
Lidar-Camera Smart Simultaneous
Localization and Mapping (LCS-

SLAM) For Use in Racing
Quadcopters

a project presented to

The Faculty of the Department of Aerospace Engineering

San José State University

in partial fulfillment of the requirements for the degree

Master of Science of Aerospace Engineering

by

Walter Harper
May 2022

approved by

Dr. Srba Jovic

NASA Ames Research Center/MFRA

© 2022

Walter Harper

ALL RIGHTS RESERVED

iii

ABSTRACT

Lidar-Camera Smart Simultaneous Localization and Mapping (LCS-SLAM) For Use in
Racing Quadcopters

Walter Harper

Recent advances in sensor and computational technology have led to much research in autonomous
robotics. In the airspace, autonomous aerial vehicles have been the focus of much research in
various initiatives in private industry and government which have identified requirements for
advanced sensing and navigation abilities of aircraft, even if they are piloted. As hardware
computational capability has grown over recent years, it is now possible to create a SLAM system
with both visual and LiDAR sensors that can generate detailed maps of an environment that a robot
can learn to efficiently navigate which can help fulfill these requirements. LiDAR-Camera Smart
Simultaneous Localization and Mapping (LCS-SLAM), leverages both LiDAR and visual sensors
to accurately localize and map an indoor environment in which a racing drone must navigate.
When combined with existing navigation modules, the LCS-SLAM system allows for a robot to
navigate an environment efficiently and intelligently. The LCS-SLAM algorithm is developed and
tested in a flight simulation environment using a racing quadcopter with proven results that showed
an optimized global map of the environment and robots estimated trajectory generated from the
LiDAR, monocular camera, and fused pipelines which leverage the sensors equipped onto a virtual
quadcopter. A quantitative and qualitative analysis of the localization and mapping performance
of LCS-SLAM has shown that LCS-SLAM has the potential to become an accurate solution for
localization and mapping for autonomous racing quadcopters and potentially autonomous aerial
vehicles in the future.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Srba Jovic for his guidance and insight into the field of autonomous
aircraft. Additionally, I would like to thank Dr. Jovic for introducing me to autonomy in the
airspace through his extensive contributions to the UAS in the NAS project at NASA Ames
Research Center. I would also like to thank my colleagues Steven Rispoli and Brayan Mendez for
their support in the development of a prototype autonomous quadcopter which provided the
inspiration for this project. Lastly, I would like to thank my family for their constant support in my
pursuit of graduate degree.

v

Table of Contents

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

List of Tables ... viii

List of Figures .. ix

Nomenclature .. xii

Chapter 1 – Introduction ..1

1.1 Motivation ..1

1.2 Literature Review ...2

1.2.1 LiDAR SLAM ..2

1.2.2 Camera SLAM ...4

1.2.3 LiDAR and Camera Fusion for SLAM ..5

1.3 Project Proposal ..6

1.4 Methodology ...6

Chapter 2 – High Level System Architecture ..8

2.1 LiDAR Pipeline ..8

2.2 Monocular Pipeline ..9

2.3 Fused Pipeline ..9

2.4 Other Pipeline Considerations ..9

Chapter 3 – Hardware Selection ..10

3.1 Quadcopter Selection ..10

3.2 LiDAR Selection ..11

vi

3.3 Camera Selection ..12

3.4 IMU Selection ..13

Chapter 4 – Virtualization of Sensors ..15

4.1 Selection of Simulation Environment ..15

4.2 Quadcopter Dynamics Model ...18

4.3 LiDAR Data Generation ...18

4.4 Camera Data Generation ..20

4.5 IMU Data Generation ...21

Chapter 5 – Monocular Pipeline ..22

5.1 Monocular Visual Odometry ..22

5.2 Monocular Mapping ...28

5.3 Monocular Place Recognition ..29

Chapter 6 – LiDAR Pipeline ..31

6.1 LiDAR Odometry ...31

6.2 LiDAR Mapping ...35

6.3 LiDAR Place Recognition ..36

6.4 LiDAR Optimization ..36

Chapter 7 – Fused Pipeline ..37

7.1 Fused Odometry ...37

7.2 Fused Mapping ...39

7.3 Fused Place Recognition ..40

7.4 Fused Optimization ..40

Chapter 8 – LCS-SLAM Benchmark Test ...42

8.1 Absolute Trajectory Error (ATE) ...42

vii

8.2 Relative Pose Error (RPE) ..57

8.3 Tracking, Mapping, and Optimization Execution Times ...59

8.4 Mapping Accuracy ...64

Chapter 9 – Analysis of LCS-SLAM Performance ...70

9.1 Analysis of LCS-SLAM Performance ..70

9.2 Comparison Versus ORB-SLAM ...71

9.3 Comparison Versus LOAM ..72

9.4 Comparison Versus HDL-Graph-SLAM ...73

Chapter 10 – Conclusion ..75

References ..76

viii

List of Tables

Table 3.1 - Selected quadcopter specifications. .. 10
Table 3.2 – VLP-16 Puck Lite LiDAR specifications. ... 12
Table 3.3 - Selected camera specification. .. 13
Table 3.4 - Selected BNO055 sensor specification. ... 14
Table 5.1 – Monocular odometry keyframe selection properties. .. 27
Table 6.1 – LiDAR point cloud filtering parameters. ... 32
Table 6.2 – GICP termination criteria in LCS-SLAM. ... 34
Table 6.3 – LiDAR keyframe selection properties. .. 34
Table 8.1 – LCS-SLAM RMSE ATE results. ... 43
Table 8.2 – LCS-SLAM NRMSE ATE results. .. 44
Table 8.3 – LCS-SLAM RPE results. ... 58
Table 8.4 – LCS-SLAM tracking execution time results. .. 59
Table 8.5 – LCS-SLAM mapping execution time results. .. 60
Table 8.6 – LCS-SLAM optimization execution time results. ... 61
Table 8.7 – LCS-SLAM total execution time results. .. 63
Table 8.8 – LCS-SLAM mapping accuracy results. ... 64

ix

List of Figures

Figure 2.1 – High level architecture for LCS-SLAM ... 8
Figure 3.1 - Selected quadcopter design [24]. .. 11
Figure 3.2 – AlphaPilot RacerAI drone [25]. ... 11
Figure 3.3 - VLP-16 Puck Lite LiDAR sensor [26]. ... 12
Figure 3.4 - Arducam BO200 camera [27]. .. 13
Figure 3.5 - BNO055 IMU sensor [28]. .. 14
Figure 4.1 – Isometric view of Track-Easy course built in Unity3D. ... 16
Figure 4.2 – Isometric view of Track-Hard course built in Unity3D. .. 16
Figure 4.3 – Side view of Track-Hard course built in Unity3D. .. 17
Figure 4.4 – Back view of Track-Hard course built in Unity3D. ... 17
Figure 4.5 - Simulated quadcopter model. .. 18
Figure 4.6 - Velodyne VLP-16 Puck Lite scanning pattern. ... 19
Figure 4.7 - PhysX ray-cast detection from Velodyne VLP-16 Puck Lite. 19
Figure 4.8 - LiDAR point cloud from a VLP-16 scan generated from Unity3D. 20
Figure 4.9 – Simulated left camera output in a stereo configuration. ... 21
Figure 5.1 - Pinhole camera model.[29] ... 22
Figure 5.2 – Generic CLAHE processed image [29]. ... 24
Figure 5.3 – ORB feature extraction process [30]. ... 24
Figure 5.4 – Image pyramid showing how scale invariant features are detected [30]. 25
Figure 5.5 – Keypoint feature matching between two images [29]. ... 26
Figure 5.6 – Best matched ORB features in LCS-SLAM. .. 26
Figure 5.7 – Monocular keyframe selection (purple) compared to ground truth (red). 27
Figure 5.8 – Horizontal stereo camera geometry model [29]. .. 28
Figure 5.9 – Monocular mapping module. .. 29
Figure 5.10 – Bag-of-Words high-level overview [32]. ... 30
Figure 5.11 – Generic loop closure impact on map where red is the detected loop closure points
[33]. ... 30
Figure 6.1 – ICP algorithm alignment for two similar point clouds. .. 32
Figure 6.2 – LCS-SLAM LiDAR odometry keyframes (blue) compared to ground truth (orange).
... 35
Figure 6.3 – LCS-SLAM LiDAR mapping module. .. 35
Figure 7.1 – LCS-SLAM fused odometry keyframes (red) vs ground truth (orange). 39
Figure 7.2 – LCS-SLAM fused mapping keyframes. ... 39
Figure 7.3 – LCS-SLAM fused (red) and truth (orange) before pose graph optimization. 40
Figure 7.4 – LCS-SLAM fused (red) and truth (orange) after pose graph optimization. 41
Figure 8.1 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Easy Test 1. ... 45

x

Figure 8.2 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Easy Test 2. ... 45
Figure 8.3 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Easy Test 3. ... 46
Figure 8.4 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 1. ... 46
Figure 8.5 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 2. ... 47
Figure 8.6 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 3. ... 47
Figure 8.7 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-Easy
Test 1. .. 48
Figure 8.8 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-Easy
Test 2. .. 48
Figure 8.9 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-Easy
Test 3. .. 49
Figure 8.10 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 1. ... 49
Figure 8.11 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 2. ... 50
Figure 8.12 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 3. ... 50
Figure 8.13 – Isometric view of LCS-SLAM fused estimated trajectory and ground-truth on
Track-Easy Test 1. .. 51
Figure 8.14 – Isometric view of LCS-SLAM fused estimated trajectory and ground-truth on
Track-Hard Test 1. .. 51
Figure 8.15 – Top view of LCS-SLAM fused estimated trajectory and ground-truth on Track-
Easy Test 1. ... 52
Figure 8.16 – Top view of LCS-SLAM fused estimated trajectory and ground-truth on Track-
Hard Test 1. ... 52
Figure 8.17 – Isometric view of LCS-SLAM LiDAR estimated trajectory and ground-truth on
Track-Easy Test 1. .. 53
Figure 8.18 – Isometric view of LCS-SLAM LiDAR estimated trajectory and ground-truth on
Track-Hard Test 1. .. 53
Figure 8.19 – Top view of LCS-SLAM LiDAR estimated trajectory and ground-truth on Track-
Easy Test 1. ... 54
Figure 8.20 – Top view of LCS-SLAM LiDAR estimated trajectory and ground-truth on Track-
Hard Test 1. ... 54

xi

Figure 8.21 – Isometric view of LCS-SLAM mono estimated trajectory and ground-truth on
Track-Easy Test 1. .. 55
Figure 8.22 – Isometric view of LCS-SLAM mono estimated trajectory and ground-truth on
Track-Hard Test 1. .. 55
Figure 8.23 – Top view of LCS-SLAM mono estimated trajectory and ground-truth on Track-
Easy Test 1. ... 56
Figure 8.24 – Top view of LCS-SLAM mono estimated trajectory and ground-truth on Track-
Hard Test 1. ... 56
Figure 8.25 – Top view of ground-truth map of Track-Easy Unity3D course. 65
Figure 8.26 – Top view of ground-truth map of Track-Hard Unity3D course. 66
Figure 8.27 – Top view of estimated fused map of Track-Easy dataset, test 1. 67
Figure 8.28 – Top view of estimated fused map (white) registered with ground-truth map
(colored) of Track-Easy dataset, test 1. .. 68
Figure 8.29 – Top view of estimated fused map (white) registered with ground-truth map
(colored) of Track-Hard dataset, test 1. .. 69
Figure 9.1 – ORB-SLAM framework architecture [33]. .. 72
Figure 9.2 – LOAM high level system architecture [8]. ... 72
Figure 9.3 – LOAM odometry and mapping output [8]. .. 73
Figure 9.4 – HDL-Graph-SLAM system architecture [34]. ... 73
Figure 9.5 – HDL-Graph-SLAM scan matching capability [34]. ... 74

xii

Nomenclature

Symbol Definition Units (SI)

b Stereo baseline distance Meters (m)

d Disparity (or parallax) Pixels

e Epipole, Error set of point cloud Meters (m), Meters (m)

E Absolute Trajectory Error Matrix Special Euclidean 3

F Relative Pose Error Matrix Special Euclidean 3

f Focal length Meters (m)

I Image matrix or Identity matrix Pixels

J Translation matrix for Root
Mean Square minimization

K Kalman Gain, Camera Intrinsic
Parameter Matrix

-------, -------

k Radial distortion coefficient -------

L Rotation matrix for Root Mean
Square minimization

xiii

Symbol Definition Units (SI)

N Dimensionality of Kalman Filter
model

n Dimensionality of Kalman Filter
model, pose samples

-------, -------

O Optical center Meters (m)

O’ Projection of optical center on
image place

Pixels

P 3D Point in world coordinate
frame, Pose estimate matrix

Meters (m), Special Euclidean 3

P’ Normalized 3D point in
projected 2D image coordinate
frame

Pixels

p Point cloud set, tangential
distortion coefficient

Meters (m), -------

Q Process noise, Ground-truth
estimate matrix

-------, Special Euclidean 3

R Process noise in measurement
space, Rotation Matrix

S Co-variance matrix in
measurement space, Rigid-

-------, Special Euclidean 3

xiv

Symbol Definition Units (SI)

transformation matrix between
ground-truth and estimates.

T Cross co-relation matrix -------

t Time, Translation vector Seconds (s), Meters (m)

u Velocity in x-direction, Pixel
coordinate in x-direction

Meters Per Second (m/s), Pixels

v Velocity in y-direction, Pixel
coordinate in y-direction

Meters Per Second (m/s), Pixels

w Sigma point weights -------

X Sigma points matrix in state
space, Coordinate in P-space

-------, Meters (m)

X’ Coordinate in P’-space Pixels

Y Coordinate in P-space Meters (m)

Y’ Coordinate in P’-space Pixels

Z Sigma points in measurement
space, Coordinate in P-space

-------, Meters (m)

Z’ Coordinate in P’-space Pixels

xv

Symbol Definition Units (SI)

Greek Symbols

μ Mean in state space -------

Σ Co-variance matrix, sum
operator

-------, -------

ζ Mean in measurement space -------

ƛ Free scaling parameter -------

Δ Time step between pose
estimates

Subscripts

()0 Initial condition -------

()i Ith element of set -------

()l Left camera coordinate frame -------

()r Right camera coordinate frame -------

()w World coordinate frame -------

()c Camera coordinate frame -------

xvi

Symbol Definition Units (SI)

()c’ New camera coordinate frame -------

()uv Pixel coordinate frame -------

()n Nth element of set -------

()RMSE Root-mean square of element -------

()Δ Time step between elements -------

Acronyms

2D Two Dimensional -------

3D Three Dimensional -------

AAM Advanced Air Mobility -------

ATE Absolute Trajectory Error -------

BOW Bag-of-Words -------

BRIEF Binary Robust Independent
Elementary Features

CLAHE Contrast Limited Adaptive
Histogram Equalization

xvii

Symbol Definition Units (SI)

DDS Distributed Discovery Service -------

DNN Deep Neural Network -------

EKF Extended Kalman Filter -------

FAST Features from Accelerated
Segment Test

FDBOW Fast Digital Bag-of-Words -------

FLANN Fast Library for Approximate
Nearest Neighbors

GICP Generalized Iterative Closest
Point

GPU Graphics Processing Unit -------

GRV Gaussian Random Variables -------

ICP Iterative Closest Point -------

IMU Inertial Measurement Unit -------

INS Inertial Navigation System -------

xviii

Symbol Definition Units (SI)

LCS-SLAM Lidar-Camera Smart
Simultaneous Localization and
Mapping

LiDAR Light Detection and Ranging -------

LOAM LiDAR Odometry and Mapping -------

LSH Locally Sensitive Hashing -------

MLE Maximum Likelihood Estimation -------

PID Proportional, Integral, and
Derivative

MAP Maximum-a-Posteriori -------

NAS National Air Space -------

NRMSE Normalized Root-Mean Square
Error

ORB Oriented BRIEF Rotated FAST -------

RGB Red, Green, Blue -------

RGB-D Red, Green, Blue – Depth -------

xix

Symbol Definition Units (SI)

RMSE Root Mean Square Error -------

ROS Robert Operating System -------

RPE Relative Pose Error -------

SE3 Special Euclidean Lie Group -------

SIFT Scale Invariant Feature
Transform

SLAM Simultaneous Localization and
Mapping

SURF Speeded Up Robust Features -------

SVD Singular Value Decomposition -------

UAS Unmanned Aerial Systems -------

UAV Unmanned Aerial Vehicle -------

UKF Unscented Kalman Filter -------

VGICP Voxelized Generalized Iterative
Closest Point

xx

Symbol Definition Units (SI)

VO Visual Odometry -------

VR Virtual Reality -------

1

Chapter 1 – Introduction

1.1 Motivation

Mapping of a quadcopter racing track provides a proof of concept of the state-of-the-art
technologies needed for larger scale AAM and UAS in the NAS [1] navigation in urban
environments. Racing quadcopters provide particularly challenging conditions for robot sensing
and navigation due to its high speeds, aggressive maneuvers, and limited computational
resources. Autonomous mapping capabilities allows for a robot to track its location within an
environment for collision avoidance or trajectory determination. Given that a robot has
knowledge of its pose within an environment, optimized flight trajectories and adaptive control
algorithms can be applied to allow for complex control of an aerial vehicle.

Racing quadcopters are typically controlled by skilled human pilots with the use of Virtual
Reality (VR) goggles. This allows for a human to experience a first-person perspective of a
quadcopter in real-time to aid in their decision making while piloting. In the last few years there
has been a push to introduce autonomous racing quadcopters into the mainstream media with
Lockheed Martin [2], Microsoft [3], and various universities throughout the world hosting
competitions to drive quadcopter autonomy further. Autonomy in vehicles is not a novel concept,
however recent advances in sensor and computational technology has led to much research in
autonomous robotics. Recent research has allowed for engineers to leverage robotics
technologies to advance the field of autonomous vehicles. In the airspace, autonomous aerial
vehicles have been the focus of much research in Advanced Air Mobility (AAM) and Unmanned
Aerial Systems (UAS) in the National Air Space (NAS) pushed forward by NASA. AAM aims
to introduce aerial vehicles into urban areas that can transport packages and people. This requires
advanced sensing and navigation abilities of aircraft, even if they are piloted. The UAS in the
NAS initiative aims to reduce the technological and safety barriers required for unmanned aerial
vehicles to navigate in the airspace [4]. Real-time multi sensor mapping and localization within
an aircraft’s environment is a critical need in the field of autonomy for aerospace applications.

State-of-the-art Simultaneous Localization and Mapping (SLAM) algorithms are currently used
to solve robot mapping problems. Modern day SLAM algorithms are built around visual or Light
Detection and Ranging (LiDAR) sensors and are capable of localization and mapping in real-
time. LiDAR sensors have been a popular choice in the last 20 years for SLAM applications,
however visual sensors such as Red, Green, Blue (RGB) color spectrum cameras have been the
driving force behind modern SLAM research. Little research is publicly available that discuss
SLAM algorithms that uses both LiDAR and visual sensors. As hardware computational
capability has grown over recent years, it is now possible to create a SLAM system with both
visual and LiDAR sensors that can generate detailed maps of an environment that a robot can
learn to efficiently navigate.

2

LiDAR-Camera Smart Simultaneous Localization and Mapping (LCS-SLAM), leverages both
LiDAR and visual sensors to accurately localize and map an indoor environment in which a
racing drone must navigate. When combined with existing navigation modules, the LCS-SLAM
system allows for a robot to navigate an environment efficiently and intelligently. LCS-SLAM is
designed as an all-in-one modular system that can easily be adapted for different racing drones
and indoor environments.

1.2 Literature Review

Review of existing literature on localization and mapping solutions for robotic applications using
LiDAR, stereo cameras, monocular cameras, and Inertial Measurement Units (IMUs) are
investigated further in detail below.

1.2.1 LiDAR SLAM

LiDAR odometry is defined as the pose estimate of a robot over a defined time history. Each
individual robot pose is estimated using a localization algorithm. In the context of autonomous
vehicles, LiDAR sensors come in three flavors: 1D range finders, 2D scanners, and 3D scanners.
LiDAR sensors have enabled robots to determine their motion and localize within both 2D and
3D maps with a high degree of accuracy. 3D LiDAR sensors today are expensive but produce
some of the most accurate mapping results which is often needed for large scale autonomous
vehicles navigating large indoor or outdoor environments. 2D LiDAR’s are more common in
smaller robots and small unmanned aerial vehicles (UAV) for their low cost and acceptable
mapping capabilities while indoors or in small outdoor spaces. Each of these sensors are critical
for spatial awareness of unmanned vehicles and complex navigation in previously unmapped
environments.

A state-of-the-art LiDAR odometry and mapping algorithm is presented by Zhang and Singh [5]
called LiDAR Odometry and Mapping (LOAM). LOAM performs real-time odometry and
mapping using 3D LiDAR scans of an environment. LOAM performs mapping and odometry
using two separate algorithms which can also fuse IMU data to increase the accuracy of the
odometry and mapping estimates. The odometry algorithm runs at a higher frequency in
comparison to the mapping algorithm to allow for odometry data to be processed as quickly as
possible. Mapping capabilities typically require additional optimization procedures that do not
need to be run as fast as the odometry algorithm for successful robot localization.

In addition to 3D LiDAR sensors, 2D LiDAR sensors have been proven capable of mapping 3D
environments with the aid of additional sensors such as an IMU, video camera, or by leveraging
encoded servo motors which measures the rotation of a 2D LiDAR on a third axis. In Fang et al
[6], a method for reconstructing 3D environment using a 2D LiDAR scanner is presented. The
method leverages the use of high-level reconstruction algorithm and motion controller software
in conjunction with an encoded servo to construct a 3D map in real time.

3

Improvements to the performance of 2D and 3D LiDAR SLAM algorithms can be achieved with
the introduction of a pre-existing map of the environment. Zhen and Scherer [7] has developed a
SLAM algorithm that combines the use of the Error State Kalman Filter with a Gaussian Particle
Filter to estimate the state of the agent inside a pre-existing map. Testing of the authors
algorithm was completed in both real-world and simulation environments which confirmed the
hypothesis that given a pre-existing map of the environment, more accurate LiDAR based state
estimation and mapping can be achieved.

In addition to providing a pre-existing map, additional sensors can be fused with a LiDAR sensor
to obtain a more accurate state estimate. In Zhang and Singh [8] LiDAR odometry and mapping
in real-time is investigated. The LiDAR odometry algorithm uses feature point extraction, then
finds the feature point correspondence between LiDAR scans to estimate the odometry of a
robot. The LiDAR odometry in combination with an IMU is used to assist in the development of
a 3D map for an environment. The algorithm was tested successfully in both indoor and outdoor
environments for a robotics application which proved that fusing IMU data with LiDAR gives
more accurate state estimation. Xie et al [9] performed research on a similar sensor fusion
between LiDAR odometry and IMU data to generate a 2.5D map of the environment using scan
matching to perform localization. Test results showed that a 2.5D map of a real-life 3D
environment was achieved at an acceptable accuracy at a reduced computational cost than
traditional single sensor SLAM algorithms. In Li et al [10] a method for LiDAR and IMU based
SLAM is proposed. The algorithm depends first on feature extraction of the environment to
construct a feature map. The IMU data is then used to correct inaccuracy in the LiDAR sampled
data with the use of a Kalman Filter. A prototype of the system was developed by the researchers
to perform validation of the proposed system. The tested system proved that the LiDAR feature
extraction algorithm was more accurate when fused IMU than if used alone.

With the high cost of LiDAR systems, testing in simulation environments has been critical to the
development of LiDAR SLAM algorithms. To further test LiDAR in a virtual 3D environment,
Allden et al [11] proposed a method to realistically simulate LiDAR sensor data. The Unity3D
game engine is used to build and test a virtual LiDAR system and compare its output to real
world output of a similar LiDAR sensor model. The authors take advantage of the Nvidia PhysX
engine which leverages computer graphics rendering techniques such as ray-casting to generate
laser data to model a LiDAR sensor. The authors concluded that it is feasible to build and
simulate a LiDAR sensor in a virtual 3D environment that provides a level of realism that is
acceptable for developing and testing SLAM algorithms.

Techniques to perform accurate place recognition and map optimizations for LiDAR SLAM
applications has seen much research in the last few decades. In Wen et al [12] an alternative
approach to map optimization is investigated. Fusion of IMU and LiDAR are used for
environmental mapping with place recognition. The authors propose a method that provides
accurate mapping of an environment leveraging a graph-based SLAM algorithm. The results
showed acceptable accuracy in a 2D LiDAR slam system. In Hess et al [13] place recognition for
a 2D LiDAR SLAM system is discussed. The system defines a global and local grid of which an
environment is mapped to sub-maps. The sub-maps are compared to the LiDAR scanned global

4

map to determine if a previously location has been visited before. Testing on GPU accelerated
hardware showed acceptable real-time performance in real-world testing.

1.2.2 Camera SLAM

LiDAR data can be combined with data from visual sensors such as RGB cameras. The data
from cameras can be used to perform object detection, or in the case of multiple cameras, depth
perception. Depth sensing provides one of the foundational tools needed to perform stereo
mapping and odometry. In addition, localization of objects within the stereo camera field of view
allows for mapping of objects within an environment with the correct scale when compared to
monocular camera systems. A stereoscopic camera can allow absolute 3D perception of the
environment that can be used to generate a map, something that a monocular camera system is
incapable of providing due to a problem known as scale ambiguity.

In Campos et al [14] a visual, visual-inertial, and multi-map SLAM framework known as ORB-
SLAM 3 is discussed. ORB-SLAM3 is an accurate and advanced visual SLAM algorithm which
is considered the current state-of-the-art visual SLAM system for its ability to handle a multitude
of sensor configurations and handle scenes with poor features for tracking. ORB-SLAM3 uses a
modified Oriented Fast Rotated Brief (ORB) feature detector and descriptor to find features in
the environment. ORB-SLAM3 relies on Maximum-a-Posteriori (MAP) estimation to obtain
accurate localization and mapping results. In addition, ORB-SLAM3 uses a Bag-of-Words
(BoW) representation for its place recognition module. A state-of-the-art multi mapping
framework, Atlas, is used to handle disconnected SLAM maps to allow real-time place
recognition and robot re-localization in real-time. In Mito et al [15] methods for adapting object
detection and stereo vision for robot state estimation are presented. These methods are based on
feature extraction and matching corresponding feature points to generate an odometry estimate
for a robot. Experiment results by the authors show that under stable robot motion the proposed
algorithm can detect and extract moving objects with a stereo camera. Scaramuzza and
Fraundorfer [15] discuss the techniques to perform visual odometry for both monocular and
stereo camera systems. The underlying algorithms used for visual odometry, and their
applications are discussed. Feature detection of 2D and 3D points are discussed with robot pose
estimation methods including essential matrix estimation, perspective-n-point transformation,
and iterative closest point algorithms. Scale recovery methods for monocular camera systems
and triangulation methods for stereo camera systems are discussed. The authors concluded that
the combination of 3D and 2D systems using stereo cameras provide some of the most accurate
estimation of a robots odometry for well-formed environments.

Further research by Hu et al [16] investigates a place recognition algorithm which introduces an
improved pyramid similarity score function for a camera-based SLAM system. A stereoscopic
camera is used to provide depth measurements and pose estimation of a robot for the front end
for a SLAM algorithm. Additional data is processed in the back end of the algorithm that
improves the real-time performance of the place recognition algorithm. The author’s algorithm is
tested against other prevalent algorithms and the results show that the author’s place recognition
module results in more accurate real-time mapping of an environment than state-of-the-art
algorithms. Liang et al [17] propose a novel approach to perform place recognition using Bag-of-

5

Words and ORB-SLAM features in conjunction with the local registration and global correlation
framework with sparse pose adjustment optimization. The authors tested the algorithm in large
real-world environments and verified its effectiveness versus traditional place recognition
algorithms for computationally constrained robots.

1.2.3 LiDAR and Camera Fusion for SLAM

The combination of LiDAR and visual odometry data allow for the development of a robust
SLAM system. In Li [18] close coupling of a Camera and LiDAR is investigated. The authors
use a 2D LiDAR sensor on a moving platform to generate 3D LiDAR data. Close coupling of the
LiDAR and Camera involve the use of rigid-body extrinsic calibration via feature targeting to
accurately fuse the data between the two sensors. To calibrate both sensors, the relative
translation and rotation between the sensors are determined from extracted features from a
control checkerboard and matching point correspondences. To fuse the data from the LiDAR and
camera, the 3D points generated by the LiDAR in the world coordinate frame are projected into
coordinates on a 2D plane. Meanwhile, the camera is subject to rotation from a servo which
allows for each captured image to be stitched together to form a panoramic image of the
environment, mimicking the scanning capability of a LiDAR sensor. Results of the proposed
sensor fusion method prove a viable approach to LiDAR and camera coupling that give
reasonably accurate data for environmental mapping given that the sensors are properly
calibrated with each other

In Zhang and Singh [19] LiDAR and a monocular camera are fused together to generate robust
odometry and mapping of the environment. Camera images are used to estimate visual odometry
at frequency of 60 Hz with LiDAR odometry running at a frequency of 1 Hz. The visual
odometry estimate is refined by LiDAR odometry, with 3D LiDAR points used to help augment
the visual odometry algorithm. The method proposed by the authors is considered one of the
highest accuracy methods tested on some of the most popular benchmarking datasets.

In Deilamsalehy and Havens [20] sensor fusion accuracy is investigated between three different
configurations of 2D LiDAR, IMU, and a camera. Sensor outputs are fused with an Extended
Kalman Filter (EKF) and the accuracy of each configuration for state estimation is analyzed. The
authors were able to show that the state estimation from a system with a 2D LiDAR, IMU, and
camera were nearly an order of magnitude more accurate than a system with IMU and camera
alone. 3D LiDAR further improved the state estimation accuracy by between two to five-fold. In
Lopez et al [21] an approach of camera and LiDAR fusion with an IMU is presented to estimate
the pose of an autonomous quadcopter in an 3D environment. The authors propose a fusion
algorithm with the use of an Extended Kalman Filter. The HectorSLAM algorithm is used to
generate a 2.5D map of the environment at low computational cost with the aid of an IMU. The
researchers concluded that the fusion of LiDAR, IMU, and a camera increased the accuracy of a
2D mapped environment versus traditional non-fusion methods. Additional research by Jiang et
al [22] using a multi-sensor system of LiDAR, Camera, and IMU resulted in the development of
a new sensor fusion framework. The framework consists of graph optimization for a Red-Green-
Blue Depth (RGB-D) camera for visual odometry, and feature extraction with scan matching for
LiDAR odometry. The LiDAR and camera sensor data are fused to generate a 2.5D occupancy

6

grid map of the environment. The mapping method results in a computationally efficient system
when compared to other methods such as Adaptive Monte Carlo Localization and ORB-SLAM.
In addition, the author’s algorithm is more accurate than state-of-the-art methods at performing
place recognition and robot re-localization which are critical components to building robust and
accurate mapping capabilities.

In Smolyanskiy et al [23] an alternative approach to fused SLAM is presented by using Deep
Neural Networks (DNNs). DNNs have been adopted for use in some sectors of the SLAM
industry, most notably by the Nvidia Corporation for their Drive AGX platform. The authors use
a DNN approach to navigate a low-flying autonomous aircraft in an unknown environment using
fused sensor data. The robot performed autonomous navigation over a trail primarily using
cameras with the aid of LiDAR. The authors were able to conclude that with a graphics
processing units embedded onto a flight computer, such as the Jetson TX1, monocular vision-
based navigation with the aid of LiDAR was sufficient for a drone to leverage DNNs to localize
and map along a forest path.

1.3 Project Proposal

Based on the current state-of-the-art techniques and state estimation requirements needed for 3D
indoor navigation of an autonomous racing drone the requirements of the LCS-SLAM algorithm
are determined as follows:

• Sensor fusion between 3D LiDAR, cameras, and IMU sensors to enable robust and
resilient SLAM in real-time.

• Optimized for real-time applications and easily extendable for future deployment on
embedded hardware.

The final deliverable of the LCS-SLAM system is:

• LCS-SLAM algorithm tested in a virtual flight simulator on a racing quadcopter with
proven results that show the map and path generated from the sensors equipped onto the
virtual quadcopter.

• Quantitative and qualitative analysis of the localization and mapping performance of
LCS-SLAM compared to state-of-the-art SLAM algorithms that use similar sensor
configurations.

1.4 Methodology

To produce the deliverable for the LCS-SLAM system the following approach is taken:

I. Hardware Selection

1. Selection of a LiDAR system that can be used on a racing quadcopter. This system is
modeled in simulation for testing of the LCS-SLAM algorithm.

7

2. Selection of a stereo camera system for use in LCS-SLAM. This system is also
modeled in simulation.

3. Selection of IMU system for use in LCS-SLAM. This system is modeled in
simulation.

4. Selection of a racing quadcopter to test LCS-SLAM. This quadcopter is modeled in
simulation.

II. Software Development

1. Selection of a 3D virtual simulation environment to test LCS-SLAM algorithm.

2. Selection of a framework to build LCS-SLAM to be used easily in both simulation
and hardware environments.

3. From the selected LiDAR sensor model, virtual sensor data must be generated in the
simulation environment.

4. From the selected camera model, virtual data must be generated in the simulation
environment.

5. From the selected IMU model, virtual data must be generated in the simulation
environment.

6. A flight controller capable of stabilizing and autonomously navigating the selected
quadcopter model.

7. Development of an algorithm to fuse IMU, camera and LiDAR data with place
recognition and map optimization.

III. Testing

1. Complete LCS-SLAM system equipped to a racing quadcopter in a virtual simulation
that outputs robot odometry and a 3D map of the environment.

8

Chapter 2 – High Level System Architecture
The LCS-SLAM system consists of multiple pipelines known as: mono, LiDAR, and fused.
These pipelines are selected for their ability to accurately map large scale environments with
acceptable accuracy and real-time performance. These pipelines work together to produce
accurate localization and mapping estimates. The system contains elements of both serial and
parallel computation to ensure best real-time performance on a quadcopter. The outputs of the
LCS-SLAM system are optimized poses forming flight paths (i.e., odometry) and point clouds
(i.e., maps) from the LiDAR and fused pipelines. A diagram of the high-level overview of LCS-
SLAM is shown in Fig. 2.1.

Figure 2.1 – High level architecture for LCS-SLAM

2.1 LiDAR Pipeline

The LiDAR pipeline for LCS-SLAM consists of a 3D LiDAR sensor equipped onboard the
selected quadcopter. This sensor can be real or simulated in a virtual environment for easier
testing of the pipeline. Data output from the LiDAR sensor is registered with the LiDAR
odometry module which performs localization of the quadcopter in the world frame. Combining
the odometry estimate and LiDAR sensor returns, the LiDAR mapping module can map the
environment around the quadcopter. The place recognition module uses monocular place
recognition information to enable optimization of the localization and mapping outputs from the

9

LiDAR pipeline. The final output of the LiDAR pipeline is the optimized odometry and mapping
estimates.

2.2 Monocular Pipeline

The monocular pipeline for LCS-SLAM uses the left camera in a stereo camera pair equipped
onboard the selected quadcopter as an input. This sensor can be real or simulated in a virtual
environment for easier testing of the pipeline. Data output from the camera is registered with the
monocular odometry module which performs localization of the quadcopter pose in the world
frame. The monocular odometry module is used to enable the place recognition module which is
used by both the fused and LiDAR pipelines. The final output of the monocular pipeline is the
optimized odometry and mapping estimates.

2.3 Fused Pipeline

The fused pipeline for LCS-SLAM uses the optimized outputs odometry and mapping from the
mono and LiDAR pipelines combined with an IMU sensor equipped onboard the selected
quadcopter. The IMU sensor can be real or simulated in a virtual environment for easier testing
of the pipeline. The fusion of the robot odometry and mapping estimates from the various
optimized pipelines leverages the Unscented Kalman Filter (UKF). The monocular place
recognition module is leveraged to enable optimization of fused localization and mapping
outputs from the pipeline. The final output of the fused pipeline is the optimized odometry and
mapping estimates.

2.4 Other Pipeline Considerations

The current implementation of LCS-SLAM does not contain complete pipelines for stereo
cameras or RGB-D cameras for various reasons given the selected application. The addition of a
complete stereo camera pipeline could increase the accuracy of the localization and mapping
estimate, however, would be significantly limited with its capabilities in large scale racing
environments. Although the usage of a depth-sensing algorithm that can be implemented for real-
time use is common, the feasibility of such system for a racing quadcopter is questionable given
the very small baseline length of the stereo camera for a small application like a drone, which
significantly reduces the effective range of a stereo camera system. In applications in which the
stereo camera is not reliable, algorithms typically rely on monocular camera estimates for
odometry which LCS-SLAM uses. An RGB-D camera pipelines has not been implemented given
similar constraints to the stereo camera pipeline rational above. Different course configurations
or use-cases in the future may present a more desirable test environment to further enhance LCS-
SLAM with complete stereo and RGB-D pipelines.

10

Chapter 3 – Hardware Selection
Commercial-of-the-shelf hardware components are selected for emulating a quadcopter, LiDAR,
camera, and IMU. Each of the sensor components are attached to the selected quadcopter, which
have their physical properties modeled in a virtual simulation environment for testing of the
complete LCS-SLAM system.

3.1 Quadcopter Selection

The selected quadcopter is presented in [24]. The design is based off the Lockheed Martin racing
quadcopter, RacerAI, used in the 2019 AlphaPilot competition shown in Fig. 3.2. The quadcopter
design includes various sensors including a stereoscopic camera and IMU. Its flight performance,
flight characteristics, and computational capabilities are known for the purpose of testing the
LCS-SLAM system. Although a LiDAR sensor is not presented in [24] on the selected
quadcopter, a sensor is selected such that it could be integrated into the existing design. Relevant
specifications of the chosen quadcopter for testing LCS-SLAM are presented in Table 3.1 and
the selected Quadcopter can be seen in Fig. 3.1.

Table 3.1 - Selected quadcopter specifications.

Property Quantity Units

Take-off weight (w/o LiDAR) 1.846 Kilograms

Total static thrust 2,178 Gram-force

Thrust-to-Weight ratio 4.79 N/A

11

Figure 3.1 - Selected quadcopter design [24].

Figure 3.2 – AlphaPilot RacerAI drone [25].

3.2 LiDAR Selection

The LiDAR chosen to integrate with the selected quadcopter for testing LCS-SLAM is the
Velodyne VLP-16 Puck Lite. The LiDAR was selected for its relatively small form factor, long
range, and 3D scanning capability. In addition, the VLP-16 Puck Lite has desirable mass
properties which allow for seamless integration with the selected drone design with minimal

12

impact to its stability, assuming it is placed about the current center of gravity. The specifications
of the VLP-16 Puck Lite are shown in Table 3.2, while the sensor can be seen in Fig. 3.3.

Table 3.2 – VLP-16 Puck Lite LiDAR specifications.

Property Quantity Units

Weight 0.590 Kilograms

Sample rate Adjustable: 5 / 10 / 20 Hertz

Scanning range 100 Meters

Distance resolution 2 Millimeters

Azimuth resolution Adjustable: 0.1 / 0.2 / 0.4 Degrees

Figure 3.3 - VLP-16 Puck Lite LiDAR sensor [26].

3.3 Camera Selection

The selected camera is the Arducam BO200. The camera was selected for testing with LCS-
SLAM as it is equipped in a stereo configuration on the selected quadcopter as shown in [24].
The camera specifications when configured as a stereo pair are detailed further in Table 3.3, with
an image of the camera in Fig. 3.4.

13

Table 3.3 - Selected camera specification.

Property Quantity Units

Resolution 640x480 Pixels x Pixels

Configuration Horizontal Stereo N/A

Diagonal field of view 100 Degrees

Baseline 14 Centimeters

Frame rate 30 Frames Per Second

Figure 3.4 - Arducam BO200 camera [27].

3.4 IMU Selection

The selected IMU is the Bosch BNO055 based on the quadcopter design in [24]. The selected
sensor has an accelerometer, gyroscope, magnetometer, and thermometer. This sensor is chosen
for its low cost, accurate attitude measurements, and internal sensor fusion algorithms. The
specifications of the sensor are shown in Table 3.4, and the IMU can be seen in Fig. 3.5.

14

Table 3.4 - Selected BNO055 sensor specification.

Property Quantity Units

Sample rate (accelerometer) 100 Hertz

Sample rate (gyroscope) 80 Hertz

Figure 3.5 - BNO055 IMU sensor [28].

15

Chapter 4 – Virtualization of Sensors
The selected sensors for testing LCS-SLAM are modeled in a virtual environment to allow for
synthetic data generation. The platform used to simulate the selected hardware is critical in
enabling accurate simulation that can seamlessly transition to real-world applications. In the real-
world, sensors would be directly integrated with the LCS-SLAM system, however, in a virtual
environment there must be a compatibility layer to supply communication between the simulated
sensors and the various modules and pipelines in the LCS-SLAM algorithm. The communication
framework used in the development of LCS-SLAM is Robot Operating System 2 (ROS2). The
Galactic Geochelone distribution of ROS2 that was initially released in May of 2021 is used.
ROS2 is a framework which supplies tools, libraries, and conventions aimed at simplifying the
task of creating complex robot systems. ROS2 uses individual applications, or nodes, which
communicate between each other using defined messages assigned to topics in a publish-
subscribe software messaging paradigm. This allows for researchers to prototype software using
simulated sensor data and quickly deploy the software to hardware with minor changes to the
underlying software design. The middleware layer in ROS2 that allows communication between
applications is provided by a selected Distributed Discovery Service (DDS) such as eProsima
Fast DDS, Eclipse Cyclone DDS, or RTI Connext. The selected DDS middleware used in the
development of LCS-SLAM is eProsima Fast DDS. Another major ROS2 package, Rviz2,
provides the visualization tools that are helpful for developing and evaluating the performance of
LCS-SLAM.

4.1 Selection of Simulation Environment

The Unity3D game engine is selected as the virtual simulation environment to test the LCS-
SLAM system and virtualize the required sensors. Unity3D is chosen for its support of the
Nvidia PhysX simulation engine which allows for classical control of a robot with Newtonian
physics. Features such as computer graphics ray-casting and 3D rendering of environments
allows for simulation of both LiDAR and camera sensors. The simulation environment also
provides support for connectivity with ROS2 via the Unity Robotics Hub. For visualization of
LCS-SLAM performance, the ROS2 package Rviz2 is used. Two quadcopter racing courses
were developed to test LCS-SLAM. A quadcopter was navigated around the two quadcopter
course configurations and the relevant sensor data was recorded to provide easy testing of the
LCS-SLAM system without the need to run the simulation environment. These two recorded
datasets are named Track-Easy and Track-Hard. The quadcopter racing courses developed to test
LCS-SLAM onboard a racing quadcopter are presented in Figs. 4.1-4.4 below.

16

Figure 4.1 – Isometric view of Track-Easy course built in Unity3D.

Figure 4.2 – Isometric view of Track-Hard course built in Unity3D.

17

Figure 4.3 – Side view of Track-Hard course built in Unity3D.

Figure 4.4 – Back view of Track-Hard course built in Unity3D.

18

4.2 Quadcopter Dynamics Model

The mass properties and dynamics of the selected quadcopter are already known and are
presented in [24]. A flight controller that allows for simple flight through a virtual course via
waypoints or manual control is provided for interfacing with the LCS-SLAM system. The
provided controller is a Proportional, Integral, and Derivative (PID) controller tuned to the
parameters in [24]. The physics model used in simulation includes aerodynamic drag, motor
torques, and motor forces applied to rigid-body dynamics for simulation of the physical forces
applied to and from the quadcopter. The Nvidia PhysX simulation engine allows for
customization of the physics time step used for integration in solving the rigid body dynamics.
The selected physics integration frequency was chosen to be 1000 Hz which allows for realistic
modeling of motion in real-time with the selected sensor sampling rates and flight controller
signal frequencies. The simulated quadcopter model is provided in Figure 4.5.

Figure 4.5 - Simulated quadcopter model.

4.3 LiDAR Data Generation

The selected LiDAR model is simulated using the Nvidia PhysX ray-casting functionality. Ray-
casting is a computer rendering technique which allows for directional light rays to be sent from
a source point which can reflect off objects back to the source. When objects in a scene are
detected, the returned ray-casts hold information on the distance and time it took to return from a
collision with an object. The LiDAR model is built in Unity3D using the technique presented in
[11] to emulate the datasheet specifications of the Velodyne VLP-16 Puck Lite LiDAR presented
in [26]. The LiDAR can produce up to nearly 300,000 points a second with this technique which
is then consolidated into a stream of packets that is published by ROS2 that conforms to the
specification defined in [26]. It should be noted that real-world materials that may be non-
reflective or highly refractive are not modeled for simplicity of the simulation. Fig. 4.6-4.8 show
the LiDAR scanner in use during the simulation used for testing LCS-SLAM.

19

Figure 4.6 - Velodyne VLP-16 Puck Lite scanning pattern.

Figure 4.7 - PhysX ray-cast detection from Velodyne VLP-16 Puck Lite.

20

Figure 4.8 - LiDAR point cloud from a VLP-16 scan generated from Unity3D.

4.4 Camera Data Generation

The selected camera is simulated as a pinhole camera in a horizontal stereo configuration with
the specifications that match what is shown in Table 3.3. Both cameras in the stereo
configuration are modeled to be hardware synchronized and have motion blur when moving at
high speeds. The stereo camera output data is compressed into JPG format and published by
ROS2. The simulated left camera output in the stereo configuration is provided in Fig. 4.9.

21

Figure 4.9 – Simulated left camera output in a stereo configuration.

4.5 IMU Data Generation

IMU data is generated from the quadcopter’s rigid body motion while under the control of the
Nvidia PhysX engine. Within the simulation environment, the position and attitude of the
quadcopter in the world frame is captured at a fixed time step and can be considered the “ground
truth” data. To introduce sensor noise, the IMU sensor readings are artificially varied from its
true value. The artificial noise is assumed to be Gaussian in nature. The data from the IMU is
generated at a rate of a 100 Hz and has accelerometer and gyroscope data that is published by
ROS2.

22

Chapter 5 – Monocular Pipeline
The simulated sensors from Chapter 4 provide the ROS2 topics that the monocular pipeline
requires as an input. The outputs of this pipeline provide the basis for the place recognition
modules of the LiDAR and fused pipelines. A scale ambiguous odometry estimate is also
provided as a pipeline output for reference. The two major modules within the monocular
pipeline are the visual odometry and place recognition modules, which are discussed in further
detail below.

5.1 Monocular Visual Odometry

In LCS-SLAM, the monocular visual odometry algorithm uses successive images taken from the
left camera in the stereo camera pair to estimate the pose of the quadcopter. Since each
individual camera output is an image of the 3D world projected onto a 2D image plane, it is
important to establish a geometric model which can be used to describe the projection process.
The projection process allows for the 3D point of an object relative to the camera to be
determined from a 2D image captured of the environment. The most popular camera geometry
model used today in computer vision is the pinhole camera geometry model. The pinhole camera
geometry model describes an infinitely small hole which projects 3D object points into the 2D
image space. The 2D image space is known as the image plane, while the plane where the
pinhole exists is known as the camera plane. The camera plane has an optical center O which
describes the hole in the pinhole model. This optical center is separated from the image plane
projection of the optical center O’ by a known focal length f. Both O and O’ are the centers of
their respective coordinate systems (x’,y’,z’) and (x,y,z). Light from a point P in 3D space passes
through the pinhole and is projected onto the image plane as P’. Fig. 5.1 shows the geometric
relationship between the image and camera planes with respect to a 3D point in space.

Figure 5.1 - Pinhole camera model.[29]

23

Using the similarity of triangles from the pinhole geometric model, the relationships between the
3D point P in the (X, Y, Z) coordinate system can be related to the projected point P’ coordinate
system (X’, Y’, Z’) as seen in Eq. (5.1). Note that images are typically inverted when projected
onto the image plane, however most modern cameras do not output an inverted image which the
pinhole model suggests. The image plane can be symmetrically placed in front of the camera
frame to flip the inverted image and give us the final form of the geometric relationships in the
pinhole camera model shown in Eq. (5.1).

!
"
=	 #

#$
= %

%$
 (5.1)

Using the pinhole camera model, a pixel coordinate system, and Eq. (5.1) one can determine the
projection of 3D point P onto a camera normalized plane. The relationship between the pixel
coordinate system and the image coordinate system can be described by the camera intrinsic
calibration parameters. These parameters can be provided by the manufacturer or determined
from a calibration process. The derivation of such is outside the scope of this paper and it
assumed that the internal camera calibration parameters are described by a matrix K. In addition
to the camera intrinsic parameters, lenses are used in modern cameras to get a larger field of
view of a scene. Lenses change how light is projected onto the image plane from the 3D world
by bending it. To continue using the pinhole camera model with cameras equipped with lenses, a
correction for the radial and tangential distortion from the lens is required for complete camera
calibration. Like the camera intrinsic parameters, the derivation of such correction factors is out
of the scope of this paper and is described by a set of coefficients kn and pn up to an n order of
accuracy which can be determined from the popular checkboard camera calibration processes.

Given a calibrated camera, the pixel coordinate system from images taken with modern cameras
can be mapped into the image coordinate system and evidently the camera coordinate system
through the pinhole model. In addition to the camera intrinsic calibration parameters, there are
camera extrinsic parameters which describe the rotation of the camera R and the translation of
the camera t with respect to the world coordinate system. The camera extrinsic parameters are
used in solving for motion in LCS-SLAM when given an input from a single camera streaming
video. With these concepts in mind, the relationship between a point in the pixel coordinate
space (u, v) can be related to a point in the 3D world space (X, Y, Z) with Eq. (5.2).

𝑃&' = 𝐾(𝑅𝑃(+ 𝑡) (5.2)

Note that the point in world space PW is described in the camera normalized coordinate space
where the camera coordinates are normalized by the depth of the scene Z. This is important since
this means a single camera view is not sufficient in determining the depth of a scene as it is lost
during the projection process. The 3D position of objects in space are only able to be determined
up to a scale of depth Z for monocular cameras, leading to the well-known scale ambiguity
problem.

In LCS-SLAM, unprocessed camera images are passed to the odometry algorithm and corrected
for camera lens distortion. Once corrected for lens distortion, the input image is filtered using
Contrast Limited Adaptive Histogram Equalization (CLAHE). CLAHE is a histogram

24

equalization algorithm with a contrast limiting threshold that splits the image into a rectangular
grid which enhances edges for feature detection. CLAHE filtered images can be seen in Fig. 5.2.

Figure 5.2 – Generic CLAHE processed image [29].

Once equalized the image is then converted from RGB to greyscale for further processing by the
pipeline. Using the undistorted and equalized image view, 2D features are detected using an
ORB feature detector and binary descriptor. Features from an image can consist of corners,
edges, and blocks that are scale and rotation invariant. The exact algorithm that ORB [30] uses
for finding features is outside the scope of this paper, however Fig. 5.3-5.4 show the ORB
feature detection breakdown and image pyramid used to achieve scale and rotation invariant
features.

Figure 5.3 – ORB feature extraction process [30].

25

Figure 5.4 – Image pyramid showing how scale invariant features are detected [30].

In LCS-SLAM the ORB detector and descriptor is tuned to generate the best 1500 features in an
image calculated by the Harris Score of the features. In addition, the Features from Accelerated
Segment Test (FAST) detector threshold used in ORB is limited to increase the number of
features initially detected. Once features are detected in an image view, they are matched with
against a temporally successive image frame. LCS-SLAM uses a Fast Library for Approximate
Nearest Neighbors (FLANN) based Matcher using Locally Sensitive Hashing (LSH) to handle
matching of binary feature descriptors using Hamming distances which represent the distance
between two binary strings. FLANN is used to quickly perform feature matching when compared
to traditional binary feature matching methods such as the Brute-Force Matcher because FLANN
only performs approximations of matches and is typically used for the more computationally
taxing floating point feature descriptors such as Speeded Up Robust Features (SURF) and Scale
Invariant Feature Transform (SIFT). In LCS-SLAM, the best two nearest neighbor matches are
calculated for each feature in the image from the FLANN matcher, which are then filtered based
on its estimated ambiguity. For each feature in the current image view, if there are two features
that closely match from an earlier view then Lowe’s Ratio Test is used to reject features that
don’t meet a specified threshold of uniqueness. In LCS-SLAM, the threshold for the Lowe’s
Ratio Test is a 25% difference between the first “best matched” feature and the second “best
matched” feature to be considered sufficiently unique matches. The best matched features
between two image views of a generic scene are shown in Fig. 5.5. The real-time matched
features when running LCS-SLAM is shown in Fig. 5.6.

26

Figure 5.5 – Keypoint feature matching between two images [29].

Figure 5.6 – Best matched ORB features in LCS-SLAM.

27

The “best matches” that pass Lowe’s Ratio Test are then used to estimate the relative pose of the
robot by estimation a technique known as essential matrix estimation using the well-known
Nister 5-point algorithm [31] with Levenberg-Marquardt least squares optimization to handle
noisy matches. Decomposing the final estimated essential matrix yields the relative rotation
between two camera frames and a unit vector of the relative translation between the two camera
frames with ambiguous scale between the two image views. Depending on the number of feature
inliers recovered from the essential matrix estimation process, the relative pose estimate is either
kept as a keyframe and used for odometry or rejected in favor of the next image view. To recover
an estimate of the proper translation scale, the most recent LiDAR position magnitude estimate is
used, however the system is still prone to scale drift because the LiDAR and monocular pipeline
keyframes are not synchronized in LCS-SLAM.

Based on the estimated pose between frames, the magnitude of the translation and rotation is
checked against a set of thresholds to determine whether the current image view should be
considered a keyframe. If so, the keyframe can be used to estimate the odometry of the robot.
The criteria to be considered a keyframe in the monocular keyframe is experimentally obtained
and shown in Table 5.1. The monocular odometry keyframes are shown in Fig. 5.7.

Table 5.1 – Monocular odometry keyframe selection properties.

Keyframe Property Quantity Units

Translation minimum 0.5 Meters

Rotation minimum 3.0 Degrees

Figure 5.7 – Monocular keyframe selection (purple) compared to ground truth (red).

28

With the pose recovered and keyframes selected, the data can be used for further processing in
the place recognition module and mapping modules.

5.2 Monocular Mapping

Using the odometry estimates and the aid of multiple camera views from the left camera in the
stereo camera pair, 2D features detected in the image can be triangulated into 3D space given
that the stereo camera is calibrated properly. The concept of stereo vision aims to solve for the
depth by using two perspectives to view a point from the same scene. Fig. 5.8 shows two
cameras that are placed in a parallel horizontal stereo configuration observing the same point in a
scene. Once again P represents the point in 3D space, where uL and uR represent the pixel
coordinate along the horizontal axis for each camera.

Figure 5.8 – Horizontal stereo camera geometry model [29].

OL and OR represent the optical centers of the left and right camera planes, f represents the focal
length of the camera, b represents the baseline between the two cameras, and PL and PR represent
the projection of the 3D object points on the left and right image planes.

Using the similarity of triangles from the geometric model in Fig 5.9, it is possible to determine
the relationship required to obtain the depth of a point in the scene as shown in Eq. (5.3).

𝑧 = ")
*
, 𝑑	 ≜ 𝑢+ − 𝑢, (5.3)

Eq. (5.3) shows that the depth of the scene for parallel cameras can be recovered by a stereo
camera if the disparity (sometimes referred to as parallax) d can be found for the point projected
onto each image plane. Given the general case when the cameras are not parallel the relative
rotation and translation between the cameras must be known to triangulate points in 3D space.
This combination of rotation and translation along with the camera intrinsic matrix forms the
projection matrix for each camera view. The solution to perform triangulation for the monocular

29

pipeline in LCS-SLAM is to use successive camera views of matched features in the scene
combined with odometry estimates to initialize projection matrices for each camera view. Given
matched features between two camera views and the relative translation and rotation between
them in 3D space, Direct Linear Transformation can be used to project points into 3D space.
Points that are triangulated incorrectly are filtered out by LCS-SLAM. The output of the
monocular mapping module of LCS-SLAM using this triangulation technique is shown in Fig.
5.9.

Figure 5.9 – Monocular mapping module.

5.3 Monocular Place Recognition

Given that there are inaccuracies in the state estimation process, errors in odometry and mapping
grow exponentially over time if left uncorrected. To enable a global optimization process, the
robot must know if it is at a previously visited location also known as loop-closure detection. In
the context of an autonomous racing drone, this means the robot must know when it has arrived
at the same part of the course that it has visited previously. Loop closure detection requires a
robot to have place recognition capabilities. Loop closure in LCS-SLAM uses features from each
monocular camera keyframe that is indexed and saved into a database. This database holds a
Bag-of-Words representation that allows for real-time recall of previous monocular camera
keyframes. By leveraging the Fast Digital Bag-of-Words (FDBoW) open-source software library,
a Bag-of-Words representation of a keyframe and its respective features allow for efficient recall
of similar images in a database, with relatively good precision. The exact details on how Bag-of-
Words works is outside the scope of this paper, however it is important to identify Bag-of-Words

30

as a histogram-based similarity comparison method using a predetermined vocabulary database
that describes features [32]. A high-level visualization of the process is shown in Fig. 5.10.

Figure 5.10 – Bag-of-Words high-level overview [32].

By using histograms to compare vocabulary between images, a k-d tree can be used to efficiently
lookup a database of existing images and their respective features. Each new keyframe is
compared to the keyframes stored in the Bag-of-Words database, and if the new keyframe meet a
similarity threshold which uniquely identify an environment, then the robot has successfully
detected a loop closure. Once loop closure is detected, a global optimization processes such as
Pose Graph Optimization can be used to successfully optimize the graph or “close the loop” as
used in the LiDAR pipeline. An example of “closing the loop” from current state-of-the-art
SLAM algorithms can be seen in Fig. 5.11.

Figure 5.11 – Generic loop closure impact on map where red is the detected loop closure points
[33].

31

Chapter 6 – LiDAR Pipeline
The simulated sensors from Chapter 4 provide the ROS2 topics that the LiDAR pipeline requires
as input. The output of this module is optimized quadcopter odometry and map of the
environment which can be used in the fusion pipeline. The LiDAR pipeline consists of odometry,
mapping, place recognition, and optimization modules described in further detail below.

6.1 LiDAR Odometry

LiDAR odometry estimates the quadcopter motion based on successive LiDAR scans of the
surrounding environment. Each LiDAR packet sent from the sensor is collected, and based on
the sensor calibration and configuration, a point cloud can be obtained. The LiDAR processing
algorithm in LCS-SLAM uses the velodyne_pointcloud ROS2 package which takes raw sensor
measurements of azimuth, intensity, and distance for each laser scan in conjunction with the
sensor calibration parameters and determines the local cartesian coordinate points returned by
each laser. The selected LiDAR sensor, the VLP-16, contains 16 lasers with their own unique
geometric positions which must be accounted for to accurately transform the sensor
measurements to the cartesian coordinate system. Once the initial processing of the of LiDAR
sensor data is complete, a point cloud of each scan is generated and can be used for further
processing by the odometry module.

The first step in the LCS-SLAM LiDAR odometry pipeline is to filter the incoming point cloud
scans to ensure only unique points and inliers are considered. This allows the entire pipeline to
run faster and produce a more accurate result. Three different filters are applied to the data to
prepare it for further processing: box filter, voxel down-sample Filter, and removing invalid
points. A box filter eliminates all points outside of defined Cartesian coordinate bounds. For the
selected VLP-16 LiDAR, bounds of +/- 120 meters is selected for each axis which is set based on
the maximum range of the VLP-16 sensor given in Table 3.2. Voxel down-sampling of the data
then reduces the number of points in the point cloud, drastically decreasing computation times in
further processing steps. Voxel down-sampling applies a voxel grid with a specified leaf size in
which points that fall within a leaf are binned together. This helps eliminate similar points from a
point cloud by representing them as one single entity. The specified leaf size is dependent on the
sensor resolution from Table 3.2 as well as the desired computational efficiency increase, which
comes at the cost of accuracy. A leaf size of 1.0 meter is selected through experimentation for
use in LCS-SLAM. Lastly, any points in the cloud that do not have a valid cartesian coordinate
are removed, ensuring only valid points are considered by the odometry module. The parameters
used for LiDAR point cloud filtering are provided in Table 6.1.

32

Table 6.1 – LiDAR point cloud filtering parameters.

Property Quantity Units

Box filter radius 120 Meters

Voxel leaf size 1.0 Meters

Next, the odometry module uses successive scans and compares them to each other in a process
known as scan matching. Scan matching is used to determine the relative pose of the quadcopter
between successive scans by computing a transform which minimizes the distance between
corresponding points in two temporally successive point clouds with similar scene views. If the
point clouds from two successive scans P and P’ are defined as a set of points pi and p’i
respectively, the transformation between each of the scans defined by the rotation R and
translation t can be represented by Eq. (6.1).

𝑝- = 𝑅𝑝′- + 𝑡 (6.1)

It is assumed that the closest points between the point clouds are the same points that undergo a
Euclidean transformation between consecutive scans. Using the matched points, a point cloud
registration technique known as Voxelized Generalized Iterative Closest Point (VGICP) is used
to determine the transformation between the point clouds. The VGICP algorithm is an
augmented version of the ICP algorithm with a focus on real-time processing and better
performance in indoor 3D environments. An example of the ICP registration process for a pair of
generic point clouds is shown in Fig. 6.1.

Figure 6.1 – ICP algorithm alignment for two similar point clouds.

33

The Iterative closest point algorithm defines the error e between two points to be defined as in
Eq. (6.2).

𝑒- = 𝑝- − (𝑅𝑝-$ + 𝑡) (6.2)

The error term is then used to construct a least-square problem between two points which when
minimized is used to determine the rotation R and translation t as shown in Eq. (6.3).

min
,,/

0
1∑ ||(𝑝- − (𝑅𝑝-

$ + 𝑡))||1 (6.3)

Given the least-square problem in Eq. (6.3), the iterative closest point algorithm requires that the
centroid of the point clouds to be computed. Once the centroids are computed, the rotation that
aligned the current scan to the previous scan can be obtained by using Singular Value
Decomposition (SVD). The translation can be solved by solving for the vector that connects the
two centroids from the consecutive point clouds. By integrating each estimated transformation
over each previous transformation, an absolute pose of the quadcopter can be determined as
shown in Eqs. (6.4) and (6.5).

𝑅2$ =3 	 𝑅23 ∗ 𝑅2$2 (6.4)

𝑡2$ =3 	 𝑡23 + 𝑡2$2 (6.5)

ICP alone can estimate the relative and absolute robot translation and rotation. To allow for more
robust transformation estimates in indoor environments, GICP can be used. The GICP algorithm
is based on the Iterative Closest Point (ICP) and Point-to-Plane algorithms which can be broken
down into steps:

Iterative Closest Point Algorithm

1. Given two input clouds A and B, compute correspondences for each point within a
specified matching threshold.

2. Compute a transformation which minimizes the distance between two corresponding
points.

Point-to-Plane Algorithm

1. Given two input clouds A and B, compute correspondences for each point within a
specified matching threshold.

2. Compute a transformation which minimizes the error along the surface normal of one of
the cloud scans.

However, for more robust and real-time performance a GPU accelerated VGICP algorithm is
used in LCS-SLAM. VGICP extends the GICP algorithm. This allows VGICP to perform plane-
to-plane correspondences which minimizes the error along the surface normal for both point

34

clouds which is common in LiDAR scans, and not well handled by ICP and Point-to-Plane
algorithms individually. To ensure real-time performance and accurate results, there are three
termination criteria selected for the algorithm as shown in Table 6.2.

Table 6.2 – GICP termination criteria in LCS-SLAM.

Termination Criteria Criteria Number Quantity Units

Transformation epsilon 1 1e-10 Meters

Euclidean fitness 2 1e-3 Meters

Number of iterations 3 250 N/A

Termination criterion 1 and 2 stop the algorithm if a good match is found and reduce
unnecessary iterations from being performed. Termination criteria enforces the real-time
constraint at the cost of accuracy of the scan matching process. These values were determined
based off experimentation with the given simulation environment.

Next in the LiDAR odometry module, keyframes are selected based on the transformation
estimated from the scan matching step. Keyframes are selected based on enough rotation or
translation occurring between successive scans which limits drift when the quadcopter is not
moving. The experimentally obtained keyframe threshold between scans are shown in Table 6.3.

Table 6.3 – LiDAR keyframe selection properties.

Keyframe Property Quantity Units

Rotation minimum 3.0 Degrees

Position minimum 1.0 Meters

If the LiDAR scan passes the threshold for being a keyframe, it can be used to estimate the
odometry and for further processing by the mapping module. If there have been no other
keyframes processed by LCS-SLAM, the odometry system will mark the scan as the reference
scan and be initialized, thus all successive scans will be relative to the reference scan. Each
keyframe from this module is given a unique identification number and registered with the most
recent monocular camera keyframe identification number. This registration process is important
for the optimization module in the pipeline. A visualization of the LiDAR odometry keyframes
are shown in Fig. 6.2.

35

Figure 6.2 – LCS-SLAM LiDAR odometry keyframes (blue) compared to ground truth (orange).

6.2 LiDAR Mapping

LiDAR maps are created from the odometry of successive LiDAR scans of the environment and
the 3D points directly generated from the LiDAR sensor returns. Laser returns from each of the
scans generate sparse map points of the environment up to 100 meters in any direction given the
selected sensor. Visualization of the LiDAR map generated by LCS-SLAM is shown in Fig. 6.3.

Figure 6.3 – LCS-SLAM LiDAR mapping module.

36

6.3 LiDAR Place Recognition

Given that the monocular pipeline has correctly identified a “loop closure” from its place
recognition module, the monocular camera keyframe identification number and its registered
LiDAR scan identification number associated can be used to recover the LiDAR scans in which
the loop closure occurs. These two scans are then aligned using VGICP as described in the
LIDAR odometry module. The relative odometry between these two scans is then used to create
a loop closure relationship in the optimization module.

6.4 LiDAR Optimization

A technique to reduce the impact on odometry drift is to perform Pose Graph Optimization. The
open source g2o hypergraph optimization software library is leveraged which allows for
representation of the robot odometry as a pose graph. Pose Graph Optimization, or more
generally factor graph optimization, uses Graph Theory and Lie-Algebra groups to represent the
SLAM problem in terms of nodes and edges to perform global optimization of for SLAM
systems. Nodes are represented by robot state measurements generated from odometry and
converted to a Special Euclidean (SE3) Lie-Algebra Group representation, where edges are the
relative odometry measurements between each robot state. Each edge also consists of an
information matrix or Fisher Matrix which consists of the inverse covariances from the
measurement uncertainty for each state variable used in the state estimation process. When a
loop closure is detected, a new edge is added to the graph constraining the original state
measurement and the matched state measurement from the place recognition module. The
estimated rotation and translation between the matched scans are then used as the edge constraint
in the graph and optimization of the graph can commence.

To properly perform an optimization, the initial node of the graph must be set fixed, otherwise
the optimization problem will not be properly constrained. During the optimization process a
gradient descent method is used to iteratively calculate the Maximum-Likelihood-Estimate
(MLE) of the robot poses by minimizing the weighted sum of residual errors present in the
graph. It should be also noted that bundle adjustment is a specific case of pose graph
optimization where landmark points are identified as additional vertices connected by edges
containing the projection information to generate the landmarks, however it is not used by the
LCS-SLAM LiDAR pipeline.

Optimization of the pose graph is done by minimizing the least-squares problem using the well-
known Levenberg-Marquardt gradient descent optimization method.

After reaching termination criterion or exhausting the maximum number of iterations allowed for
solving the problem, the updated graph is used to optimize the previous odometry estimates and
map points on a global scale.

37

Chapter 7 – Fused Pipeline
The simulated sensors from Chapter 4 and the outputs from the LiDAR and mono pipelines
provide the ROS2 topics that the fused pipeline requires as inputs. The output of this module is
the optimized quadcopter odometry and map of the environment which is the optimal output of
LCS-SLAM. The pipeline contains odometry, mapping, place recognition, and optimization
modules.

7.1 Fused Odometry

In the LCS-SLAM algorithm, LiDAR, Camera, and IMU sensor data can be fused together using
an Unscented Kalman Filter (UKF). The UKF is an extension of the Extended Kalman Filter
(EKF) which is capable of fusing non-linear sensor data assuming the data points are Gaussian
Random Variables (GRV). The EKF leverages a Taylor expansion to achieve first-order
linearization of the non-linear sensor model which can result in sub-optimal state estimation
performance and in some cases divergence of the filter. The UKF remedies the flaws of an EKF
by sampling a set of GRV sample points that are transformed via the Unscented Transform
which can capture the system performance up to third-order accuracy without explicit
linearization as required in the EKF. The basis of the UKF can be defined with state prediction
and measurement update steps like the traditional Kalman Filter.

The prediction step of the UKF depends on a set of sigma points. Sigma points are individual
points from the data distribution which are representative of the whole distribution itself. The
algorithm behind the prediction step is like that of the EKF without the explicit linearization step.
This step is replaced by the Unscented Transform which consists of:

1. Calculating sigma points
2. Determining weights of the sigma points
3. Transformation of sigma points to generate a predicted mean and co-variance.

The number of sigma points needed for accurate representation of the system is given by Eq.
(7.1), where N is the dimensionality of the problem.

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑆𝑖𝑔𝑚𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 2𝑁 + 1 (7.1)

The sigma points matrix X of dimensionality N is calculated as shown in Eqs. (7.2) and (7.3)
where μ is the mean of the Gaussian distribution, n is the dimensionality of the system, ƛ is the
scaling factor which defines the distance from the mean for selecting sigma points which is
typically selected as 3-n, and Σ is the co-variance matrix. The square root of a matrix can be
calculated with the aid of the Cholesky decomposition.

𝑋! = 𝜇 (7.2)

𝑋" = 𝜇 + 78(𝑛 + 𝜆)𝛴="
 (7.3)

38

Next in the algorithm is to compute the weights w of each sigma point as shown in Eqs. (7.4) and
(7.5).

𝑤! =
#

(%&#)
 (7.4)

𝑤" =
(

)(%&#)
 (7.5)

Once the weights are computed, the transformation of the sigma points to calculate a new mean
and co-variance is done as shown in Eqs. (7.6) and (7.7) where f is defined as the non-linear
process function, and R is defined as the process noise.

𝜇′ = ∑ 𝑤")%
"*! 𝑓(𝑋") (7.6)

𝛴′ = ∑ 𝑤")%
"*! (𝑓(𝑋") − 𝜇′)(𝑔(𝑋") − 𝑢′)+ + 𝑅, (7.7)

The update step of the UKF uses the sensor measurement data to further enhance the estimate
from the prediction step. To achieve this, the sigma points must be transformed from state space
to measurement state space by a function h, then the mean and co-variance from the prediction
step can be represented in measurement space by ζ and S respectively, with external process
noise Q as shown in Eqs. (7.8), (7.9), and (7.10).

𝑍 = ℎ(𝑋") (7.8)

𝜁 = ∑ 𝑤")%
"*! 𝑍 (7.9)

𝑆 = ∑ 𝑤")%
"*! (𝑍 − 𝜁)(𝑍 − 𝜁)+ + 𝑄 (7.10)

To calculate the Kalman gain, K, Eqs. (7.11) and (7.12) are defined where T is the cross-co-
relation matrix between state and predicted space.

𝐾 = 𝑇𝑆-((7.11)

𝑇 = ∑ 𝑤")%
"*! (𝑋" − 𝜇′)(𝑍" − 𝜁)+ (7.12)

Given the calculated quantities variables above, the final predicted mean and co-variance is
given by Eqs. (7.13) and (7.14). This updated value is used in the prediction of the next iteration
of the filter.

𝜇"&(= 𝜇"′ + 𝐾"I𝜁./0123/4," − 𝜁"J (7.13)

𝛴"&(= (𝐼 − 𝐾"𝑇")𝛴"′ (7.14)

The UKF essentially allows all equipped sensors on the robot to be used to provide the best
estimate of the robot odometry and map, given each sensors strengths and limitations which are
reflected in the covariances that the filter is initialized with. The LCS-SLAM fused odometry
keyframes are visualized in Fig 7.1.

Deleted: ¶

39

Figure 7.1 – LCS-SLAM fused odometry keyframes (red) vs ground truth (orange).

7.2 Fused Mapping

Using the fused odometry estimate, the map points from the LiDAR sensor can be registered
with the most optimal robot localization estimate. There is no added computational cost in the
mapping module other than re-alignment of map points with fused odometry estimates.

Figure 7.2 – LCS-SLAM fused mapping keyframes.

40

7.3 Fused Place Recognition

Given that the monocular pipeline has correctly found a “loop closure” from its place recognition
module, the monocular camera keyframe identification number and its registered LiDAR and
fused identification numbers can be used to recover the fused odometry keyframes in which the
loop closure occurs. The relative odometry between these two scans is assumed to be the
calculated LiDAR loop closure odometry since it is the most accurate method available in LCS-
SLAM.

7.4 Fused Optimization

For fused optimization, pose graph optimization is used to perform global optimization. Pose
graph optimization techniques used in the fused pipeline are identical to those used in the LiDAR
pipeline which is discussed in detail in Chapter 6. Fig. 7.3 and Fig. 7.4 show the fused odometry
estimate before and after optimization, respectively.

Figure 7.3 – LCS-SLAM fused (red) and truth (orange) before pose graph optimization.

41

Figure 7.4 – LCS-SLAM fused (red) and truth (orange) after pose graph optimization.

42

Chapter 8 – LCS-SLAM Benchmark Test
Benchmark testing of the LCS-SLAM used the core software discussed in the chapters above in
addition to computer system clocks calibrated for nanosecond accuracy. There were three tests
conducted for each dataset: Track-Easy and Track-Hard which generated six total data points for
benchmarking the performance of LCS-SLAM for use in a racing quadcopter traveling at
approximately 10 miles per hour. The machine used to test the system contained 64GB of DDR4
RAM, an AMD Ryzen 3950x with 32 CPU cores, and an RTX 3090 GPU on a 64-bit x86
machine running Ubuntu 20.04. Each test had ten seconds at the beginning to allow LCS-SLAM
to start-up before the dataset would begin supplying data into the system. When the dataset
ended, the generated log files for trajectories, execution times, and maps from LCS-SLAM were
then post-processed to evaluate for the metrics described below. The selected metrics aim to
measure accuracy, repeatability, and real-time performance of LCS-SLAM.

8.1 Absolute Trajectory Error (ATE)

The absolute trajectory error is calculated by comparing the ground-truth trajectories from the
simulator and performing Root Mean Square (RMS) analysis between the estimated robot
trajectory for each of the various path outputs in LCS-SLAM: LiDAR, Monocular, and Fused
which is good for evaluating global consistency of the trajectory. The Absolute Trajectory Error
(ATE) for can be calculated for each synchronized time sequence i using Eq. (8.1), where E is
the absolute trajectory error in Special Euclidean 3D space (SE3), Q is the ground-truth
trajectory in SE3 space, S is the rigid-body transformation that aligns the ground truth and
estimated trajectory frame, and P is the estimated trajectory in SE3 space. Since both the
estimated trajectory and ground-truth trajectory are taken at difference time sequences, an
association step is used in which the nearest timestamps are matched between the two datasets
and are considered “time-synchronized”. This results in a slight variation in the error estimate as
there is inherent error associated with the data association step.

𝐸- =	𝑄-40𝑆𝑃- (8.1)

The root-mean square error of the error matrices in Eq. (8.1) can be solved using Eq. (8.2) where
n is the number of time synchronized samples.

𝐴𝑇𝐸,567 = (0
8∑ ‖𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝐸-)‖8

-90
1)0/1 (8.2)

Eq. (8.2) can be normalized against the total length traveled by the robot to allow for datasets of
different lengths to be compared against each other. This normalization process yields the
distance normalized root-mean square ATE and is given in Eq (8.3).

𝐴𝑇𝐸;,567 =
<=7!"#$

∑ ‖/@A8BCA/-D8(F%)‖&
%'(

 (8.3)

The results of this analysis are summarized in Tables 8.1-8.2. Figs. 8.1-8.24 contain various
visualizations in both isometric and overhead views of the optimized absolute trajectory obtained

43

from the mono, LiDAR, and fused odometry pipelines compared to the ground-truth. The Track-
Easy and Track-Hard datasets were used to test LCS-SLAM and contain three tests for each
dataset. Figs. 8.1-8.12 show all the tests between the two datasets, while Figs. 8.13-8.24 shows
only one of the three tests from each dataset.

Table 8.1 – LCS-SLAM RMSE ATE results.

Scenario Monocular Camera
RMSE ATE (m)

LiDAR RMSE ATE
(m)

Fused UKF RMSE
ATE (m)

Track-Easy Test 1 14.555 3.280 4.251

Track-Easy Test 2 13.714 3.329 3.537

Track-Easy Test 3 21.915 3.680 4.112

Track-Easy

Average

16.728 3.429 3.967

Track-Hard Test 1 19.093 6.068 9.139

Track-Hard Test 2 14.124 11.369 12.553

Track-Hard Test 3 18.818 8.765 9.039

Track-Hard

Average

17.345 8.734 10.244

44

Table 8.2 – LCS-SLAM NRMSE ATE results.

Scenario Monocular Camera
NRMSE ATE (%)

LiDAR NRMSE
ATE (%)

Fused UKF NRMSE
ATE (%)

Track-Easy Test 1 4.506 1.016 1.316

Track-Easy Test 2 4.246 1.031 1.095

Track-Easy Test 3 6.785 1.139 1.273

Track-Easy

Average

5.179 1.062 1.228

Track-Hard Test 1 7.074 2.157 3.249

Track-Hard Test 2 5.020 4.041 4.462

Track-Hard Test 3 6.689 3.115 3.213

Track-Hard

Average

6.261 3.104 3.641

45

Figure 8.1 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Easy Test 1.

Figure 8.2 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Easy Test 2.

46

Figure 8.3 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Easy Test 3.

Figure 8.4 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 1.

47

Figure 8.5 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 2.

Figure 8.6 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 3.

48

Figure 8.7 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-Easy
Test 1.

Figure 8.8 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-Easy
Test 2.

49

Figure 8.9 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-Easy
Test 3.

Figure 8.10 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 1.

50

Figure 8.11 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 2.

Figure 8.12 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 3.

51

Figure 8.13 – Isometric view of LCS-SLAM fused estimated trajectory and ground-truth on
Track-Easy Test 1.

Figure 8.14 – Isometric view of LCS-SLAM fused estimated trajectory and ground-truth on
Track-Hard Test 1.

52

Figure 8.15 – Top view of LCS-SLAM fused estimated trajectory and ground-truth on Track-
Easy Test 1.

Figure 8.16 – Top view of LCS-SLAM fused estimated trajectory and ground-truth on Track-
Hard Test 1.

53

Figure 8.17 – Isometric view of LCS-SLAM LiDAR estimated trajectory and ground-truth on
Track-Easy Test 1.

Figure 8.18 – Isometric view of LCS-SLAM LiDAR estimated trajectory and ground-truth on
Track-Hard Test 1.

54

Figure 8.19 – Top view of LCS-SLAM LiDAR estimated trajectory and ground-truth on Track-
Easy Test 1.

Figure 8.20 – Top view of LCS-SLAM LiDAR estimated trajectory and ground-truth on Track-
Hard Test 1.

55

Figure 8.21 – Isometric view of LCS-SLAM mono estimated trajectory and ground-truth on
Track-Easy Test 1.

Figure 8.22 – Isometric view of LCS-SLAM mono estimated trajectory and ground-truth on
Track-Hard Test 1.

56

Figure 8.23 – Top view of LCS-SLAM mono estimated trajectory and ground-truth on Track-
Easy Test 1.

Figure 8.24 – Top view of LCS-SLAM mono estimated trajectory and ground-truth on Track-
Hard Test 1.

57

8.2 Relative Pose Error (RPE)

The relative pose error is calculated by comparing the ground-truth poses from the simulator and
performing root mean square (RMS) analysis between each relative pose estimate of the various
path outputs in LCS-SLAM: LiDAR, Monocular, and Fused which is useful in evaluating the
drift of a trajectory. The relative pose error (RPE) is typically broken into two components:
translation and rotation. First the relative pose error for each time interval Δ must be calculated
for each sequence of i. The relative pose error can be calculated using Eq. (8.4) where F is the
relative pose error, Q is the ground-truth pose, and P is the estimated pose.

𝐹- =	 (𝑄-40𝑄-HI)40(𝑃-40𝑃-H∆) (8.4)

Using Eq. (8.4) the root-mean square error for both the rotation and translation components of
the relative pose error can be calculated using Eq. (8.5) and Eq. (8.6), respectively, where n is the
number of time synchronized samples.

𝑅𝑃𝐸/@A8B
-,∆ = (0

8∑ ‖𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝐹-)‖8
-90

1)0/1 (8.5)

𝑅𝑃𝐸@D/
-,∆ = 0

840∑ arccos	(/@A2KL@D/A/-D8(M%)N40
1

)840
-90 (8.6)

Eq. (8.6) can be normalized over the total distance traveled to obtain a distance invariant error
metric as seen in Eq. (8.7).

𝑅𝑃𝐸8D@OAC-PK*	@D/
-,∆ = ,R7)*+

%,∆

∑ ‖/@A8BCA/-D8(F%)‖&
%'(

 (8.7)

The RPE measured in testing of LCS-SLAM using Eq. (8.5) and Eq. (8.7) are summarized in
Table 8.3.

58

Table 8.3 – LCS-SLAM RPE results.

Scenario Monocular
Camera
RMSE
RPE
Translation
(m)

LiDAR
RMSE
RPE
Translation
(m)

Fused
RMSE
RPE
Translation
(m)

Monocular
NRMSE
RPE
Rotation
(deg/m)

LiDAR
NRMSE
RPE
Rotation
(deg/m)

Fused
NRMSE
RPE
Rotation
(deg/m)

Track-
Easy Test
1

1.053 1.009 0.615 0.011 0.011 0.006

Track-
Easy Test
2

1.053 1.006 0.593 0.012 0.012 0.005

Track-
Easy Test
3

1.089 1.035 0.609 0.012 0.012 0.005

Track-
Easy

Average

1.065 1.017 0.606 0.012 0.012

0.005

Track-
Hard Test
1

1.244 1.131 0.891 0.018 0.018 0.012

Track-
Hard Test
2

1.231 1.154 0.909 0.019 0.018 0.012

Track-
Hard Test
3

1.229 1.165 0.891 0.019 0.018 0.013

Track-
Hard
Average

1.234 1.150 0.897 0.019 0.018 0.012

59

8.3 Tracking, Mapping, and Optimization Execution Times

The mean tracking execution times are calculated for each sensor in LCS-SLAM: LiDAR,
Monocular, and Fused. The results of this analysis are summarized in Table 8.4.

Table 8.4 – LCS-SLAM tracking execution time results.

Scenario Monocular
Odometry
Mean
Execution
Time (ms)

Monocular
Odometry
Standard
Deviation
Execution
Time (ms)

LiDAR
Odometry
Execution
Time (ms)

LiDAR
Odometry
Standard
Deviation
Execution
Time (ms)

Fused
Odometry
Mean
Execution
Time (ms)

Fused
Odometry
Standard
Deviation
Execution
Time (ms)

Track-Easy
Test 1

48.566 11.764 4.544 9.462 0.037 0.021

Track-Easy
Test 2

49.799 11.378 4.425 9.136 0.040 0.020

Track-Easy
Test 3

49.679 12.043 4.389 8.844 0.039 0.020

Track-
Easy

Average

49.448 11.728 4.453 9.147 0.039

0.020

Track-
Hard Test
1

63.371 12.818 6.044 13.481 0.042 0.019

Track-
Hard Test
2

62.867 11.311 6.567 15.164 0.042 0.018

Track-
Hard Test
3

62.738 11.848 6.683 16.237 0.043 0.019

60

Scenario Monocular
Odometry
Mean
Execution
Time (ms)

Monocular
Odometry
Standard
Deviation
Execution
Time (ms)

LiDAR
Odometry
Execution
Time (ms)

LiDAR
Odometry
Standard
Deviation
Execution
Time (ms)

Fused
Odometry
Mean
Execution
Time (ms)

Fused
Odometry
Standard
Deviation
Execution
Time (ms)

Track-
Hard
Average

62.992 11.992 6.431 14.960 0.042 0.019

The mean mapping execution times are calculated for each sensor in LCS-SLAM: LiDAR,
Monocular, and Fused. The results of this analysis are summarized in Table 8.5.

Table 8.5 – LCS-SLAM mapping execution time results.

Scenario Monocular
Mapping
Mean
Execution
Time (ms)

Monocular
Mapping
Standard
Deviation
Execution
Time (ms)

LiDAR
Mapping
Execution
Time (ms)

LiDAR
Mapping
Standard
Deviation
Execution
Time (ms)

Fused
Mapping
Mean
Execution
Time (ms)

Fused
Mapping
Standard
Deviation
Execution
Time (ms)

Track-Easy
Test 1

46.534 32.497 0.182 0.108 0.276 0.261

Track-Easy
Test 2

47.277 34.266 0.188 0.124 0.324 0.321

Track-Easy
Test 3

49.952 36.671 0.189 0.131 0.311 0.256

Track-
Easy

Average

47.921 31.478 0.186 0.121 0.304 0.279

Track-
Hard Test
1

35.038 26.086 0.182 0.094 0.171 0.143

61

Scenario Monocular
Mapping
Mean
Execution
Time (ms)

Monocular
Mapping
Standard
Deviation
Execution
Time (ms)

LiDAR
Mapping
Execution
Time (ms)

LiDAR
Mapping
Standard
Deviation
Execution
Time (ms)

Fused
Mapping
Mean
Execution
Time (ms)

Fused
Mapping
Standard
Deviation
Execution
Time (ms)

Track-
Hard Test
2

38.532 28.364 0.148 0.092 0.168 0.141

Track-
Hard Test
3

35.235 27.045 0.150 0.095 0.176 0.144

Track-
Hard
Average

36.268 27.165 0.160 0.094 0.172 0.428

The mean optimization execution times are calculated for each sensor in LCS-SLAM: LiDAR,
Monocular, and Fused. The results of this analysis are summarized in Table 8.6.

Table 8.6 – LCS-SLAM optimization execution time results.

Scenario Monocul
ar Opt.
Mean
Executio
n Time
(ms)

Monocular
Opt.
Standard
Deviation
Execution
Time (ms)

LiDAR
Opt.
Execution
Time (ms)

LiDAR
Opt.
Standard
Deviation
Execution
Time (ms)

Fused
Opt. Mean
Execution
Time (ms)

Fused
Opt.
Standard
Deviation
Execution
Time (ms)

Track-Easy
Test 1

46.700 N/A 53.905 11.218 119.099 48.143

Track-Easy
Test 2

31.907 N/A 48.575 N/A 80.656 N/A

Track-Easy
Test 3

41.973 N/A 50.829 N/A 83.017 N/A

62

Scenario Monocul
ar Opt.
Mean
Executio
n Time
(ms)

Monocular
Opt.
Standard
Deviation
Execution
Time (ms)

LiDAR
Opt.
Execution
Time (ms)

LiDAR
Opt.
Standard
Deviation
Execution
Time (ms)

Fused
Opt. Mean
Execution
Time (ms)

Fused
Opt.
Standard
Deviation
Execution
Time (ms)

Track-
Easy

Average

40.193 N/A 51.103 N/A 94.257 N/A

Track-
Hard Test
1

34.624 N/A 30.377 N/A 46.663 N/A

Track-
Hard Test
2

36.917 N/A 41.321 N/A 47.873 N/A

Track-
Hard Test
3

41.515 N/A 36.349 N/A 51.334 N/A

Track-
Hard
Average

37.685 N/A 36.016 N/A 48.623 N/A

The mean total execution times are calculated for the entirety of the LCS-SLAM algorithm. The
results of this analysis are summarized in Table 8.7.

63

Table 8.7 – LCS-SLAM total execution time results.

Scenario Total Mean
Execution
Time (ms)

Total
Standard
Deviation
Execution
Time (ms)

Total Max
Execution
Time (ms)

Total Min
Execution
Time (ms)

Total
Median
Execution
Time (ms)

Track-Easy
Test 1

54.098 57.439 729.147 5.184 23.693

Track-Easy
Test 2

54.364 56.701 707.873 5.155 24.394

Track-Easy
Test 3

55.307 60.048 748.409 5.199 23.860

Track-Easy

Average

54.589 58.063 728.476 5.179 23.982

Track-Hard
Test 1

76.099 62.045 560.005 6.876 81.191

Track-Hard
Test 2

78.392 63.614 543.987 6.639 83.486

Track-Hard
Test 3

75.724 61.844 544.923 6.843 81.830

Track-Hard

Average

76.738 62.501 549.638 6.786 82.169

64

8.4 Mapping Accuracy

The mapping accuracy in LCS-SLAM is calculated for only the best fused pipeline results for
each dataset. Test 1 from both the Track-Easy and Track-Hard datasets were used for evaluation
of mapping accuracy. The 3D models used in the datasets were exported from Unity3D and
sampled into point clouds. These point clouds are used as ground-truth maps when compared to
the estimated point cloud maps generated from LCS-SLAM. The point clouds from LCS-SLAM
are filtered to remove outliers and then aligned to the ground-truth using the Iterative Closest
Point (ICP) algorithm. Once aligned, the mean distance between closest matched points in both
the ground-truth and estimated maps are calculated. To perform this analysis the point cloud
alignment software known as CloudCompare is used. The results of this analysis are summarized
in Table 8.8 and Figs. 8.25-8.29.

Table 8.8 – LCS-SLAM mapping accuracy results.

Dataset Mean Distance (m) Standard Deviation (m)

Track-Easy, Test 1 0.892 1.006

Track-Hard, Test 1 1.385 1.422

65

Figure 8.25 – Top view of ground-truth map of Track-Easy Unity3D course.

66

Figure 8.26 – Top view of ground-truth map of Track-Hard Unity3D course.

67

Figure 8.27 – Top view of estimated fused map of Track-Easy dataset, test 1.

68

Figure 8.28 – Top view of estimated fused map (white) registered with ground-truth map
(colored) of Track-Easy dataset, test 1.

69

Figure 8.29 – Top view of estimated fused map (white) registered with ground-truth map
(colored) of Track-Hard dataset, test 1.

70

Chapter 9 – Analysis of LCS-SLAM Performance

9.1 Analysis of LCS-SLAM Performance

The overall performance of LCS-SLAM on the two datasets collected for analysis is defined by
its tracking accuracy, mapping accuracy, repeatability, and execution times.

LCS-SLAM is globally consistent in a simple scene up to 1.062% trajectory error, and in a
difficult scene 3.104% trajectory error. Mean relative translation error is as low as 0.606 meters
in a simple scene and as high as 0.897 meters for a difficult scene for the fused sensor pipeline,
which is the most accurate for relative pose estimation. Distance normalized relative rotation
error is as low as 0.005 degrees per meter or as high 0.012 degrees per meter in the worst case
for the most accurate sensor pipeline.

LCS-SLAM excels in its mean tracking execution time performance in the LiDAR and fused
pipelines with best-case tracking times as low as 4.453 milliseconds and 0.039 milliseconds,
respectively. Monocular tracking is an order of magnitude slower than LiDAR tracking at 49.448
milliseconds. In the worst case LCS-SLAM performs LiDAR and fused tracking at 6.431
milliseconds and 0.042 milliseconds, respectively. Monocular tracking in the worst-case tracks at
62.992 milliseconds. The large difference between the tracking times can be attributed to the
complexity of the monocular tracking pipeline and the use of a GPU-accelerated LiDAR
odometry algorithm. The fusion tracking pipeline is the quickest as it uses IMU data and any
new data from the monocular or LiDAR pipelines to perform sensor fusion with a highly
optimized implementation of the Unscented Kalman Filter.

In the mapping execution time performance, LCS-SLAM once again sees very fast mean
response times in the LiDAR and fused pipelines. These two pipelines ingest existing sensor data
and must only concatenate current transforms and maps with existing map data, resulting in
worst-case performance of less than 1 millisecond. Monocular mapping is more intensive as it
must perform a triangulation step between multiple geometry views. Best case performance is
36.628 milliseconds, while worst case performance is 47.912 milliseconds.

Mean optimization execution time performance for all sensor pipelines in LCS-SLAM average
under 100 milliseconds on average. Monocular optimizations take up to 40.193 milliseconds in
the worst case and as little as 37.685 milliseconds in the best case. LiDAR optimizations take up
to 51.103 milliseconds in the worst case, and as little as 36.016 milliseconds in the best case.
Fused optimization performance can take up to 94.257 milliseconds in the worst case, and
48.623 milliseconds in the best case. The increasing optimization time can be attributed to the
number of pose graph nodes, weights on pose graph edges, and map points associated with the
optimization process for each pipeline.

Mean total execution time for LCS-SLAM in the best case is 58.063 milliseconds and in the
worst case is 62.501 milliseconds. Maximum execution time of LCS-SLAM can be upwards of
728.476 milliseconds, while minimum execution times can be a little as 5.184 milliseconds. The

71

median execution time in the best case is 23.982 milliseconds, and 82.169 milliseconds in the
worst case.

Mapping performance of LCS-SLAM is accurate to the meter level, with mapping registration
mean distance error of 0.892 meters and 1.385 meters over distances of a simple course of
322.99 meters and a difficult course of 281.347 meters respectively. Incorrect pose estimates can
have a catastrophic impact on the map, thus reducing drift and performing global optimization
are critical to globally consistent maps as done in LCS-SLAM.

Overall, the performance of LCS-SLAM can be described as real-time capable in 3D racing
environments of both simple and difficult scenes with average mapping and tracking capabilities,
but prone to drift without continuous loop closures. LCS-SLAM is capable of execution at
approximately 15 Hz, with the potential for LiDAR maps to be generated up to 100 Hz, given
that sensor input rates of that frequency can be achieved.

9.2 Comparison Versus ORB-SLAM

ORB-SLAM3 is a state-of-the-art real-time SLAM framework for monocular, stereo, and RGB-
D cameras that is popular in the open-source computer vision community. Like LCS-SLAM,
ORB-SLAM uses the ORB feature detector to generate keypoints in an image which are used for
localization and mapping. To improve the robustness of the framework’s localization and
mapping accuracy, keyframes are selected from images with sufficient motion. In addition,
ORB-SLAM is capable of both loop detection and loop correction by optimizing an essential
graph using similarity transformations and Levenberg-Marquardt optimization to complete a
least squares minimization problem. Like LCS-SLAM, loop detection in ORB-SLAM uses an
optimized visual vocabulary database called Bag-of-Words.

Tracking in ORB-SLAM requires an initialization step in which essential matrix estimation or
homography is used and only points which are visible in the local map are tracked in a co-
visibility graph. Keyframes are inserted using a technique called “Survival of the Fittest” and if
tracking is lost, new image frames are compared to the Bag-of-Words database for the most
likely matches and corresponding odometry estimates of those points. Fig. 9.1 shows the ORB-
SLAM framework architecture and feature matching and mapping capabilities.

72

Figure 9.1 – ORB-SLAM framework architecture [33].

9.3 Comparison Versus LOAM

LiDAR Odometry and Mapping (LOAM) is a state-of-the-art odometry and mapping framework
which uses LiDAR scans. Like LCS-SLAM, LOAM uses point cloud registration to estimate the
odometry at a 10Hz update rate. The odometry data is used to generate 3D maps of the
environment given the raw sensor scans from a LiDAR. The mapping process takes the scanned
3D points and transforms them into the odometry frame at a frequency of 1 Hz. The architecture
for LOAM can be seen in Fig. 9.2, while the output odometry and mapping procedures from
LOAM are shown in Fig. 9.3.

Figure 9.2 – LOAM high level system architecture [8].

73

Figure 9.3 – LOAM odometry and mapping output [8].

9.4 Comparison Versus HDL-Graph-SLAM

HDL-Graph-SLAM integrates systems that use LiDAR and Inertial Navigation System (INS)
sensors which together can create a system that sustains long-term and wide-area measurements.
HDL-Graph-SLAM is based on graph SLAM, which is the same approach used in the
optimization process of LCS-SLAM. Scan matching is used between consecutive frames using
the Normal Distribution Transform algorithm to estimate odometry and construct the pose graph.
INS data that provides angular velocity is used to compensate for rotational drift of the LiDAR
scan matching algorithm. The angular velocity is integrated with a UKF, much like what is used
in LCS-SLAM. The high-level system architecture of HDL-Graph-SLAM is shown in Fig. 6.4,
while HDL-Graph-SLAM in action is shown in Fig. 9.5.

Figure 9.4 – HDL-Graph-SLAM system architecture [34].

74

Figure 9.5 – HDL-Graph-SLAM scan matching capability [34].

75

Chapter 10 – Conclusion
LCS-SLAM has shown that sensor fusion between 3D LiDAR, cameras, and IMU sensors have
the potential to enable robust and resilient SLAM in real-time using traditional SLAM and
computer-vision techniques. In addition, the power of GPU-accelerated algorithms can also be
used for real-time applications given the increasing computation capabilities of modern
technology. The LCS-SLAM algorithm was developed and tested in a flight simulation
environment using a racing quadcopter with proven results that showed an optimized global map
of the environment and robots estimated trajectory generated from the LiDAR, monocular
camera, and fused pipelines which leverage the sensors equipped on the virtual quadcopter. A
quantitative and qualitative analysis of the localization and mapping performance of LCS-SLAM
has shown that LCS-SLAM has the potential to become an accurate solution for localization and
mapping for autonomous racing quadcopters. Future work could include performance
optimizations to speed up the monocular camera pipeline, improvements to the localization
techniques used for visual odometry, the addition of a stereo camera or RGB-D pipeline, and the
addition of local optimization processes such as sliding window bundle adjustment.

76

References
[1] National Aeronautics and Space Administration. “Advanced Air Mobility National Campaign
Overview,” National Aeronautics and Space Administration, 2020.
[https://www.nasa.gov/aeroresearch/aam/description/. Accessed 30 October 2020.]

[2] Herox.com. “Alphapilot – Lockheed Martin AI Drone Racing Innovation Challenge,” Herox,
2020. [https://www.herox.com/alphapilot/overview/. Accessed 30 October 2020.]

[3] Microsoft Research. “Game Of Drones - Competition At Neurips 2019,” Microsoft Research,
2020. [https://www.microsoft.com/en-us/research/academic-program/game-of-drones-
competition-at-neurips-2019/. Accessed 30 October 2020.]

[4] National Aeronautics and Space Administration. “Autonomous Systems”. National
Aeronautics and Space Administration, 2020. [https://www.nasa.gov/feature/autonomous-
systems/. Accessed 30 October 2020.]

[5] Zhang, J., and Singh, S., “Loam: Lidar Odometry and mapping in real-time,” Robotics:
Science and Systems X, 2014.

[6] Fang, Z., Zhao, S., Wen, S., and Zhang, Yu, “A Real-Time 3D Perception and Reconstruction
System Based on a 2D Laser Scanner,” Journal of Sensors, Vol. 2018, published online on 16
May 2018. https://doi.org/10.1155/2018/2937694

[7] Zhen, and W., Scherer, S., “A Unified 3D Mapping Framework using a 3D or 2D LiDAR,”
Springer Proceedings in Advanced Robotics, Vol. 11, published online on 23 January 2020.
https://doi.org/10.1007/978-3-030-33950-0_60

[8] Zhang. J., and Singh, S., “LOAM: Lidar Odometry and Mapping in Real-time,” Robotics:
Science and Systems 2014, published online on 2014. https://doi.org/10.15607/RSS.2014.X.007

[9] Xie, Y., Hao, C., Zhang, W., Li, S., and Qian, H., “Lidar-IMU Fusion for 2.5D Mapping,”
2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur,
Malaysia, 2018, pp. 832-837, https://doi.org/10.1109/ROBIO.2018.8665103

[10] Li, J., “Fusion of Lidar 3D Points Cloud with 2D Digital Camera Image,” Master Thesis,
Department of Electric and Computer Engineering, Oakland University, Rochester, Michigan,
2015.

[11] Allden, T., Chemander, M., Davar, S., Jansson, J., and Laurenious, R., “Virtual Generation
of Lidar Data for Autonomous Vehicles,” Bachelor Thesis, Department of Computer Science and
Engineering, University of Gothenburg, Sweden, 2017.

[12] Wen, K., Qiam. C., Tang, J., Liu, H., Ye, W., and Fan, X., “2D LiDAR SLAM Back-End
Optimization with Control Network Constraint for Mobile Mapping,” Journal of Sensors, Vol.
2018, published online on 29 October 2018. https://doi.org/10.3390/s18113668

77

[13] Hess, W., Kohler, D., Rapp H., and Andor D., "Real-time loop closure in 2D LIDAR
SLAM," 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm,
2016, pp. 1271-1278, https://doi.org/10.1109/ICRA.2016.7487258

[14] Campos, C., Elvira, R., Rodriguez, J. J., M. Montiel, J. M., and D. Tardos, J., “Orb-slam3:
an accurate open-source library for visual, visual-inertial, and Multimap Slam,” IEEE
Transactions on Robotics, 2021, pp. 1-17.

[15] Mito, Y., Masakazu, M., and Fujii, K., “An Object Detection and Extraction Method Using
Stereo Camera,” 2006 World Automation Congress, Budapest, 2006, pp. 1-6.
https://doi.org/10.1109/WAC.2006.375746

[16] Hu, Z., Qi, B., Yuan, L., Zhang, Y., and Chen., Z, “Mobile robot V-SLAM based on
improved closed-loop detection algorithm,” 2019 IEEE 8th Joint International Information
Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 2019, pp. 1150-
1154, https:/doi.org/ 10.1109/ITAIC.2019.8785611

[17] X. Liang, H. Chen, Y. Li and Y. Liu, "Visual laser-SLAM in large-scale indoor
environments," 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO),
Qingdao, 2016, pp. 19-24, https://doi.org/10.1109/ROBIO.2016.7866271

[18] Li, R., Liu, J., Zhang, L., and Hang, Y., “LIDAR/MEMS IMU Integrated Navigation
(SLAM) Method for a Small UAV in Indoor Environments,” 2014 DGON Inertial Sensors and
Systems (ISS), Karlsruhe, 2014, pp. 1-15, https://doi.org/10.1109/InertialSensors.2014.7049479

[19] Zhang, J., and Singh, S., “Visual-lidar odometry and mapping: Low-drift, robust, and fast,”
2015 IEEE International Conference on Robotics and Automation (ICRA), 2015.

[20] Deilamsalehy, H., and Havens, T. C., “Sensor Fused Three-dimensions Localization Using
IMU, Camera, and LiDAR,” 2016 IEEE SENSORS, Orlando, FL, 2016, pp. 1-3,
https://doi.org/10.1109/ICSENS.2016.7808523

[21] López, E., Barea, R., Gómez, A., Saltos, Á., Bergasa, L. M., Molinos, E. J., and Nemra, A.,
“Indoor Slam for Micro aerial vehicles using visual and laser sensor fusion,” Advances in
Intelligent Systems and Computing, 2015, pp. 531–542.

[22] Jiang, G., Lei, Y., Jin, S., Tian, C., Ma, X., and Ou, Y., “A Simultaneous Localization and
Mapping (SLAM) Framework for 2.5D Map Building Based on Low-Cost LiDAR and Vision
Fusion,” Applied Sciences. 2019. https://doi.org/10.3390/app9102105

[23] Smolyanskiy, N., Kamenev, A., Smith, J., and Birchfield, S., “Toward Low-Flying
Autonomous MAV Trail Navigation using Deep Neural Networks for Environmental
Awareness,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC, 2017, pp. 4241-4247, https://doi.org/10.1109/IROS.2017.8206285

78

[24] Harper, W., Rispoli, S., and Mendez, B., “Conceptual Design and Modeling of an
Autonomous Racing Quadcopter, ”AIAA (not yet published).

[25] The Drone Racing League. “Airr,” The Drone Racing League, 2020.
[https://thedroneracingleague.com/airr/. Accessed 30 October 2020.]

[26] Velodyne Lidar. 2019. VLP-16 User Manual. [online] Available at:
<https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-
Manual.pdf> [Accessed 18 September 2021].

[27] Arducam. “Arducam 1080p low light WDR USB camera module for computer, 2MP 1/2.8’
CMOS IMX291 100-degree wide angle mini UVC webcam board with microphone,” Arducam,
2020. [https://www.arducam.com/product/arducam-1080p-low-light-wdr-usb-camera-module-
for-computer-2mp-1-2-8-cmos-imx291-100-degree-wide-angle-mini-uvc-spy-webcam-board-
with-microphone-3-3ft-1m-cable-for-windows-linux-mac-os/. Accessed 30 October 2020.]

[28] Adafruit Industries. “Adafruit 9-DOF absolute orientation IMU Fusion Breakout -
BNO055,” Adafruit Industries, 2020. [https://www.adafruit.com/product/2472. Accessed 30
October 2020.]

[29] Gao, X., and Zhang, T., “Introduction to Visual SLAM From Theory to Practice”.
Publishing House of Electronics Industry, 2017.

[30] Mur-Artal, R., Montiel, J. M., and Tardos, J. D., “Orb-Slam: A versatile and accurate
monocular slam system,” IEEE Transactions on Robotics, vol. 31, 2015, pp. 1147–1163.

[31] Nister, D. “An efficient solution to the five-point relative pose problem”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 26, no. 6, 2004, pp. 756-770

[32] Zhang, Y., Jin, R., and Zhou, Z.-H., “Understanding bag-of-words model: A statistical
framework,” International Journal of Machine Learning and Cybernetics, vol. 1, 2010, pp. 43–
52.

[33] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G., “Orb: An efficient alternative to
SIFT or surf,” 2011 International Conference on Computer Vision, 2011.

[34] Koide, K., Miura, J., and Menegatti, E., “A portable three-dimensional lidar-based system
for long-term and wide-area people behavior measurement,” International Journal of Advanced
Robotic Systems, vol. 16, 2019, p. 172988141984153.

