 0|[¢ LO LO
p gcosf Y, Yg Y p or Sa [67* ]
— B I _ 2.34
ﬂ Uy Uq U Uy Lo ,8 + tfr Y;ﬁ 605 ( )
) 0 N, Nz N, 0Ly 01 01
0 0 O 1 0-

2.4 Open Loop Stability Analysis of Prototype Control System

Providing the stability characteristics of an aircraft can be computed with programming
software, which for this instance we will use MATLAB and Simulink to arrange the mathematical
derivatives to a state space from that will allow for the necessary inputs of an aircraft, then output
matrices to determine both lateral and longitudinal stability. To start, we can define the stability
derivatives for designing a generalized control system below:

X = A% + BU (2.35)
y = C%+ Di (2.36)

To define each letter in the stability derivatives, each represents a matrix used to define
the control system for easier computations to be done by a computer. For this instance, in the first
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equation, the X variable represents the overall velocity input of a given aircraft in motion; the
letter A represents the stability matrix used to provide which dimensions provide the exact forces
in both the longitudinal and lateral directions, multiplied by a one column x vector. B represents
the control matrix representing the control variables in the provided direction, along with the
product of the u vector. The y equation below, is the output equation of a generalized control
system where c is the identity matrix used to compute the initial displacement and simplify the
primary output into a single column value. Lastly the D matrix is the feed forward matrix which
is represented as a null matrix to optimize the control solution. For the primary input equation,
the stability and input matrices are different per direction and can be visualized with a free body
diagram for where each direction is represented. Within these matrices the values are obtained
with massless values, along with derived values from aircraft calculations.

For each matrix, the stability analysis is divided into two sections: The longitudinal
stability analysis, and the lateral directional stability analysis. And for the obtained characteristics
of each matrix, we will use the stability characteristics of the Boeing 747 provided by AIAA at
sea level conditions.

2.4.1 Aerodynamic and Mass Properties of Conventional Aircrafts

To analyze and input the necessary variables in the stability and control matrices, we will
use the standard sea level conditions of the stability characteristics. For each condition, we have
the standard sea level measurements of the lift, drag, and deflection angle coefficients to obtain the
necessary pole locations for longitudinal and lateral-directional states.

Table 1: aerodynamic coefficients of the Boeing 747

Aerodynamic Value Aerodynamic Value
Coefficient Coefficient

Cro 0.29 Cyp -0.9
Cpo 0.0305 Cip -0.16
Chia -1.6 Cnp 0.16
Cpq 0.5 Cp -0.34
Cimg -25.5 Crp 0.13
Ciq 5.5 Crr -0.033
Cxse 0 Cnr -0.033
Czse 0.29 CLsa 0.014
Chmge -1.2 Cyéa 0.0018
Cyp -0.0272 Cysr 0.118
Chnor -0.095 Cisr 0.008
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Table 2: mass and Inertial Parameters of the Boeing 747

Parameter Value Parameter Value
Weight 564,000 Ibf L 1.41 x 107 (slug-ft?)
B 196 ft Ly 3.05 x 107(slug-ft?)
c 27.3 ft I 4.27 x 107(slug-ft?)

Using these conditions, we can determine the force conditions needed for our state and
control matrix, by dividing the necessary parameters with the coefficients to obtain our variables
such as thrust force, downwards force, and so forth. Applying these conditions, we can then
calculate and compute the longitudinal and lateral directional stability of the aircratft.

—0.0433 11.4378 0 —32.1741
A _|—00012 —0.4889 1 0
tong 0 —0.3855 —0.4356 0
0 0 1 0
0 1 0 0 01
| 0 —0.9871 —1.246 0.3834 0|
A =1 0.1456 0 —0.089 -1 0
l 0  —01441 02694 —0.2338 oJ
0 0 0 1 0
0 0 0
0 0.235
—0.0297
Blong= —0.3980 ; Biat = 0.0148 0
" —0.1655 —0.0122
0 0
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2.4.2 Longitudinal Stability

Center of
Gravity

Pitch Axis

+ Pitch

Roll Axis

Figure 2: free body diagram of a conventional aircraft with axis and angles (NASA).

To start the stability analysis, the longitudinal measurements of the aircraft will be
considered. This represents the motion pitch movement along the aircraft, which is controlled
conventionally by an elevator located on the wing. This means that we will need to investigate the
change in the angle of attack, pitch angle, pitch rate and speed, as the associated pitch
compensation will automatically control the trim angle of the air speed.

Xu Xa 0 -9
= = 1 0
A= L 1 (2.37)
MyZy, MyZy,
(M, + 1) (Mg + Ul) My + M, O
0 0 1 0
X6e
Zse
B = U1 ‘ (2.38)
MSe _I_Mazé‘e
U
0
u
N a
= 2.39
7= | (239)
0

Using MATLAB, we can obtain the eigenvalues of both the long period and short period
characteristics of the pole measurements, damping, time constant and frequency. In the program
this 1s computed by calculating the eigen value of the identity matrix C in the output, listed below:

Table 3: longitudinal mode characteristics of the Boeing 747

Pole

Damping

Frequency (rad/sec)

Time constant (sec)

-6.55e-03 + 1.63e-01i

4.01e-02

1.63e-01

1.53e+02
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-6.55e-03 - 1.63e-01i 4.01e-02 1.63e-01 1.53e+02

-4.77e-01 + 6.21e-011 6.09e-01 7.83e-01 2.09e+00

-4.77e-01 - 6.21e-01i 6.09e-01 7.83e-01 2.09e+00

From numerical values provided in the table based on the inputs of the aircraft, we can use
MATLAB to convert the state space variables to a transfer function with a command. In the table
above we can see that the pole values in all 4 characteristics are negative, meaning that in steady
flight the aircraft is fully stable. In computation we can determine the rank of the provided
matrices which comes out to a value of five, meaning the transfer function will be a relationship
to the fifth order, listed below:

—0.165553-0.17415%-0.007815—0.03214
§5+1.315%+0.6641534+0.677852+0.03037s

G(s) =

(2.40)

From the transfer function obtained, we can analyze the overall response of the system
with an impulsive input, which is what we need to build a magnetic control system. We can plot
these values obtained in MATLAB using an open loop Simulink block diagram to see the impulse
and step response of the change phi over the time domain. The block diagram needed for this
simulation is displayed below:

[

~10 num(s) o C]
s+10 L den(s) =%

deg2rad Ktheta rad2deg

Figure 3: Simulink block diagram of longitudinal stability of the Boeing 747

To view the stability of the aircraft in the longitudinal region, our plot should provide an
impulse and step response of the change in theta with the elevator deflection (6(s)/de(s)) over
time; as well as the change in alpha with the elevator deflection (a(s)/de(s)) over time.
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Figure 4: Boeing 747 step response a(s)de (s)
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Figure 5: Boeing 747 impulse response a(s)(oe (s))

21



Amplitude
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Figure 6: Boeing 747 step response 8(s)(de (s))
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Figure 7: Boeing 747 impulse response 0(s)(de (s))
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From these plots, we can see that over a period the aircraft is ablet to return to level flight
after a step response and an impulse response to the change in elevator deflection. Though it does
stabilize, we can see that for the angle of attack it returns to stable flight at around 300 to 400
seconds, the change in the pitch angle takes approximately 500 to 600 seconds to completely
stabilize . To optimize the time, it takes to stabilize in flight we will need to build a controller that
can shorten the time it takes to return to steady level flight and minimize the oscillations we see in

each plot.

2.4.3 Lateral Directional Stability

For this section, lateral movement refers to the motion about the aircraft’s rolling or ‘x’
axis, as well as the directional movement referring to the yaw or ‘z’ axis of the aircraft.
Commonly the rolling axis on an aircraft is controlled by the ailerons while the rudder of an
aircraft is responsible for the directional movement. Below are the derived matrices representing
the linearized equations of motion for the state space equations:

0
0

gcos@
Uy

0
0

1

0 0
Ly Ly
"
Uq Uuq

Ny N,

I
I
oo o oo

Y

(2.41)

(2.42)

(2.43)

Table 4: lateral directional mode characteristics of the Boeing 747

Pole Damping Frequency (rad/sec) Time constant (sec)
0e+0 -1.00e+00 0.00e+00 inf

4.68e-02 1.00e+00 4.68e-02 2.14e+01

-2.78e-02 + 7.33e-01i 3.79¢-02 7.33e-01 3.60e+01

-2.78e-02 - 7.33e-011 3.79¢-02 7.33e-01 3.60e+01
-1.21e+00 1.00e+00 1.21e+00 8.28e-01

From the characteristic table above, we see that there are some variations in the pole, with
most of them being negative, and one being critically stable and one being positive, or unstable
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in this case. We computed that the rank of the controllability in this system is also five, meaning
that the transfer function will also have a fifth order of magnitude.

G(s) =

Once we obtained the transfer function above, we can now plot the change in the roll angle
over the change in the rudder deflection (y¥(s)/6r(s)) and the heading angle over the change in
aileron deflection (¢p(s)/da (s)) to analyze the lateral directional stability of the aircraft.

0.012253-0.091345%2-0.0082265+0.0308
$5+1.31544+0.664153+0.0677852+0.03037s

(2.44)
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J_ >K- PID(s) g BTy » _/_ den(s) ={>—> -
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Figure 8: Simulink block diagram of lateral-directional stability of the Boeing 747

Step Response Plot of Full Sys ¢(s)/63(s)
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Figure 9: Boeing 747 lateral-directional step response of ¢p(s)(da. (s))
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Impulse Response Plot of Full Sys rp(s)lria(s)
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Figure 10: Boeing 747 lateral-directional impulse response of ¢(s)(da. (s))

Analyzing these graphs, we can see that the change in the aileron provides a steady flight
with the change in the roll angle over time as it stabilizes at around fifty to sixty seconds once
perturbed, however once we see the heading angle change, we can see that it has a harder time to
stabilize under a stepped response, compared to an impulse.

Step Response Plot of Full Sys ¢(s)l§r(s)
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Figure 11: Boeing 747 lateral-directional step response of y(s)(6r (s) )
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Impulse Response Plot of Full Sys fq/;(s)lér(s)
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Figure 12:Boeing 747 lateral-directional impulse response of y(s)(3 _r (s))

With these response results, we can now develop a controller design to optimize the aileron
and rolling angle responses with a closed loop analysis.

2.5 Optimized Prototype Controller Design

Prototyping a control system after knowing what responses provide stability allows for a
better understanding of what values need to be tuned and controlled. This optimization will incur
with four separate optimizations:

* Aileron to Roll Angle Control

* Rudder to Yaw Angle Control

* Elevator to Pitch rate control

* Elevator to Angle of Attack Control

2.5.1 Aileron to Roll Angle PID Control

Since we know that the controllability matrix in each direction is five, this states that all
five lateral/directional modes can be controlled by parameters in the input matrix B. for these
axes we will use a proportional integral derivative (PID) controller. This starts by designing a PID
controller to find what frequency is the most neutrally stable for the aircraft system created in
Simulink. This will include a step input which will simulate the desired roll angle, then a PID
constant block next to a unit transfer function. Then a saturation block will simulate the
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maximum air speed of the aircraft, and a rate limiter is used to replicate the deflection of the
aileron.

da

out.phi_command
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phi_command

H
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Figure 13: PID Simulink controller for ¢p(s)(da (s))

From here we will need to tune the integral and derivative gains in the Simulink file, K; and
K until the system is neutralized. With neutrally stabilized conditions we can plot the response to
see where the maximum attainable value is before the aircraft becomes unstable.

747 Step Response for ¢(s)/b‘a(s)
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Figure 14: step response of roll angle to aileron deflection
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Figure 15: impulse response of roll angle to aileron deflection
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Figure 16: change in aileron deflection over time using PID
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Figure 17: change in aircraft roll angle over time using PID

For this study we see that the PID controller used minimizes the number of oscillations it
takes to stabilize the system, along with the overshot needed to correct itself. The aileron
deflection plot shows a larger overshoot for the first five seconds, then undershoots after five, then
stabilizes by fifteen seconds after the perturbation. This change in angle is viewed less in the
aircraft roll where it overshoots after five seconds, then stabilizes after fifteen seconds as well.
Analyzing the PID controller for this system shows that the gain can be improved to provide a
faster response and minimal overshoot for controlling the aileron deflection and roll angle.

2.5.2 Rudder to Yaw Angle Control with LQR

This section discusses the optimization of the lateral directional controls using a linear
quadratic reduction, or LQR for short to evaluate the controllability in each directional change
that impacts the performance. To use LQR, we would need to tune both the quadratic and
reduction matrices with the same state matrices used in the lateral directional control stability.
The quadratic matrix will use a 5x5 matrix used as a product with the same dimensions as the
input matrix used above, as well as the R matrix being a 2x2 identity matrix to provide the
output. From here we would need to solve for the reduced Ricatti equation to generate the P
matrix, as well as the optimal gains needed for the block diagram.

ATP+PA—PBR-1BTP = 0 (2.39)

K = R-1BTP (2.40)
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Then we can input this into MATLAB to compute the optimal controller gain, which can
be written as a command such as “Iqr(A_lat, B lat, Q lat, R lat)” to calculate the gain. From here
we can create a flow chart representing each of the variables in line with the controller gain, using
the lateral-directional control state and input matrices. This controller is designed to output the
yaw angle of the aircraft and compares three different responses: the LQR design, the simple
feedback, and the open loop design.

0 B0 (>0

{I
B )
State mat A
L ) N {>_‘@
input mat b1 yel
A_tat* |r
state matA_1
<
state feedback gain
s J[> ‘T T Jl>" )
Y_cl_wiqr
<3
<

Figure 18: block diagram of an LQR controller for the Boeing 747

We are now able to obtain the responses for each lateral-directional quantity, which is then
used for our feedback control program to plot the values over a ten second interval from a step
input over a five-minute range. The intention is to measure the components listed in a free body
diagram based on the aircraft’s sea-level flight conditions.
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After plotting the computed values obtained from the LQR controller, we can see that the
open loop response accurately to the provided step input. Under the feedback closed loop
response we can see that the aircraft first overcorrects itself, next under corrects, then stabilizes at
approximately 150 seconds. These values were obtained by modifying the C matrix as a four-by-
one matrix written as [0,0,0,1]. At a five-minute period, we can see how an LQR controller is
optimized for an extended period stability. This is best seen in the last image comparing the LQR
feedback to the closed loop response where the state feedback fails to residualizing in
comparison to the LQR model.

2.5.3 Elevator to Pitch Rate control with PID

After analyzing the rudder to yaw angle controller, we will use PID again to analyze and
optimize the controller relative to the elevator and pitch rate. For this control system we aim to
prevent sudden longitudinal acceleration from large perturbations, thus a successive loop closure is
chosen. However, a successive loop has an issue of being sluggish in response to the command
input. To combat this issue, we looked at three PID tuning methods to determine which is best:
Cohen-Coon, Kappa-Tau, and Hagglund Astrom.

Table 5: PID constant for different methods

P I D
Cohen-Coon (1.35) (1 0.18T) (2.5 -2.07)R,(1 — 0.397) (0.37 - 0.377)R, (1
K, 1-1 —0.8171)
Kappa_Tau ﬁ e—8.4‘L’+7.3T2 5.2Pu€_2'5T_1'4T2 0-89Pue—0.37‘l:—4.1‘[2
Ky
- 0.66 79.2 I
Hagglund-Astrom cosd ( 79, 1
Gm T —| tand (T - PM) 4

—PM)

The Cohen-coon method is an optimized method od the Ziegler-Nichols method, meaning
that this also requires a time constant, system gain and time delay as the previous method. This also
means there is a large overshoot in the results. The Kappa-tau method performs similarly to the
Ziegler-Nichols method in reducing overshoot and results in around a 30% overshoot reduction.
Lastly the Hagglund-Astrom method operates on a relay method focusing on rejection of
disturbances. This means the controller is initially assumed to be for a bang-bang system, providing
on or off states. Based on calculations we determined that the Hagglund-Astrom method is best
suited for this control system and is used for the controller optimization. So, from this, the gain
margin (GM), phase margin (PM), and crossover frequency (Wpm) are used. If the plant can only
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produce on or off values, we know that PID is inherently oscillatory. This results in square wave
oscillations which provide an advantage, where the designer can choose the oscillation frequency of

the response. This is great for control surfaces since flutter must be suppressed and results in the

default oscillation being approximately the length of pi. From here the gain is increased to decrease

the oscillation speed where the overshoot remains lower than the rest.
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Figure 23: Simulink block diagram for PID controller for elevator to pitch rate
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2.5.4 Elevator to Angle of Attack Dynamic Inversion Controller

This section of the report will consist of improving the overall stability of the system.
After viewing the longitudinal open loop response, we know there’s a long settling time for the
system, which will benefit from the use of a dynamic inversion controller, implemented at sea
level conditions. This starts by controlling the elevator deflection input which impact the angle of
attack, then hold said angle to stabilize during flight, and decrease the settling time and
oscillations of the system. This provides a better closed loop transient response, an advantage to
robustness, as well as less control magnitude for the behavior of the aircraft and becomes
powerful for the control of non-linear systems. This analysis can be shown with a control law with
the use of a linear time-invariant (LTT) system shown below:

u = (CB)-1(+ —CAx+Ke) (2.45)

From the LTI system, we have A, B, and C matrices form our state space equations above,
r is the input reference signal, K is the controller gain, x represents the state vector, and e is the
error signal between the desired output and the current output. For the desired output we situate
the C matrix in a four by one matrix as [0 1 0 0] to output the necessary angle of attack response.
The controller gain, K is the main parameter what will be tuned to optimize the dynamic inversion
controller, which can be tuned and customized in the block diagram below.

OL Forward Velocity u

=l

OPEN-LOOP SYSTEM

» o2r o £=AxtBu N OL Ao alpha
y=Cxt Du

Longitudinal State-Space System @

OL Pitch Rate q

=

OL Pitch Angle theta

<
cA CLOSED-LOOP SYSTEM

Reference Signal uref Elevator Deflection
D2R C_ _/‘ %= Ax+ Bu
< S y=Cx+Du

Step Input Gain Matrix K CBinv Longitudinal State-Space C_long_alpha CL Angle of Attack Response

CL Forward Velocity u

E

CLAcAalpha

f=}—10

CL Pitch Rate g

=—10

CL Pitch Angle theta

Figure 25: Simulink block diagram of dynamic inversion controller for elevator to aoa
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This controller will be used to track the reference signal, being a unit step function timed at one
second. This is shown in the figure below and will use the dynamic inversion controller to track the
reference signal at sea level conditions. From here we vary the controller gain from one to sixteen,
to find the optimal controller performance of settling time and maximum overshoot. This test is
shown on the table below:

Dynamic Inversion 747 Longitudinal Controller Angle of Attack Response
5 -

‘— Reference Signal |

457+

4t

35T

3 -

25T

Magnitude

2t

15

1F

05T

Time [s]

Figure 26: five-degree angle of attack reference signal

Table 6: maximum Overshoot and Settling time for varying controller gain values (K)

K 1 2 3 4 5 6 7 8
ts 5.76 3.736 3.379 2.988 2.81 2.76 2.527 2.354
M 4.94 4.955 4.981 4.980 4.986 4.991 4.99 5.06
K 9 10 11 12 13 14 15 16
ts 2.370 2.784 2.73 2.747 2.76 2.809 2.829 2.85
M 5.01 5.006 5.011 5.012 5.010 5.006 5.004 5.002

Based on our tabulated performance characteristics it seems that a value between eight and nine
yields the best performance comparing settling time and maximum overshot. Anything below eight
undershot the magnitude, whereas any value above ten began to overshoot. This is then plotted
with an open loop and closed loop response for the longitudinal state space system. The close loop
angle of attack is plotted in line with the reference signal to provide a tracking demonstration.
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747 Longitudinal State-Space System Closed-Loop Response
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Figure 27:747 longitudinal state space system closed loop response.
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Figure 28: 747 longitudinal state space system open loop response
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Figure 29:747 dynamic inversion longitudinal controller AOA Response

With the controllability gain of around eight the settling time is around 2.3 seconds and has little
to no overshoot. This effectively controls the angle of attack of the Boeing 747 at sea level.
Comparing the other rates such as forward velocity, and pitch rate shows an oscillatory increase
over time, whereas the angle of attack and pitch angle shows a decrease but are still showing
stability in their plotted results. The elevator deflection angle is shown below and has a deflection
limit between 25 and-25 degrees.
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Figure 30: 747 dynamic inversion elevator deflection

2.6 Prototyping Results

The results of the controller designs yield the expected values and performance metrics for
the Boeing 747 aircraft. Longitudinal stability results showed a lengthy stabilization time, as well as
the time it takes for the aircraft to return to the commanded pitch angle, where this can be solved by
reducing the provided gain to optimize its stability. The lateral directional stabilities provided for the
aircraft show a long, albeit shorter response time of about a minute to the given impulse. After the
stability analysis, we compared the relation between the aileron to roll angle, where there is a short
period where the PID controller overshoots the target angle, then stabilizes in a quick manner. The
Rudder to the Yaw angle control system using a linear quadratic reduction provides the fastest
settling time at the provided angle of attack. Analyzing the graphs have shown that the best solution
to optimizing the control systems to account for magnetic controls is to reduce the gain on
longitudinal as well as lateral-directional stability, then the aileron controls can be adjusted by
changing the integrator values to minimize the stabilization time. Lastly the elevator relation to the
angle of attack can be improved by optimizing the gain matrix and integrating additional
parameters. This integrates magnetic control devices for the aircraft system and will be discussed in
the next chapter.
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Chapter 3: Integration of magnetic control devices and parameters in
aircraft control systems

3.1 Introduction of part integration

After designing the prototype control system using PID, LQR and Dynamic Inversion
controllers, we can now implement the necessary parameters of magnetic controllers to improve the
performance of the provided controller designs in the aircraft. Since the proposal, we have tested
and developed a functioning model for our system, then provided results for where the prototype
controller can be improved with magnetic controls. We know from the previous tests that the aileron
to roll angle, as well as elevator to pitch angle, controls can be improved by changing the PID
constants using alternative equations for the proportional, integral and derivative to better suit out
controller requirements. For the rudder to yaw angle control we determined that its best to leave
most of the LQR values the same, but change the gain, K to further reduce the settling time for a
more stable flight. The elevator to angle of attack, using dynamic inversion we need to find an
overshoot value and settling time value between the selected in table 5 to determine a more subtle
approach. With the integration of magnetic controls, we can then assess, and test new values used to
optimize this control system.

This chapter will be separated into three segments. First, we will select and determine what
controller or magnetic device we can use to integrate into our control system, as well as determine
what are the necessary parameters and values, to properly integrate the controller. Next, using the
parameters discovered in the magnetic controller, we will first optimize the PID controllers by
analyzing three different PID constant methods and determining which will best suit the magnetic
controller design. These optimized constants will be used for both the elevator to pitch angle
controls, as well as the aileron to roll angle control systems. Then, the LQR and dynamic inversion
control system will then have magnetic controls implemented with improved gain parameters as
well as the settling and overshoot times. Finally, we can analyze and discuss the results provided
and see provide acumen on how else this can be implemented.

3.2 Magnetic Controller devices

To begin with the optimization of the control system we have started, we will need to find
the right controller that meets the requirements. As stated previously, these controllers need to
provide a gain value to improve the LQR and dynamic inversion parameters of settling time and
overshoot. Then it must be able to operate as a PID controller and we must choose which constant
method is best for operation. This section will look at a selection of magnetic controllers that fit the
criterion of the control system and will be chosen for testing. Magnetic controllers are made of two
separate components, which are the actuators and the controller. Along with additional
subcomponents, these two parts account for the user input into machine language for precise
measurements and actions, which we will look at three specific categories:

e Magnetic Bearing Controllers
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e Permanent magnetic actuators with a mechanical controller

e Variable reluctance actuators with mechanical controller
3.2.1 Magnetic bearing controller analysis

We can start by analyzing the magnetic bearing controller and how it works. These operate
in a system which includes several independent components that work simultaneously in a
feedback loop. For a proper example, we will use the Calentix insights magnetic bearing
controller which provides multiple power and voltage ratings to accommodate for various

machines.
Magnetic Bearing Controller— 1 of 5 channels
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Figure 31: magnetic bearing controller relationship with sensors and actuators

In the figure above we can see that a basic rotor and magnetic bearing system have an active
magnetic bearing (AMB) which includes electromagnetic actuators and position sensors. These are
then connected to the magnetic bearing controller (MBC) through cables, thus forming a complete
AMB system. Key elements are contained int eh MBC such as the digital signal processor board
(DSP), with the purpose of processing signals from the position sensors and then executes a control
algorithm to stabilize the rotor. This image also shows that the DSP manages levitation logic,
diagnostic functions and fault detection. There is also a power amplifier which translates DSP
commands into electrical currents and then drives the coils. From this analysis we can see that the
control system ensures precise motor positioning through electromagnetic force adjustments.

Next, we will look at the feedback loop that is generated from the magnetic bearing
controller, which is seen below:
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Figure 32: basic operation and feedback of the magnetic bearing control loop

The operations of this control system loop begin with the position sensors detecting rotor
movement and then sends a voltage signal to the DSP in the MBC. From here the DSP determines
the error between the actual rotor positions and the desired rotor positions, then calculates the
corrective actions using a compensatory algorithm. The diagram also shows that the power amplifier
convers the input command to current, which flows through the actuator coils to generate
electromagnetic forces and stabilizes the rotors. From here, AMD systems generate both stiffness
and damping forces to maintain rotor stability, compared to conventional bearings that rely on
mechanical fluid forces. This frequent change of forces is often overlooked by the compensators
transfer function, designed using a machines rotor dynamic model, which is then stored in the DSP’s
flash memory. Lastly, additional machine specific data, such as fault logs and sensor calibration is
saved in DSP memory for reliable and precise operation.

For the simplicity of computations and calculations, the magnetic bearing controller we will
use for this project is the Calnetix technologies insight 804 controller shown below.
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Figure 33: Calnetix Insight 804 Controller

This controller provides all the operational needs as stated above as well as exceeds
requirements for controller integration with the size and cooling requirements needed for the
aircraft. The specifications are listed in a table below:

Table 7: voltage, current and dimension parameters of the Insight 804

Insight 804 Parameters
Input Voltage [VDC] 144
Maximum Continuous current output [A] 3
Amplifier current rating [A] 6
Bus voltage [VDC] 144
Cooling method Cold Plate
Dimensions [in] 10x8x3

For this controller to be used in our aircraft control system, we will need a motor to operate
the given commands. For this controller we used a DC servo motor by McMaster-Carr part number
5082N33. This motor is used for small automation applications however, for the necessary
calculations, we will only need two parameters of the motor, the shaft diameter (19 mm), and
rotations per minute (3000 rpm). These parameters will be used to calculate the force this controller
provides.
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Figure 34: McMaster-Carr DC Servo motor PN 5082N33

3.2.2 Permanent Magnetic Actuator analysis

This subsection will look at the linear magnetic actuator and determine what best suits the
problem description. Linear magnetic actuators are advanced motion control devices that operate on
electromagnetism, with greater precision, reliability and efficiency compared to the traditional
mechanical system. Magnetic actuators consist of a stationary stator, and a moving translator where
the electromagnetic interactions produce a linear force which enables smooth controlled movement.
This is often categorized into two main types: permanent magnet actuators and variable reluctance
actuators.
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Figure 35: tubular permanent magnetic actuator

Permanent magnet actuators offer a unique solution to control, since they are fixed magnets
that provide a higher force density, as well as generate a steady magnetic field. This means that for
the actuator to create motion, the electromagnetic coils need to modulate for the action to happen.
The working principle of the actuator is driven by the interaction of the permanent magnet’s field
with the electromagnetic field generated by the coil. This provides a more constant and smooth
torque output due to the continuous presence of the magnetic field. This offers more power
efficiency due to the permanent magnet that contributes to the force generation without additional
current. This means that this actuator is commonly used in servo motors, brushless DC motors and
precise control systems. For analyzing the dynamics of this system, we will look at the ORCA series
of linear magnetic actuators, from Iris Dynamics, and specifically use the ORCA-6-48V for the high
force precise position accuracy.
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Figure 36: model of the ORCA-6-48V linear magnetic actuator

This actuator meets the necessary specifications for operating motor controls for a given
aircraft, most notably with position accuracies measuring in ranges of 150 micrometers and
repeatable between 15 micrometers. However, looking at the specifications we can see that the
minimum supply voltage is around 12V and maximum of 60V, each providing different
performance metrics at the different voltages and temperatures, which will be listed below:
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Table 8: force, speed and power characteristics of the ORCA-6-48V

Force, Power and Speed characteristics |
Motor Temp (C) | 12Vdd | 24Vdd | 48Vdd | 60vdd |
Max Force(N) 143 287 573 683
Max Power (W) 102 408 1631 2023
Max Force Duration(s) 20 175 44 11 8
Fore Constant (Kf) 14.2 NAW
Max Force(N) 120 241 482 602
Max Power (W) 87 346 1386 2165
Max Force Duration(s) 70 <1
Fore Constant (Kf) 12.9 NAW
Max Speed (m/s) full range 0.7 1.4 2.8 3.6
Force Accuracy (N) 0.64
Force Repeatability (N) 0.1

From this chart we can see that as the actuator reaches its maximum voltage capacity, the
higher the force, power and speed of the actuation. Though it does perform worse at 70 degrees, at
about 83% of its normal operating temperatures, the duration time will also decrease based on how
much voltage is given to the motor. Aircraft tend to operate sea level atmosphere, where the
temperature is considerably lower, the high temperature measurements can be viewed as negligible.
This shows the speed at which these motors accept user input, the force at which they are applied, as
well as the precision at which the motors can move to, are more than capable of operating at high
stress conditions in the air. One issue that can be observed with the motors is the cooling capabilities
which are shown below:

Table 9: cooling characteristics of the ORCA-6-48V

Cooling
Condition Power (W) | Force (N)
Continuous 20 C ambient still air 34 75
Power/Force 20 C ambient, single fan (10 CFM) 106 133
20 C ambient, 2x 60 mm fans (39 CFM each) 139 153

Under still conditions, ambient air can keep the controller at a stable temperature, however it
will still take about 34 watts of power to maintain a stable temperature for operation conditions.
This value only increases as there are more fans implemented, however after considering the
operating conditions of an aircraft, the external temperatures of said aircraft bypass the cooling
requirements needed, with the only drawback viewable on permanent magnetic actuators being the
power required to actuate said motors.
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3.2.3 Variable Reluctance Actuator analysis

Next, we are looking at the variable reluctance motor or VRA for short, which differs from
the permanent magnet actuator where it uses no permanent magnets and relies on an electromagnet
that changes its magnetic reluctance to generate motion. The most common design seen is the
stepper motor which can be seen below:

Figure 37: variable reluctance actuator

This actuator works because it changes the reluctance of the magnetic circuit by aligning a
ferromagnetic rotor or armature with the magnetic field. This provides a torque and force which is
typically more non-linear and can suffer from cogging effects due to the reluctance variations. Due
to the movement of the magnet, however, this requires a continuous electrical input to generate the
required force, much like the stepper motor we viewed in the beginning. Additionally, variable
reluctance actuators are often used in solenoid actuators, stepper motors, as well as simple on/off
actions which is best for low-cost manufacturing. To look at precise specifications, we will look at
the Moving magnet actuator 5536 from Magnetic Innovations.
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Figure 38: Moving magnetic actuator model 5536

This motor provides high precision and reliability. Due to the low power draw, this allows
for more devices such as external position sensors and motion controllers to provide further
precision for the provided input. The specifications for the motor are provided below:

Table 10: characteristics of the Moving Magnet Actuator 5536

5536 key Specifications
Dimensions (mm) 55x36
Stroke Length (mm) 8
Peak Force (N) 140
Continuous Force (N) 35
Maximum Operating Voltage (VDC) 48
Moving Mass (kg) 0.2

From these characteristics we can see that the actuator can operate sufficiently in high
vacuum environments as it ensures low outgassing and a contamination free environment.

3.2.4 Magnetic Actuator and Controller Discussion

There are many factors that determine the performance of these actuators such as coil design
magnetic materials thermal management and bearing systems. Due to their numerous advantages,
linear magnetic actuators are widely used across various industries. In automation, they provide
precise positioning and high-speed motion control in manufacturing and material handling. In the
medical field, they enable high-precision movement in surgical robots and diagnostic equipment.
Additionally, transportation systems, such as magnetic levitation trains, utilize these actuators for
efficient propulsion and guidance. The key benefits of linear magnetic actuators include reduced
friction and wear, high accuracy, energy efficiency, and scalability, making them a preferred choice
for applications requiring superior motion control solutions. As advancements continue, these
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actuators are set to revolutionize various sectors by enhancing performance and reliability while
minimizing maintenance needs.

Based on the results provided and the measurements we were given, we can determine that
the magnetic bearing controller best suits the longitudinal stability of the aircraft. This is due to the
increased stability that the controller provides as well as the stiffness of the control input needed for
the overall flight operation of the aircraft. As stated before, the stability of the aircraft can be
optimized with the change in the gain parameter of the Simulink controller. This will also aid in
reducing the time it takes for the aircraft to stabilize through the help of electromagnetic force
adjustments. Then finally we are using permanent magnet actuators to improve the lateral
directional stabilities. Aside from the compact form factor, this provides high precision and long-
term durability which is needed for lateral directional controls, but the smoothness of operation and
precision allows for greater improvement of all controller actuations for the rudder, aileron and
elevator controls needed for the aircraft.

3.3 Controller Optimization Results

With the specifications and data of the controller provided, we have all the necessary
parameters needed from the magnetic controllers to improve our control systems. With the
parameters set, we have determined that the magnetic bearing controller is best suited for the
longitudinal controls of the Boeing 747 aircraft, and the permanent magnetic actuator is best suited
for the lateral directional controls of the aircraft. Each of these controller parameters will be applied
to gain parameters and matrices values, providing a change in the initial code which was optimized.

3.3.1 Longitudinal Stability with Magnetic bearing controller Integration

To start integrating the magnetic bearing controller for longitudinal stability, we need to find
and correlate a relationship between the voltage, current and power to determine the force needed to
improve the longitudinal performance of the aircraft. This is due to the parameters provided for the
magnetic bearing controller showing only the voltage and current, meaning we will need to compute
the applied force for the controller. We will start with the relationship between voltage, current and
resistance:

V=I-R (3.1

Where V is voltage measured in volts (vdc), I is current in ampere (A) and resistance

measured in ohms (€2). This can then be converted to electrical power using this equation:
Pp=1-V (3.2)

We know that motors do some work which can be defined as how much power the motor
provides, which can be defined as the torque and turning force of the motor, which can be defined as
the equation for the power leaving the system:

Py =1 w (3.3)

Tau is the measurement of the torque in the system in newton meters, and omega, is the
angular speed of the motor measured in radians per second. The angular speed can be computed into
a cartesian measurement using the equation below:
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w=rpm-= (3.4)

From the output power equation, we can rearrange the equation to generate the torque
needed for our controller, however there are additional steps needed to compute this value without
error. Ideally the power generated based on the input should be the same as the power that comes
out, however in real life, some of that energy is lost to heat in this conversion. For simplicity, we

can assume that the output power is around 75% of the input power, denoted to 0.75

Pout = Pin " E (3.5)
With all the equations needed, we can rearrange the equations to solve for the torque:
I'V-E-60
T= ——— (3.6)
rpm-2m

_3-144-0.75-60

T= 3000 -2 =0.515N-m

Finally, the force can be calculated by dividing the calculated torque over the radius of the
provided motor.

F=1 (3.7)

r
_ 0515N-m

0.019m
Now that we have a force provided from the magnetic bearing controller, we can integrate
this force into our longitudinal stability controller parameters. To do this, we will integrate the
provided force into the gain parameter by normalizing the force with the gain used in the previous
simulation. We first implemented this with the elevator to angle of attack controller with the results
below:

=271N
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Figure 39: Longitudinal Controller AOA Response with magnetic bearing controller

For this test the same reference signal was used with and angle of attack of five degrees,
which was taken as a unit step function measuring at one second. We tracked the angle of attack
reference signal using the dynamic inversion controller at sea level altitude as shown above. Next
we used the same controller performances to yield the best terms for settling time and maximum
overshoot. From here we plotted the best fit results in the state space response both in an open loop

and closed loop.
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747 Longitudinal State-Space System Open-Loop Response
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Figure 40: 747 longitudinal state space system open loop response with magnetic bearing controller

747 Longitudinal State-Space System Closed-Loop Response
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Figure 41: 747 longitudinal state space system closed loop response with magnetic bearing controller
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Figure 42: 747 dynamic inversion elevator deflection with magnetic bearing controller

When analyzing this controller, we can see that the closed loop response settles around 3.8
seconds, which though has a longer settling time compared to the initial controller, does not
overshoot from the reference angle. This is a good result for longitudinal stability as this allows for
minimal disturbances and a gradual stabilization in the change of angle of attack. Next, we compare
the open and closed loop response to see that the forward velocity remains unchanged, but the angle
of attack, pitch angle, and pitch rate graphs have a slight improvement. With the angle of attack we
see that the response does not overshoot compared to the initial simulation, as well as taking a
slightly longer time to reach the desired angle of attack. Next the pitch angle compared to previous
tests shows a sharp stop after the five-degree angle after two seconds, then gradually increases in a
linear rate. In the new simulation we see that it gradually increases from a zero-degree angle of
attack and after 1,5 seconds the angle increases over the course of time. Lastly the pitch rate of the
initial simulation shows a sharp rate increase of up to eight degrees per second until the two second
time period, drops back to 2 degrees per second after one seconds then slowly decrease in pitch rate
over the course of seven seconds after reaching he desired angle. This result is changed to where
there is no sharp stop then gradual decline in the pitch rate after approximately three seconds, where
instead, the pitch rate reaches only six degrees per second, at two seconds, drops to nearly two
degrees per seconds after three seconds and gradually decrease to a minute negative pitch rate after
10 seconds. As a result this shows an overall improvement to the longitudinal stability comparing
the elevator to the angle of attack.
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With the application of the magnetic bearing controller, we also have the characteristic
response of the aileron to roll angle. This uses the same reference angle of five degrees, with the
results plotted below:

Reference Signal Plot
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Figure 43: aileron to roll angle reference signal
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Figure 44: step response of roll angle of aileron deflection
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Figure 45:impulse response of roll angle to aileron deflection
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Figure 46: bode plot of the roll angle to aileron deflection

From these results we see that the step, impulse and bode responses are the same as the
previous simulation, however for this simulation the aircraft roll changes are improved, using two
additional methods of PID control. For this plot we use the Zeiger-Nichols, the modified Ziegler-
Nichols and Tyreus-Luyben PID controller methods to determine which is best for the controller.
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Figure 47: change in aircraft roll angle over time using PID with the magnetic bearing controller
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3.32 Lateral Directional Stability with Permanent Magnetic actuator Integration yielding results

After implementing the magnetic bearing controller for the longitudinal stability controls, we
are now integrating magnetic controls into the lateral directional stability controls. For these
motions we are implementing the variable reluctance actuator to improve the controller’s design.
Since we have the necessary parameters from our linear magnetic actuator, we can implement these
into our LQR controller with our modified measurements. The results of the modified rudder to yaw
angle controller can be seen below:
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Figure 48: reference signal of LQR response
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Figure 49: state feedback closed loop response of 67 to y with LQR with a permanent magnet actuator
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Figure 50: state feedback closed loop response of 67 to y with LQR with a permanent magnet actuator
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Open Loop Unit Step Response with LQR
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Figure 51: open loop response of dr to y angle with LQR with permanent magnet actuator
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Figure 52: open loop response of 87 to y angle with LQR with permanent magnet actuator
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Lastly, we have the aileron to pitch angle optimization programmed and simulated with the
results displayed below:
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Figure 53: comparison of the closed loop LQR and state feedback with a permanent magnetic actuator

Finally, using the same reference angle of five degrees, we will plot the comparison and results of
the elevator to pitch rate control. For this simulation we used the Hagglund-Astrom method for PID
using the same parameters as the optimized controller. However, to match the actuator specifications
we changed one of the parameters to zero to simulate a fast actuation that would be inputted.
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Figure 54: pitch rate response to elevator angle with a permanent magnetic actuator.
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In the image above, the reference signal is one degree in both positive and negative
directions, and the response shows that it reached the desired target, then takes around ten seconds
to return to zero. At almost three seconds we can see it overshoots the desired angle by 0.35 degrees,
then oscillates back to 0.52 degrees after four seconds. This shows that there is a significant
improvement over the initial simulation where there were larger overshoot measurements in the
initial test, as well as the simulation not normalizing after around 10 seconds. Thus, this adjustment
proves to be a greater improvement to the lateral directional aircraft controls.

3.4 Discussion

With the results of the controller displayed above with analysis in each control surface, this
shows that we have successfully implemented the magnetic controllers and actuators onto a
controller designed to operate for the Boeing 747 aircraft. This shows that aircraft that use magnetic
components and controllers can have an optimized and more efficient control system that potentially
can use less energy, provide a smother flight experience, as well as become a far more reliable
control system than the current aircrafts supply. This magnetic controller was designed on top of the
initial control system using direct actuator controls from the literature review. The controller uses
PID, LQR, and dynamic inversion for each control surface then potentially optimizes said system to
account for faster inputs and greater precision, thus we see how well these results stabilize under the
improved input. From the implementation of magnetic motors, and permanent actuators, we see a
drastic improvement to the stability times for each control surface, with some having a fifty-percent
decrease in the overall stabilizing time. After further testing and generating the results, there were
some points and additional information that should be addressed in this report.

To start, we must keep in mind that the simulations and tests for this controller are done in a
controlled environment to show that in theory, these controllers can work even for slight changes.
This means that the controller has yet to be physically designed, pieced together and assessed in a
lab environment. We may not know if these controllers can be used in modern aircraft, however this
report shows that in theory it can happen. Additionally, we did these tests under sea level conditions,
meaning that the parameters for the controller operating at 20,000 or 40,000 feet above sea level
have not been conducted. Under additional research and physical assembly, these results may vary
based on what parts are chosen, what type of controller is used, the programming language, and
testing conditions. However, for now, this paper consists of the foundations of a controller with
magnetic devices to be possible and potentially optimal for future use.

The next topic that must be discussed is the potential usability of this controller, and what
types of aircraft this controller would be best suited for. To start, this magnetic controller is designed
with the intent to be used with the Boeing 747 aircraft, which is a commercial jet made for linear
travel from one destination to another. For commercial aircraft there are minimal changes in
direction or angular deflection often with the intent to carry passengers and cargo for long periods of
time. Realistically, we can see that for commercial planes a controller with faster input registration
could be optimal and beneficial, but wide-body aircraft like the Boeings 747, 767, 777 and 787 do
not necessarily benefit from these parameters. Though this can reduce the amount of turbulence
these aircraft can handle, this improvement can be negligible regarding commercial travel.
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In a hypothetical situation, we could measure the controllability and optimize this controller with the
parameters of a modern stealth, or fighter jet in mind, such as the Lockheed-Martin F-14, and or F-
35. However, due to the nature of these aircraft being top secret projects, obtaining the aircraft data
for longitudinal and lateral directional derivatives of these aircraft would not be possible under any
circumstances at college graduate level. As a result, using the Boeing 747 which was an aircraft
initially released in 1968 was the optimal choice as it is still an aircraft in operation to this day.

Lastly, one topic that was often addressed when completing this project was practical, is this
magnetic controller? Our results show that this controller in the right conditions can be optimal and
if not, faster than traditional controllers, yet we may not have all the information necessary to
determine that. Stated previously, this report entails the theoretical controller design for an aircraft,
so this may not consist of all the proper parts and components needed to create a physical controller,
thus a weight can is not narrowed down for the necessary parts. For these parts to be determined,
further research must be developed and tested to conclude these practical assessments and need to
be comparable to the performance of other control systems. The cost of this magnetic controller can
also be another factor in practicality and will be notably compared to a fly-by-wire control system
which is considered one of the most cost-effective, reliable and light weight control solutions in the
aircraft industry. This is also used in commercial aircraft as well as in the 747 which is the aircraft
we based the controller on. Overall, with the performance improvement that a magnetic controller
may provide to commercial aircraft and potentially defense aircraft, we can see that the practical
uses for it may be limited due to the cost-effectiveness of the controller compared to other
alternatives.

3.5 Conclusions and Recommendations

3.5.1 Conclusion

This project has studied the utilization and potential implementation of magnetic controllers
and actuators in commercial aircraft. This project was designed and proposed with the motivation of
optimizing the current state of modern aircraft controllers to operate at an accelerated rate to
improve upon precision, accuracy, and safety. This project proposed the use of modified magnetic
controllers to observe and inspect any advantages and feasibility the controller would have for
modern aircraft.

Using Newtons equations laws, we derived the translational and rotational equations
of motion including the necessary equations for dynamics and modeling. From here we derived the
six degrees of freedom equations, then reviewed the aerodynamic and stability parameters, which
were incorporated into the aircraft equations of motion. Using the perturbation model we then
linearized the equations of motions to allow for the equations to be replicated in MATLAB to
simulate the initial input conditions of the aircraft before integrating the controller. The full
characteristics and assumptions of the equations of motion are listed and presented in this report.
Before integrating the magnetic controller, we optimized the controller design to provide a standard
for stability measurements of an aircraft These controllers were simplified to measure four main
measurements: the aileron to roll angle with a proportional integral derivative (PID) controller, the
rudder to yaw angle controller using a linear quadratic regulator (LQR), elevator to pitch angle with
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a PID controller, and the elevator to angle of attack with a dynamic inversion controller. This was
then detailed and plotted in the report. Upon optimizing the controller without magnetic controllers
and actuators, we analyzed what parameters needed to be improved to meet the requirements for
integrating the controller. From the analysis we then analyzed what types of magnetic controller best
suit each type. The parameters and characteristics were labeled and listed in the report and
determined what needs to be changed and added to improve the overall controller design to
accommodate for these controllers. After integrating the parameters in the MATLAB code, we then
plotted and presented the results of the magnetic implementation, showing the overall effectiveness
of the controller. With the controller implementation we showcased an improved response time to
the controller and faster stabilization time that a commercial aircraft will have with a new controller
based on magnetic inputs.

With the analysis of the controller and optimization, this project provides a solid case as to
implementing a prototype of magnetic controllers on an aircraft. This shows an effective solution for
modern aircraft with traditional controls, which can provide a safe and efficient method of aircraft
control.

3.5.2 Recommendations
This project showcased a theoretical controller which can be implemented into modern day
aircraft. This showed promising results that this can work, however there are some caveats to the
results presented, and the complexity of implementing this controller in a physical system remains
unknown. With some additional information written in the discussion, there is a list of possible areas
and topics that can be investigated and addressed to potentially bring this controller into a feasible
production:
e Provide simulations for an aircraft above sea-level conditions, including 20,000 feet, and
40,000 feet
e Additional derivation for an aircraft with changes to the geometry
e Wind tunnel testing of stability reaction and changes compared between fly-by-wire and
newer controls
e Physical tests, either small scale models or full-scale tests, for implementing magnetic
controllers
e Additional tests for implementing magnetic actuators control surfaces for bearing controllers
and permanent magnet actuators
e Design the controller with the intent of optimizing defense aircraft
With these parameters implemented for improving this controller, there may be a chance to one
day see an aircraft with magnetic controllers take flights.
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Appendices

Appendix A: Aircraft Dynamic Derivation
Translational Equations of motion

North Pole

Equator

Assume:

N Frame is the same as the E frame due to “Short Flight Time”
e Apply Newtons Second Law:

N7 = S5 (mv/e) = m S8 (/8 4 (@577 x FE/P)

Recall: VE/B = ub, + vb, + wb,
wE/B = Pb, + Qby, + RbD,
el [Be B, B,

Thus, XF=m-||Vo|+|P Q R
w,| lu v w
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=
S
&
S
<

= b, (QW — RV) — b,,(PW — RU) + b,(PV — QU)

<Q
S

by F. = m(U+ QW —RV)
Translational Equations of Motion (EOM): By E, = m(V + RU — PW)
b, F, = m(W + PV — QU)

A

Rotational Equations of Motion

o L)« B (1) o)
dt

—>E/£ Ixx IF Ixz P
Where: H'80 =] x @8 =lg I,, 5= 0
Iy, fz L] IR

With the diagonal values in the matrix canceling out:

B

ﬁE/%= (Ixxp+1sz)5x +(Iny)By +(IxZP+IZZR)BZ

- _.g/B /B
Thus: Y MB = %(HE/%) + /B x HE/BO
E
Where: dt( /BO) = (P + I;R)by + (1,,Q)by + (I,P + I,,R)b,
B b, b, b,
And wE’B x H 'Bo = P Q R
LiP +1,R I, [,P+1,R

Combining the terms we get the rotational equations of motion:

S

My = LP+ 1L R+ (I,; — L,,)QR + [,,PQ
:My = Ly P+ 1R+ (I, — 1,y )QR + I,.,PQ
b,:M, = I,P+L,R+ (I, —1,,)QR + I,,PQ

o)
<

NASA Standard Euler Angles
¥ (Psi) — Yaw angle about é,
O (Theta) — Pitch angle about &,

®(Phi) — Roll angle about &, = b,
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Since we know that &, = b,, we can represent the relationship on a 2-dimensional plane:

eﬁx/ N ' e x
: ex € €
ex | Cy So O
Z N
\ 4 Cy' —S\y Cq) 0
v e, 0O 0 1
N\ 4 -

) ) &' = Cyéy + S48,
Thus the relations between angles can be summarized as: § , A A
€y = —Syéy + (péy,

With the angular relations simplified, we have our complete translational and rotational equations of
motion, as well as the kinematic differential equations:

Translational EOMS (Force Equations)
—-mgSe + X + Xy =m(U + QW — RV)

mgCy +Y + Yp =m(V + RU — PW)
mgCeCy + Z + Zr = m(W + PV — QU)

Rotational Equations of Motion (Moment Equations)

L+ Ly = LyP+1L,R+ (I,; - L,))QR + L,PQ
M +Mp = L,,Q + Iy — I;)PR+ (R* — PH)I,,
N + Ny = L,P +1,R + (I, — I, )PQ — L,,QR

Recall that wE/B = Ph, + Qb,, + Rb, which can also be expressed as wE/5 = ¥, + 6¢é, +

@b, and can write the kinematic differential equations as below:

P 1 0 —sinf 1|
ol = [0 cos¢p sin¢gcosB||g
R 0 —sing cosfcosol|y

70



Linearization of EOMs

We can define the following sub notations as:

U= Ul +u P = P1 + D
Translational Velocities: { V=V +v Angular Velocities: {Q =Q:+q
W= W +w R= R, +r

="+ X=X +fx

Euler Angles: {0 = 0, + 0 Aero Forces: { Y = Y, +f,

XT:XT1+fo L=L1+‘£
Thrust Force: { Yr = Yr, + ny Aero Moments: {M = M, +m
Zp = Zg, + fr, N=Ni+n

‘CT = LTI + ‘gT

Thrust Moments: { My = My, + my
NT = NTl + 4’LT

Where the capital denotes the steady state term and the lowercase denotes the perturbed term.

We will need the following trigonometric identities to linearize the EOMs:

sin(a + b) = sinacosb + cosasinb
cos(a+ b) = cosacosb —sinasinb

cosa =~ 1

Small angle approximation: when angle a is immesurably small; {sina = a where a is the angle
tana = a

in radians

u:

—-mgSe + X + Xr = m(U + QW — RV)

—mgsin(0; +0) + (X; + f) + (XT1 + fo)
=m ((Uy +i) + (@1 + QOWy +w) = Ry + 1) (V; +v))

ms sin 0, €es8-+ cos O, sin b +X; + f, X7, + fr, =
m(U1 +u+ Q1W1 + Q1W + qu + qw + R1V1 + TVl + le + ?CE)
Simplify sinf = 6,cos8 = 1,gqw =0rv =0
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From here we can simplify the equations even further
—mgsinfr—mgbcos O, + x, + f, + Xr, + fr,
= m{Ur+ QW+ RV + m(i + Quw + qWy + 7V, + vR,)

Since —mgSg + X + X7 = m(Ul + QWi + R1V1) in steady state conditions, we can cancel the
component of the equation.

Linearization Eq.
—mgl cos @y +x; + f + Xr, + fr, = m@ + Quw + qW; + 1V, + vR,)

Straight and level Steady State flight conditions
e No steady state lateral velocity (V;=0)
e No steady state vertical velocity (W;=0)
e No steady state roll angle (1= 0)
e No steady state angular velocity (P1=Q1=R1=P 1=01=¥1=0)

Apply Straight and level conditions (SS) to U equations
—mg0 cos 01 + x; + fi + Xp, + fr, = m(u +-@pw + W + ¥V + vRy)
Steady State Simplification: —mg6cos®; + f + fr, = m(u)
W mgCy +Y + Yr =m(V + RU — PW)
mg cos(0, + 0) + (Y1 + fy) + (YT1 + ny)
=m ((V'1 +v)+ Ry + 1)U +w) — (P +p)(W; + w))
mgcos(0,)+Y, +Yr, + f, + ny —mg0sin(6;)
= m(V; +v+RU; + Rju+ Uyr - PLW; — Pbw — W;p)
mgcos(0,) + Y, + Y, + f, + ny —mg0sin(0,)
mg(—0sin®;)cos®; — psin®cosO; + f, = m(w —U;q —uQ, +Vip + vP,)

Steady State Simplification: —mg6 cos 0, + f, + fr, = m(W + U;q)

q mgCeCy + Z + Zr = m(W + PV — QU)
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—mg6cos(®,)sin(0,) — mgpcos(0,)sin(®,) + f, + fr, = m[w" + Pyv + pV; — Q1u — qU,]
mgSln(Ql) + Z1 + ZT1 = m(P1V1 - QlUl)
mg6cos (0,) + f, + fr, = m(W + Pyv + pV; — Quu — qU;)

Steady State Simplification: mg6cos (01) + f, + fr, = m(Ww + pV; — qU,)

b L+ Ly = LyP+L,R+ (I,; — 1,,)QR + L,,PQ
Ly+ 1+ Ly, +1lp = LD+ L7+ (I, — 1)) Q1 + @Ry + 1) + L, (PL + p)(Q1 + q)
Ly + 1+ Ly, + 1l = LD + L7 + (I — 1yy)(Q1Ry + Q17 + qRy) + I, (P1Q1 + P1q + pQ4)
Ly + LT1 = (I, — Iyy)Q1R1 + L, P1 Q1
L+l = LD + L7 + (I — 1)) (@17 + qRy) + L, (P1q + pQ1)
Steady State Simplification: L+ 1y = Lyp + L7
0 M+ Myp = L,,Q + Iy — I,,)PR+ (R* — PH)I,,
My +m+ My, +mp =Ly + (e = L) (Pr+ D) Ry + 1) + L (Ry + 1) = (P +p)?)
m+my = 1,,q + (Iyx — I;;) (P17 + pRy) + L, (2Ry7 — 2P1p)
Steady State Simplification: m+mr =1,,q
y N+ Ny = L,P + IR + (I, — I, )PQ — I,,QR
Ny +n+ Ny, +np = Lyp + L7+ (Ly — L) (P +9)(Q1 + @) — L (@ + )Ry + 1)
n+ng = LD+ 17 + (Iyy — L) (Prg + pQ1) — Lz (@17 + qRy)
Steady State Simplification: n+ngy = L,p+ 1,7

—-mglcos®, + fi + fr, = m(u)
Linearized Force Equations: —mg6 cos 01 + f, + fr, = m(Ww + U;q)
mg6cos (0,) + f; + fr, = m(w + pV; — qU,)

l + lT = Ixxzj + Ixz'f'
Linearized Moment Equations: m+mr = 1,,q
n+ny = L,p + 1,7
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Dimensional Stability and Control Derivatives
Aerodynamic Forces in X direction: 4X = q;5(—Cp, Ul — Cp,a — Cp, b.)
1 e

10X
e
u

u= —qlsCDuU—1

D1 ES qlSCD1D1

aD, 1
% = qusch U_1

1 Cpy 1 1
Thus: Xy == (—q15—2 = 2qy5Cp, —) = —[G15(—Cp, — 2Cp,) [1/s]
m U1 U1

mU;

P 1 dx
" mda
a =—q,5Cp,a

L1 == q1$CL1, X =~ _D _La

1d 1,5
Thus: Xy = ;ﬁ = —[G15(=Cp, = C))] [(ft/s*)/Rad]
v = 1 dx
% ™ mds,
0 = _Q1SCD5e6e
1 dx 1> 2
Thus: Xse = il = m [q,5Cp,,] [(ft/s”)/Rad]

Aerodynamic Forces in Z direction: 4Z = q;5(—Cp,, Ui —Ca—Cpy 6. — Cp, %)
1 e @« 20,

1 0z
Y mou
u
u= _‘hSCDuU_
1
Ly = q15Cy,
dL, 1
E = 2q1$CL1 U_l
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Zy = - [G,5(=C1, — 2C1)] [1/s]

Thus:
1oz
* moa
a=—-q5C a
D1 =q;sCp,Dland Z ~ —L — Da
1 —
Zg= — [q,5(=C;, — Cp))] [(ft/s?)/Rad]
1oz
% " mas,
8 = _Q1SCL5963
Zse = ?5185115
7 - 10Z
T mod
- 1CI15CCL(.1
=T
Thus: Zy = B¢
us- a7 omu, la
[(ft/s?)/Rad]
Aerodynamic Pitching Moment: AM = g,sc
1 oM
Y1, 0u

u
u = q15Cy, A
1

oM, 1
M; = —q,5Cy, and Fe 2q,5Cy, U_1

1 - -
M, = [CI1SC(Cmu + Zle)]

Thus:
Iyyu1
[rads/s*/ft/s]
1M
@ L, 0a

a = q;5Cy,@
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Thus:

Thus:

M, = dasc - M,, [rads/s*/rad]

lyy

M, = L oM _ dsc? Cy. [rads/s*/rad/s]

: M
Iyy 0 2Iyyuq a

1 0M
q_Iyyaq

qc
q = q15cCy, A

gisc?
M

M,
T 21,u; Ma

[rads/s?*/rad/s]

_ 1 oM _ ﬁlsf 2
5 =7-3, ~ I, C M, [rads/s“/rad]

Longitudinal Linearized Perturbation Equations for straight level flight with constant thrust

p

\

u= Xyu+X,a+Xs,6e — gcosO,
da
a=q+2Z,0+Z,a+Zs,6e+ Z‘)‘E +Z,4 — g0sin®,

da
qg= M+ Mya + Ms,be + Maﬁ + Mgq

6= q

For steady flight, assume: Z, = Z; = 0; ©; = 0 substitute terms:

‘

\

Thus:

D Q- Qo

u= Xyu+X,a+ Xs,6e — gbcosO,

Z Z Z
@ = q+(—”)ﬁ+(—“)a+( 58>6e
U, Uy Uy

) ~ Zyu+Zga+Zs,be+ (1+7y)q) da R
q= M, i+ M,a+ Mg Se + M, ~+ Myq
e 1-2, dt
0= gq
Xu Xa 0 —97 Xé‘e
Zu Za 1 o |t Zse
U, U, af U, 5
M(zZu Mc'(Zu q M(xzé‘e ¢
+ ) (Ma + ) My +M, 0 |lg Mg, +
Ul Ul 1
0 0 1 0 0
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In State Space: X = A% + Bu State equation
Du Output Equation
Lateral Directional Dynamics and Control

Ys,,0a + Y5,0, = U,p — Ygp — Ypp + Uyr — Yr — gOcosO,

o Ixz .
b+-—7— Lg—Lyp—L,r =Ls, 64 + Ls, 6y

Ixx

L, .
7"+Ix—Z(,‘b—Npp—Nﬁﬁ—Nrr= N&, + N5 6,

ZZ

Solve for p in the second equation

_Ixz

p = T+ Lﬁﬁ +Lpp+er+L6a6a+L5r6r

Ixx

Substitute p into the third equation

oz g,
r+;zc—z( Ixzzr+ LgB + Lpp + Lyr + L5, 64 + Ls, 6;) — Npyp — NgB — N,v = N, + N, 6
Iz (— Ly, 1z tez L
= f—— Lgf ——L,p —— Ls 6, ——Lg 6,4+ Ngf3 + N,p + N,.v + N§
r ]ﬁ Jﬁ r Ixx ﬁﬁ Jﬁ pP Jﬁ 6,91 Jm 6q%a Bﬁ pP rT a

: . N .
For conventional aircraft we know that == &£ are negligible
xx Y4

Thus:
T = Nﬁﬁ + Npp + N, r+ N6, + N5r6r

Ij = L,Bﬁ + Lpp + LTT + L5a5a + L5r5r

¢ =p
i? = L[gﬁ + Lpp + LrT' + L5a6a + L5T6r
. gcosf
B = ” o+ Ypop + Yﬁ,B + (Y, —Upr+ Y55a6a + Y5T5r
1
Y=r
0 1 0 0 01
h L L L
: 09 YP YBYT 2 Lo, Log| s
ﬁ ul ul ul ul ﬁ — —= 6(1
9 o N, N; N, ol ‘61 161
0 0 0 1 0




State space to transfer function

Given a continuous time, linear time variant system of the equations is in the form:

X = AX + BU state equation with intial condition X(to)= X
5} — CJ_C) + Dﬁ output equation

I[x] = I[AX + Bu] = sX(s) — x(ty) = AX(s) + BU(s)

(sI —A)X(s) _ Xo+ BU(s)
(sI—4)  (sI—A4)

sX(s) —AX(s) = X, + BU(S) =

X(s) = (sl —A) (X, + BU(s))
Additionally,
I[y] =I[Cx + Du] =Y(s) = CX(s) + DU(s)
Substitute X(S) for the equation above:
Y(s) = c(sl — A)"Y(¥%5+ BU(s)) + DU(s)
Assume xo=0and D=0
Y(s) = c(sI — A)~(BU(s))
Finally:

Y(s) _ 4
m— C(SI—A) B
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Appendix B: Aileron to Roll Angle Simulation CODE

clc; clear all; close all;
g =32.17405; % [ft/s"2] Earth gravitational acceleration
h = 0; % [ft] sea level altitude
U _1=221; % [ft/s]
X u=-0.0433; % [1/s]
X alpha = 11.4378; % [ft/s"2]
X delta e =0; % [ft/s"2]
Z u=-0.272; % [1/s]
Z alpha =-108.0542; % [ft/s"2]
Z delta e =-6.5565; % [ft/s"2]
M u=0; % [1/ft/s]
M alpha =-0.414; % [1/s"2]
M _alphadot = -0.0582;% [1/s]
M q=-0.3774; % [1/s]
M delta_e =-0.3997; % [1/s"2]
thetal = 0;
L p=-0.9871;
L beta=-1.2461;
L r=0.3834;
L delta r=0;
L delta a=0.235;
Y p=0;
Y beta =-19.664;
Y r=0;
Y delta r=3.26;
Y delta a=0;
N p=-0.1441;
N_beta =0.2694;
N r=-0.2338;
N _delta r=-0.1655;
N _delta a=0.0122;
%
% Longitudinal Open-Loop State-Space Model
A long =[X u, X alpha, 0, -g;
Z vw/U _1,Z alpha/U 1,1, 0;
M u+ (M alphadot*Z u)/U 1, M alpha + (M_alphadot*Z alpha)/U 1,...
M _q + M_alphadot, 0;
0,0,1,0];
B long =[X delta e; Z delta e/U 1; M delta e + ...
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(M_alphadot*Z delta e)/U 1; 0];
C long=1[1,0,0,0;0,1,0,0;0,0,1,0;0,0,0, 1];
D long =0;
OL long =ss(A _long,B long,C long,D long);
damp(OL long)
co_long = rank(ctrb(A long,B long))
% Lateral/Directional Open-Loop State-Space Model
A 1d=[0,1,0,0,0;
0,L p,L beta,L 1,0;
(g*cos(thetal))/U 1,Y p/U 1,Y beta/U 1, (Y /U 1)-1,0;
0, N _p, N beta, N 1, 0;
0,0,0,1,0];
B 1d =10, 0;
L delta r, L delta a;
Y delta r/U 1,Y delta a/U 1;
N delta r, N delta a;
0, 0];
C 1d=11,0,0,0,0;
0,1,0,0,0;
0,0,1,0,0;
0,0,0,1,0;
0,0,0,0,1];
D 1d =10,0;0,0;0,0;0,0;0,01;
OL Ild=ss(A _1d,B 1d,C 1d,D_l1d);
tf(OL_1d)
damp(OL_1d)
co_latdir = rank(ctrb(A_1d,B_1d))
%
% From the damping characteristics of the lateral-directional state-space
% system, we find that the system is not stable. There exists a pole at the
% origin, and a positive real pole.
%
% The rank of the controllability matrix indicates that the
% lateral-directional system consisting of five state variables is fully
% controllable.
%

C_ld_roll = zeros(5,5);
C 1d roll(1,1)=1;

latsys = ss(A_1d,B_1d,C_1d roll,D 1d);
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figure(1)

bode(latsys(1,1),'b");

title('747 Frequency Response for \phi(s)/\delta a(s)');
set(findall(gcf,'type','line"), linewidth',2);
set(gcf,'color','w");

tfinal = 60,

figure(2)

impulse(latsys(1,1),tfinal,'b');

title("747 Impulse Response for \phi(s)/\delta a(s)");
set(findall(gcf,'type','line"), linewidth',2);
set(gcf,'color','w");

figure(3)

step(latsys(1,1),tfinal,'b");

title('747 Step Response for \phi(s)/\delta_a(s)');
set(findall(gcf,'type','line"),'linewidth',2);
set(gcf,'color','w");

%% Aileron Deflection to Roll Closed Loop Controller

C_1d roll=[10000];
D _1d =[0,0];

[num_tf da2phi,den tf da2phi] =ss2tf(A_1d,B_1d,C 1d roll,LD 1d,2)
latsys = ss(A_1d,B _1d,C 1d roll,D_1d);

tfinal = 40; % [sec]

Ku=27.1/6.5;
Tu = 17.226;

open_system('b747 da2roll.slx');

%% Ziegler-Nichols

Ti=0.5%Tu;

Td =0.125*%Tu;

Kp = 0.6*Ku; % Proportional gain
Ki = Kp/Ti; % Integral gain

Kd =Kp*Td; % Derivative gain
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output_zn = sim('b747 da2roll.slx");

%Modified Ziegler-Nichols
Ti=0.5*Tu;

Td = (1/8)*Tu;

Kp = 0.2*Ku; % Proportional gain

Ki = Kp/Ti; % Integral gain

Kd = Kp*Td; % Derivative gain
output_modzn = sim('b747 da2roll.slx");

%% Tyreus-Luyben

Ti=2.2*%Tu;
Td =Tu/6.3;
Kp =Ku/2.2;

Ki = Kp/Ti; % Integral gain
Kd =Kp*Td; % Derivative gain
output_tl =sim('b747 da2roll.slx");

figure(7)

plot(output_zn.phi.time(:,1),output zn.phi.signals.values(:,1),'b")
hold on

plot(output_ modzn.phi.time(:,1),output modzn.phi.signals.values(:,1),'r')
hold on

plot(output_tl.phi.time(:,1),output tl.phi.signals.values(:,1),'g")
hold on

ref signal = output_tl.ref.getElement(1);

time = ref signal.Values.Time;

values =ref signal.Values.Data;

plot(time, values, 'k--'")

legend('Ziegler-Nichols','Modified Ziegler-Nichols', 'Tyreus-Luyben','Reference')
xlabel('time [s]');

ylabel("\phi [deg]");

title('Aircraft Roll');

set(gca,'fontsize',12);

set(findall(gcf,'type','line"),'linewidth',3);

set(gcf,'color','w");

%% reference signal

% Extract reference signal from Dataset

ref signal = output_tl.ref.getElement(1); % Adjust index if needed
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% Extract time and values
time = ref signal.Values.Time;
values = ref signal.Values.Data;

% Plot the signal'

figure()

plot(time, values, 'k--")
xlabel('Time (s)")
ylabel("\phi [deg]")
title('Reference Signal Plot")
grid on

Appendix C: Rudder to Yaw Angle Simulation CODE

% AE295 Project

%% 747 Longitudinal Data Sea Level
g =32.17405; % [ft/s"2] Earth gravitational acceleration
h = 0; % [ft] sea level altitude
U 1=221; % [ft/s]

X u=-0.0433; % [1/s]

X alpha =11.4738; % [f{t/s"2]
X dele =0; % [ft/s"2]

Z u=-0.2720; % [1/s]

Z alpha =-108.0542; % [ft/s"2]
Z dele =-6.5565; % [ft/s"2]

M _u=0.0001; % [1/ft/s]
M_alpha =-0.4140; % [1/s"2]
M alphadot =-0.0582;% [1/s]
M q=-0.3774; % [1/s]

M_dele =-0.3997; % [1/s"2]
%% 747 Lateral Data Sea Level
Phi 1=0;

L p=-0.9871 % [1/s]

L beta=-1.2461; % [1/s"2]

L r=0.3834; % [1/s]

L _delr=0;% [1/s"2]

L dela=0.235; % [1/s"2]

Y p=0; % [ft/s]

Y beta=-19.6694; % [ft/s"2]
Y r=0; % [ft/s]
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Y delr =3.26; % [{t/s"2]
Y dela=0; % [ft/s"2]
N p=-0.1441; % [1/s]
N_beta =0.2694; % [1/s"2]
N r=-0.2338; % [1/s]
N _delr =-0.1655; % [1/s"2]
N _dela=0.0122; % [1/s"2]
%% Longitudinal Open-Loop State-Space Model
A long=[X u, X alpha, 0,-g;Z w/U 1,Z alpha/U 1,1, 0;...
(M_u+ M alphadot*Z uw/U 1),...
(M_alpha + M_alphadot*Z alpha/U 1), (M_q + M_alphadot), 0;...
0,0,1,0];
B long=[X dele; Z dele/U 1; (M _dele + M_alphadot*Z dele/U 1); 0];
C_long pr=[0, 0, 1, 0]; % third one is q, the pitch rate
D _long= zeros(size(C_long_pr,1),size(B_long,2));
OL long =ss(A_long,B long,C long pr,D_long);
damp(OL _long)
co_long = rank(ctrb(A_long,B_long));
s=tf("s");
[n_dele2q Full, d dele2q Full]=....
ss2tf(A_long,B long,C long pr,.D long);
dele2q Full=tf(n_dele2q Full, d dele2q Full);
%% Cohen Coon
% https://www.mathworks.com/matlabcentral/fileexchange/
% 46864-automatic-pid-tuning-zip)
G = dele2q_Full;
s =tf([1 0],1);
t1 =0:0.00001:50;
[y,t] = step(G.t1);
y2p = impulse(G*s,t);
n = length(y2p);
K = y(length(y));
for k =2:n-1
i ( (y2p(k) <= 0) && (y2p(k+1) > 0) ) || ( (v2p(k) >=0) && (y2p(k+1)<0)))
p = k+1; % save inflection point
Mx = t(p);
My = y(p);
break
end
end
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if ((y(p)- y(p-1)) < (y(p+1)-y(p)))
Mx0 = double(t(p-1));
My0 = double(y(p-1));
else
Mx0 = double(t(p+1));
MyO0 = double(y(p+1));
end
m = (My-My0)/(Mx-Mx0);
tl =Mx - My / m;
[v2 i] = min(abs(y-0.63*K));
B =1(i);
L=(tl);
T=B-L;
a=K*L/T;
Kp = (1.5/a)*(1+0.18*T/(1-T));
Ti=L*(2.5-2*T)/(1-0.39*T);
Td =(0.37-0.37*T)*L/(1-0.81*T);
open_system("AE246Project.slx");
CohenCoon= sim("AE246Project.slx");
%% Hagglund and Astrom
% https://www.mathworks.com/matlabcentral/fileexchange/
% 46864-automatic-pid-tuning-zip)
s=tf([1 0],1);
[Gm, Pm, Wgm, Wpm] = margin(G);
if (Gm == Inf)|(Wgm == Inf)[(Gm == 0)[|(Wgm == 0))
p = 1/(st+1e-6);
[Gm Pm Wgm Wpm] = margin(G/s);
if ((Gm == Inf)||(Wgm == Inf))
[Gm Pm Wgm Wpm] = margin(G/p”2);
end
end
P =Gm;
phiP = Pm*pi1/180;
w = Wpm;
% Hagglund and Astrom, 1988
phiS =-1.0000001;
rS = .1742356660;
phiR = phiS - phiP;
rR = rS/rP;
% Friman and Walter, 1996
Kp = rR*cos(phiR);
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Ti = (2/w)*(tan(phiR) + sqrt(1+tan(phiR)"2));
Td=1.5*Ti;
open_system("AE246Project.slx");

HagAst= sim("AE246Project.slx");

%% Kappa Tau

% https://www.mathworks.com/matlabcentral/fileexchange/
% 4652-autotunerpid-toolkit

A0=338; Al=-84; A2=1.3;

B0=5.2; Bl1=-2.5; B2=-14;

C0=0.89; C1=-037;C2=-4.1;

D0=0.4; D1=0.18; D2=2.8;

a =m*L/T; % normalized gain
tau = L/(L+T); % normalized delay
%

Kp =A0/a*exp(Al*taut+A2*tau™2);

Ti = L*B0*exp(B1*tau+B2*tau"2);

Td = L*CO*exp(C1*tau+C2*tau"2);
open_system("AE246Project.slx");

KappaTau= sim("AE246Project.slx");

%% Plot

figure

hold on
plot(CohenCoon.qgref(:,1),CohenCoon.qref(:,2),"LineWidth",1)
%plot(CohenCoon.q(:,1),CohenCoon.q(:,2),"LineWidth",1)
plot(HagAst.q(:,1),HagAst.q(:,2),"LineWidth",1)
%plot(KappaTau.q(:,1),KappaTau.q(:,2),"LineWidth",1)
legend("Reference","Hagglund Astrom","Cohen Coon","Kappa Tau")
title("Pitch Rate Response to Elevator")

xlabel("Time [s]")

ylabel("Response of System")

x1im([0 10])

ylim([-2.25 1.75])

grid on

hold off

Appendix D: Elevator to Pitch Rate Simulation CODE

%% 747 Longitudinal Data Sea Level

g =32.17405; % [ft/s"2] Earth gravitational acceleration
h = 0; % [ft] sea level altitude

U _1=221; % [ft/s]
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X u=-0.0433; % [1/s]

X alpha =11.4738; % [f{t/s"2]

X dele =0; % [ft/s"2]

Z u=-0.2720; % [1/s]

Z alpha =-108.0542; % [ft/s"2]

Z dele = -6.5565; % [f{t/s"2]

M u=0.0001; % [1/ft/s]

M _alpha =-0.4140; % [1/s"2]

M _alphadot = -0.0582;% [1/s]

M _q=-0.3774; % [1/s]

M dele =-0.3997; % [1/s"2]

%% 747 Lateral Data Sea Level

Phi 1=0;

L p=-0.9871% [1/s]

L beta=-1.2461; % [1/s"2]

L r=0.3834; % [1/s]

L delr=0;% [1/s"2]

L dela=0.235; % [1/s"2]

Y p=0; % [ft/s]

Y beta=-19.6694; % [ft/s"2]

Y r=0; % [ft/s]

Y delr =3.26; % [{t/s"2]

Y dela=0; % [ft/s"2]

N p=-0.1441; % [1/s]

N_beta =0.2694; % [1/s"2]

N _r=-0.2338; % [1/s]

N_delr =-0.1655; % [1/s"2]

N _dela=10.0122; % [1/s"2]

%% Longitudinal Open-Loop State-Space Model

A long=[X u, X alpha, 0,-g; Z w/U 1, Z alpha/U 1,1, 0;...
(M_u+ M alphadot*Z uw/U_1),...
(M_alpha + M_alphadot*Z alpha/U_1), (M _q + M_alphadot), 0;...
0,0, 1,0];

B long=[X dele; Z dele/U_1; (M _dele + M _alphadot*Z dele/U 1); 0];

C_long pr=[0, 0, 1, 0]; % third one is q, the pitch rate

D _long= zeros(size(C long pr,1),size(B_long,2));

OL long =ss(A _long,B long,C long pr,D long);

damp(OL _long)

co_long = rank(ctrb(A_long,B long));

s= tf("s");

[n_dele2q Full, d _dele2q Full]=...
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ss2tf(A long,B long,C long pr,D long);
dele2q Full=tf(n dele2q Full, d dele2q Full);
%% Hagglund and Astrom
% https://www.mathworks.com/matlabcentral/fileexchange/
% 46864-automatic-pid-tuning-zip)
s =tf([1 0],1);
[Gm, Pm, Wgm, Wpm] = margin(G);
if (Gm == Inf)[[(Wgm == Inf)|[(Gm == 0)]|(Wgm == 0))
p = l/(st+1e-6);
[Gm Pm Wgm Wpm] = margin(G/s);
if ((Gm == Inf)||(Wgm == Inf))
[Gm Pm Wgm Wpm] = margin(G/p”2);
end
end
P = Gm;
phiP = Pm*pi/180;
w = Wpm;
% Hagglund and Astrom, 1988
phiS =-1.0000000001;
rS=0;
phiR = phiS - phiP;
rR =rS/rP;
% Friman and Walter, 1996
Kp =rR*cos(phiR);
Ti = (2/w)*(tan(phiR) + sqrt(1+tan(phiR)"2));
Td =3.5*Ti;
open_system("AE246Project.slx");
HagAst= sim("AE246Project.slx");
%% Plot
figure
hold on
plot(CohenCoon.qref(:,1),CohenCoon.qref(:,2),"LineWidth",1)
%plot(CohenCoon.q(:,1),CohenCoon.q(:,2),"LineWidth",1)
plot(HagAst.q(:,1),HagAst.q(:,2),"LineWidth",1)
%plot(KappaTau.q(:,1),KappaTau.q(:,2),"LineWidth",1)
legend("Reference","Hagglund Astrom","Cohen Coon","Kappa Tau")
title("Pitch Rate Response to Elevator")
xlabel("Time [s]")
ylabel("Response of System")
xlim([0 10])
ylim([-2.25 1.75])
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grid on
hold off

Appendix E: Elevator to Angle of Attack Simulation CODE

clc; clear all; close all;

g =32.17405; % [ft/s"2] Earth gravitational acceleration
h = 0; % [ft] sea level altitude
U 1=221; % [ft/s]

X u=-0.0433; % [1/s]

X alpha=11.4738; % [f{t/s"2]
X delta_e =0; % [ft/s"2]

Z u=-0.272; % [1/s]

Z alpha =-108.0542; % [ft/s"2]
Z delta_e =-6.5565; % [ft/s"2]
M u=0; % [1/ft/s]

M alpha =-0.4140; % [1/s"2]
M _alphadot = -0.0582;% [1/s]
M _q=-0.3774; % [1/s]

M delta_e =-0.3997; % [1/s"2]

%
% Longitudinal Open-Loop State-Space Model
A long=[X u X alpha 0 -g;...

Z vwU 1 Z alpha/U 1 1 0;...
M u+(M_alphadot*Z u)/U 1 M alpha+(M_alphadot*Z alpha)/U 1...
M _qg+M alphadot O0;...
0 0 1 0]
B long =[X delta e;...
Z delta e/U 1;...
M delta e+(M_alphadot*Z delta e)/U 1;...
0]
C_long = eye(length(A_long));
C long alpha=[0100];
D long = zeros(size(C_long,1),size(B_long,2));
OL long =ss(A_long,B long,C long,D long);
damp(OL _long);
co_long = rank(ctrb(A_long,B_long));
%
% Longitudinal Dynamic Inversion Control System for Angle of Attack
CBinv = inv(C_long_alpha*B_long);
CA =C _long alpha*A_long;
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K =27.12/13;
open('ae295b 747 dyninvsim.slx');
sim = sim('ae295b_747 dyninvsim.slx');
figure,
grid on, hold all
plot(sim.uref(:,1),sim.uref(:,2),'k");
plot(sim.alpha(:,1),sim.alpha(:,2),'r--");
xlabel('Time [s]');
ylabel('"Magnitude');
legend('Reference Signal','Closed-Loop Response')
title('Dynamic Inversion 747 Longitudinal Controller Angle of Attack Response')
set(findall(gcf, 'type','line"),'linewidth',3);
epsilon = 0.01; % Error Threshold of 0.01 deg, 0.2% of desired 5 deg
for 1 = 1:length(sim.alpha(:,1))
if abs(sim.alpha(i,2)-5) < epsilon
1 % Display iteration value
sim.alpha(i,1) % Display time when alpha is within 0.2%
break;
end
end
max(sim.alpha(:,2)) % Calculate maximum value of overshoot
figure,
subplot(2,2,1)
hold on, grid on
plot(sim.u(:,1),sim.u(:,2),'b-");
xlabel('"Time [s]');
ylabel('Forward Velocity u [ft/s]");
subplot(2,2,2)
hold on, grid on
plot(sim.alphal(:,1),sim.alphal(:,2),'r-');
xlabel('"Time [s]');
ylabel('Angle of Attack \alpha [deg]');
subplot(2,2,3)
hold on, grid on
plot(sim.q(:,1),sim.q(:,2),'m-");
xlabel('"Time [s]');
ylabel('Pitch Rate q [deg/s]');
subplot(2,2,4)
hold on, grid on
plot(sim.theta(:,1),sim.theta(:,2),'g-");
xlabel("Time [s]');
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ylabel('Pitch Angle \theta [deg]');
set(findall(gcft,'type','line'), linewidth',3);
sgtitle("747 Longitudinal State-Space System Closed-Loop Response')
figure,

subplot(2,2,1)

hold on, grid on
plot(sim.uOL(:,1),sim.uOL(:,2),'b-");
xlabel('Time [s]');

ylabel('"Forward Velocity u [ft/s]");
subplot(2,2,2)

hold on, grid on
plot(sim.alphaOL(:,1),sim.alphaOL(:,2),'r-");
xlabel("Time [s]');

ylabel('Angle of Attack \alpha [deg]");
subplot(2,2,3)

hold on, grid on
plot(sim.qOL(:,1),sim.qOL(:,2),'m-");
xlabel("Time [s]');

ylabel('Pitch Rate q [deg/s]");

subplot(2,2,4)

hold on, grid on
plot(sim.thetaOL(:,1),sim.thetaOL(:,2),'g-");
xlabel('"Time [s]');

ylabel('Pitch Angle \theta [deg]');
set(findall(gcft,'type','line'),'linewidth',3);
sgtitle("747 Longitudinal State-Space System Open-Loop Response')
figure,

hold on, grid on
plot(sim.de(:,1),sim.de(:,2),'’k-','linewidth',3);
title('Elevator Deflection');

xlabel('"Time [s]');

ylabel('Elevator Deflection \delta e');
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