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ABSTRACT 

 

This project explores the feasibility and advantages of integrating magnetic 

actuators and controllers into modern aircraft control systems, offering a novel 

alternative to conventional and electromechanical mechanisms. Traditional systems, 

while advanced, remain susceptible to hardware failures, software glitches, and 

environmental disturbances that compromise reliability and safety. By employing 

electromagnetic control elements, this project proposes a solution that enhances input 

precision, reduces failure points, and improves response time. Detailed analytical 

methods were employed, including the derivation of an aircraft’s equations of motion 

based on Newton’s laws, which incorporate both translational and rotational dynamics 

alongside aerodynamic stability parameters and a comprehensive six-degrees-of-

freedom model. These equations were subsequently linearized using a perturbation 

model and implemented in MATLAB for simulation strict flight conditions. 

A baseline control system was established using a combination of PID, LQR, 

and dynamic inversion controllers to regulate the aileron, rudder, and elevator 

responses. Following system optimization, magnetic controllers were integrated into 

the simulation framework, with parameters systematically tailored for each control 

surface, yielding demonstrable improvements in system responsiveness and 

stabilization time. Recent literature further supports the potential of magnetic actuation, 

highlighting reduced system weight, enhanced durability, and superior precision 

compared to traditional control methods, a trend increasingly noted in both manned and 

unmanned aerial vehicle applications. This project extends that research by not only 

validating the theoretical benefits through simulation but also by addressing the 

practical challenges of physical implementation. 

In addition to simulation-based validation, the study discusses the importance of 

high-fidelity testing methodologies such as wind tunnel experiments and high-altitude 

performance simulations, which are critical for confirming the real-world applicability 

of magnetic control systems. Future work is outlined to include the development of 

scaled prototypes and comprehensive dynamic testing environments to rigorously 

assess system performance under varied operational conditions. By providing a solid 

theoretical foundation coupled with promising simulation results, this research 

establishes a viable pathway for the integration of magnetic actuators into aerospace 

control systems, potentially revolutionizing aircraft safety, efficiency, and overall 

design innovation. 
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Chapter 1: Introduction, Literature Review, and Methodology  

1.1: Motivation  

Modern control mechanisms operate with a collection of mechanical parts such as rods, 

pulleys, and cables to transmit the pilot’s inputs from the control deck to the desired control 

surfaces. These flight mechanisms, originally designed to be hydromechanical, have over time 

been improved to implement the use of electric motors, digital computers, and optical cables. 

These control systems vary from aircraft to other aircrafts, such as helicopters using a tilting 

rotor to course correct the vehicle to their desired location, along with some aircrafts using 

weight shifting mechanics, what is commonly seen in these aircrafts are a hybrid of electrical and 

pneumatic control systems to provide precise feedback to the pilot.  These control inputs are both 

implemented in larger aircraft to boost the control reactions of aircraft by simulated means to 

improve the actuation and error reduction of the controller output. Though it sems to be a 

problem that has been mitigated, there are problems such as hardware failures, environmental 

factors, software glitches and other complexities that can induce the likelihood of unforeseen 

errors in flight. Many of these problems require continuous monitoring and testing to maintain 

the reliability and safety of these systems, however using a new type f of control mechanism, this 

may mitigate many of these problems entirely. This project aims to take the control mechanisms 

that are often used to another degree by analyzing the use of electro-magnets to accelerate the 

inputs provided by the controller. This idea of magnetic controls came to mind, as providing an 

electrical current through magnetic latches allows for an exact precision of inputs that can be 

toggled directly by the pilot, reducing points of failure, and mitigating any component failure.   

1.2 Literature Review  

As discussed in the motivation of the project, many aircrafts use fly-by-wire systems. This 

allows for the pilot’s inputs to be converted into signals which are interpreted by the control 

computers and adjust the actuators to move said control surfaces. Within these control systems 

there are sensors that automatically adjust and provide tactile feedback to the pilots. In fly-

bywire systems, these are conversely converted into electrical signals and enable an automatic 

adjustment to enhance the performance of the flying vehicle. Redundancy measurements are 

implemented to prevent critical failures, along with multiple backup systems for a safe flight. For 

the references reviewed, the implementation of magnetic control systems can be separated into a 

list below:  

• Direct actuator control with magnets  

• Magnetic Suspension systems   

• Magnetic Propulsion Systems  

• Thermal Implementation of magnetic controls   

• Damping systems with magnetic controls  
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1.2.1 Direct actuator Control with magnets  

To further conduct research on how to implement and analyze magnetic controls in flight 

systems, prior research must be looked at to come up with an effective approach and proposal to 

solving this problem. One research article dated as far back as 1990, titled, “A magnetic Attitude 

Control System for precision pointing of the rolling GP-B spacecraft” published by Acta 

Astronautica. This research paper discusses the development of an algorithm built for magnetic 

attitude control of a spinning aircraft. This requires a real time measurement of the local 

magnetic field. To obtain this algorithm a Kalman filter-like estimator is used to obtain the local 

field by applying a dithering current to the magnetic rods. The algorithm eliminates the need for 

magnetometers, along with guaranteeing colocation of actuators and sensors, removing points of 

critical failure for measurements. As a result, the controller achieves a twenty-millisecond 

pointing accuracy with the algorithm without the need for measurements from the 

magnetometer.[1] Other forms of literature continue the application of magnets in controls, with a 

paper published in 2023. This presented an attitude control experiment where the authors 

introduce angular momentum control law (AMCL) to control a spinning spacecraft system with 

magnetic torques2. It discusses how ACMLS is different from conventional control methods, as it 

offers simultaneous feedback control for both parameters based on angular momentum error 

from the desired target. This differs from conventional methods which alternate between 

regulating the spin rate and spin axis orientation independently. The study delves into analyzing 

the steady state and asymptotic characteristics of angular momentum error, considering both 

unsaturated and saturated magnetic moments. A dedicated testbed consisting of magnetic 

torquers and geomagnetic field simulator, constructed with three Helmholtz coils is used to 

empirically assess the AMCL’s performance. This replicates a time variant magnetic field like 

what is experimented in orbit. From there the effectiveness of the AMCL, and the behavior of the 

testbed is evaluated using two ground experiments focusing on spine rate and spin axis 

orientation control.[2] The findings are then compared and analyzed against the numerical 

simulation results, proving the success of the desired spacecraft states. The observed steady-state 

and asymptotic behaviors viewed align closely with the estimations derived from numerical 

simulations, and overall demonstrate the capability in appropriately regulating the spin motion of 

a spacecraft. 

 Another work discusses the performance of a new magnetic control algorithm for the 

UPMSat-2 Satellite. This control law is derived from the B-dot methodology, enables the satellite 

to orient one axis normal to the orbital plane while reaching the specified angular velocity, 

dispensing the need for attitude determination. The authors assess the performance of this control 

law using the initial housekeeping data obtained since the satellite’s launch in September of 

2020. The control’s operational integrity was validated with data from sun sensors and 

magnetometers are employed, along with thermal analysis of external satellite temperatures, 

ensuring adherence to the intended attitude and angular velocity parameters. From there, the 

experiment concludes with the proposed control law represents a straightforward and efficient 

alternative to managing small satellite attitude.[3] These references each use magnetic control 
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patterns and uses them to optimize the overall control parameters used for both spacecrafts and 

aircrafts, however other references use magnets for applications outside of the aerospace 

industry.   

Additional research on direct actuator controls is also conducted, along with the use of 

permanent magnet synchronous motors (PMSMs) and model reference systems are used in 

tandem to provide high stability and response. This can be used in electric vehicles, industrial 

machines, and household appliances, with limitations based on motor sensitivity computational 

demands and stability. The researchers propose to integrate a Virtual Rotary-Axis High 

Frequency Signal Injection and a feed forward decoupling algorithm to improve their 

identification accuracy and performance, demonstrating greater stability, less disturbance, and 

accuracy. This decoupling algorithm has resulted in a similar model that identifies its limitations. 

Along with the feedforward algorithm providing a four to five percent identification accuracy in 

sensor-based control and an 8.1 percent increase in sensor less control. This showed that the 

integration of FFD algorithms provides a comprehensive system which is suitable for real world 

applications, increases the stability and accuracy in motor and control systems.[15] Another 

research article provides a three level speed control of an offshore wind turbine system with as 

little computation as possible; stating that conventional turbine control systems generate large 

inertia. This is then addressed by adding additional weighing for the torque changes into the cost 

function improving the performance of control and eliminating integral action. It uses modified 

switching state formulas based on optimal states reducing iterations from 27 to 7 thus changing 

the frequency without the constraint. As a result the simulations of a 1.5 MW permanent magnet 

synchronous generator based wind turbine demonstrates an effective speed control with differing 

wind profiles and improved performances compared to the conventional control methods, 

reducing computation, switch optimization and increase in speed prediction of high inertia 

systems.[16] 

1.2.2 Magnetic Suspension systems  

One research paper titled “Contactless control of Suspended loads for offshore 

installations: Proof of Concept using Magnetic Interaction” (2024) provides an implementation 

of magnetic control systems for motion compensation. This research article discusses the 

progress of contactless motion compensation by researching a magnetically controlled pendulum. 

This was invested and researched upon for the current offshore wind turbines being installed and 

positioned, requiring methods of mechanical equipment attached to lifted components by human 

interaction. The methods used in the article entails the interplay between the magnetic pendulum 

and an electromagnetic actuator, with two control modes being considered: the imposition of a 

desired motion to the mass and lessening the motion from a set pivot simulation. In the paper, the 

computational model is authenticated and calibrated through experiments and demonstrates the 

predictive capabilities, along with an effective governance of a broad range of frequencies and 

amplitudes. The control parameters are identified as they are associated with techniques such as 

separation distance between magnets and the controller saturation. The regional parameters for 
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effective control in the experiment depend on the characteristics of the excitation. Along with the 

force amplitude of the contactless actuator is comparable to the currently used active tugger line 

control systems. This experiment also provides sources for the added benefit of both attractive 

and repelling forces. From the paper the discoveries pave the path for further advancement of 

non-touch control techniques with the potential to enhance productivity of offshore wind turbine 

installations.4 Another paper that applies magnets for suspension, discusses control moment 

gyros (CMG) which is a crucial actuator in spacecraft altitude control for its precision and 

substantial moment output. For highspeed rotors, magnetically suspended control moment gyros 

(MSCMG) are used to employ magnetic bearing support and offer frictionless operation, higher 

precision in operation and extend the lifespan of actuators. During CMG operation the moving 

gimbal effect causes a rapid increase in power consumption due to increase in control current, 

hybrid magnetic bearings (HMG) are used to enhance their efficiency using permanent magnets 

to generate bias magnetic fields and minimizing power consumption. To address this even 

further, gimbal angular velocity feedforward (GAVF) method, which involves establishing a 

model of the HMB-rotor system, deflecting the rotor using gimbal angular velocity and HMB 

stiffness. An adaptive compensation approach based GAVF method is then used to maintain the 

overall system performance under parameter fluctuations. From this the proposed method 

effectively reduces the power consumption during moment output, as validated through 

experimental and simulation results.[5] Another reference that contributes to magnetic 

suspension is the use of balancing objects and vehicles in a wind tunnel. The Publication by 

Experimental Thermal and Fluid Science discusses the effects of magnetic suspension and 

balancing system installed on a wind tunnel on a slanted cylinder afterbody. The range of critical 

Reynolds numbers in the dummy strut used in the first experiment shows that as the Reynolds 

number decreases, and the variation depends on the location of the strut in the tunnel. The size of 

the separation bubble and recirculation region changes depending on the location of the strut on 

the wake of the center plane. Weak vortices were observed to be formed behind the strut in the 

experiment, changing the wake structure. This change according to the researchers affects the 

variation of the vortices core wandering, as well as becoming a factor in power spectral density 

peaks observed in prior studies.  

The overall results showed that characteristics in correlation to the critical Reynolds 

number where the aerodynamic forces and flow field chances significantly. From these results it 

is suggested that strut support strongly interferes with the flow around the test model and must 

be carefully considered. From the research its assumed that though there is a magnetic force that 

interacts with the wake produced in experiments, the effects generated have an overall 

performance increase when compared to a regular strut support.[6] Analyzing these research 

papers provides that the results in each paper provide a proof of concept of magnetic support 

systems that require less human contact and the feedforward system used can be applied to safely 

control both spacecrafts and aircrafts with little to no points of failure.  
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1.2.3 Magnetic Propulsion Systems   

  Next, viewing the propulsive capabilities of magnetic controls, this next paper talks about 

a special functionality that is viewed in a thin-film soft magnetic strip at an inclined magnetic 

anisotropy angle, enabling a switching of magnetic domains with a surface normal field with a 

certain distribution element. The switching occurs between single and multi-domains along with 

configurations adjacent to narrow strips. The article discusses how the magnetic permeability of 

AC fields experiences a significant change within the frequency ranges of 10 kHz to 10 MHz as 

a function of the distributed magnetic field strength. The article investigates the correspondence 

of alternating current permeability and the magnetic domain as a function of the intensity of the 

distributed field. This article confirms that as the intensity of the distributed magnetic field 

increases the Landu-Lifshitz-like multi-domain area, extends on a clustered narrow strip, aligns 

with the variations of permeability. The results in the article provide a potential application to 

uses such as a tunable inductor, sensors for memorizing and detecting disturbed magnetic fields 

generated by nanoparticles, and lastly it can be applied for electromagnetic shielding.[7] Another 

source applies magnets not to the direct propulsion capabilities, but the implementing a magnetic 

bearing. This paper presents a magnetic bearing switched reluctance motor (MBSRM) that 

allows for two degrees of freedom and suspension consisting of a switched reluctance motor as 

well as an active magnetic bearing. This motor will have a three phased armature windings and 

biased winding of the active magnetic bearing (ABM) which is simultaneously fed with a 

modified asymmetric half bridge converter. While in operation, the rotational torque in the SRM 

and flux creates an electromagnetic force in the active magnetic bearing concurrently. The 

researchers outline the operational principle and structure of the MBSRM along with the 

validation and formulation of suspending forces using finite element analysis. The paper 

additionally details the proposed half bridge converter and presents the simulation which results 

in both the biased winding and three phase armature windings through magnetic field circuit 

coupling simulation. The result of this paper shows that after a prototype is developed, and 

experimental results confirm the feasibility and effectiveness of the converter design.[8] These 

designs and implementations use the physical application of magnets to improve the performance 

capabilities of aircrafts however researchers have provided external methods of improving he 

propulsive capabilities of magnets. Published by Aerospace Science and Technology proposes a 

magnetic controlled inlet design for airbreathing hypersonic vehicles. The report discusses the 

implementation of electromagnetic source terms to the Euler equations of motion, developing an 

algorithm coupled with electromagnetic field/hypersonic flow field as a numerical design tool.  

The authors constructed a quasi-one-dimensional simplified model of the magnetic inlet to 

examine the performance under different conditions of leading shock angles and magnetic field 

under compression. From these experiments the researchers found that the combination of a 

weak leading-edge shock and strong magnetic field can obtain a better effect of compression. 

Three inlets were designed under the magnetic field with the induction intensity varying between 

0.05, 0.08 and 0.1 tesla, allowing for the inlets to have a contraction ratio of about 1.5, and the 

wall chape being insensitive to the magnetic induction intensity variation. The inlets were tested 

at an inflow Mach number of 10 and the exit Mach number is reduced to Mach 5 or Mach 2.5, 
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when the magnetic induction intensity is adjusted from 0.05 to 0.1 tesla. The results presented 

show that there is no reflected shock in the inner channel of the inlet and the complex shock 

layer interaction in the inlet is relieved. Lastly the experiment showed that the energy lost in the 

pressure recovery can be transformed into electrical energy magneto-hydrodynamic generator 

(MHD) energy extraction equipment, using it to accelerate the overall nozzle flow of the 

designed inlet.[9] In conclusion with the performance capabilities, we can see that the 

implementation of inducing magnets, impacts the overall propulsive capabilities of a vehicle 

moving through a fluid medium at high speeds, where inputs are crucial in moment to moment 

interactions. This interaction in hypothesis is then increased drastic measure depending on the 

frequency at which magnets are implemented under higher Mach numbers.  

1.2.4 Thermal Implementation of magnetic controls   

In research, magnetic systems implemented in aircrafts and spacecrafts have thermal 

capabilities which affect the thermodynamics of aircrafts in high speeds. One paper discusses the 

considerable applications, published by Applied Surface Science in 2023. This presents a post 

growth annealing method aimed to manipulate the Curie Temperature and magnetic anisotropy of 

Cr2Te3 van der Waals ferromagnetic thin films. The as grown Cr2Te3 films display a Curie 

temperature of approximately 170K with an out of plane magnetic easy axis. However, through 

high temperature ex-situ x-situ annealing (300 – 400 °C), significant changes occur: the Curie 

temperature increases notably to around 300 K, and the magnetic easy axis reorients to the 

inplane direction. Analyses of electronic, chemical, and structural properties indicate that the 

expansion of the c-axis lattice constant during annealing is responsible for modulating the 

magnetic properties of the Cr2Te3 film. These findings highlight the efficacy of ex-situ annealing 

in controlling the magnetic characteristics of van der Waals ferromagnetic thin films. Moreover, 

the emergence of room temperature ferromagnetic ordering post-annealing, coupled with its 

resilience to subsequent thermal processes, suggests the potential suitability of Cr2Te3 thin films 

for applications in spintronic devices based on van der Waals materials.[10] Another source 

provides another application of magnets in thermal capabilities, where the researchers discovered 

a considerable applications of magnetohydrodynamic heat shield systems to complex geometries 

that induce a shock wave or boundary layer interaction associated with high heat loads. The 

MHD heat shield systems were proven to be highly effective in hypersonic blunt nose bodies, 

and since it lacked deep research into large size models in high enthalpy conditions the 

researchers attempted to experiment and apply said systems to modern hypersonic bodies. 

Partially ionized flows of hollow cylinders and flare coupling of these fields were numerically 

analyze using a thermochemical nonequilibrium solver to investigate the possibility and 

mechanism controls. These consisted of eleven species reaction model and a Park two 

temperature model based on the low magneto-Reynolds assumption. The authors stated that a 

fully implicit block lower-upper symmetric Gauss-Seidel algorithm was developed to address the 

numerical stiffness initiated by the large difference in characteristic time of grid refinement and 

thermochemical non-equilibrium in the boundary layer and interaction medium. This improved 

the accelerating rate, and the solver was validated using case solving MHD control of flow 
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around a typical reentry vehicle, as well as the measured hollow cylinder/flare data and double 

cone for a high enthalpy tunnel. From there a parametric study of high enthalpy flow over a 

hollow cylinder was experimented and the MHD control was separated into three categories. 

Ntype control led to the largest reduction in the peak value of total heat flux along a wall surface, 

obtained by using a uniform magnetic field. This means that the peak heat flux and peak skin 

friction coefficient was reduced to around twenty percent and forty-eight percent. From there two 

local MHD interaction parameters were introduced for the purpose of mechanical examination 

and can function as a reliable gauge for MHD controllability assessment. This shows that the 

conceptual findings illustrated the Lorentz force acting opposing to the streamline direction, 

prompted by external magnetic field and ionized flow emerged as a pivotal element affecting 

local heat flux regulation. In conclusion the outcomes of this experiment establish a groundwork 

for devising MHD experiment within a high enthalpy wind tunnel test.[11] In these applications, 

many of these tests can be referred to and applied in a morphing aircraft and applied to nonlinear 

dynamic traits and interferences associated with shape changing wings.[12]  

1.2.5 Damping systems with magnetic controls  

Lastly, this reference that was reviewed for this project provides a method of damping 

using magnets. This article presented by Mechanical Systems and Signal Processing, volume 

202, discusses the discusses an innovative resolution of a magnetorheological sting support 

system used to combat the vulnerability of wind flow resonance. Using a combination of Euler 

Bernoulli Bean and Kelvin-Voigt element, a vibration reduction mechanism is explained and 

developed, along with the relationship between the stiffness and damping of the 

magnetorheological damper (MRD), the natural frequency and damping ratio characteristics 

being illustrated. To control the stiffness and damping feature for the system an annular squeeze 

feature was implemented in the MRD design accounting for the factors of low influence on sting 

shape, wind flow, and magnetic circuit requirements. The report also entails the optimizations 

made to the system considering the target magnetic field and low power consumption as the main 

objectives. The effectiveness of the structure design and optimization are tested on the 

manufactured MRD, showing the characteristics that satisfy the vibrational control of the system. 

The controllability and fail-safe property were then verified through wind tunnel and laboratory 

tests, along with the on-off control tests conducted in various impulse excitation and a resonance 

peak attenuated by about twenty-seven decibels, and passively attenuated at seventeen decibels. 

The experiment showed that magnetorheological sting support is capable of suppressing 

vibrations effectively.[13] In contrast to the thermal capabilities of magnets in an aircraft, 

damping capabilities seem to apply modern control mechanisms to magnets to reduce the 

generated resonance from tests. This application can be applied to not only test equipment such 

as wind tunnels as discussed, but as well as reduce additional structural vibrations that occur in 

hypersonic flight.  

This next article shows that magnets used in motor systems can be used to control the 

vibrations using a passive device using shunt damping. This is researched upon to protect against 
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micro-cracks due to the low flux between the rotor, stator and airgap; researchers are able to 

model a procedure for electromagnetic shunt damping. The damping forces are generated from a 

combination of rotor movement providing a magnetic flux, and the electric currents induced in 

the windings provided by a device, which is then converted into heat energy. The results state 

that a permanent magnet thickness and several windings turns provides an optimal value of 

electrical resistance and thus is mathematically proven through simulations.[17] Additionally, a 

permanent magnet linear synchronous motor can be applied to a precision equipment, and 

applied to active vibrational absorption systems. Researchers state that the design is important for 

the special requirements for the response speed, temperature, installation and the bandwidth, and 

in result, the performance is effectively analyzed in combination with proposed design 

objectives. [18] 

1.2.6 Conclusion  

In conclusion to the research, there are more than a handful of applications that magnets 

have to aircraft, spacecrafts, and objects generating a thermodynamic property. The references 

provide proof of concept, simulations, and applications of magnets to real life tools and parts that 

can improve the capabilities of modern controls. Magnetic Actuators provided a direct line of 

controls applications to the instantaneous response that magnetic controls with a current will 

generate, along with negating many of the points of failure mechanical controls must deal with. 

Suspension mechanisms reduce the human error that can occur within both aeronautical and civil 

works of engineering. Magnetic bearings in motors, in-plane magnetization and magnetically 

suspended gyros provide an excellent application to propulsive capabilities of magnets, and lastly 

the thermal capabilities that coincide with the propulsive capabilities, inducing and effecting the 

shockwave and boundary layer provides additional methods of how magnetic fields impact the 

overall controllability and performance of a given aircraft.   

1.3 Project Proposal  

  In the industry of aerospace engineering the constant evolution of aircraft and spacecraft 

performance is an innovation many companies aim to achieve. Based on the prior literature, there 

are still improvements that can be made in the control technologies of aerial vehicles. One point 

of interest that is frequently discussed is the integration of magnetic technologies into control 

systems. Magnetic Actuators offer a potential benefit to aircraft and spacecrafts as they would be 

lighter than conventional control systems, improved precision, and increased reliability in critical 

moments. The direction of this project aims to explore the advantages and feasibility of 

incorporating magnetic control switches and actuators into modern aircraft and spacecraft control 

systems.   

Objectives:  

• Investigate existing research on magnetic actuation and the application to aircraft control.  

• Design and develop a prototype aircraft control system designated for magnetic actuators.   
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• Evaluate the reliability, efficiency, and performance of magnetic based control systems 

through simulation and testing.   

• Assess the potential benefits and challenges of implementing magnetic actuators in 

commercial or military aircraft and spacecrafts.  

Methodology:  

• Conduct a comprehensive review of academic and industrial literature on magnetic 

actuation along with its relevance to aircraft control systems.  

• Collaborate with professors and advisors to design a prototype aircraft control system 

incorporating magnetic actuators.  

• Develop a functional prototype using advanced modeling and simulation tools using 

magnetic control systems.  

• Perform tests in controlled environments to assess the reliability, efficiency, and overall 

performance of magnetic actuators, then compare them to traditional control methods.   

• Analyze the collected data from testing to determine the advantages and limitations of 

magnetic actuation in aircraft control systems.  

Timeline   

 This project is estimated to take the current year to conduct, develop, test, and analyze the 

integration of magnetic control systems. The current expectation of this projected timeline is listed 

below:  

• Development of a prototype control system featuring magnetic actuators   

• Comprehensive analysis of the performance and efficiency of magnetic based control 

systems.  

• Identify the potential applications of integrating magnets into control systems.   

• Provide insights of the challenges and limitations of implementing said control systems.   

• Provide recommendations for further research and development in the field of magnetic 

actuation for aerospace applications.   

Conclusion  

  Integrating magnetic actuators and controllers into aircrafts systems could potentially 

revolutionize the aerospace industry. Reducing the weight, improving the precision, and 

enhancing the reliability of aircraft controls systems with magnets could lead to more efficient 

and safer aircraft design and controllability. This, if applied correctly would provide a clear path 

for future exploration of magnetic technologies in the engineering industry creating new 

innovations for aircraft. In conclusion, this project seeks to explore the potential of magnetic 

actuators and control systems in aircrafts, aiming to develop a prototype, then evaluate its 

performance in comparison to traditional control mechanisms. The insight provided from 

research will contribute to the advancement of aerospace engineering and future developments in 

aircraft design and technology.  
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Chapter 2: Prototype Magnetic Aircraft Control System Design 

2.1 Introduction  

  This section of the report will entail the approach of prototyping the design of a magnetic 

aircraft control system, along with what elements and systems were used to generate the right 

design approach for the control system. To properly approach the controls design, we need to 

understand the foundations of modern aircraft controls. In flight, aircraft are meant to be stable, 

as it will return to a steady state configuration when encountering a perturbation such as a gust of 

wind, or direct turbulence. The steady state configuration allows for an aircraft to correct and 

maneuver itself under large changes in the flight orientation. From the steady state configuration, 

the control system can be tuned by measuring the frequency of the output signal of a neutrally 

stable system, which is used to set the integral and derivative settings on the controller.   

  The frequency measurement of the output signal, then tuning it to operate under stable 

conditions is an example of classical controls, which are still used in modern aircraft to this day. 

However, using classical control methods alone provides no improvement to modern aircraft, as 

the cost function of the human or pilot inputs outweigh the total energy required to register said 

input. With mathematics, this can be solved with a system of equations, which can be linearized 

to find coefficients to get precise values for tracking the general input of any aircraft, and then 

applied toa non-linear full tracking system identification (SYS-ID) to optimize the computational 

method of approach. When analyzing these optimized controller systems, linear quadratic 

regulators (LQR) are utilized to provide a robust solution to modern aircraft.  

  Upon analyzing both classical and modern control systems, this has been observed, 

recorded and improved upon by engineers and designers over the last century. These 

optimizations of steady flight conditions start with defined system requirements such as a 

balance of the necessary thrust, drag, lift and weight. Balancing these four conditions allows for 

an aircraft to have no acceleration when in flight. Due to the purposes of many aircraft being 

used for different reasons, the conditions of each aircraft are different, and can cause 

disturbances to how an aircraft is operating. For this portion of the report the prototyping phase, 

this will account for using modern aircraft control systems and applying magnetic parameters 

which were listed in previous applications from prior research.  

2.2 Problem description   

Based on the steady flight conditions listed above, we can design and model a robust 

control system aimed to ensure stability and performance accounting for disturbances and 

uncertainties in the system parameter or external disturbances. We know that stability in aircraft 

exists in two forms: Static stability, and dynamic stability. Static stability depends on the steady 

state of the aircraft before and after a disturbance and dynamic stability which occurs when the 

control system corrects the aircraft in operation under external disturbances over a period. 

External disturbances that affect the stability of an aircraft can occur in all directions, however, 
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the two primary axes that are measured. These two axes are the longitudinal and lateral 

directional states, which can be measured, then controlled and optimized with any given flight 

characteristics of an aircraft.   

To optimally design a control system for longitudinal and lateral directions, we can 

generate a program to view an open loop and closed loop stability analysis where the actuation of 

each simulated controller is near instant to provide an accurate representation of magnetic 

controls. For the prototype of the control system an open lop stability analysis is observed as this 

will determine if the aircraft is stable without any input, meaning the aircraft will return to a 

steady state condition after acting with a perturbation. From an open loop stability analysis, all 

aircraft should be longitudinally and laterally stable to ensure a smooth flight and minimize the 

overall work and or cost of the pilot. Then controllability of the system is determined, designed 

in association with the desired aircraft and then optimized.   

2.3 Computational Controls Set Up  

To provide the conditions needed for a control analysis, we will need the translational and 

rotational equations of motion needed to map the characteristics of a conventional aircraft. We 

can list the flight parameters needed for an aircraft, using rigid body notations.   

• Linear Velocity (m/s):   𝑉⃗  𝐸⁄𝐵 = 𝑈𝑏𝑥 +𝑉⃗𝑏𝑦 +𝑊𝑏𝑧   (2.1) 

• Angular Velocity(m/s):   𝜔⃗⃗   𝐸⁄𝐵 = 𝑃𝑏𝑥 +𝑄𝑏𝑦 +𝑅𝑏𝑧   (2.2) 

• Aerodynamic Force (N):   𝐹 𝐴 = 𝑋𝑏 𝑥 +𝑌𝑏 𝑦 +𝑍𝑏 𝑧  (2.3) 

• Thrust Force (N):   𝐹   𝑇 = 𝑋𝑇𝑏 𝑥 +𝑌𝑇𝑏 𝑦 +𝑍𝑇𝑏 𝑧  (2.4) 

• Aerodynamic Moment (N/m):  𝑀   𝐴 = ℒ𝑏 𝑥 +ℳ𝑏 𝑦 + 𝒩𝑏 𝑧  (2.5) 

• Thrust moment (N/m):   𝑀   𝑇 = ℒ𝑇𝑏 𝑥 +ℳ𝑇𝑏 𝑦 + 𝒩𝑇𝑏 𝑧  (2.6) 

Here the notation of the cartesian coordinates is represented in the B frame with respect to the 

Earth. With these parameters we can first define the translational Equations of motion 

Represented with a rigid body notation.  
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2.3.1 Translational Equations of Motion   

 

Figure 1:Reference frame of aircraft. 

The equations of motion can be broken down with the sum of the forces under a 

symmetrical body. We can assume that in the diagram, the N frame used for reference to the body 

frame is the same as the Earth’s Reference frame, due to the assumption of a short flight time, as 

well as mitigating the overall change in mass. Applying Newton’s Second law, we can define a 

summation of forces modeled as so:  

 ∑𝐹𝐵⃗⃗⃗⃗  ⃗ =  
𝐸𝑑

𝑑𝑡
(𝑚𝑉⃗𝐸 𝐵⁄ ) = 𝑚 ∙

𝐵𝑑

𝑑𝑡
(𝑉⃗⃗ 𝐸 𝐵⁄ ) + (𝜔⃗⃗⃗⃗ 𝐸 𝐵⁄  × 𝑉⃗⃗ 𝐸 𝐵⁄ ) (2.7) 

The additional component (𝜔⃗⃗   𝐸⁄𝐵 ×𝑉⃗  𝐸⁄𝐵) accounts for the summation of converting 

the total velocity from the B-frame of the aircraft to the E-frame in symmetry to the motion of 

the earth. We recall that in the list of parameters there is the linear and rotational velocities 

defined, thus can substitute the equations 2.1 and 2.2 into equation 2.7 to obtain the sum of the 

forces. 

 ∑𝐹 = 𝑚 ∙

[
 
 
 
 

[

𝑈 𝑏𝑥̂
𝑉⃗ 𝑏𝑦̂

𝑊 𝑏𝑧̂

] + [
𝑏̂𝑥 𝑏̂𝑦 𝑏̂𝑧
𝑃 𝑄 𝑅
𝑈 𝑉⃗ 𝑊

]

]
 
 
 
 

 (2.8) 

Where:  [
𝑏̂𝑥 𝑏̂𝑦 𝑏̂𝑧
𝑃 𝑄 𝑅
𝑈 𝑉⃗ 𝑊

] = (𝑄𝑊−𝑅𝑉⃗)𝑏 𝑥 −(𝑃𝑤−𝑅𝑈)𝑏 𝑦 +(𝑃𝑉⃗−𝑄𝑈)𝑏 𝑧      (2.9) 

Substituting and combining like terms, we can define translational equations of motion:  
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  𝑏 𝑥 = 𝐹𝑥 = 𝑚(𝑈  +𝑄𝑊 −𝑅𝑉⃗) 

  𝑏 𝑦 = 𝐹𝑦 = 𝑚(𝑉⃗  +𝑅𝑈−𝑃𝑊)  (2.10) 

  𝑏 𝑧 = Fy =  𝑚(𝑊  +𝑃𝑉⃗−𝑄𝑈) 

2.3.2 Rotational Equations of Motion   

The rotational equations of motions follow a similar process to the translational motions; 

however, this is computed with the sum of the moments present in the system, which is defined 

as so: 

  ∑ 𝑀⃗⃗ =  
𝐸𝑑

𝑑𝑡
(𝐻⃗⃗ 

𝐸
𝐵

𝐵0
⁄

) =  
𝐵𝑑

𝑑𝑡
(𝐻⃗⃗ 

𝐸
𝐵

𝐵0
⁄

) + (𝜔⃗⃗𝐸 𝐵⁄ ×𝐻
𝐸

𝐵

𝐵0
⁄

) (2.11) 

Where H is the angular momentum acting on the body. H can be expressed as the cross 

product of the moment of inertial and the angular velocity acting from the earth frame to the 

body frame. Listed as so:  

  𝐻⃗⃗ 
𝐸

𝐵

𝐵0
⁄

= 𝐼 ×  𝜔⃗⃗𝐸 𝐵⁄ = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

] [
𝑃
𝑄
𝑅
] 

  (2.12) 

Separating the cross product into a system of equations we can see that the moment of 

inertia in the Ixy and Iyz components are negligible as it is assumed that the aircraft is a 

symmetrical body, so linearizing the equation with the cross product will be simplified to the 

equation below:  

 𝐻⃗⃗ 
𝐸

𝐵

𝐵0
⁄

= (𝐼𝑥𝑥𝑃+𝐼𝑥𝑧𝑅)𝑏 𝑥 +(𝐼𝑦𝑦𝑄)𝑏 𝑦 +(𝐼𝑥𝑧𝑃+𝐼𝑧𝑧𝑅)𝑏 𝑧    (2.13)  

 (𝜔⃗⃗𝐸 𝐵⁄ × 𝐻
𝐸

𝐵

𝐵0
⁄

) = [

𝑏̂𝑥 𝑏̂𝑦 𝑏̂𝑧
𝑃 𝑄 𝑅

𝐼𝑥𝑥𝑃 + 𝐼𝑥𝑧𝑅 𝐼𝑦𝑦 𝐼𝑥𝑧𝑃 + 𝐼𝑧𝑧𝑅
] (2.14) 

Once defined we can combine like terms and use the assumption that all inertial terms do not 

change with time, thus expanding and solving the sum of moments in the system below: 

 [

𝑏̂𝑥
𝑏̂𝑦

𝑏̂𝑧

] = [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] = [

𝐼𝑥𝑥𝑃 + 𝐼𝑥𝑧𝑅 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅 + 𝐼𝑥𝑧𝑃𝑄

𝐼𝑦𝑦𝑄 + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑃𝑅 + 𝐼𝑥𝑧(𝑅
2 − 𝑃2)

𝐼𝑥𝑧𝑃 + 𝐼𝑧𝑧𝑅 + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑃𝑄 − 𝐼𝑥𝑧𝑄𝑅

 ] (2.15)  

With the system fully defined, we see that the pitching moment is coupled with the yaw 

and roll moment of the aircraft. Here we can define these rotational angles using NASA’s 
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standard Euler rotational angles, ψ for yaw angle, Θ for pitch, ϕ for roll each about the 𝑒̂ 𝑧, 𝑒̂𝑦,& 𝑒̂ 𝑥 

frame. Using these angles, we can map out the angular velocity rate with respect to the Euler 

Angles to obtain the kinematic differential equations.   

  [
𝑃
𝑄
𝑅
] = [

1 0 −sin 𝜃
0 cos𝜙 sin 𝜙 cos 𝜃
0 − sin𝜙 cos 𝜃 cos𝜙

] [

𝜙

𝜃 

𝜓 
]  (2.16)   

2.3.4 Linearization   

Next after deriving the necessary equations of motion from our parameters. The equations 

must be linearized to better suit the optimal control system which will be written in the program. 

To start, a Perturbation equation will be implemented, to model the dynamics of an aircraft with 

respect to steady state conditions. We can assume these steady state flight conditions are constant 

thrust, constant altitude (lift is equal to weight), and constant velocity (thrust is equal to drag). 

We can define these perturbation terms with lowercase variables of the initial parameters, 

including linear velocity angular velocity, and their rates respectively.  

• U = U1 + u, V = V1+v W = W1+w  

• P = P1+p, Q =Q1+q, R= R1+r  

• 𝑈  = 𝑈 1 +𝑢̇ , 𝑉⃗  = 𝑉⃗1  +𝑣̇ ,𝑊  = 𝑊 1 +𝑤   

• Ψ = Ψ1 +𝜓,Θ = Θ1 +𝜃,Φ = Φ1 +𝜙  

• 𝑋 = 𝑋1 +𝑓𝑥,𝑌 = 𝑌1 +𝑓𝑦,𝑍 = 𝑍1 +𝑓𝑧  

• 𝑋𝑇 = 𝑋𝑇1 +𝑓𝑇𝑥,𝑌𝑇 = 𝑌𝑇1 +𝑓𝑇𝑦,𝑍𝑇 = 𝑍𝑇1 +𝑓𝑇𝑧  

• 𝐿 = 𝐿1 +𝑙,𝑀 = 𝑀1 +𝑚,𝑁 = 𝑁1 +𝑛  

• 𝐿𝑇 = 𝐿𝑇1 +𝑙𝑇,𝑀𝑇 = 𝑀𝑇1 +𝑚𝑡,𝑁𝑇 = 𝑁𝑇1 +𝑛𝑇   

We can substitute the perturbation parameters with the equations of motion along with 

implementing mathematical assumptions, we can assume that the product two small numbers 

become negligible, as well as the use of small angle approximations to simplify linear velocity 

rates. To compute the rest of the linearization of the equations of motion additional Steady flight 

conditions that are needed for further simplification would be these considerations:  

• No steady State Lateral velocity (V1=0)  

• No steady state vertical velocity (W1=0)  

• No steady state roll angle (Φ1 = 0)  

• No steady state angular velocity (𝑃1 = 𝑄1 = 𝑅1 = Φ  1 = Θ 1 = Ψ 1 = 0)  

With these straight flight conditions, we can also assume that the relationship between the 

linear velocity in the Z axis is related to the product of the angle of attack and the freestream 

velocity, thus modifying w to include alpha (α). Now the equations above can be simplified to 

negate a handful of unknown variables, providing a simplified set of equations:  

 (𝑢̇ ) −𝑚𝑔𝜃cos𝜃1 +𝑓𝑥 = 𝑚(𝑢̇ )  (2.17) 
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 (𝑤 )    −𝑚𝑔𝜃(sin𝜃1)+𝑓𝑧 = 𝑚𝑢̇ 1(𝛼̇  −𝑞)  (2.18) 

 𝑚 = 𝐼𝑦𝑦(𝑞 )  (2.19) 

 𝑞 = 𝜃   (2.20) 

2.3.5 Dimensional Stability and Control Derivatives  

With the equations of motion simplified, we need to develop the abstract terms such as fx 

fy fz and so forth, as we want to know what they represent and make them tangible with what 

affects those terms. These values, to obtain them will need aircraft data such as mass, geometry, 

and inertial dynamics to clarify their meanings. Looking at equation 2.17.1 for example, we can 

see that the force fx is affected by their angle of attack, the thrust, forward velocity, and the 

elevator deflection. Each of these terms can be defined as derivatives representative of each 

effect. We can also use the assumption that the dynamic pressure and the wing area on an aircraft 

remains constant throughout flight. Once computed will provide a frequency representing, the 

change in X with respect to the free stream velocity:  

 𝑋𝑢 = 
1

𝑚

𝑑𝑥

𝑑𝑢
= 

1

𝑚𝑈1
[𝑞 1𝑠(−𝐶𝐷𝑢 − 2𝐶𝐷1)]  (2.21)  

Where 𝐶𝐷𝑢̇ 𝑎𝑛𝑑 𝐶𝐷𝑙 represent dynamic coefficients with respect to the speed of sound and 

the lift of the aircraft respectively, computed with the perturbation method explained above. This 

calculation can be repeated for X with respect to angle of attack, elevator deflection, on all axis. 

Lastly these derivative substitutions will also be used to compute the pitching moment equations 

expressed with their rates and coefficient terms:   

  𝑋𝛼 =
1

𝑚

𝑑𝑥

𝑑𝑎
= 

1

𝑚
[𝑞 1𝑠(−𝐶𝐷𝛼 − 𝐶𝑙1)]  (2.22) 

 𝑋𝛿𝑒 = 
1

𝑚

𝑑𝑥

𝑑𝛿𝑒̂
= −

1

𝑚
[𝑞⃗⃗ 1𝑠𝐶𝐷𝛿𝑒̂]    (2.23) 

 𝑍𝑢 = 
1

𝑚𝑈1
[𝑞⃗⃗ 1𝑠(−𝐶𝑙𝑢̇ − 2𝐶𝑙𝑖)]  (2.24) 

 𝑍𝛼 = 
1

𝑚
[𝑞⃗⃗ 1𝑠(−𝐶𝑙𝛼̇ − 𝐶𝐷𝑙)] (2.25) 

  𝑍𝛿𝑒 = 
−1

𝑚
𝐶𝑙𝑒𝑞 1𝑠 (2.26) 

  𝑍𝛼 = 
−𝑞⃗ 1𝑆𝑐 

2𝑚𝑢1
𝐶𝑙𝛼    (2.27) 

 𝑀𝑢 = 
1

𝐼𝑦𝑦𝑢1
[𝑞 1𝑠𝑐 (𝐶𝑚𝑢

+ 2𝐶𝑚𝑙
)] (2.28) 

  𝑀𝛼 = 
𝑞⃗ 1𝑠𝑐 

𝐼𝑦𝑦
𝐶𝑀𝛼

   (2.29)  
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 𝑀𝛼 = 
𝑞⃗ 1𝑠𝑐2

⃗⃗ ⃗⃗ 

2𝐼𝑦𝑦𝑢1
𝐶𝑀𝛼 

   (2.30)  

  𝑀𝑞 =
𝑞⃗ 1𝑠𝑐2

⃗⃗ ⃗⃗ 

2𝐼𝑦𝑦𝑢1
𝐶𝑀𝑞

   (2.31)  

  𝑀𝛿𝑒 = 
𝑞⃗ 1𝑠𝑐 

𝐼𝑦𝑦
𝐶𝑀𝛿𝑒

  (2.32)  

Finally with the stability derivatives defined (2.23-2.32), we can incorporate them into 

the decoupled equations representative of the rate of airspeed, angle of attack, pitch rate, and roll 

rate into a summation of equations. Similarly, these calculations can be repeated in the lateral 

directional equations of motion to obtain the decoupled equations representative of the roll rate, 

side slip rate, and yaw rate. The equations of motion in state space form are represented below, 

with the complete computation being referenced at Appendix A.  

 

 [

𝑢̇ 
𝛼̇ 
𝑞 

𝜃 

] =

[
 
 
 
 

𝑋𝑢 𝑋𝛼 0 −𝑔
𝑍𝑢

𝑈1

𝑍𝛼

𝑈1
1 0

(𝑀𝑢 +
𝑀𝛼 𝑍𝑢

𝑈1
) (𝑀𝛼 +

𝑀𝛼 𝑍𝑢

𝑈1
) 𝑀𝑞 +𝑀𝛼 0

0 0 1 0 ]
 
 
 
 

[

𝑢̇
𝛼̇
𝑞
𝜃

] +

[
 
 
 
 

𝑋𝛿𝑒
𝑍𝛿𝑒

𝑈1

𝑀𝛿𝑒 +
𝑀𝛼 𝑍𝛿𝑒

𝑈1

0 ]
 
 
 
 

𝛿𝑒 (2.33) 

 

 

[
 
 
 
𝜙
𝑝 

𝛽 

𝜓 ]
 
 
 

=

[
 
 
 
 
 

0 1 0 0 0
0 𝐿𝑃 𝐿𝛽 𝐿𝑟 0

𝑔 cos𝜃

𝑢1

𝑌𝑝

𝑢1

𝑌𝛽

𝑢1

𝑌𝑟

𝑢1
− 1 0

0 𝑁𝑝 𝑁𝛽 𝑁𝑟 0

0 0 0 1 0]
 
 
 
 
 

[

𝜙
𝑝
𝛽
𝜓

] +

[
 
 
 
 
0 0
𝐿𝛿𝑟 𝐿𝛿𝛼
𝑌𝛿𝑟
𝑢1

𝑌𝛿𝛼

𝑢1

0 0 ]
 
 
 
 

[
𝛿𝑟
𝛿𝛼
 ] (2.34)

  

2.4 Open Loop Stability Analysis of Prototype Control System  

Providing the stability characteristics of an aircraft can be computed with programming 

software, which for this instance we will use MATLAB and Simulink to arrange the mathematical 

derivatives to a state space from that will allow for the necessary inputs of an aircraft, then output 

matrices to determine both lateral and longitudinal stability. To start, we can define the stability 

derivatives for designing a generalized control system below:  

 𝑥  = 𝐴𝑥 + 𝐵𝑢⃗̇      (2.35)  

 𝑦 = 𝐶𝑥 + 𝐷𝑢⃗̇    (2.36)  

To define each letter in the stability derivatives, each represents a matrix used to define 

the control system for easier computations to be done by a computer. For this instance, in the first 
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equation, the 𝑥  variable represents the overall velocity input of a given aircraft in motion; the 

letter A represents the stability matrix used to provide which dimensions provide the exact forces 

in both the longitudinal and lateral directions, multiplied by a one column x vector. B represents 

the control matrix representing the control variables in the provided direction, along with the 

product of the u vector. The y equation below, is the output equation of a generalized control 

system where c is the identity matrix used to compute the initial displacement and simplify the 

primary output into a single column value. Lastly the D matrix is the feed forward matrix which 

is represented as a null matrix to optimize the control solution. For the primary input equation, 

the stability and input matrices are different per direction and can be visualized with a free body 

diagram for where each direction is represented. Within these matrices the values are obtained 

with massless values, along with derived values from aircraft calculations.   

For each matrix, the stability analysis is divided into two sections: The longitudinal 

stability analysis, and the lateral directional stability analysis. And for the obtained characteristics 

of each matrix, we will use the stability characteristics of the Boeing 747 provided by AIAA at 

sea level conditions.   

2.4.1 Aerodynamic and Mass Properties of Conventional Aircrafts  

  To analyze and input the necessary variables in the stability and control matrices, we will 

use the standard sea level conditions of the stability characteristics. For each condition, we have 

the standard sea level measurements of the lift, drag, and deflection angle coefficients to obtain the 

necessary pole locations for longitudinal and lateral-directional states.   

Table 1: aerodynamic coefficients of the Boeing 747 

Aerodynamic 

Coefficient  

Value  Aerodynamic 

Coefficient  

Value  

CL0  0.29  Cyβ  -0.9  

CD0  0.0305  Clβ  -0.16  

Cmα  -1.6  Cnβ  0.16  

CDα  0.5  Clp  -0.34  

Cmq  -25.5  Cnp  0.13  

CLα  5.5  Clr  -0.033  

CXδe  0  Cnr  -0.033  

CZδe  0.29  CLδa  0.014  

Cmδe  -1.2  Cyδα  0.0018  

Cyp  -0.0272  Cyδr  0.118  

Cnδr  -0.095  Clδr  0.008  
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Table 2: mass and Inertial Parameters of the Boeing 747 

Parameter  Value  Parameter  Value  

Weight   564,000 lbf  Ixx  1.41 × 107 (slug-ft2)  

B  196 ft  Iyy  3.05 × 107(slug-ft2)  

𝑐 ̅ 27.3 ft  Izz  4.27 × 107(slug-ft2)  

Using these conditions, we can determine the force conditions needed for our state and 

control matrix, by dividing the necessary parameters with the coefficients to obtain our variables 

such as thrust force, downwards force, and so forth. Applying these conditions, we can then 

calculate and compute the longitudinal and lateral directional stability of the aircraft.  

𝐴𝑙𝑜𝑛𝑔 = [

−0.0433 11.4378 0 −32.1741
−0.0012 −0.4889 1 0

0 −0.3855 −0.4356 0
0 0 1 0

] 

𝐴𝑙𝑎𝑡 =

[
 
 
 
 

0 1 0 0 0
0 −0.9871 −1.246 0.3834 0

 0.1456 0 −0.089 −1 0
0 −0.1441 0.2694 −0.2338 0
0 0 0 1 0]

 
 
 
 

 

𝐵𝑙𝑜𝑛𝑔 = [

0
−0.0297
−0.3980

0

] ; 𝐵𝑙𝑎𝑡 =

[
 
 
 
 

0 0
0 0.235

0.0148 0
−0.1655 −0.0122

0 0 ]
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2.4.2 Longitudinal Stability   

 

Figure 2: free body diagram of a conventional aircraft with axis and angles (NASA). 

To start the stability analysis, the longitudinal measurements of the aircraft will be 

considered. This represents the motion pitch movement along the aircraft, which is controlled 

conventionally by an elevator located on the wing. This means that we will need to investigate the 

change in the angle of attack, pitch angle, pitch rate and speed, as the associated pitch 

compensation will automatically control the trim angle of the air speed.   

  𝐴 = 

[
 
 
 
 

𝑋𝑢 𝑋𝛼 0 −𝑔
𝑍𝑢

𝑈1

𝑍𝛼

𝑈1
1 0

(𝑀𝑢 +
𝑀𝛼 𝑍𝑢

𝑈1
) (𝑀𝛼 +

𝑀𝛼 𝑍𝑢

𝑈1
) 𝑀𝑞 +𝑀𝛼 0

0 0 1 0 ]
 
 
 
 

   (2.37) 

 𝐵 =

[
 
 
 
 

𝑋𝛿𝑒
𝑍𝛿𝑒

𝑈1

𝑀𝛿𝑒 +
𝑀𝛼 𝑍𝛿𝑒

𝑈1

0 ]
 
 
 
 

  (2.38) 

 𝑥 =  [

𝑢̇
𝛼̇
𝑞
𝜃

] (2.39) 

Using MATLAB, we can obtain the eigenvalues of both the long period and short period 

characteristics of the pole measurements, damping, time constant and frequency. In the program 

this is computed by calculating the eigen value of the identity matrix C in the output, listed below:  

Table 3: longitudinal mode characteristics of the Boeing 747 

Pole  Damping  Frequency (rad/sec)  Time constant (sec)  

-6.55e-03 + 1.63e-01i  4.01e-02  1.63e-01  1.53e+02  
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-6.55e-03 - 1.63e-01i  4.01e-02  1.63e-01  1.53e+02  

-4.77e-01 + 6.21e-01i  6.09e-01  7.83e-01  2.09e+00  

-4.77e-01 - 6.21e-01i  6.09e-01  7.83e-01  2.09e+00  

From numerical values provided in the table based on the inputs of the aircraft, we can use 

MATLAB to convert the state space variables to a transfer function with a command.  In the table 

above we can see that the pole values in all 4 characteristics are negative, meaning that in steady 

flight the aircraft is fully stable. In computation we can determine the rank of the provided 

matrices which comes out to a value of five, meaning the transfer function will be a relationship 

to the fifth order, listed below:   

  𝐺(𝑠) =  
−0.1655𝑠3−0.1741𝑠2−0.00781𝑠−0.03214

𝑠5+1.31𝑠4+0.6641𝑠3+0.6778𝑠2+0.03037𝑠
 (2.40)  

From the transfer function obtained, we can analyze the overall response of the system 

with an impulsive input, which is what we need to build a magnetic control system. We can plot 

these values obtained in MATLAB using an open loop Simulink block diagram to see the impulse 

and step response of the change phi over the time domain. The block diagram needed for this 

simulation is displayed below:  

 

Figure 3: Simulink block diagram of longitudinal stability of the Boeing 747 

To view the stability of the aircraft in the longitudinal region, our plot should provide an 

impulse and step response of the change in theta with the elevator deflection (𝜃(𝑠)⁄𝛿𝑒̂(𝑠)) over 

time; as well as the change in alpha with the elevator deflection (𝛼̇(𝑠)⁄𝛿𝑒̂(𝑠)) over time.   
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Figure 4: Boeing 747 step response α(s)⁄δe (s) 

 

Figure 5: Boeing 747 impulse response α(s)⁄(δe (s))  
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Figure 6: Boeing 747 step response θ(s)⁄(δe (s)) 

 

Figure 7: Boeing 747 impulse response θ(s)⁄(δe (s)) 
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From these plots, we can see that over a period the aircraft is ablet to return to level flight 

after a step response and an impulse response to the change in elevator deflection.  Though it does 

stabilize, we can see that for the angle of attack it returns to stable flight at around 300 to  400 

seconds, the change in the pitch angle takes approximately 500 to 600 seconds to completely 

stabilize . To optimize the time, it takes to stabilize in flight we will need to build a controller that 

can shorten the time it takes to return to steady level flight and minimize the oscillations we see in 

each plot.   

2.4.3 Lateral Directional Stability   

For this section, lateral movement refers to the motion about the aircraft’s rolling or ‘x’ 

axis, as well as the directional movement referring to the yaw or ‘z’ axis of the aircraft. 

Commonly the rolling axis on an aircraft is controlled by the ailerons while the rudder of an 

aircraft is responsible for the directional movement. Below are the derived matrices representing 

the linearized equations of motion for the state space equations:  

  𝐴 =

[
 
 
 
 
 

0 1 0 0 0
0 𝐿𝑃 𝐿𝛽 𝐿𝑟 0

𝑔 cos𝜃

𝑢1

𝑌𝑝

𝑢1

𝑌𝛽

𝑢1

𝑌𝑟

𝑢1
− 1 0

0 𝑁𝑝 𝑁𝛽 𝑁𝑟 0

0 0 0 1 0]
 
 
 
 
 

   (2.41) 

 𝐵 =

[
 
 
 
 
0 0
𝐿𝛿𝑟 𝐿𝛿𝛼
𝑌𝛿𝑟
𝑢1

𝑌𝛿𝛼

𝑢1

0 0 ]
 
 
 
 

    (2.42) 

 𝑥 =  [

𝜙
𝑝
𝛽
𝜓

]  (2.43) 

Table 4: lateral directional mode characteristics of the Boeing 747 

Pole   Damping   Frequency (rad/sec)  Time constant (sec)  

0e+0  -1.00e+00  0.00e+00  inf  

4.68e-02                           1.00e+00    4.68e-02           2.14e+01      

-2.78e-02 + 7.33e-01i        3.79e-02         7.33e-01    3.60e+01       

-2.78e-02 - 7.33e-01i        3.79e-02         7.33e-01           3.60e+01      

-1.21e+00                   1.00e+00         1.21e+00           8.28e-01      

From the characteristic table above, we see that there are some variations in the pole, with 

most of them being negative, and one being critically stable and one being positive, or unstable 
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in this case. We computed that the rank of the controllability in this system is also five, meaning 

that the transfer function will also have a fifth order of magnitude.   

  𝐺(𝑠) =  
0.0122𝑠3−0.09134𝑠2−0.008226𝑆+0.0308

𝑠5+1.31𝑠4+0.6641𝑠3+0.06778𝑠2+0.03037𝑠
 (2.44) 

Once we obtained the transfer function above, we can now plot the change in the roll angle 

over the change in the rudder deflection (𝜓(𝑠)⁄𝛿𝑟(𝑠)) and the heading angle over the change in 

aileron deflection (𝜙(𝑠)⁄𝛿𝑎 (𝑠)) to analyze the lateral directional stability of the aircraft.  

 

Figure 8: Simulink block diagram of lateral-directional stability of the Boeing 747 

 

Figure 9: Boeing 747 lateral-directional step response of ϕ(s)⁄(δα (s)) 
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Figure 10: Boeing 747 lateral-directional impulse response of ϕ(s)⁄(δα (s)) 

Analyzing these graphs, we can see that the change in the aileron provides a steady flight 

with the change in the roll angle over time as it stabilizes at around fifty to sixty seconds once 

perturbed, however once we see the heading angle change, we can see that it has a harder time to 

stabilize under a stepped response, compared to an impulse.  

 

Figure 11: Boeing 747 lateral-directional step response of ψ(s)⁄(δr (s) ) 
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Figure 12:Boeing 747 lateral-directional impulse response of ψ(s)⁄(δ_r (s))  

With these response results, we can now develop a controller design to optimize the aileron 

and rolling angle responses with a closed loop analysis.   

2.5 Optimized Prototype Controller Design   

Prototyping a control system after knowing what responses provide stability allows for a 

better understanding of what values need to be tuned and controlled. This optimization will incur 

with four separate optimizations:  

• Aileron to Roll Angle Control  

• Rudder to Yaw Angle Control  

• Elevator to Pitch rate control  

• Elevator to Angle of Attack Control  

2.5.1 Aileron to Roll Angle PID Control   

 Since we know that the controllability matrix in each direction is five, this states that all 

five lateral/directional modes can be controlled by parameters in the input matrix B. for these 

axes we will use a proportional integral derivative (PID) controller. This starts by designing a PID 

controller to find what frequency is the most neutrally stable for the aircraft system created in 

Simulink. This will include a step input which will simulate the desired roll angle, then a PID 

constant block next to a unit transfer function. Then a saturation block will simulate the 
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maximum air speed of the aircraft, and a rate limiter is used to replicate the deflection of the 

aileron.  

 

Figure 13: PID Simulink controller for ϕ(s)⁄(δα (s)) 

From here we will need to tune the integral and derivative gains in the Simulink file, Ki and 

Kd until the system is neutralized. With neutrally stabilized conditions we can plot the response to 

see where the maximum attainable value is before the aircraft becomes unstable.  

 

Figure 14: step response of roll angle to aileron deflection  
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Figure 15: impulse response of roll angle to aileron deflection 

 

Figure 16: change in aileron deflection over time using PID 
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Figure 17: change in aircraft roll angle over time using PID 

For this study we see that the PID controller used minimizes the number of oscillations it 

takes to stabilize the system, along with the overshot needed to correct itself. The aileron 

deflection plot shows a larger overshoot for the first five seconds, then undershoots after five, then 

stabilizes by fifteen seconds after the perturbation. This change in angle is viewed less in the 

aircraft roll where it overshoots after five seconds, then stabilizes after fifteen seconds as well. 

Analyzing the PID controller for this system shows that the gain can be improved to provide a 

faster response and minimal overshoot for controlling the aileron deflection and roll angle.  

2.5.2 Rudder to Yaw Angle Control with LQR  

  This section discusses the optimization of the lateral directional controls using a linear 

quadratic reduction, or LQR for short to evaluate the controllability in each directional change 

that impacts the performance. To use LQR, we would need to tune both the quadratic and 

reduction matrices with the same state matrices used in the lateral directional control stability. 

The quadratic matrix will use a 5x5 matrix used as a product with the same dimensions as the 

input matrix used above, as well as the R matrix being a 2x2 identity matrix to provide the 

output. From here we would need to solve for the reduced Ricatti equation to generate the P 

matrix, as well as the optimal gains needed for the block diagram.   

𝐴𝑇𝑃+𝑃𝐴−𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 (2.39)  

𝐾 = 𝑅−1𝐵𝑇𝑃 (2.40)  
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Then we can input this into MATLAB to compute the optimal controller gain, which can 

be written as a command such as “lqr(A_lat, B_lat, Q_lat, R_lat)” to calculate the gain. From here 

we can create a flow chart representing each of the variables in line with the controller gain, using 

the lateral-directional control state and input matrices. This controller is designed to output the 

yaw angle of the aircraft and compares three different responses: the LQR design, the simple 

feedback, and the open loop design.   

 

Figure 18: block diagram of an LQR controller for the Boeing 747 

We are now able to obtain the responses for each lateral-directional quantity, which is then 

used for our feedback control program to plot the values over a ten second interval from a step 

input over a five-minute range. The intention is to measure the components listed in a free body 

diagram based on the aircraft’s sea-level flight conditions.  
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Figure 19: reference signal of LQR response 

 

Figure 20: open loop response of 𝛿𝑟 to ψ angle with LQR 
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Figure 21: state feedback closed loop response of 𝛿𝑟 to ψ with LQR 

 

Figure 22: comparison of closed-loop LQR and state feedback 
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After plotting the computed values obtained from the LQR controller, we can see that the 

open loop response accurately to the provided step input. Under the feedback closed loop 

response we can see that the aircraft first overcorrects itself, next under corrects, then stabilizes at 

approximately 150 seconds. These values were obtained by modifying the C matrix as a four-by-

one matrix written as [0,0,0,1]. At a five-minute period, we can see how an LQR controller is 

optimized for an extended period stability. This is best seen in the last image comparing the LQR 

feedback to the closed loop response where the state feedback fails to residualizing in 

comparison to the LQR model.   

2.5.3 Elevator to Pitch Rate control with PID   

 After analyzing the rudder to yaw angle controller, we will use PID again to analyze and 

optimize the controller relative to the elevator and pitch rate. For this control system we aim to 

prevent sudden longitudinal acceleration from large perturbations, thus a successive loop closure is 

chosen. However, a successive loop has an issue of being sluggish in response to the command 

input. To combat this issue, we looked at three PID tuning methods to determine which is best: 

Cohen-Coon, Kappa-Tau, and Hagglund Astrom. 

Table 5: PID constant for different methods 

 P I D 

Cohen-Coon 
(
1.35

𝐾𝑢
) (1 +

0.18𝜏

1 − 𝜏
) 

(2.5 − 2.0𝜏)𝑃𝑢(1 − 0.39𝜏) (0.37 − 0.37𝜏)𝑃𝑢(1

− 0.81𝜏) 

Kappa-Tau 3.8

𝐾𝑢
𝑒̂−8.4𝜏+7.3𝑟

2
 5.2𝑃𝑢𝑒̂

−2.5𝜏−1.4𝜏2 0.89𝑃𝑢𝑒̂
−0.37𝜏−4.1𝜏2 

Hagglund-Astrom 0.66

𝐺𝑚
𝑐𝑜𝑠𝑑 (

79.2

𝜋

− 𝑃𝑀) 

2

𝑊𝑝𝑚
(𝑡𝑎𝑛𝑑 (

79.2

𝜋
− 𝑃𝑀)

− √1 + 𝑡𝑎𝑛𝑑2 (
79.2

𝜋
− 𝑃𝑀)) 

𝐼

4
 

The Cohen-coon method is an optimized method od the Ziegler-Nichols method, meaning 

that this also requires a time constant, system gain and time delay as the previous method. This also 

means there is a large overshoot in the results. The Kappa-tau method performs similarly to the 

Ziegler-Nichols method in reducing overshoot and results in around a 30% overshoot reduction. 

Lastly the Hagglund-Astrom method operates on a relay method focusing on rejection of 

disturbances. This means the controller is initially assumed to be for a bang-bang system, providing 

on or off states. Based on calculations we determined that the Hagglund-Astrom method is best 

suited for this control system and is used for the controller optimization. So, from this, the gain 

margin (GM), phase margin (PM), and crossover frequency (Wpm) are used. If the plant can only 
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produce on or off values, we know that PID is inherently oscillatory. This results in square wave 

oscillations which provide an advantage, where the designer can choose the oscillation frequency of 

the response. This is great for control surfaces since flutter must be suppressed and results in the 

default oscillation being approximately the length of pi. From here the gain is increased to decrease 

the oscillation speed where the overshoot remains lower than the rest. 

 

Figure 23: Simulink block diagram for PID controller for elevator to pitch rate 

 
Figure 24: longitudinal system Response with the Hagglund-Astrom PID controller 
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2.5.4 Elevator to Angle of Attack Dynamic Inversion Controller  

This section of the report will consist of improving the overall stability of the system. 

After viewing the longitudinal open loop response, we know there’s a long settling time for the 

system, which will benefit from the use of a dynamic inversion controller, implemented at sea 

level conditions. This starts by controlling the elevator deflection input which impact the angle of 

attack, then hold said angle to stabilize during flight, and decrease the settling time and 

oscillations of the system. This provides a better closed loop transient response, an advantage to 

robustness, as well as less control magnitude for the behavior of the aircraft and becomes 

powerful for the control of non-linear systems. This analysis can be shown with a control law with 

the use of a linear time-invariant (LTI) system shown below:  

  𝑢̇ = (𝐶𝐵)−1(𝑟  −𝐶𝐴𝑥+𝐾𝑒̂)  (2.45)  

From the LTI system, we have A, B, and C matrices form our state space equations above, 

r is the input reference signal, K is the controller gain, x represents the state vector, and e is the 

error signal between the desired output and the current output. For the desired output we situate 

the C matrix in a four by one matrix as [0 1 0 0] to output the necessary angle of attack response. 

The controller gain, K is the main parameter what will be tuned to optimize the dynamic inversion 

controller, which can be tuned and customized in the block diagram below.  

 

Figure 25: Simulink block diagram of dynamic inversion controller for elevator to aoa 
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This controller will be used to track the reference signal, being a unit step function timed at one 

second. This is shown in the figure below and will use the dynamic inversion controller to track the 

reference signal at sea level conditions. From here we vary the controller gain from one to sixteen, 

to find the optimal controller performance of settling time and maximum overshoot. This test is 

shown on the table below:   

 

Figure 26: five-degree angle of attack reference signal  

Table 6: maximum Overshoot and Settling time for varying controller gain values (K) 

K  1  2  3  4  5  6  7  8  

ts  5.76  3.736  3.379  2.988  2.81  2.76  2.527  2.354  

M  4.94  4.955  4.981  4.980  4.986  4.991  4.99  5.06  

K  9  10  11  12  13  14  15  16  

ts  2.370  2.784  2.73  2.747  2.76  2.809  2.829  2.85  

M  5.01  5.006  5.011  5.012  5.010  5.006  5.004  5.002  

Based on our tabulated performance characteristics it seems that a value between eight and nine 

yields the best performance comparing settling time and maximum overshot. Anything below eight 

undershot the magnitude, whereas any value above ten began to overshoot. This is then plotted 

with an open loop and closed loop response for the longitudinal state space system. The close loop 

angle of attack is plotted in line with the reference signal to provide a tracking demonstration.   
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Figure 27:747 longitudinal state space system closed loop response. 

  

 

Figure 28: 747 longitudinal state space system open loop response 
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Figure 29:747 dynamic inversion longitudinal controller AOA Response 

With the controllability gain of around eight the settling time is around 2.3 seconds and has little 

to no overshoot. This effectively controls the angle of attack of the Boeing 747 at sea level. 

Comparing the other rates such as forward velocity, and pitch rate shows an oscillatory increase 

over time, whereas the angle of attack and pitch angle shows a decrease but are still showing 

stability in their plotted results. The elevator deflection angle is shown below and has a deflection 

limit between 25 and-25 degrees.   
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Figure 30: 747 dynamic inversion elevator deflection 

   

2.6 Prototyping Results  

  The results of the controller designs yield the expected values and performance metrics for 

the Boeing 747 aircraft. Longitudinal stability results showed a lengthy stabilization time, as well as 

the time it takes for the aircraft to return to the commanded pitch angle, where this can be solved by 

reducing the provided gain to optimize its stability. The lateral directional stabilities provided for the 

aircraft show a long, albeit shorter response time of about a minute to the given impulse. After the 

stability analysis, we compared the relation between the aileron to roll angle, where there is a short 

period where the PID controller overshoots the target angle, then stabilizes in a quick manner. The 

Rudder to the Yaw angle control system using a linear quadratic reduction provides the fastest 

settling time at the provided angle of attack. Analyzing the graphs have shown that the best solution 

to optimizing the control systems to account for magnetic controls is to reduce the gain on 

longitudinal as well as lateral-directional stability, then the aileron controls can be adjusted by 

changing the integrator values to minimize the stabilization time. Lastly the elevator relation to the 

angle of attack can be improved by optimizing the gain matrix and integrating additional 

parameters. This integrates magnetic control devices for the aircraft system and will be discussed in 

the next chapter.   
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Chapter 3: Integration of magnetic control devices and parameters in 

aircraft control systems 
 

3.1 Introduction of part integration  

  After designing the prototype control system using PID, LQR and Dynamic Inversion 

controllers, we can now implement the necessary parameters of magnetic controllers to improve the 

performance of the provided controller designs in the aircraft. Since the proposal, we have tested 

and developed a functioning model for our system, then provided results for where the prototype 

controller can be improved with magnetic controls. We know from the previous tests that the aileron 

to roll angle, as well as elevator to pitch angle, controls can be improved by changing the PID 

constants using alternative equations for the proportional, integral and derivative to better suit out 

controller requirements. For the rudder to yaw angle control we determined that its best to leave 

most of the LQR values the same, but change the gain, K to further reduce the settling time for a 

more stable flight. The elevator to angle of attack, using dynamic inversion we need to find an 

overshoot value and settling time value between the selected in table 5 to determine a more subtle 

approach. With the integration of magnetic controls, we can then assess, and test new values used to 

optimize this control system.  

This chapter will be separated into three segments. First, we will select and determine what 

controller or magnetic device we can use to integrate into our control system, as well as determine 

what are the necessary parameters and values, to properly integrate the controller. Next, using the 

parameters discovered in the magnetic controller, we will first optimize the PID controllers by 

analyzing three different PID constant methods and determining which will best suit the magnetic 

controller design. These optimized constants will be used for both the elevator to pitch angle 

controls, as well as the aileron to roll angle control systems. Then, the LQR and dynamic inversion 

control system will then have magnetic controls implemented with improved gain parameters as 

well as the settling and overshoot times. Finally, we can analyze and discuss the results provided 

and see provide acumen on how else this can be implemented.  

3.2 Magnetic Controller devices 

  To begin with the optimization of the control system we have started, we will need to find 

the right controller that meets the requirements. As stated previously, these controllers need to 

provide a gain value to improve the LQR and dynamic inversion parameters of settling time and 

overshoot. Then it must be able to operate as a PID controller and we must choose which constant 

method is best for operation. This section will look at a selection of magnetic controllers that fit the 

criterion of the control system and will be chosen for testing. Magnetic controllers are made of two 

separate components, which are the actuators and the controller. Along with additional 

subcomponents, these two parts account for the user input into machine language for precise 

measurements and actions, which we will look at three specific categories:  

• Magnetic Bearing Controllers 
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• Permanent magnetic actuators with a mechanical controller 

• Variable reluctance actuators with mechanical controller 

3.2.1 Magnetic bearing controller analysis 

We can start by analyzing the magnetic bearing controller and how it works. These operate 

in a system which includes several independent components that work simultaneously in a 

feedback loop. For a proper example, we will use the Calentix insights magnetic bearing 

controller which provides multiple power and voltage ratings to accommodate for various 

machines.  

 
Figure 31: magnetic bearing controller relationship with sensors and actuators 

In the figure above we can see that a basic rotor and magnetic bearing system have an active 

magnetic bearing (AMB) which includes electromagnetic actuators and position sensors. These are 

then connected to the magnetic bearing controller (MBC) through cables, thus forming a complete 

AMB system. Key elements are contained int eh MBC such as the digital signal processor board 

(DSP), with the purpose of processing signals from the position sensors and then executes a control 

algorithm to stabilize the rotor. This image also shows that the DSP manages levitation logic, 

diagnostic functions and fault detection. There is also a power amplifier which translates DSP 

commands into electrical currents and then drives the coils. From this analysis we can see that the 

control system ensures precise motor positioning through electromagnetic force adjustments.  

Next, we will look at the feedback loop that is generated from the magnetic bearing 

controller, which is seen below: 
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Figure 32: basic operation and feedback of the magnetic bearing control loop 

The operations of this control system loop begin with the position sensors detecting rotor 

movement and then sends a voltage signal to the DSP in the MBC. From here the DSP determines 

the error between the actual rotor positions and the desired rotor positions, then calculates the 

corrective actions using a compensatory algorithm. The diagram also shows that the power amplifier 

convers the input command to current, which flows through the actuator coils to generate 

electromagnetic forces and stabilizes the rotors. From here, AMD systems generate both stiffness 

and damping forces to maintain rotor stability, compared to conventional bearings that rely on 

mechanical fluid forces. This frequent change of forces is often overlooked by the compensators 

transfer function, designed using a machines rotor dynamic model, which is then stored in the DSP’s 

flash memory. Lastly, additional machine specific data, such as fault logs and sensor calibration is 

saved in DSP memory for reliable and precise operation.   

For the simplicity of computations and calculations, the magnetic bearing controller we will 

use for this project is the Calnetix technologies insight 804 controller shown below.  
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Figure 33: Calnetix Insight 804 Controller 

This controller provides all the operational needs as stated above as well as exceeds 

requirements for controller integration with the size and cooling requirements needed for the 

aircraft. The specifications are listed in a table below: 

Table 7: voltage, current and dimension parameters of the Insight 804 

Insight 804 Parameters 

Input Voltage [VDC] 144 

Maximum Continuous current output [A] 3 

Amplifier current rating [A] 6 

Bus voltage [VDC] 144 

Cooling method  Cold Plate 

Dimensions [in] 10 × 8 × 3 

 

For this controller to be used in our aircraft control system, we will need a motor to operate 

the given commands. For this controller we used a DC servo motor by McMaster-Carr part number 

5082N33. This motor is used for small automation applications however, for the necessary 

calculations, we will only need two parameters of the motor, the shaft diameter (19 mm), and 

rotations per minute (3000 rpm). These parameters will be used to calculate the force this controller 

provides.  
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Figure 34: McMaster-Carr DC Servo motor PN 5082N33 

3.2.2 Permanent Magnetic Actuator analysis 

 This subsection will look at the linear magnetic actuator and determine what best suits the 

problem description. Linear magnetic actuators are advanced motion control devices that operate on 

electromagnetism, with greater precision, reliability and efficiency compared to the traditional 

mechanical system. Magnetic actuators consist of a stationary stator, and a moving translator where 

the electromagnetic interactions produce a linear force which enables smooth controlled movement.  

This is often categorized into two main types: permanent magnet actuators and variable reluctance 

actuators.  
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Figure 35: tubular permanent magnetic actuator 

Permanent magnet actuators offer a unique solution to control, since they are fixed magnets 

that provide a higher force density, as well as generate a steady magnetic field. This means that for 

the actuator to create motion, the electromagnetic coils need to modulate for the action to happen. 

The working principle of the actuator is driven by the interaction of the permanent magnet’s field 

with the electromagnetic field generated by the coil. This provides a more constant and smooth 

torque output due to the continuous presence of the magnetic field. This offers more power 

efficiency due to the permanent magnet that contributes to the force generation without additional 

current. This means that this actuator is commonly used in servo motors, brushless DC motors and 

precise control systems. For analyzing the dynamics of this system, we will look at the ORCA series 

of linear magnetic actuators, from Iris Dynamics, and specifically use the ORCA-6-48V for the high 

force precise position accuracy. 
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Figure 36: model of the ORCA-6-48V linear magnetic actuator 

This actuator meets the necessary specifications for operating motor controls for a given 

aircraft, most notably with position accuracies measuring in ranges of 150 micrometers and 

repeatable between 15 micrometers.  However, looking at the specifications we can see that the 

minimum supply voltage is around 12V and maximum of 60V, each providing different 

performance metrics at the different voltages and temperatures, which will be listed below: 
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Table 8: force, speed and power characteristics of the ORCA-6-48V 

Force, Power and Speed characteristics 

 Motor Temp (C) 12Vdd 24Vdd 48Vdd 60Vdd 

Max Force(N)  

 

20 

143 287 573 683 

Max Power (W) 102 408 1631 2023 

Max Force Duration(s) 175 44 11 8 

Fore Constant (Kf) 14.2 N/√W 

Max Force(N)  

 

70 

120 241 482 602 

Max Power (W) 87 346 1386 2165 

Max Force Duration(s) <1 

Fore Constant (Kf) 12.9 N/√W 

Max Speed (m/s) full range 0.7 1.4 2.8 3.6 

Force Accuracy (N) 

Force Repeatability (N) 

0.64 

0.1 

From this chart we can see that as the actuator reaches its maximum voltage capacity, the 

higher the force, power and speed of the actuation. Though it does perform worse at 70 degrees, at 

about 83% of its normal operating temperatures, the duration time will also decrease based on how 

much voltage is given to the motor. Aircraft tend to operate sea level atmosphere, where the 

temperature is considerably lower, the high temperature measurements can be viewed as negligible. 

This shows the speed at which these motors accept user input, the force at which they are applied, as 

well as the precision at which the motors can move to, are more than capable of operating at high 

stress conditions in the air. One issue that can be observed with the motors is the cooling capabilities 

which are shown below: 

 

Table 9: cooling characteristics of the ORCA-6-48V 

Cooling 

 

Continuous 

Power/Force 

Condition Power (W) Force (N) 

20 C ambient still air 34 75 

20 C ambient, single fan (10 CFM) 106 133 

20 C ambient, 2x 60 mm fans (39 CFM each) 139 153 

Under still conditions, ambient air can keep the controller at a stable temperature, however it 

will still take about 34 watts of power to maintain a stable temperature for operation conditions. 

This value only increases as there are more fans implemented, however after considering the 

operating conditions of an aircraft, the external temperatures of said aircraft bypass the cooling 

requirements needed, with the only drawback viewable on permanent magnetic actuators being the 

power required to actuate said motors.  
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3.2.3 Variable Reluctance Actuator analysis  

  Next, we are looking at the variable reluctance motor or VRA for short, which differs from 

the permanent magnet actuator where it uses no permanent magnets and relies on an electromagnet 

that changes its magnetic reluctance to generate motion.  The most common design seen is the 

stepper motor which can be seen below: 

 
Figure 37: variable reluctance actuator 

  This actuator works because it changes the reluctance of the magnetic circuit by aligning a 

ferromagnetic rotor or armature with the magnetic field. This provides a torque and force which is 

typically more non-linear and can suffer from cogging effects due to the reluctance variations. Due 

to the movement of the magnet, however, this requires a continuous electrical input to generate the 

required force, much like the stepper motor we viewed in the beginning. Additionally, variable 

reluctance actuators are often used in solenoid actuators, stepper motors, as well as simple on/off 

actions which is best for low-cost manufacturing. To look at precise specifications, we will look at 

the Moving magnet actuator 5536 from Magnetic Innovations.  
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Figure 38: Moving magnetic actuator model 5536  

This motor provides high precision and reliability. Due to the low power draw, this allows 

for more devices such as external position sensors and motion controllers to provide further 

precision for the provided input. The specifications for the motor are provided below: 

Table 10: characteristics of the Moving Magnet Actuator 5536 

5536 key Specifications 

Dimensions (mm) 55 x 36  

Stroke Length (mm) 8 

Peak Force (N) 140 

Continuous Force (N) 35 

Maximum Operating Voltage (VDC) 48 

Moving Mass (kg) 0.2 

From these characteristics we can see that the actuator can operate sufficiently in high 

vacuum environments as it ensures low outgassing and a contamination free environment. 

3.2.4 Magnetic Actuator and Controller Discussion 

There are many factors that determine the performance of these actuators such as coil design 

magnetic materials thermal management and bearing systems. Due to their numerous advantages, 

linear magnetic actuators are widely used across various industries. In automation, they provide 

precise positioning and high-speed motion control in manufacturing and material handling. In the 

medical field, they enable high-precision movement in surgical robots and diagnostic equipment. 

Additionally, transportation systems, such as magnetic levitation trains, utilize these actuators for 

efficient propulsion and guidance. The key benefits of linear magnetic actuators include reduced 

friction and wear, high accuracy, energy efficiency, and scalability, making them a preferred choice 

for applications requiring superior motion control solutions. As advancements continue, these 
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actuators are set to revolutionize various sectors by enhancing performance and reliability while 

minimizing maintenance needs. 

Based on the results provided and the measurements we were given, we can determine that 

the magnetic bearing controller best suits the longitudinal stability of the aircraft. This is due to the 

increased stability that the controller provides as well as the stiffness of the control input needed for 

the overall flight operation of the aircraft. As stated before, the stability of the aircraft can be 

optimized with the change in the gain parameter of the Simulink controller. This will also aid in 

reducing the time it takes for the aircraft to stabilize through the help of electromagnetic force 

adjustments. Then finally we are using permanent magnet actuators to improve the lateral 

directional stabilities. Aside from the compact form factor, this provides high precision and long-

term durability which is needed for lateral directional controls, but the smoothness of operation and 

precision allows for greater improvement of all controller actuations for the rudder, aileron and 

elevator controls needed for the aircraft. 

 

3.3 Controller Optimization Results 

With the specifications and data of the controller provided, we have all the necessary 

parameters needed from the magnetic controllers to improve our control systems. With the 

parameters set, we have determined that the magnetic bearing controller is best suited for the 

longitudinal controls of the Boeing 747 aircraft, and the permanent magnetic actuator is best suited 

for the lateral directional controls of the aircraft. Each of these controller parameters will be applied 

to gain parameters and matrices values, providing a change in the initial code which was optimized. 

3.3.1 Longitudinal Stability with Magnetic bearing controller Integration 

To start integrating the magnetic bearing controller for longitudinal stability, we need to find 

and correlate a relationship between the voltage, current and power to determine the force needed to 

improve the longitudinal performance of the aircraft. This is due to the parameters provided for the 

magnetic bearing controller showing only the voltage and current, meaning we will need to compute 

the applied force for the controller. We will start with the relationship between voltage, current and 

resistance: 

𝑉⃗ = 𝐼 ∙ 𝑅    (3.1) 

Where V is voltage measured in volts (vdc), I is current in ampere (A) and resistance 

measured in ohms (Ω).  This can then be converted to electrical power using this equation: 

𝑃𝑖𝑛 = 𝐼 ∙ 𝑉⃗    (3.2) 

We know that motors do some work which can be defined as how much power the motor 

provides, which can be defined as the torque and turning force of the motor, which can be defined as 

the equation for the power leaving the system: 

𝑃𝑜𝑢𝑡 =  𝜏 ∙ 𝜔⃗⃗    (3.3) 

Tau is the measurement of the torque in the system in newton meters, and omega, is the 

angular speed of the motor measured in radians per second. The angular speed can be computed into 

a cartesian measurement using the equation below: 
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𝜔⃗⃗ = 𝑟𝑝𝑚 ∙
2𝜋

60
    (3.4) 

From the output power equation, we can rearrange the equation to generate the torque 

needed for our controller, however there are additional steps needed to compute this value without 

error. Ideally the power generated based on the input should be the same as the power that comes 

out, however in real life, some of that energy is lost to heat in this conversion. For simplicity, we 

can assume that the output power is around 75% of the input power, denoted to 0.75 

𝑃𝑜𝑢𝑡 = 𝑃𝑖𝑛 ∙ 𝐸    (3.5) 

With all the equations needed, we can rearrange the equations to solve for the torque:  

𝜏 =  
𝐼∙𝑉∙𝐸∙60

𝑟𝑝𝑚∙2𝜋
   (3.6) 

𝜏 =  
3 ∙ 144 ∙ 0.75 ∙ 60

3000 ∙ 2𝜋
= 0.515 𝑁 ∙ 𝑚 

 

Finally, the force can be calculated by dividing the calculated torque over the radius of the 

provided motor.  

𝐹 =  
𝜏

𝑟
    (3.7) 

𝐹 =  
0.515 𝑁 ∙ 𝑚

0.019 𝑚
= 27.1 𝑁 

Now that we have a force provided from the magnetic bearing controller, we can integrate 

this force into our longitudinal stability controller parameters. To do this, we will integrate the 

provided force into the gain parameter by normalizing the force with the gain used in the previous 

simulation. We first implemented this with the elevator to angle of attack controller with the results 

below: 
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Figure 39: Longitudinal Controller AOA Response with magnetic bearing controller 

For this test the same reference signal was used with and angle of attack of five degrees, 

which was taken as a unit step function measuring at one second. We tracked the angle of attack 

reference signal using the dynamic inversion controller at sea level altitude as shown above. Next 

we used the same controller performances to yield the best terms for settling time and maximum 

overshoot. From here we plotted the best fit results in the state space response both in an open loop 

and closed loop. 
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Figure 40: 747 longitudinal state space system open loop response with magnetic bearing controller 

 
Figure 41: 747 longitudinal state space system closed loop response with magnetic bearing controller 
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Figure 42: 747 dynamic inversion elevator deflection with magnetic bearing controller 

When analyzing this controller, we can see that the closed loop response settles around 3.8 

seconds, which though has a longer settling time compared to the initial controller, does not 

overshoot from the reference angle. This is a good result for longitudinal stability as this allows for 

minimal disturbances and a gradual stabilization in the change of angle of attack. Next, we compare 

the open and closed loop response to see that the forward velocity remains unchanged, but the angle 

of attack, pitch angle, and pitch rate graphs have a slight improvement. With the angle of attack we 

see that the response does not overshoot compared to the initial simulation, as well as taking a 

slightly longer time to reach the desired angle of attack. Next the pitch angle compared to previous 

tests shows a sharp stop after the five-degree angle after two seconds, then gradually increases in a 

linear rate. In the new simulation we see that it gradually increases from a zero-degree angle of 

attack and after 1,5 seconds the angle increases over the course of time. Lastly the pitch rate of the 

initial simulation shows a sharp rate increase of up to eight degrees per second until the two second 

time period, drops back to 2 degrees per second after one seconds then slowly decrease in pitch rate 

over the course of seven seconds after reaching he desired angle. This result is changed to where 

there is no sharp stop then gradual decline in the pitch rate after approximately three seconds, where 

instead, the pitch rate reaches only six degrees per second, at  two seconds, drops to nearly two 

degrees per seconds after three seconds and gradually decrease to a minute negative pitch rate after 

10 seconds. As a result this shows an overall improvement to the longitudinal stability comparing 

the elevator to the angle of attack. 
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With the application of the magnetic bearing controller, we also have the characteristic 

response of the aileron to roll angle. This uses the same reference angle of five degrees, with the 

results plotted below: 

 
Figure 43: aileron to roll angle reference signal 
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Figure 44: step response of roll angle of aileron deflection 

 
Figure 45:impulse response of roll angle to aileron deflection 
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Figure 46: bode plot of the roll angle to aileron deflection 

From these results we see that the step, impulse and bode responses are the same as the 

previous simulation, however for this simulation the aircraft roll changes are improved, using two 

additional methods of PID control. For this plot we use the Zeiger-Nichols, the modified Ziegler-

Nichols and Tyreus-Luyben PID controller methods to determine which is best for the controller. 

 
Figure 47: change in aircraft roll angle over time using PID with the magnetic bearing controller 
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3.32 Lateral Directional Stability with Permanent Magnetic actuator Integration yielding results  

After implementing the magnetic bearing controller for the longitudinal stability controls, we 

are now integrating magnetic controls into the lateral directional stability controls. For these 

motions we are implementing the variable reluctance actuator to improve the controller’s design. 

Since we have the necessary parameters from our linear magnetic actuator, we can implement these 

into our LQR controller with our modified measurements. The results of the modified rudder to yaw 

angle controller can be seen below: 

 
Figure 48: reference signal of LQR response 
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Figure 49: state feedback closed loop response of 𝛿𝑟 to ψ with LQR with a permanent magnet actuator 

  
Figure 50: state feedback closed loop response of 𝛿𝑟 to ψ with LQR with a permanent magnet actuator 
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Figure 51: open loop response of 𝛿𝑟 to ψ angle with LQR with permanent magnet actuator 

 
Figure 52: open loop response of 𝛿𝑟 to ψ angle with LQR with permanent magnet actuator 
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Lastly, we have the aileron to pitch angle optimization programmed and simulated with the 

results displayed below: 

 

 
Figure 53: comparison of the closed loop LQR and state feedback with a permanent magnetic actuator 

Finally, using the same reference angle of five degrees, we will plot the comparison and results of 

the elevator to pitch rate control. For this simulation we used the Hagglund-Astrom method for PID 

using the same parameters as the optimized controller. However, to match the actuator specifications 

we changed one of the parameters to zero to simulate a fast actuation that would be inputted. 

 
Figure 54: pitch rate response to elevator angle with a permanent magnetic actuator. 
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In the image above, the reference signal is one degree in both positive and negative 

directions, and the response shows that it reached the desired target, then takes around ten seconds 

to return to zero. At almost three seconds we can see it overshoots the desired angle by 0.35 degrees, 

then oscillates back to 0.52 degrees after four seconds. This shows that there is a significant 

improvement over the initial simulation where there were larger overshoot measurements in the 

initial test, as well as the simulation not normalizing after around 10 seconds. Thus, this adjustment 

proves to be a greater improvement to the lateral directional aircraft controls. 

 

3.4 Discussion 

With the results of the controller displayed above with analysis in each control surface, this 

shows that we have successfully implemented the magnetic controllers and actuators onto a 

controller designed to operate for the Boeing 747 aircraft. This shows that aircraft that use magnetic 

components and controllers can have an optimized and more efficient control system that potentially 

can use less energy, provide a smother flight experience, as well as become a far more reliable 

control system than the current aircrafts supply. This magnetic controller was designed on top of the 

initial control system using direct actuator controls from the literature review. The controller uses 

PID, LQR, and dynamic inversion for each control surface then potentially optimizes said system to 

account for faster inputs and greater precision, thus we see how well these results stabilize under the 

improved input. From the implementation of magnetic motors, and permanent actuators, we see a 

drastic improvement to the stability times for each control surface, with some having a fifty-percent 

decrease in the overall stabilizing time. After further testing and generating the results, there were 

some points and additional information that should be addressed in this report. 

To start, we must keep in mind that the simulations and tests for this controller are done in a 

controlled environment to show that in theory, these controllers can work even for slight changes. 

This means that the controller has yet to be physically designed, pieced together and assessed in a 

lab environment. We may not know if these controllers can be used in modern aircraft, however this 

report shows that in theory it can happen. Additionally, we did these tests under sea level conditions, 

meaning that the parameters for the controller operating at 20,000 or 40,000 feet above sea level 

have not been conducted. Under additional research and physical assembly, these results may vary 

based on what parts are chosen, what type of controller is used, the programming language, and 

testing conditions. However, for now, this paper consists of the foundations of a controller with 

magnetic devices to be possible and potentially optimal for future use.  

The next topic that must be discussed is the potential usability of this controller, and what 

types of aircraft this controller would be best suited for. To start, this magnetic controller is designed 

with the intent to be used with the Boeing 747 aircraft, which is a commercial jet made for linear 

travel from one destination to another. For commercial aircraft there are minimal changes in 

direction or angular deflection often with the intent to carry passengers and cargo for long periods of 

time. Realistically, we can see that for commercial planes a controller with faster input registration 

could be optimal and beneficial, but wide-body aircraft like the Boeings 747, 767, 777 and 787 do 

not necessarily benefit from these parameters. Though this can reduce the amount of turbulence 

these aircraft can handle, this improvement can be negligible regarding commercial travel. 
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In a hypothetical situation, we could measure the controllability and optimize this controller with the 

parameters of a modern stealth, or fighter jet in mind, such as the Lockheed-Martin F-14, and or F-

35. However, due to the nature of these aircraft being top secret projects, obtaining the aircraft data 

for longitudinal and lateral directional derivatives of these aircraft would not be possible under any 

circumstances at college graduate level. As a result, using the Boeing 747 which was an aircraft 

initially released in 1968 was the optimal choice as it is still an aircraft in operation to this day.   

Lastly, one topic that was often addressed when completing this project was practical, is this 

magnetic controller? Our results show that this controller in the right conditions can be optimal and 

if not, faster than traditional controllers, yet we may not have all the information necessary to 

determine that. Stated previously, this report entails the theoretical controller design for an aircraft, 

so this may not consist of all the proper parts and components needed to create a physical controller, 

thus a weight can is not narrowed down for the necessary parts. For these parts to be determined, 

further research must be developed and tested to conclude these practical assessments and need to 

be comparable to the performance of other control systems. The cost of this magnetic controller can 

also be another factor in practicality and will be notably compared to a fly-by-wire control system 

which is considered one of the most cost-effective, reliable and light weight control solutions in the 

aircraft industry. This is also used in commercial aircraft as well as in the 747 which is the aircraft 

we based the controller on. Overall, with the performance improvement that a magnetic controller 

may provide to commercial aircraft and potentially defense aircraft, we can see that the practical 

uses for it may be limited due to the cost-effectiveness of the controller compared to other 

alternatives.  

3.5 Conclusions and Recommendations  

3.5.1 Conclusion  

  This project has studied the utilization and potential implementation of magnetic controllers 

and actuators in commercial aircraft. This project was designed and proposed with the motivation of 

optimizing the current state of modern aircraft controllers to operate at an accelerated rate to 

improve upon precision, accuracy, and safety. This project proposed the use of modified magnetic 

controllers to observe and inspect any advantages and feasibility the controller would have for 

modern aircraft.  

  Using Newtons equations laws, we derived the translational and rotational equations 

of motion including the necessary equations for dynamics and modeling. From here we derived the 

six degrees of freedom equations, then reviewed the aerodynamic and stability parameters, which 

were incorporated into the aircraft equations of motion. Using the perturbation model we then 

linearized the equations of motions to allow for the equations to be replicated in MATLAB to 

simulate the initial input conditions of the aircraft before integrating the controller. The full 

characteristics and assumptions of the equations of motion are listed and presented in this report. 

Before integrating the magnetic controller, we optimized the controller design to provide a standard 

for stability measurements of an aircraft These controllers were simplified to measure four main 

measurements: the aileron to roll angle with a proportional integral derivative (PID) controller, the 

rudder to yaw angle controller using a linear quadratic regulator (LQR), elevator to pitch angle with 
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a PID controller, and the elevator to angle of attack with a dynamic inversion controller. This was 

then detailed and plotted in the report. Upon optimizing the controller without magnetic controllers 

and actuators, we analyzed what parameters needed to be improved to meet the requirements for 

integrating the controller. From the analysis we then analyzed what types of magnetic controller best 

suit each type. The parameters and characteristics were labeled and listed in the report and 

determined what needs to be changed and added to improve the overall controller design to 

accommodate for these controllers. After integrating the parameters in the MATLAB code, we then 

plotted and presented the results of the magnetic implementation, showing the overall effectiveness 

of the controller. With the controller implementation we showcased an improved response time to 

the controller and faster stabilization time that a commercial aircraft will have with a new controller 

based on magnetic inputs. 

 With the analysis of the controller and optimization, this project provides a solid case as to 

implementing a prototype of magnetic controllers on an aircraft. This shows an effective solution for 

modern aircraft with traditional controls, which can provide a safe and efficient method of aircraft 

control.  

3.5.2 Recommendations 

  This project showcased a theoretical controller which can be implemented into modern day 

aircraft. This showed promising results that this can work, however there are some caveats to the 

results presented, and the complexity of implementing this controller in a physical system remains 

unknown. With some additional information written in the discussion, there is a list of possible areas 

and topics that can be investigated and addressed to potentially bring this controller into a feasible 

production: 

• Provide simulations for an aircraft above sea-level conditions, including 20,000 feet, and 

40,000 feet  

• Additional derivation for an aircraft with changes to the geometry 

• Wind tunnel testing of stability reaction and changes compared between fly-by-wire and 

newer controls 

• Physical tests, either small scale models or full-scale tests, for implementing magnetic 

controllers 

• Additional tests for implementing magnetic actuators control surfaces for bearing controllers 

and permanent magnet actuators 

• Design the controller with the intent of optimizing defense aircraft 

With these parameters implemented for improving this controller, there may be a chance to one 

day see an aircraft with magnetic controllers take flights. 
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Appendices  

Appendix A: Aircraft Dynamic Derivation 

Translational Equations of motion 

 
Assume:  

•  N Frame is the same as the E frame due to “Short Flight Time” 

• Apply Newtons Second Law: 

 

∑𝐹𝐵⃗⃗⃗⃗  ⃗ =  
𝐸𝑑

𝑑𝑡
(𝑚𝑉⃗𝐸 𝐵⁄ ) = 𝑚 ∙

𝐸𝑑

𝑑𝑡
(𝑉⃗⃗ 𝐸 𝐵⁄ ) + (𝜔⃗⃗⃗⃗ 𝐸 𝐵⁄ × 𝑉⃗⃗ 𝐸 𝐵⁄ ) 

Recall:        𝑉⃗⃗ 𝐸 𝐵⁄ = 𝑢̇𝑏̂𝑥 + 𝑣̇𝑏̂𝑦 + 𝑤𝑏̂𝑧 

𝑤⃗⃗ 𝐸 𝐵⁄ = 𝑃𝑏̂𝑥 + 𝑄𝑏̂𝑦 + 𝑅𝑏̂𝑧 

Thus,  ∑𝐹 = 𝑚 ∙

[
 
 
 
 

[

𝑈 𝑏𝑥̂
𝑉⃗ 𝑏𝑦̂

𝑊 𝑏𝑧̂

] + [
𝑏̂𝑥 𝑏̂𝑦 𝑏̂𝑧
𝑃 𝑄 𝑅
𝑈 𝑉⃗ 𝑊

]

]
 
 
 
 

 



69  

  

And  𝑚 ∙

[
 
 
 
 

[

𝑈 𝑏𝑥̂
𝑉⃗ 𝑏𝑦̂

𝑊 𝑏𝑧̂

] + [
𝑏̂𝑥 𝑏̂𝑦 𝑏̂𝑧
𝑃 𝑄 𝑅
𝑈 𝑉⃗ 𝑊

]

]
 
 
 
 

=  𝑏̂𝑥(𝑄𝑊 − 𝑅𝑉⃗) − 𝑏̂𝑦(𝑃𝑊 − 𝑅𝑈) + 𝑏̂𝑧(𝑃𝑉⃗ − 𝑄𝑈) 

Translational Equations of Motion (EOM):  {

𝑏̂𝑥: 𝐹𝑥 =  𝑚(𝑈 + 𝑄𝑊 − 𝑅𝑉⃗)  

𝑏̂𝑦: 𝐹𝑦 = 𝑚(𝑉⃗ + 𝑅𝑈 − 𝑃𝑊)

𝑏̂𝑧: 𝐹𝑧 =  𝑚(𝑊 + 𝑃𝑉⃗ − 𝑄𝑈)

 

Rotational Equations of Motion  

∑𝑀⃗⃗ =  
𝐸𝑑

𝑑𝑡
(𝐻⃗⃗ 

𝐸
𝐵
𝐵0
⁄

) =  
𝐵𝑑

𝑑𝑡
(𝐻⃗⃗ 

𝐸
𝐵
𝐵0
⁄

) + (𝜔⃗⃗𝐸 𝐵⁄ × 𝐻
𝐸

𝐵
𝐵0
⁄

) 

Where: 𝐻⃗⃗ 
𝐸

𝐵

𝐵0
⁄

= 𝐼 × 𝜔⃗⃗𝐸 𝐵⁄ = [

𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑥𝑦 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧𝑧

] [
𝑃
𝑄
𝑅
] 

With the diagonal values in the matrix canceling out:   

 𝐻⃗⃗ 
𝐸

𝐵

𝐵0
⁄

= (𝐼𝑥𝑥𝑃+𝐼𝑥𝑧𝑅)𝑏 𝑥 +(𝐼𝑦𝑦𝑄)𝑏 𝑦 +(𝐼𝑥𝑧𝑃+𝐼𝑧𝑧𝑅)𝑏 𝑧   

Thus:  ∑ 𝑀⃗⃗ 𝐵 = 
𝑩𝒅

𝒅𝒕
(𝑯⃗⃗⃗ 

𝑬
𝑩

𝑩𝟎
⁄

) + 𝝎⃗⃗⃗ 𝑬 𝑩⁄  × 𝐻⃗⃗ 
𝐸

𝐵

𝐵0
⁄

 

Where:  
𝑩𝒅

𝒅𝒕
(𝑯⃗⃗⃗ 

𝑬
𝑩

𝑩𝟎
⁄

) =  (𝑰𝒙𝒙𝑷 + 𝑰𝒙𝒛𝑹 )𝒃̂𝒙 + (𝑰𝒚𝒚𝑸 )𝒃̂𝒚 + (𝑰𝒙𝒛𝑷 + 𝑰𝒛𝒛𝑹 )𝒃̂𝒛 

And  𝝎⃗⃗⃗ 𝑬 𝑩⁄  × 𝐻⃗⃗ 
𝐸

𝐵

𝐵0
⁄

= [

𝑏̂𝑥 𝑏̂𝑦 𝑏̂𝑧
𝑃 𝑄 𝑅

𝐼𝑥𝑥𝑃 + 𝐼𝑥𝑧𝑅 𝐼𝑦𝑦 𝐼𝑥𝑧𝑃 + 𝐼𝑧𝑧𝑅

] 

Combining the terms we get the rotational equations of motion: 

{

𝒃̂𝒙: 𝑴𝒙 = 𝐼𝑥𝑥𝑃 + 𝐼𝑥𝑧𝑅 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅 + 𝐼𝑥𝑧𝑃𝑄

𝒃̂𝒚: 𝑴𝒚 = 𝐼𝑥𝑥𝑃 + 𝐼𝑥𝑧𝑅 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅 + 𝐼𝑥𝑧𝑃𝑄

𝒃̂𝒛: 𝑴𝒛 = 𝐼𝑥𝑥𝑃 + 𝐼𝑥𝑧𝑅 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅 + 𝐼𝑥𝑧𝑃𝑄

 

NASA Standard Euler Angles 

Ψ (Psi) – Yaw angle about 𝑒̂ 𝑧 

Θ (Theta) – Pitch angle about 𝑒̂ 𝑦 

Φ(Phi) – Roll angle about 𝑒̂ 𝑥 = 𝑏̂𝑥 
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  Since we know that 𝑒̂ 𝑥 =  𝑏̂𝑥, we can represent the relationship on a 2-dimensional plane:   

Thus the relations between angles can be summarized as: {
𝑒̂ 𝑥′ =  𝐶𝛹𝑒̂ 𝑥 + 𝑆𝛷𝑒̂ 𝑦
𝑒̂ 𝑦 = −𝑆𝛹𝑒̂ 𝑥 + 𝐶𝛷𝑒̂ 𝑦

 

With the angular relations simplified, we have our complete translational and rotational equations of 

motion, as well as the kinematic differential equations: 

Translational EOMS (Force Equations) 

−𝑚𝑔𝑆𝜃 + 𝑋 + 𝑋𝑇 = 𝑚(𝑈 + 𝑄𝑊 − 𝑅𝑉⃗)

𝑚𝑔𝐶𝜃 + 𝑌 + 𝑌𝑇 = 𝑚(𝑉⃗ + 𝑅𝑈 − 𝑃𝑊)

𝑚𝑔𝐶𝜃𝐶𝜙 + 𝑍 + 𝑍𝑇 = 𝑚(𝑊 + 𝑃𝑉⃗ − 𝑄𝑈)

 

Rotational Equations of Motion (Moment Equations) 

ℒ + ℒ𝑇 = 𝐼𝑥𝑥𝑃 + 𝐼𝑥𝑧𝑅 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅 + 𝐼𝑥𝑧𝑃𝑄

ℳ +ℳ𝑇 = 𝐼𝑦𝑦𝑄 + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑃𝑅 + (𝑅2 − 𝑃2)𝐼𝑥𝑧

𝒩 +𝒩𝑇 = 𝐼𝑥𝑧𝑃 + 𝐼𝑧𝑧𝑅 + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑃𝑄 − 𝐼𝑥𝑧𝑄𝑅

 

Recall that  𝑤⃗⃗ 𝐸 𝐵⁄ = 𝑃𝑏̂𝑥 + 𝑄𝑏̂𝑦 + 𝑅𝑏̂𝑧 which can also be expressed as 𝑤⃗⃗ 𝐸 𝐵⁄ = 𝛹 𝑒̂ 𝑧 + 𝜃𝑒̂ 𝑦 +

𝛷 𝑏̂𝑥 and can write the kinematic differential equations as below: 

[
𝑃
𝑄
𝑅
] = [

1 0 −sin 𝜃
0 cos𝜙 sin𝜙 cos 𝜃
0 − sin𝜙 cos 𝜃 cos𝜙

] [

𝜙

𝜃 

𝜓 
] 

  

 ex ey ez 

ex' CΨ SΦ 0 

ey' -SΨ CΦ 0 

ez' 0 0 1 
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Linearization of EOMs 

We can define the following sub notations as: 

Translational Velocities:  {
𝑈 =  𝑈1 + 𝑢̇
𝑉⃗ =  𝑉⃗1 + 𝑣̇
𝑊 = 𝑊1 + 𝑤

 Angular Velocities:  {
𝑃 =  𝑃1 + 𝑝
𝑄 =  𝑄1 + 𝑞
𝑅 = 𝑅1 + 𝑟

 

Euler Angles: {

𝛹 =  𝛹1 + 𝜓
𝛩 =  𝛩1 + 𝜃
𝛷 = 𝛷1 + 𝜙

 Aero Forces: {

𝑋 =  𝑋1 + 𝑓𝑥
𝑌 =  𝑌1 + 𝑓𝑦
𝑍 =  𝑍1 + 𝑓𝑧

 

Thrust Force: {

𝑋𝑇 = 𝑋𝑇1 + 𝑓𝑇𝑥
𝑌𝑇 = 𝑌𝑇1 + 𝑓𝑇𝑦
𝑍𝑇 = 𝑍𝑇1 + 𝑓𝑇𝑧

 Aero Moments: {
ℒ =  ℒ1 + ℓ

ℳ = ℳ1 +𝓂
𝒩 = 𝒩1 +𝓃

 

Thrust Moments: {

ℒ𝑇 = ℒ𝑇1 + ℓ𝑇
ℳ𝑇 = ℳ𝑇1 +𝓂𝑇

𝒩𝑇 = 𝒩𝑇1 +𝓃𝑇

 

 

Where the capital denotes the steady state term and the lowercase denotes the perturbed term.  

We will need the following trigonometric identities to linearize the EOMs: 

sin(𝑎 + 𝑏) =  sin 𝑎 cos 𝑏 + cos 𝑎 sin 𝑏
cos(𝑎 + 𝑏) =  cos 𝑎 cos 𝑏 − sin 𝑎 sin 𝑏

 

Small angle approximation: when angle a is immesurably small; {
cos 𝛼̇ ≈ 1
sin 𝑎  ≈ 𝑎
tan 𝑎 ≈ 𝑎

 where a is the angle 

in radians 

𝑢̇ : 

−𝑚𝑔𝑆𝜃 + 𝑋 + 𝑋𝑇 = 𝑚(𝑈 + 𝑄𝑊 − 𝑅𝑉⃗) 

−𝑚𝑔 sin(𝛩1 + 𝜃) + (𝑋1 + 𝑓𝑥) + ( 𝑋𝑇1 + 𝑓𝑇𝑥)

= 𝑚 ((𝑈1 + 𝑢̇ ) + (𝑄1 + 𝑞)(𝑊1 + 𝑤) − (𝑅1 + 𝑟)(𝑉⃗1 + 𝑣̇)) 

𝑚𝑠 sin𝛩1 cos 𝜃 + cos𝛩1 sin 𝜃 +𝑋1 + 𝑓𝑥𝑋𝑇1 + 𝑓𝑇𝑥 =  

𝑚(𝑈1 + 𝑢̇ + 𝑄1𝑊1 + 𝑄1𝑤 + 𝑞𝑊1 + 𝑞𝑤 + 𝑅1𝑉⃗1 + 𝑟𝑉⃗1 + 𝑣̇𝑅1 + 𝑟𝑣̇) 

Simplify sin 𝜃 = 𝜃, cos 𝜃 = 1, 𝑞𝑤 = 0 𝑟𝑣̇ = 0 
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From here we can simplify the equations even further 

−𝑚𝑔 sin𝛩1 −𝑚𝑔𝜃 cos𝛩1 + 𝑥1 + 𝑓𝑥 + 𝑋𝑇1 + 𝑓𝑇𝑥 

= 𝑚(𝑈1 + 𝑄1𝑊1 + 𝑅1𝑉⃗1) + 𝑚(𝑢̇ + 𝑄1𝑤 + 𝑞𝑊1 + 𝑟𝑉⃗1 + 𝑣̇𝑅1) 

Since −𝑚𝑔𝑆𝜃 + 𝑋 + 𝑋𝑇 = 𝑚(𝑈1 + 𝑄1𝑊1 + 𝑅1𝑉⃗1) in steady state conditions, we can cancel the 

component of the equation.  

Linearization Eq. 

−𝑚𝑔𝜃 cos𝛩1 + 𝑥1 + 𝑓𝑥 + 𝑋𝑇1 + 𝑓𝑇𝑥 = 𝑚(𝑢̇ + 𝑄1𝑤 + 𝑞𝑊1 + 𝑟𝑉⃗1 + 𝑣̇𝑅1)  

Straight and level Steady State flight conditions 

• No steady state lateral velocity (V1=0) 

• No steady state vertical velocity (W1=0)  

• No steady state roll angle (Φ1 = 0)  

• No steady state angular velocity (𝑃1 = 𝑄1 = 𝑅1 = Φ  1 = Θ 1 = Ψ 1 = 0)  

Apply Straight and level conditions (SS) to 𝑈  equations 

−𝑚𝑔𝜃 cos𝛩1 + 𝑥1 + 𝑓𝑥 + 𝑋𝑇1 + 𝑓𝑇𝑥 = 𝑚(𝑢̇ + 𝑄1𝑤 + 𝑞𝑊1 + 𝑟𝑉⃗1 + 𝑣̇𝑅1) 

Steady State Simplification:  −𝑚𝑔𝜃𝑐𝑜𝑠Θ1  + 𝑓𝑥 + 𝑓𝑇𝑥   =  𝑚(𝑢̇ )  

𝑤     𝑚𝑔𝐶𝜃 + 𝑌 + 𝑌𝑇 = 𝑚(𝑉⃗ + 𝑅𝑈 − 𝑃𝑊) 

𝑚𝑔 cos(𝛩1 + 𝜃) + (𝑌1 + 𝑓𝑦) + (𝑌𝑇1 + 𝑓𝑇𝑦)

= 𝑚 ((𝑉⃗1 + 𝑣̇) + (𝑅1 + 𝑟)(𝑈1 + 𝑢̇) − (𝑃1 + 𝑝)(𝑊1 + 𝑤)) 

𝑚𝑔𝑐𝑜𝑠(𝛩1) + 𝑌1 + 𝑌𝑇1 +  𝑓𝑦  +  𝑓𝑇𝑦 −𝑚𝑔𝜃𝑠𝑖𝑛(𝛩1)  

=  𝑚(𝑉⃗1 + 𝑣̇ + 𝑅𝑈1 + 𝑅1𝑢̇ + 𝑈1𝑟 – 𝑃1 𝑊1 − 𝑃1𝑤 −𝑊1𝑝) 

𝑚𝑔𝑐𝑜𝑠(𝛩1) + 𝑌1 + 𝑌𝑇1 + 𝑓𝑦 + 𝑓𝑇𝑦 −𝑚𝑔𝜃𝑠𝑖𝑛(𝛩1) 

𝑚𝑔(−𝜃 sin𝛩1) cos𝛷1 − 𝜙 sin𝛷 cos𝛩1 + 𝑓𝑧 = 𝑚(𝑤 − 𝑈1𝑞 − 𝑢̇𝑄1 + 𝑉⃗1𝑝 + 𝑣̇𝑃1) 

Steady State Simplification:  −𝑚𝑔𝜃 cosΘ1 + 𝑓𝑧 + 𝑓𝑇𝑧 = 𝑚(𝑤 + 𝑈1𝑞) 

𝑞     𝑚𝑔𝐶𝜃𝐶𝜙 + 𝑍 + 𝑍𝑇 = 𝑚(𝑊 + 𝑃𝑉⃗ − 𝑄𝑈) 
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−𝑚𝑔𝜃𝑐𝑜𝑠(𝛷1)𝑠𝑖𝑛(𝛩1) − 𝑚𝑔𝜙𝑐𝑜𝑠(𝛩1)𝑠𝑖𝑛(𝛷1) + 𝑓𝑧 + 𝑓𝑇𝑧 = 𝑚[𝑤˙ + 𝑃1𝑣̇ + 𝑝𝑉⃗1 − 𝑄1𝑢̇ − 𝑞𝑈1] 

𝑚𝑔𝑠𝑖𝑛(𝛩1) + 𝑍1 + 𝑍𝑇1 = 𝑚(𝑃1𝑉⃗1 − 𝑄1𝑈1) 

𝑚𝑔𝜃cos (𝛩1) + 𝑓𝑧 + 𝑓𝑇𝑧 = 𝑚(𝑤 + 𝑃1𝑣̇ + 𝑝𝑉⃗1 − 𝑄1𝑢̇ − 𝑞𝑈1) 

Steady State Simplification:  𝑚𝑔𝜃cos (𝛩1) + 𝑓𝑧 + 𝑓𝑇𝑧 = 𝑚(𝑤 + 𝑝𝑉⃗1 − 𝑞𝑈1) 

 

Φ     ℒ + ℒ𝑇 = 𝐼𝑥𝑥𝑃 + 𝐼𝑥𝑧𝑅 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄𝑅 + 𝐼𝑥𝑧𝑃𝑄 

𝐿1 + 𝑙 + 𝐿𝑇1 + 𝑙𝑇 = 𝐼𝑥𝑥𝑝 + 𝐼𝑥𝑧𝑟 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)(𝑄1 + 𝑞)(𝑅1 + 𝑟) + 𝐼𝑥𝑧(𝑃1 + 𝑝)(𝑄1 + 𝑞) 

𝐿1 + 𝑙 + 𝐿𝑇1 + 𝑙𝑇 = 𝐼𝑥𝑥𝑝 + 𝐼𝑥𝑧𝑟 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)(𝑄1𝑅1 + 𝑄1𝑟 + 𝑞𝑅1) + 𝐼𝑥𝑧(𝑃1𝑄1 + 𝑃1𝑞 + 𝑝𝑄1) 

𝐿1 + 𝐿𝑇1 = (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑄1𝑅1 + 𝐼𝑥𝑧𝑃1𝑄1 

𝑙 + 𝑙𝑇 = 𝐼𝑥𝑥𝑝 + 𝐼𝑥𝑧𝑟 + (𝐼𝑧𝑧 − 𝐼𝑦𝑦)(𝑄1𝑟 + 𝑞𝑅1) + 𝐼𝑥𝑧(𝑃1𝑞 + 𝑝𝑄1) 

Steady State Simplification:   𝑙 + 𝑙𝑇 = 𝐼𝑥𝑥𝑝 + 𝐼𝑥𝑧𝑟   

Θ    ℳ+ℳ𝑇 = 𝐼𝑦𝑦𝑄 + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑃𝑅 + (𝑅2 − 𝑃2)𝐼𝑥𝑧 

𝑀1 +𝑚 +𝑀𝑇1 +𝑚𝑇 = 𝐼𝑦𝑦𝑞 + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)(𝑃1 + 𝑝)(𝑅1 + 𝑟) + 𝐼𝑥𝑧((𝑅1 + 𝑟)2 − (𝑃1 + 𝑝)2) 

𝑚 +𝑚𝑇 = 𝐼𝑦𝑦𝑞 + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)(𝑃1𝑟 + 𝑝𝑅1) + 𝐼𝑥𝑧(2𝑅1𝑟 − 2𝑃1𝑝) 

Steady State Simplification:  𝑚 +𝑚𝑇 = 𝐼𝑦𝑦𝑞  

Ψ    𝒩 +𝒩𝑇 = 𝐼𝑥𝑧𝑃 + 𝐼𝑧𝑧𝑅 + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑃𝑄 − 𝐼𝑥𝑧𝑄𝑅 

𝑁1 + 𝑛 + 𝑁𝑇1 + 𝑛𝑇 = 𝐼𝑥𝑧𝑝 + 𝐼𝑧𝑧𝑟 + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)(𝑃1 + 𝑝)(𝑄1 + 𝑞) − 𝐼𝑥𝑧(𝑄1 + 𝑞)(𝑅1 + 𝑟) 

𝑛 + 𝑛𝑇 = 𝐼𝑥𝑧𝑝 + 𝐼𝑧𝑧𝑟 + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)(𝑃1𝑞 + 𝑝𝑄1) − 𝐼𝑥𝑧(𝑄1𝑟 + 𝑞𝑅1) 

Steady State Simplification:   𝑛 + 𝑛𝑇 = 𝐼𝑥𝑧𝑝 + 𝐼𝑧𝑧𝑟  

Linearized Force Equations: {

−𝑚𝑔𝜃𝑐𝑜𝑠Θ1  + 𝑓𝑥 + 𝑓𝑇𝑥   =  𝑚(𝑢̇ ) 

−𝑚𝑔𝜃 cos Θ1 + 𝑓𝑧 + 𝑓𝑇𝑧 = 𝑚(𝑤 + 𝑈1𝑞)

𝑚𝑔𝜃cos (𝛩1) + 𝑓𝑧 + 𝑓𝑇𝑧 = 𝑚(𝑤 + 𝑝𝑉⃗1 − 𝑞𝑈1)

 

 Linearized Moment Equations: {

𝑙 + 𝑙𝑇 = 𝐼𝑥𝑥𝑝 + 𝐼𝑥𝑧𝑟 
𝑚 + 𝑚𝑇 = 𝐼𝑦𝑦𝑞 

𝑛 + 𝑛𝑇 = 𝐼𝑥𝑧𝑝 + 𝐼𝑧𝑧𝑟 
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Dimensional Stability and Control Derivatives 

Aerodynamic Forces in X direction: 𝛥𝑋 = 𝑞1𝑠(−𝐶𝐷𝑢
𝑢

𝑈1
− 𝐶𝐷𝛼𝛼̇ − 𝐶𝐷𝛿𝑒𝛿𝑒) 

𝑋𝑢 =
1

𝑚

𝜕𝑋

𝜕𝑢̇
 

𝑢̇ =  −𝑞1𝑠𝐶𝐷𝑢
𝑢̇

𝑈1
 

𝐷1 = 𝑞1𝑠𝐶𝐷1𝐷1 

𝜕𝐷1
𝜕𝑢̇

= 2𝑞1𝑠𝐶𝐷1
1

𝑈1
  

Thus:   𝑋𝑢 =
1

𝑚
(−𝑞1𝑠

𝐶𝐷𝑢

𝑈1
− 2𝑞1𝑠𝐶𝐷1

1

𝑈1
) =

1

𝑚𝑈1
[𝑞 1𝑠(−𝐶𝐷𝑢 − 2𝐶𝐷1)  [1/s] 

𝑋𝛼 = 
1

𝑚

𝑑𝑥

𝑑𝛼̇
 

𝛼̇ = −𝑞1𝑠𝐶𝐷𝛼𝛼̇ 

𝐿1 = 𝑞1𝑠𝐶𝐿1, 𝑋 ≈ −𝐷 − 𝐿𝛼̇ 

Thus:  𝑋𝛼 =
1

𝑚

𝑑𝑥

𝑑𝑎
= 

1

𝑚
[𝑞 1𝑠(−𝐶𝐷𝛼 − 𝐶𝑙1)]   [(ft/s2)/Rad] 

𝑋𝛿𝑒 = 
1

𝑚

𝑑𝑥

𝑑𝛿𝑒̂
 

𝛿𝑒 = −𝑞1𝑠𝐶𝐷𝛿𝑒𝛿𝑒 

Thus:  𝑋𝛿𝑒 = 
1

𝑚

𝑑𝑥

𝑑𝛿𝑒̂
= −

1

𝑚
[𝑞⃗⃗ 1𝑠𝐶𝐷𝛿𝑒̂]   [(ft/s2)/Rad] 

Aerodynamic Forces in Z direction: 𝛥𝑍 = 𝑞1𝑠(−𝐶𝐿𝑢
𝑢

𝑈1
− 𝐶𝐿𝛼𝛼̇ − 𝐶𝐿𝛿𝑒𝛿𝑒 − 𝐶𝐿𝛼 

𝛼 𝑐

2𝑈1
) 

𝑍𝑢 =
1

𝑚

𝜕𝑍

𝜕𝑢̇
 

𝑢̇ =  −𝑞1𝑠𝐶𝐷𝑢
𝑢̇

𝑈1
 

𝐿1 = 𝑞1𝑠𝐶𝐿1 

𝜕𝐿1
𝜕𝑢̇

= 2𝑞1𝑠𝐶𝐿1
1

𝑈1
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Thus:  𝑍𝑢 = 
1

𝑚𝑈1
[𝑞⃗⃗ 1𝑠(−𝐶𝑙𝑢̇ − 2𝐶𝑙1)]    [1/s] 

𝑍𝛼 =
1

𝑚

𝜕𝑍

𝜕𝛼̇
 

𝛼̇ = −𝑞1𝑠𝐶𝐿𝛼𝛼̇ 

  𝐷1 = 𝑞1𝑠𝐶𝐷1𝐷1 and 𝑍 ≈ −𝐿 − 𝐷𝛼̇ 

𝑍𝛼 = 
1

𝑚
[𝑞⃗⃗ 1𝑠(−𝐶𝑙𝛼̇ − 𝐶𝐷𝑙)]   [(ft/s2)/Rad] 

𝑍𝛿𝑒 =
1

𝑚

𝜕𝑍

𝜕𝛿𝑒̂
 

  𝛿𝑒 = −𝑞1𝑠𝐶𝐿𝛿𝑒𝛿𝑒 

𝑍𝛿𝑒 = 
−1

𝑚
𝐶𝑙𝑒𝑞 1𝑠 

𝑍𝛼 =
1

𝑚

𝜕𝑍

𝜕𝛼̇ 
 

𝛼̇ =
1

2

𝑞1𝑠𝑐𝐶𝐿𝛼 
𝑈1

 

Thus: 𝑍𝛼 = 
−𝑞⃗ 1𝑆𝑐 

2𝑚𝑢1
𝐶𝑙𝛼       

 [(ft/s2)/Rad] 

Aerodynamic Pitching Moment:  𝛥𝑀 = 𝑞1𝑠𝑐 

𝑀𝑢 = 
1

𝐼𝑦𝑦

𝜕𝑀

𝜕𝑢̇
 

𝑢̇ =  𝑞1𝑠𝐶𝑀𝑢

𝑢̇

𝑈1
 

𝑀1 = −𝑞1𝑠𝐶𝑀1
 𝑎𝑛𝑑 

𝜕𝑀1

𝜕𝑢̇
= 2𝑞1𝑠𝐶𝑀1

1

𝑈1
  

Thus:  𝑀𝑢 = 
1

𝐼𝑦𝑦𝑢1
[𝑞 1𝑠𝑐 (𝐶𝑚𝑢

+ 2𝐶𝑚𝑙
)]       

 [rads/s2/ft/s] 

𝑀𝛼 = 
1

𝐼𝑦𝑦

𝜕𝑀

𝜕𝛼̇
  

𝛼̇ =  𝑞1𝑠𝐶𝑀𝛼
𝛼̇ 
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Thus: 𝑀𝛼 = 
𝑞⃗ 1𝑠𝑐 

𝐼𝑦𝑦
𝐶𝑀𝛼

      [rads/s2/rad] 

𝑀𝛼 = 
1

𝐼𝑦𝑦

𝜕𝑀

𝜕𝛼 
= 

𝑞⃗ 1𝑠𝑐2
⃗⃗ ⃗⃗ 

2𝐼𝑦𝑦𝑢1
𝐶𝑀𝛼 

   [rads/s2/rad/s] 

𝑀𝑞 = 
1

𝐼𝑦𝑦

𝜕𝑀

𝜕𝑞
 

𝑞 =  𝑞1𝑠𝑐𝐶𝑀𝑞

𝑞𝑐

𝑈1
 

Thus:  𝑀𝑞 =
𝑞⃗ 1𝑠𝑐2

⃗⃗ ⃗⃗ 

2𝐼𝑦𝑦𝑢1
𝐶𝑀𝑞

       

 [rads/s2/rad/s] 

𝑀𝛿𝑒 =
1

𝐼𝑦𝑦

𝜕𝑀

𝜕𝛿𝑒̂
= 

𝑞⃗⃗ 1𝑠𝑐⃗ 

𝐼𝑦𝑦
𝐶𝑀𝛿𝑒̂

   [rads/s2/rad] 

 

Longitudinal Linearized Perturbation Equations for straight level flight with constant thrust 

{
  
 

  
 

𝑢̇ =  𝑋𝑢𝑢̇ + 𝑋𝛼𝛼̇ + 𝑋𝛿𝑒𝛿𝑒̂ − 𝑔𝜃𝑐𝑜𝑠𝛩1

𝛼̇ =  𝑞 + 𝑍𝑢𝑢̂̇ + 𝑍𝛼𝛼̇ + 𝑍𝛿𝑒𝛿𝑒̂ + 𝑍𝛼 
𝑑𝛼̇

𝑑𝑡 
+ 𝑍𝑞𝑞̂ − 𝑔𝜃𝑠𝑖𝑛𝛩1

𝑞 =  𝑀𝑢𝑢̂̇ + 𝑀𝛼𝛼̇ +𝑀𝛿𝑒𝛿𝑒̂ +𝑀𝛼 

𝑑𝛼̇

𝑑𝑡 
+ 𝑀𝑞𝑞̂

𝜃 =   𝑞

 

For steady flight, assume: 𝑍𝛼 = 𝑍𝑞 = 0;Θ1 = 0 substitute terms: 

{
  
 

  
 

𝑢̇ =  𝑋𝑢𝑢̇ + 𝑋𝛼𝛼̇ + 𝑋𝛿𝑒𝛿𝑒̂ − 𝑔𝜃𝑐𝑜𝑠𝛩1

𝛼̇ =  𝑞 + (
𝑍𝑢
𝑢̇1
) 𝑢̂̇ + (

𝑍𝛼
𝑢̇1
) 𝛼̇ + (

𝑍𝛿𝑒
𝑢̇1

) 𝛿𝑒̂

𝑞 =  𝑀𝑢𝑢̂̇ + 𝑀𝛼𝛼̇ +𝑀𝛿𝑒𝛿𝑒̂ + 𝑀𝛼 (
𝑍𝑢𝑢̂̇ + 𝑍𝛼𝛼̇ + 𝑍𝛿𝑒𝛿𝑒̂ + (1 + 𝑍𝑞)𝑞̂

1 − 𝑍𝛼 
)
𝑑𝛼̇

𝑑𝑡 
+ 𝑀𝑞𝑞̂

𝜃 =   𝑞

 

Thus: 

[

𝑢̇ 
𝛼̇ 
𝑞 

𝜃 

] =

[
 
 
 
 
 

𝑋𝑢 𝑋𝛼 0 −𝑔
𝑍𝑢
𝑈1

𝑍𝛼
𝑈1

1 0

(𝑀𝑢 +
𝑀𝛼 𝑍𝑢
𝑈1

) (𝑀𝛼 +
𝑀𝛼 𝑍𝑢
𝑈1

) 𝑀𝑞 +𝑀𝛼 0

0 0 1 0 ]
 
 
 
 
 

[

𝑢̇
𝛼̇
𝑞
𝜃

] +

[
 
 
 
 
 

𝑋𝛿𝑒
𝑍𝛿𝑒
𝑈1

𝑀𝛿𝑒 +
𝑀𝛼 𝑍𝛿𝑒
𝑈1

0 ]
 
 
 
 
 

𝛿𝑒 
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In State Space: 𝑥  = 𝐴𝑥 + 𝐵𝑢⃗̇   State equation 

 𝑦 = 𝐶𝑥 + 𝐷𝑢⃗̇   Output Equation 

Lateral Directional Dynamics and Control 

𝑌𝛿𝛿𝑎𝛿𝑎 + 𝑌𝛿𝑟𝛿𝑟 = 𝑈1𝛽 − 𝑌𝛽𝛽 − 𝑌𝑝𝑝 + 𝑈1𝑟 − 𝑌𝑟 − 𝑔𝜃𝑐𝑜𝑠𝛩1

 𝑝 +
𝐼𝑥𝑧
𝐼𝑥𝑥

𝑟 −  𝐿𝛽 − 𝐿𝑝𝑝 − 𝐿𝑟𝑟 = 𝐿𝛿𝑎𝛿𝑎 + 𝐿𝛿𝑟𝛿𝑟

𝑟 +
𝐼𝑥𝑧
𝐼𝑧𝑧

𝜙 − 𝑁𝑝𝑝 − 𝑁𝛽𝛽 − 𝑁𝑟𝑟 =  𝑁𝛿𝑎 + 𝑁𝛿𝑟𝛿𝑟

 

Solve for 𝑝  in the second equation 

 𝑝 =
−𝐼𝑥𝑧
𝐼𝑥𝑥

𝑟 +  𝐿𝛽𝛽 + 𝐿𝑝𝑝 + 𝐿𝑟𝑟 + 𝐿𝛿𝑎𝛿𝑎 + 𝐿𝛿𝑟𝛿𝑟 

Substitute 𝑝  into the third equation 

𝑟 +
𝐼𝑥𝑧
𝐼𝑧𝑧

(
−𝐼𝑥𝑧
𝐼𝑥𝑥

𝑟 +  𝐿𝛽𝛽 + 𝐿𝑝𝑝 + 𝐿𝑟𝑟 + 𝐿𝛿𝑎𝛿𝑎 + 𝐿𝛿𝑟𝛿𝑟) − 𝑁𝑝𝑝 − 𝑁𝛽𝛽 − 𝑁𝑟𝑟 =  𝑁𝛿𝑎 + 𝑁𝛿𝑟𝛿𝑟 

𝑟 =
𝐼𝑥𝑧
𝐼𝑧𝑧

(
−𝐼𝑥𝑧
𝐼𝑥𝑥

) 𝑟 −
𝐼𝑥𝑧
𝐼𝑥𝑥

 𝐿𝛽𝛽 −
𝐼𝑥𝑧
𝐼𝑥𝑥

𝐿𝑝𝑝 −
𝐼𝑥𝑧
𝐼𝑥𝑥

 𝐿𝛿𝑟𝛿𝑟 −
𝐼𝑥𝑧
𝐼𝑥𝑥

𝐿𝛿𝑎𝛿𝑎 + 𝑁𝛽𝛽 + 𝑁𝑝𝑝 + 𝑁𝑟𝑟 + 𝑁𝛿𝑎

+ 𝑁𝛿𝑟𝛿𝑟   

For conventional aircraft we know that 
𝐼𝑥𝑧

𝐼𝑥𝑥
 &

𝐼𝑥𝑧

𝐼𝑧𝑧
 are negligible 

Thus:  

𝑟 =  𝑁𝛽𝛽 + 𝑁𝑝𝑝 + 𝑁𝑟𝑟 + 𝑁𝛿𝑎 + 𝑁𝛿𝑟𝛿𝑟   

𝑝 =  𝐿𝛽𝛽 + 𝐿𝑝𝑝 + 𝐿𝑟𝑟 + 𝐿𝛿𝑎𝛿𝑎 + 𝐿𝛿𝑟𝛿𝑟 

{
 
 

 
 

𝜙 = 𝑝
 𝑝 =  𝐿𝛽𝛽 + 𝐿𝑝𝑝 + 𝐿𝑟𝑟 + 𝐿𝛿𝑎𝛿𝑎 + 𝐿𝛿𝑟𝛿𝑟

𝛽 =  
𝑔 cos 𝜃

𝑢̇1
𝜙 + 𝑌𝑝𝑝 + 𝑌𝛽𝛽 + (𝑌𝑟 − 𝑈1)𝑟 + 𝑌𝛿𝛿𝑎𝛿𝑎 + 𝑌𝛿𝑟𝛿𝑟

𝜓 = 𝑟

 

[
 
 
 
 
𝜙 

𝑝 

𝛽 

𝜓 ]
 
 
 
 

=

[
 
 
 
 
 

0 1 0 0 0
0 𝐿𝑃 𝐿𝛽 𝐿𝑟 0

𝑔 cos 𝜃

𝑢̇1

𝑌𝑝

𝑢̇1

𝑌𝛽

𝑢̇1

𝑌𝑟
𝑢̇1

− 1 0

0 𝑁𝑝 𝑁𝛽 𝑁𝑟 0

0 0 0 1 0]
 
 
 
 
 

[

𝜙
𝑝
𝛽
𝜓

] +

[
 
 
 
 
0 0
𝐿𝛿𝑟 𝐿𝛿𝛼
𝑌𝛿𝑟
𝑢̇1

𝑌𝛿𝛼
𝑢̇1

0 0 ]
 
 
 
 

[
𝛿𝑟
𝛿𝛼
 ] 
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State space to transfer function 

Given a continuous time, linear time variant system of the equations is in the form: 

 {𝑥 
 = 𝐴𝑥 + 𝐵𝑢⃗̇ 
𝑦 = 𝐶𝑥 + 𝐷𝑢⃗̇ 

 
State equation with intial condition 𝑥 (𝑡0)= 𝑥 0

𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛
 

𝐼[𝑥 ] = 𝐼[𝐴𝑥 + 𝐵𝑢⃗̇ ] = 𝑠𝑋(𝑠) − 𝑥(𝑡0) = 𝐴𝑋(𝑠) + 𝐵𝑈(𝑠) 

𝑠𝑋(𝑠) − 𝐴𝑋(𝑠) =  𝑋0 + 𝐵𝑈(𝑆) =  
(𝑠𝐼 − 𝐴)𝑋(𝑠)

(𝑠𝐼 − 𝐴)
=  

𝑋0 + 𝐵𝑈(𝑠)

(𝑠𝐼 − 𝐴)
 

𝑋(𝑠) = (𝑠𝐼 − 𝐴)−1(𝑋0 + 𝐵𝑈(𝑠)) 

Additionally,  

𝐼[𝑦] = 𝐼[𝐶𝑥 + 𝐷𝑢̇] = 𝑌(𝑠) = 𝐶𝑋(𝑠) + 𝐷𝑈(𝑠) 

Substitute X(S) for the equation above: 

𝑌(𝑠) = 𝑐(𝑠𝐼 − 𝐴)−1(𝑋0 + 𝐵𝑈(𝑠)) + 𝐷𝑈(𝑠) 

Assume x0= 0 and D = 0 

𝑌(𝑠) = 𝑐(𝑠𝐼 − 𝐴)−1(𝐵𝑈(𝑠)) 

Finally:  

𝑌(𝑠)

𝑈(𝑠)
=   𝐶(𝑠𝐼 − 𝐴)−1𝐵 
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Appendix B: Aileron to Roll Angle Simulation CODE 

clc; clear all; close all; 

g = 32.17405; % [ft/s^2] Earth gravitational acceleration                 

h = 0; % [ft] sea level altitude                       

U_1 = 221; % [ft/s]                

X_u = -0.0433; % [1/s]               

X_alpha = 11.4378; % [ft/s^2]             

X_delta_e = 0; % [ft/s^2]             

Z_u = -0.272; % [1/s]               

Z_alpha = -108.0542; % [ft/s^2]                              

Z_delta_e = -6.5565; % [ft/s^2]  

M_u = 0; % [1/ft/s] 

M_alpha = -0.414; % [1/s^2] 

M_alphadot = -0.0582;% [1/s] 

M_q = -0.3774; % [1/s] 

M_delta_e = -0.3997; % [1/s^2] 

theta1 = 0; 

L_p = -0.9871; 

L_beta = -1.2461; 

L_r = 0.3834; 

L_delta_r = 0; 

L_delta_a = 0.235; 

Y_p = 0; 

Y_beta = -19.664; 

Y_r = 0; 

Y_delta_r = 3.26; 

Y_delta_a = 0; 

N_p = -0.1441; 

N_beta = 0.2694; 

N_r = -0.2338; 

N_delta_r = -0.1655; 

N_delta_a = 0.0122; 

%-------------------------------------------------------------------------- 

% Longitudinal Open-Loop State-Space Model 

A_long = [X_u, X_alpha, 0, -g;  

          Z_u/U_1, Z_alpha/U_1, 1, 0;  

          M_u + (M_alphadot*Z_u)/U_1, M_alpha + (M_alphadot*Z_alpha)/U_1,... 

          M_q + M_alphadot, 0;  

          0, 0, 1, 0]; 

B_long = [X_delta_e; Z_delta_e/U_1; M_delta_e + ... 
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         (M_alphadot*Z_delta_e)/U_1; 0]; 

C_long = [1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]; 

D_long = 0; 

OL_long = ss(A_long,B_long,C_long,D_long); 

damp(OL_long) 

co_long = rank(ctrb(A_long,B_long)) 

% Lateral/Directional Open-Loop State-Space Model 

A_ld = [0, 1, 0, 0, 0;  

    0, L_p, L_beta, L_r, 0;  

    (g*cos(theta1))/U_1, Y_p/U_1, Y_beta/U_1, (Y_r/U_1)-1, 0;  

    0, N_p, N_beta, N_r, 0;  

    0, 0, 0, 1, 0]; 

B_ld = [0, 0;  

    L_delta_r, L_delta_a;  

    Y_delta_r/U_1, Y_delta_a/U_1; 

    N_delta_r, N_delta_a;  

    0, 0]; 

C_ld = [1, 0, 0, 0, 0; 

    0, 1, 0, 0, 0; 

    0, 0, 1, 0, 0; 

    0, 0, 0, 1, 0; 

    0, 0 ,0, 0, 1]; 

D_ld = [0,0;0,0;0,0;0,0;0,0]; 

OL_ld = ss(A_ld,B_ld,C_ld,D_ld); 

tf(OL_ld) 

damp(OL_ld) 

co_latdir = rank(ctrb(A_ld,B_ld)) 

% 

% From the damping characteristics of the lateral-directional state-space 

% system, we find that the system is not stable. There exists a pole at the 

% origin, and a positive real pole.  

% 

% The rank of the controllability matrix indicates that the  

% lateral-directional system consisting of five state variables is fully  

% controllable. 

%-------------------------------------------------------------------------- 

 

C_ld_roll = zeros(5,5); 

C_ld_roll(1,1) = 1; 

 

latsys = ss(A_ld,B_ld,C_ld_roll,D_ld); 
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figure(1) 

bode(latsys(1,1),'b'); 

title('747 Frequency Response for \phi(s)/\delta_a(s)'); 

set(findall(gcf,'type','line'),'linewidth',2); 

set(gcf,'color','w'); 

 

tfinal = 60; 

figure(2) 

impulse(latsys(1,1),tfinal,'b'); 

title('747 Impulse Response for \phi(s)/\delta_a(s)'); 

set(findall(gcf,'type','line'),'linewidth',2); 

set(gcf,'color','w'); 

 

 

figure(3) 

step(latsys(1,1),tfinal,'b'); 

title('747 Step Response for \phi(s)/\delta_a(s)'); 

set(findall(gcf,'type','line'),'linewidth',2); 

set(gcf,'color','w'); 

%% Aileron Deflection to Roll Closed Loop Controller 

 

C_ld_roll = [1 0 0 0 0]; 

 

D_ld = [0,0]; 

 

[num_tf_da2phi,den_tf_da2phi] = ss2tf(A_ld,B_ld,C_ld_roll,D_ld,2) 

latsys = ss(A_ld,B_ld,C_ld_roll,D_ld); 

 

tfinal = 40; % [sec] 

 

Ku = 27.1/6.5; 

Tu = 7.226; 

 

open_system('b747_da2roll.slx'); 

 

%% Ziegler-Nichols 

Ti = 0.5*Tu; 

Td = 0.125*Tu; 

Kp = 0.6*Ku; % Proportional gain 

Ki = Kp/Ti; % Integral gain 

Kd = Kp*Td; % Derivative gain 
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output_zn = sim('b747_da2roll.slx'); 

 

%Modified Ziegler-Nichols 

Ti = 0.5*Tu; 

Td = (1/8)*Tu; 

Kp = 0.2*Ku; % Proportional gain 

Ki = Kp/Ti; % Integral gain 

Kd = Kp*Td; % Derivative gain 

output_modzn = sim('b747_da2roll.slx'); 

 

%%Tyreus-Luyben 

Ti = 2.2*Tu; 

Td = Tu/6.3; 

Kp = Ku/2.2; 

Ki = Kp/Ti; % Integral gain 

Kd = Kp*Td; % Derivative gain 

output_tl = sim('b747_da2roll.slx'); 

 

figure(7) 

plot(output_zn.phi.time(:,1),output_zn.phi.signals.values(:,1),'b') 

hold on 

plot(output_modzn.phi.time(:,1),output_modzn.phi.signals.values(:,1),'r') 

hold on 

plot(output_tl.phi.time(:,1),output_tl.phi.signals.values(:,1),'g') 

hold on 

ref_signal = output_tl.ref.getElement(1); 

time = ref_signal.Values.Time; 

values = ref_signal.Values.Data; 

plot(time, values, 'k--') 

legend('Ziegler-Nichols','Modified Ziegler-Nichols', 'Tyreus-Luyben','Reference') 

xlabel('time [s]'); 

ylabel('\phi [deg]'); 

title('Aircraft Roll'); 

set(gca,'fontsize',12); 

set(findall(gcf,'type','line'),'linewidth',3); 

set(gcf,'color','w'); 

%% reference signal 

% Extract reference signal from Dataset 

ref_signal = output_tl.ref.getElement(1);  % Adjust index if needed 
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% Extract time and values 

time = ref_signal.Values.Time; 

values = ref_signal.Values.Data; 

 

% Plot the signal' 

figure() 

plot(time, values, 'k--') 

xlabel('Time (s)') 

ylabel('\phi [deg]') 

title('Reference Signal Plot') 

grid on 

 

Appendix C: Rudder to Yaw Angle Simulation CODE  

% AE295 Project 

%% 747 Longitudinal Data Sea Level 

g = 32.17405; % [ft/s^2] Earth gravitational acceleration                 

h = 0; % [ft] sea level altitude                       

U_1 = 221; % [ft/s]                

X_u = -0.0433; % [1/s]               

X_alpha = 11.4738; % [ft/s^2]             

X_dele = 0; % [ft/s^2]             

Z_u = -0.2720; % [1/s]               

Z_alpha = -108.0542; % [ft/s^2]                              

Z_dele = -6.5565; % [ft/s^2]  

M_u = 0.0001; % [1/ft/s] 

M_alpha = -0.4140; % [1/s^2] 

M_alphadot = -0.0582;% [1/s] 

M_q = -0.3774; % [1/s] 

M_dele = -0.3997; % [1/s^2] 

%% 747 Lateral Data Sea Level 

Phi_1 = 0; 

L_p = -0.9871 % [1/s] 

L_beta = -1.2461; % [1/s^2] 

L_r = 0.3834; % [1/s] 

L_delr = 0;% [1/s^2] 

L_dela = 0.235; % [1/s^2] 

Y_p = 0; % [ft/s] 

Y_beta = -19.6694; % [ft/s^2] 

Y_r = 0; % [ft/s] 
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Y_delr = 3.26; % [ft/s^2] 

Y_dela = 0;  % [ft/s^2] 

N_p = -0.1441; % [1/s] 

N_beta = 0.2694; % [1/s^2] 

N_r = -0.2338; % [1/s] 

N_delr = -0.1655; % [1/s^2] 

N_dela = 0.0122; % [1/s^2] 

%% Longitudinal Open-Loop State-Space Model 

A_long= [X_u, X_alpha, 0, -g; Z_u/U_1, Z_alpha/U_1, 1, 0;... 

    (M_u + M_alphadot*Z_u/U_1),... 

    (M_alpha + M_alphadot*Z_alpha/U_1), (M_q + M_alphadot), 0;... 

    0, 0, 1, 0]; 

B_long= [X_dele; Z_dele/U_1; (M_dele + M_alphadot*Z_dele/U_1); 0]; 

C_long_pr= [0, 0, 1, 0]; % third one is q, the pitch rate 

D_long= zeros(size(C_long_pr,1),size(B_long,2)); 

OL_long = ss(A_long,B_long,C_long_pr,D_long); 

damp(OL_long) 

co_long = rank(ctrb(A_long,B_long)); 

s= tf("s"); 

[n_dele2q_Full, d_dele2q_Full]= ... 

    ss2tf(A_long,B_long,C_long_pr,D_long); 

dele2q_Full= tf(n_dele2q_Full, d_dele2q_Full); 

%% Cohen Coon 

% https://www.mathworks.com/matlabcentral/fileexchange/ 

% 46864-automatic-pid-tuning-zip) 

G = dele2q_Full; 

s = tf([1 0],1); 

t1 = 0:0.00001:50; 

[y,t] = step(G,t1); 

y2p = impulse(G*s,t); 

n = length(y2p); 

K = y(length(y)); 

for k = 2:n-1 

      if( ( (y2p(k) <= 0) && (y2p(k+1) > 0) ) || ( (y2p(k) >= 0) && (y2p(k+1) < 0) ) )  

         p = k+1; % save inflection point 

         Mx = t(p); 

         My = y(p); 

         break 

      end 

end     
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if ((y(p)- y(p-1)) < (y(p+1)-y(p)))  

    Mx0 = double(t(p-1)); 

    My0 = double(y(p-1)); 

else     

    Mx0 = double(t(p+1)); 

    My0 = double(y(p+1)); 

end     

m = (My-My0)/(Mx-Mx0); 

t1 = Mx - My / m; 

[y2 i] = min(abs(y-0.63*K)); 

B = t(i); 

L = (t1); 

T = B-L; 

a = K*L/T; 

Kp = (1.5/a)*(1+0.18*T/(1-T)); 

Ti = L*(2.5-2*T)/(1-0.39*T); 

Td = (0.37-0.37*T)*L/(1-0.81*T); 

open_system("AE246Project.slx"); 

CohenCoon= sim("AE246Project.slx"); 

%% Hagglund and Astrôm 

% https://www.mathworks.com/matlabcentral/fileexchange/ 

% 46864-automatic-pid-tuning-zip) 

s = tf([1 0],1); 

[Gm, Pm, Wgm, Wpm] = margin(G); 

if ((Gm == Inf)||(Wgm == Inf)||(Gm == 0)||(Wgm == 0)) 

    p = 1/(s+1e-6); 

    [Gm Pm Wgm Wpm] = margin(G/s);     

    if ((Gm == Inf)||(Wgm == Inf)) 

         [Gm Pm Wgm Wpm] = margin(G/p^2);     

    end 

end 

rP = Gm; 

phiP = Pm*pi/180; 

w = Wpm; 

% Hagglund and Astrôm, 1988 

phiS = -1.0000001; 

rS = .1742356660; 

phiR = phiS - phiP; 

rR = rS/rP; 

% Friman and Walter, 1996   

Kp = rR*cos(phiR); 



86  

  

Ti = (2/w)*(tan(phiR) + sqrt(1+tan(phiR)^2)); 

Td = 1.5*Ti; 

open_system("AE246Project.slx"); 

HagAst= sim("AE246Project.slx"); 

%% Kappa Tau 

% https://www.mathworks.com/matlabcentral/fileexchange/ 

% 4652-autotunerpid-toolkit 

A0 = 3.8;   A1 = -8.4;  A2 = 7.3; 

B0 = 5.2;   B1 = -2.5;  B2 = -1.4; 

C0 = 0.89;  C1 = -0.37; C2 = -4.1; 

D0 = 0.4;   D1 = 0.18;  D2 = 2.8; 

a   = m*L/T;            % normalized gain 

tau = L/(L+T);          % normalized delay 

% 

Kp  = A0/a*exp(A1*tau+A2*tau^2); 

Ti = L*B0*exp(B1*tau+B2*tau^2); 

Td = L*C0*exp(C1*tau+C2*tau^2); 

open_system("AE246Project.slx"); 

KappaTau= sim("AE246Project.slx"); 

%% Plot 

figure 

hold on 

plot(CohenCoon.qref(:,1),CohenCoon.qref(:,2),"LineWidth",1) 

%plot(CohenCoon.q(:,1),CohenCoon.q(:,2),"LineWidth",1) 

plot(HagAst.q(:,1),HagAst.q(:,2),"LineWidth",1) 

%plot(KappaTau.q(:,1),KappaTau.q(:,2),"LineWidth",1) 

legend("Reference","Hagglund Astrom","Cohen Coon","Kappa Tau") 

title("Pitch Rate Response to Elevator") 

xlabel("Time [s]") 

ylabel("Response of System") 

xlim([0 10]) 

ylim([-2.25 1.75]) 

grid on 

hold off 

 

Appendix D: Elevator to Pitch Rate Simulation CODE 

%% 747 Longitudinal Data Sea Level 

g = 32.17405; % [ft/s^2] Earth gravitational acceleration                 

h = 0; % [ft] sea level altitude                       

U_1 = 221; % [ft/s]                
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X_u = -0.0433; % [1/s]               

X_alpha = 11.4738; % [ft/s^2]             

X_dele = 0; % [ft/s^2]             

Z_u = -0.2720; % [1/s]               

Z_alpha = -108.0542; % [ft/s^2]                              

Z_dele = -6.5565; % [ft/s^2]  

M_u = 0.0001; % [1/ft/s] 

M_alpha = -0.4140; % [1/s^2] 

M_alphadot = -0.0582;% [1/s] 

M_q = -0.3774; % [1/s] 

M_dele = -0.3997; % [1/s^2] 

%% 747 Lateral Data Sea Level 

Phi_1 = 0; 

L_p = -0.9871 % [1/s] 

L_beta = -1.2461; % [1/s^2] 

L_r = 0.3834; % [1/s] 

L_delr = 0;% [1/s^2] 

L_dela = 0.235; % [1/s^2] 

Y_p = 0; % [ft/s] 

Y_beta = -19.6694; % [ft/s^2] 

Y_r = 0; % [ft/s] 

Y_delr = 3.26; % [ft/s^2] 

Y_dela = 0;  % [ft/s^2] 

N_p = -0.1441; % [1/s] 

N_beta = 0.2694; % [1/s^2] 

N_r = -0.2338; % [1/s] 

N_delr = -0.1655; % [1/s^2] 

N_dela = 0.0122; % [1/s^2] 

%% Longitudinal Open-Loop State-Space Model 

A_long= [X_u, X_alpha, 0, -g; Z_u/U_1, Z_alpha/U_1, 1, 0;... 

    (M_u + M_alphadot*Z_u/U_1),... 

    (M_alpha + M_alphadot*Z_alpha/U_1), (M_q + M_alphadot), 0;... 

    0, 0, 1, 0]; 

B_long= [X_dele; Z_dele/U_1; (M_dele + M_alphadot*Z_dele/U_1); 0]; 

C_long_pr= [0, 0, 1, 0]; % third one is q, the pitch rate 

D_long= zeros(size(C_long_pr,1),size(B_long,2)); 

OL_long = ss(A_long,B_long,C_long_pr,D_long); 

damp(OL_long) 

co_long = rank(ctrb(A_long,B_long)); 

s= tf("s"); 

[n_dele2q_Full, d_dele2q_Full]= ... 
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    ss2tf(A_long,B_long,C_long_pr,D_long); 

dele2q_Full= tf(n_dele2q_Full, d_dele2q_Full); 

%% Hagglund and Astrôm 

% https://www.mathworks.com/matlabcentral/fileexchange/ 

% 46864-automatic-pid-tuning-zip) 

s = tf([1 0],1); 

[Gm, Pm, Wgm, Wpm] = margin(G); 

if ((Gm == Inf)||(Wgm == Inf)||(Gm == 0)||(Wgm == 0)) 

    p = 1/(s+1e-6); 

    [Gm Pm Wgm Wpm] = margin(G/s);     

    if ((Gm == Inf)||(Wgm == Inf)) 

         [Gm Pm Wgm Wpm] = margin(G/p^2);     

    end 

end 

rP = Gm; 

phiP = Pm*pi/180; 

w = Wpm; 

% Hagglund and Astrôm, 1988 

phiS = -1.0000000001; 

rS = 0; 

phiR = phiS - phiP; 

rR = rS/rP; 

% Friman and Walter, 1996   

Kp = rR*cos(phiR); 

Ti = (2/w)*(tan(phiR) + sqrt(1+tan(phiR)^2)); 

Td = 3.5*Ti; 

open_system("AE246Project.slx"); 

HagAst= sim("AE246Project.slx"); 

%% Plot 

figure 

hold on 

plot(CohenCoon.qref(:,1),CohenCoon.qref(:,2),"LineWidth",1) 

%plot(CohenCoon.q(:,1),CohenCoon.q(:,2),"LineWidth",1) 

plot(HagAst.q(:,1),HagAst.q(:,2),"LineWidth",1) 

%plot(KappaTau.q(:,1),KappaTau.q(:,2),"LineWidth",1) 

legend("Reference","Hagglund Astrom","Cohen Coon","Kappa Tau") 

title("Pitch Rate Response to Elevator") 

xlabel("Time [s]") 

ylabel("Response of System") 

xlim([0 10]) 

ylim([-2.25 1.75]) 
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grid on 

hold off 

 

Appendix E: Elevator to Angle of Attack Simulation CODE 

clc; clear all; close all; 

g = 32.17405; % [ft/s^2] Earth gravitational acceleration                 

h = 0; % [ft] sea level altitude                       

U_1 = 221; % [ft/s]                

X_u = -0.0433; % [1/s]               

X_alpha = 11.4738; % [ft/s^2]             

X_delta_e = 0; % [ft/s^2]             

Z_u = -0.272; % [1/s]               

Z_alpha = -108.0542; % [ft/s^2]                              

Z_delta_e = -6.5565; % [ft/s^2]  

M_u = 0; % [1/ft/s] 

M_alpha = -0.4140; % [1/s^2] 

M_alphadot = -0.0582;% [1/s] 

M_q = -0.3774; % [1/s] 

M_delta_e = -0.3997; % [1/s^2] 

%-------------------------------------------------------------------------- 

% Longitudinal Open-Loop State-Space Model 

A_long = [X_u                 X_alpha                0           -g;... 

         Z_u/U_1              Z_alpha/U_1             1            0;... 

         M_u+(M_alphadot*Z_u)/U_1   M_alpha+(M_alphadot*Z_alpha)/U_1... 

         M_q+M_alphadot     0;... 

         0                  0                 1            0] 

B_long = [X_delta_e;... 

         Z_delta_e/U_1;... 

         M_delta_e+(M_alphadot*Z_delta_e)/U_1;... 

         0] 

C_long = eye(length(A_long)); 

C_long_alpha = [0 1 0 0]; 

D_long = zeros(size(C_long,1),size(B_long,2)); 

OL_long = ss(A_long,B_long,C_long,D_long); 

damp(OL_long); 

co_long = rank(ctrb(A_long,B_long)); 

%-------------------------------------------------------------------------- 

% Longitudinal Dynamic Inversion Control System for Angle of Attack 

CBinv = inv(C_long_alpha*B_long); 

CA = C_long_alpha*A_long; 
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K = 27.12/13; 

open('ae295b_747_dyninvsim.slx'); 

sim = sim('ae295b_747_dyninvsim.slx'); 

figure, 

grid on, hold all 

plot(sim.uref(:,1),sim.uref(:,2),'k'); 

plot(sim.alpha(:,1),sim.alpha(:,2),'r--'); 

xlabel('Time [s]'); 

ylabel('Magnitude'); 

legend('Reference Signal','Closed-Loop Response') 

title('Dynamic Inversion 747 Longitudinal Controller Angle of Attack Response') 

set(findall(gcf,'type','line'),'linewidth',3); 

epsilon = 0.01; % Error Threshold of 0.01 deg, 0.2% of desired 5 deg 

for i = 1:length(sim.alpha(:,1)) 

    if abs(sim.alpha(i,2)-5) < epsilon 

        i % Display iteration value 

        sim.alpha(i,1) % Display time when alpha is within 0.2% 

        break; 

    end 

end 

max(sim.alpha(:,2)) % Calculate maximum value of overshoot 

figure, 

subplot(2,2,1) 

hold on, grid on 

plot(sim.u(:,1),sim.u(:,2),'b-'); 

xlabel('Time [s]'); 

ylabel('Forward Velocity u [ft/s]'); 

subplot(2,2,2) 

hold on, grid on 

plot(sim.alpha1(:,1),sim.alpha1(:,2),'r-'); 

xlabel('Time [s]'); 

ylabel('Angle of Attack \alpha [deg]'); 

subplot(2,2,3) 

hold on, grid on 

plot(sim.q(:,1),sim.q(:,2),'m-'); 

xlabel('Time [s]'); 

ylabel('Pitch Rate q [deg/s]'); 

subplot(2,2,4) 

hold on, grid on 

plot(sim.theta(:,1),sim.theta(:,2),'g-'); 

xlabel('Time [s]'); 
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ylabel('Pitch Angle \theta [deg]'); 

set(findall(gcf,'type','line'),'linewidth',3); 

sgtitle('747 Longitudinal State-Space System Closed-Loop Response') 

figure, 

subplot(2,2,1) 

hold on, grid on 

plot(sim.uOL(:,1),sim.uOL(:,2),'b-'); 

xlabel('Time [s]'); 

ylabel('Forward Velocity u [ft/s]'); 

subplot(2,2,2) 

hold on, grid on 

plot(sim.alphaOL(:,1),sim.alphaOL(:,2),'r-'); 

xlabel('Time [s]'); 

ylabel('Angle of Attack \alpha [deg]'); 

subplot(2,2,3) 

hold on, grid on 

plot(sim.qOL(:,1),sim.qOL(:,2),'m-'); 

xlabel('Time [s]'); 

ylabel('Pitch Rate q [deg/s]'); 

subplot(2,2,4) 

hold on, grid on 

plot(sim.thetaOL(:,1),sim.thetaOL(:,2),'g-'); 

xlabel('Time [s]'); 

ylabel('Pitch Angle \theta [deg]'); 

set(findall(gcf,'type','line'),'linewidth',3); 

sgtitle('747 Longitudinal State-Space System Open-Loop Response') 

figure, 

hold on, grid on 

plot(sim.de(:,1),sim.de(:,2),'k-','linewidth',3); 

title('Elevator Deflection'); 

xlabel('Time [s]'); 

ylabel('Elevator Deflection \delta_e'); 


