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ABSTRACT 

Lidar-Camera Smart Simultaneous Localization and Mapping (LCS-SLAM) For Use in 
Racing Quadcopters 

Walter Harper 

Recent advances in sensor and computational technology have led to much research in autonomous 
robotics. In the airspace, autonomous aerial vehicles have been the focus of much research in 
various initiatives in private industry and government which have identified requirements for 
advanced sensing and navigation abilities of aircraft, even if they are piloted. As hardware 
computational capability has grown over recent years, it is now possible to create a SLAM system 
with both visual and LiDAR sensors that can generate detailed maps of an environment that a robot 
can learn to efficiently navigate which can help fulfill these requirements. LiDAR-Camera Smart 
Simultaneous Localization and Mapping (LCS-SLAM), leverages both LiDAR and visual sensors 
to accurately localize and map an indoor environment in which a racing drone must navigate. 
When combined with existing navigation modules, the LCS-SLAM system allows for a robot to 
navigate an environment efficiently and intelligently. The LCS-SLAM algorithm is developed and 
tested in a flight simulation environment using a racing quadcopter with proven results that showed 
an optimized global map of the environment and robots estimated trajectory generated from the 
LiDAR, monocular camera, and fused pipelines which leverage the sensors equipped onto a virtual 
quadcopter. A quantitative and qualitative analysis of the localization and mapping performance 
of LCS-SLAM has shown that LCS-SLAM has the potential to become an accurate solution for 
localization and mapping for autonomous racing quadcopters and potentially autonomous aerial 
vehicles in the future.  
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Chapter 1 – Introduction 

1.1 Motivation 

Mapping of a quadcopter racing track provides a proof of concept of the state-of-the-art 
technologies needed for larger scale AAM and UAS in the NAS [1] navigation in urban 
environments. Racing quadcopters provide particularly challenging conditions for robot sensing 
and navigation due to its high speeds, aggressive maneuvers, and limited computational 
resources. Autonomous mapping capabilities allows for a robot to track its location within an 
environment for collision avoidance or trajectory determination. Given that a robot has 
knowledge of its pose within an environment, optimized flight trajectories and adaptive control 
algorithms can be applied to allow for complex control of an aerial vehicle. 

Racing quadcopters are typically controlled by skilled human pilots with the use of Virtual 
Reality (VR) goggles. This allows for a human to experience a first-person perspective of a 
quadcopter in real-time to aid in their decision making while piloting. In the last few years there 
has been a push to introduce autonomous racing quadcopters into the mainstream media with 
Lockheed Martin [2], Microsoft [3], and various universities throughout the world hosting 
competitions to drive quadcopter autonomy further. Autonomy in vehicles is not a novel concept, 
however recent advances in sensor and computational technology has led to much research in 
autonomous robotics. Recent research has allowed for engineers to leverage robotics 
technologies to advance the field of autonomous vehicles. In the airspace, autonomous aerial 
vehicles have been the focus of much research in Advanced Air Mobility (AAM) and Unmanned 
Aerial Systems (UAS) in the National Air Space (NAS) pushed forward by NASA. AAM aims 
to introduce aerial vehicles into urban areas that can transport packages and people. This requires 
advanced sensing and navigation abilities of aircraft, even if they are piloted. The UAS in the 
NAS initiative aims to reduce the technological and safety barriers required for unmanned aerial 
vehicles to navigate in the airspace [4]. Real-time multi sensor mapping and localization within 
an aircraft’s environment is a critical need in the field of autonomy for aerospace applications.  

State-of-the-art Simultaneous Localization and Mapping (SLAM) algorithms are currently used 
to solve robot mapping problems. Modern day SLAM algorithms are built around visual or Light 
Detection and Ranging (LiDAR) sensors and are capable of localization and mapping in real-
time. LiDAR sensors have been a popular choice in the last 20 years for SLAM applications, 
however visual sensors such as Red, Green, Blue (RGB) color spectrum cameras have been the 
driving force behind modern SLAM research. Little research is publicly available that discuss 
SLAM algorithms that uses both LiDAR and visual sensors. As hardware computational 
capability has grown over recent years, it is now possible to create a SLAM system with both 
visual and LiDAR sensors that can generate detailed maps of an environment that a robot can 
learn to efficiently navigate. 
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LiDAR-Camera Smart Simultaneous Localization and Mapping (LCS-SLAM), leverages both 
LiDAR and visual sensors to accurately localize and map an indoor environment in which a 
racing drone must navigate. When combined with existing navigation modules, the LCS-SLAM 
system allows for a robot to navigate an environment efficiently and intelligently. LCS-SLAM is 
designed as an all-in-one modular system that can easily be adapted for different racing drones 
and indoor environments. 

1.2 Literature Review 

Review of existing literature on localization and mapping solutions for robotic applications using 
LiDAR, stereo cameras, monocular cameras, and Inertial Measurement Units (IMUs) are 
investigated further in detail below.  

1.2.1 LiDAR SLAM 

LiDAR odometry is defined as the pose estimate of a robot over a defined time history. Each 
individual robot pose is estimated using a localization algorithm. In the context of autonomous 
vehicles, LiDAR sensors come in three flavors: 1D range finders, 2D scanners, and 3D scanners. 
LiDAR sensors have enabled robots to determine their motion and localize within both 2D and 
3D maps with a high degree of accuracy. 3D LiDAR sensors today are expensive but produce 
some of the most accurate mapping results which is often needed for large scale autonomous 
vehicles navigating large indoor or outdoor environments. 2D LiDAR’s are more common in 
smaller robots and small unmanned aerial vehicles (UAV) for their low cost and acceptable 
mapping capabilities while indoors or in small outdoor spaces. Each of these sensors are critical 
for spatial awareness of unmanned vehicles and complex navigation in previously unmapped 
environments. 

A state-of-the-art LiDAR odometry and mapping algorithm is presented by Zhang and Singh [5] 
called LiDAR Odometry and Mapping (LOAM). LOAM performs real-time odometry and 
mapping using 3D LiDAR scans of an environment. LOAM performs mapping and odometry 
using two separate algorithms which can also fuse IMU data to increase the accuracy of the 
odometry and mapping estimates. The odometry algorithm runs at a higher frequency in 
comparison to the mapping algorithm to allow for odometry data to be processed as quickly as 
possible. Mapping capabilities typically require additional optimization procedures that do not 
need to be run as fast as the odometry algorithm for successful robot localization. 

In addition to 3D LiDAR sensors, 2D LiDAR sensors have been proven capable of mapping 3D 
environments with the aid of additional sensors such as an IMU, video camera, or by leveraging 
encoded servo motors which measures the rotation of a 2D LiDAR on a third axis. In Fang et al 
[6], a method for reconstructing 3D environment using a 2D LiDAR scanner is presented. The 
method leverages the use of high-level reconstruction algorithm and motion controller software 
in conjunction with an encoded servo to construct a 3D map in real time. 
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Improvements to the performance of 2D and 3D LiDAR SLAM algorithms can be achieved with 
the introduction of a pre-existing map of the environment. Zhen and Scherer [7] has developed a 
SLAM algorithm that combines the use of the Error State Kalman Filter with a Gaussian Particle 
Filter to estimate the state of the agent inside a pre-existing map. Testing of the authors 
algorithm was completed in both real-world and simulation environments which confirmed the 
hypothesis that given a pre-existing map of the environment, more accurate LiDAR based state 
estimation and mapping can be achieved.  

In addition to providing a pre-existing map, additional sensors can be fused with a LiDAR sensor 
to obtain a more accurate state estimate. In Zhang and Singh [8] LiDAR odometry and mapping 
in real-time is investigated. The LiDAR odometry algorithm uses feature point extraction, then 
finds the feature point correspondence between LiDAR scans to estimate the odometry of a 
robot. The LiDAR odometry in combination with an IMU is used to assist in the development of 
a 3D map for an environment.  The algorithm was tested successfully in both indoor and outdoor 
environments for a robotics application which proved that fusing IMU data with LiDAR gives 
more accurate state estimation. Xie et al [9] performed research on a similar sensor fusion 
between LiDAR odometry and IMU data to generate a 2.5D map of the environment using scan 
matching to perform localization. Test results showed that a 2.5D map of a real-life 3D 
environment was achieved at an acceptable accuracy at a reduced computational cost than 
traditional single sensor SLAM algorithms. In Li et al [10] a method for LiDAR and IMU based 
SLAM is proposed. The algorithm depends first on feature extraction of the environment to 
construct a feature map. The IMU data is then used to correct inaccuracy in the LiDAR sampled 
data with the use of a Kalman Filter. A prototype of the system was developed by the researchers 
to perform validation of the proposed system. The tested system proved that the LiDAR feature 
extraction algorithm was more accurate when fused IMU than if used alone. 

With the high cost of LiDAR systems, testing in simulation environments has been critical to the 
development of LiDAR SLAM algorithms. To further test LiDAR in a virtual 3D environment, 
Allden et al [11] proposed a method to realistically simulate LiDAR sensor data. The Unity3D 
game engine is used to build and test a virtual LiDAR system and compare its output to real 
world output of a similar LiDAR sensor model. The authors take advantage of the Nvidia PhysX 
engine which leverages computer graphics rendering techniques such as ray-casting to generate 
laser data to model a LiDAR sensor. The authors concluded that it is feasible to build and 
simulate a LiDAR sensor in a virtual 3D environment that provides a level of realism that is 
acceptable for developing and testing SLAM algorithms.   

Techniques to perform accurate place recognition and map optimizations for LiDAR SLAM 
applications has seen much research in the last few decades. In Wen et al [12] an alternative 
approach to map optimization is investigated. Fusion of IMU and LiDAR are used for 
environmental mapping with place recognition. The authors propose a method that provides 
accurate mapping of an environment leveraging a graph-based SLAM algorithm. The results 
showed acceptable accuracy in a 2D LiDAR slam system. In Hess et al [13] place recognition for 
a 2D LiDAR SLAM system is discussed. The system defines a global and local grid of which an 
environment is mapped to sub-maps. The sub-maps are compared to the LiDAR scanned global 
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map to determine if a previously location has been visited before. Testing on GPU accelerated 
hardware showed acceptable real-time performance in real-world testing. 

1.2.2 Camera SLAM 

LiDAR data can be combined with data from visual sensors such as RGB cameras. The data 
from cameras can be used to perform object detection, or in the case of multiple cameras, depth 
perception. Depth sensing provides one of the foundational tools needed to perform stereo 
mapping and odometry. In addition, localization of objects within the stereo camera field of view 
allows for mapping of objects within an environment with the correct scale when compared to 
monocular camera systems. A stereoscopic camera can allow absolute 3D perception of the 
environment that can be used to generate a map, something that a monocular camera system is 
incapable of providing due to a problem known as scale ambiguity. 

In Campos et al [14] a visual, visual-inertial, and multi-map SLAM framework known as ORB-
SLAM 3 is discussed. ORB-SLAM3 is an accurate and advanced visual SLAM algorithm which 
is considered the current state-of-the-art visual SLAM system for its ability to handle a multitude 
of sensor configurations and handle scenes with poor features for tracking. ORB-SLAM3 uses a 
modified Oriented Fast Rotated Brief (ORB) feature detector and descriptor to find features in 
the environment. ORB-SLAM3 relies on Maximum-a-Posteriori (MAP) estimation to obtain 
accurate localization and mapping results. In addition, ORB-SLAM3 uses a Bag-of-Words 
(BoW) representation for its place recognition module. A state-of-the-art multi mapping 
framework, Atlas, is used to handle disconnected SLAM maps to allow real-time place 
recognition and robot re-localization in real-time. In Mito et al [15] methods for adapting object 
detection and stereo vision for robot state estimation are presented. These methods are based on 
feature extraction and matching corresponding feature points to generate an odometry estimate 
for a robot. Experiment results by the authors show that under stable robot motion the proposed 
algorithm can detect and extract moving objects with a stereo camera. Scaramuzza and 
Fraundorfer [15] discuss the techniques to perform visual odometry for both monocular and 
stereo camera systems. The underlying algorithms used for visual odometry, and their 
applications are discussed. Feature detection of 2D and 3D points are discussed with robot pose 
estimation methods including essential matrix estimation, perspective-n-point transformation, 
and iterative closest point algorithms. Scale recovery methods for monocular camera systems 
and triangulation methods for stereo camera systems are discussed. The authors concluded that 
the combination of 3D and 2D systems using stereo cameras provide some of the most accurate 
estimation of a robots odometry for well-formed environments. 

Further research by Hu et al [16] investigates a place recognition algorithm which introduces an 
improved pyramid similarity score function for a camera-based SLAM system. A stereoscopic 
camera is used to provide depth measurements and pose estimation of a robot for the front end 
for a SLAM algorithm. Additional data is processed in the back end of the algorithm that 
improves the real-time performance of the place recognition algorithm. The author’s algorithm is 
tested against other prevalent algorithms and the results show that the author’s place recognition 
module results in more accurate real-time mapping of an environment than state-of-the-art 
algorithms. Liang et al [17] propose a novel approach to perform place recognition using Bag-of-
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Words and ORB-SLAM features in conjunction with the local registration and global correlation 
framework with sparse pose adjustment optimization. The authors tested the algorithm in large 
real-world environments and verified its effectiveness versus traditional place recognition 
algorithms for computationally constrained robots.  

1.2.3 LiDAR and Camera Fusion for SLAM 

The combination of LiDAR and visual odometry data allow for the development of a robust 
SLAM system. In Li [18] close coupling of a Camera and LiDAR is investigated. The authors 
use a 2D LiDAR sensor on a moving platform to generate 3D LiDAR data. Close coupling of the 
LiDAR and Camera involve the use of rigid-body extrinsic calibration via feature targeting to 
accurately fuse the data between the two sensors. To calibrate both sensors, the relative 
translation and rotation between the sensors are determined from extracted features from a 
control checkerboard and matching point correspondences. To fuse the data from the LiDAR and 
camera, the 3D points generated by the LiDAR in the world coordinate frame are projected into 
coordinates on a 2D plane. Meanwhile, the camera is subject to rotation from a servo which 
allows for each captured image to be stitched together to form a panoramic image of the 
environment, mimicking the scanning capability of a LiDAR sensor. Results of the proposed 
sensor fusion method prove a viable approach to LiDAR and camera coupling that give 
reasonably accurate data for environmental mapping given that the sensors are properly 
calibrated with each other 

In Zhang and Singh [19] LiDAR and a monocular camera are fused together to generate robust 
odometry and mapping of the environment. Camera images are used to estimate visual odometry 
at frequency of 60 Hz with LiDAR odometry running at a frequency of 1 Hz. The visual 
odometry estimate is refined by LiDAR odometry, with 3D LiDAR points used to help augment 
the visual odometry algorithm. The method proposed by the authors is considered one of the 
highest accuracy methods tested on some of the most popular benchmarking datasets. 

In Deilamsalehy and Havens [20] sensor fusion accuracy is investigated between three different 
configurations of 2D LiDAR, IMU, and a camera. Sensor outputs are fused with an Extended 
Kalman Filter (EKF) and the accuracy of each configuration for state estimation is analyzed. The 
authors were able to show that the state estimation from a system with a 2D LiDAR, IMU, and 
camera were nearly an order of magnitude more accurate than a system with IMU and camera 
alone. 3D LiDAR further improved the state estimation accuracy by between two to five-fold. In 
Lopez et al [21] an approach of camera and LiDAR fusion with an IMU is presented to estimate 
the pose of an autonomous quadcopter in an 3D environment. The authors propose a fusion 
algorithm with the use of an Extended Kalman Filter. The HectorSLAM algorithm is used to 
generate a 2.5D map of the environment at low computational cost with the aid of an IMU. The 
researchers concluded that the fusion of LiDAR, IMU, and a camera increased the accuracy of a 
2D mapped environment versus traditional non-fusion methods. Additional research by Jiang et 
al [22] using a multi-sensor system of LiDAR, Camera, and IMU resulted in the development of 
a new sensor fusion framework. The framework consists of graph optimization for a Red-Green-
Blue Depth (RGB-D) camera for visual odometry, and feature extraction with scan matching for 
LiDAR odometry. The LiDAR and camera sensor data are fused to generate a 2.5D occupancy 
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grid map of the environment. The mapping method results in a computationally efficient system 
when compared to other methods such as Adaptive Monte Carlo Localization and ORB-SLAM. 
In addition, the author’s algorithm is more accurate than state-of-the-art methods at performing 
place recognition and robot re-localization which are critical components to building robust and 
accurate mapping capabilities.  

In Smolyanskiy et al [23] an alternative approach to fused SLAM is presented by using Deep 
Neural Networks (DNNs). DNNs have been adopted for use in some sectors of the SLAM 
industry, most notably by the Nvidia Corporation for their Drive AGX platform. The authors use 
a DNN approach to navigate a low-flying autonomous aircraft in an unknown environment using 
fused sensor data. The robot performed autonomous navigation over a trail primarily using 
cameras with the aid of LiDAR. The authors were able to conclude that with a graphics 
processing units embedded onto a flight computer, such as the Jetson TX1, monocular vision-
based navigation with the aid of LiDAR was sufficient for a drone to leverage DNNs to localize 
and map along a forest path.  

1.3 Project Proposal 

Based on the current state-of-the-art techniques and state estimation requirements needed for 3D 
indoor navigation of an autonomous racing drone the requirements of the LCS-SLAM algorithm 
are determined as follows: 

• Sensor fusion between 3D LiDAR, cameras, and IMU sensors to enable robust and 
resilient SLAM in real-time. 

• Optimized for real-time applications and easily extendable for future deployment on 
embedded hardware. 

The final deliverable of the LCS-SLAM system is: 

• LCS-SLAM algorithm tested in a virtual flight simulator on a racing quadcopter with 
proven results that show the map and path generated from the sensors equipped onto the 
virtual quadcopter. 

• Quantitative and qualitative analysis of the localization and mapping performance of 
LCS-SLAM compared to state-of-the-art SLAM algorithms that use similar sensor 
configurations. 

1.4 Methodology 

To produce the deliverable for the LCS-SLAM system the following approach is taken: 

I. Hardware Selection 

1. Selection of a LiDAR system that can be used on a racing quadcopter. This system is 
modeled in simulation for testing of the LCS-SLAM algorithm. 
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2. Selection of a stereo camera system for use in LCS-SLAM. This system is also 
modeled in simulation. 

3. Selection of IMU system for use in LCS-SLAM. This system is modeled in 
simulation. 

4. Selection of a racing quadcopter to test LCS-SLAM. This quadcopter is modeled in 
simulation. 

II. Software Development 

1. Selection of a 3D virtual simulation environment to test LCS-SLAM algorithm. 

2. Selection of a framework to build LCS-SLAM to be used easily in both simulation 
and hardware environments. 

3. From the selected LiDAR sensor model, virtual sensor data must be generated in the 
simulation environment.  

4. From the selected camera model, virtual data must be generated in the simulation 
environment. 

5. From the selected IMU model, virtual data must be generated in the simulation 
environment. 

6. A flight controller capable of stabilizing and autonomously navigating the selected 
quadcopter model. 

7. Development of an algorithm to fuse IMU, camera and LiDAR data with place 
recognition and map optimization. 

III. Testing 

1. Complete LCS-SLAM system equipped to a racing quadcopter in a virtual simulation 
that outputs robot odometry and a 3D map of the environment. 
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Chapter 2 – High Level System Architecture 
The LCS-SLAM system consists of multiple pipelines known as: mono, LiDAR, and fused. 
These pipelines are selected for their ability to accurately map large scale environments with 
acceptable accuracy and real-time performance. These pipelines work together to produce 
accurate localization and mapping estimates. The system contains elements of both serial and 
parallel computation to ensure best real-time performance on a quadcopter. The outputs of the 
LCS-SLAM system are optimized poses forming flight paths (i.e., odometry) and point clouds 
(i.e., maps) from the LiDAR and fused pipelines. A diagram of the high-level overview of LCS-
SLAM is shown in Fig. 2.1.  

 

Figure 2.1 – High level architecture for LCS-SLAM 

2.1 LiDAR Pipeline 

The LiDAR pipeline for LCS-SLAM consists of a 3D LiDAR sensor equipped onboard the 
selected quadcopter. This sensor can be real or simulated in a virtual environment for easier 
testing of the pipeline. Data output from the LiDAR sensor is registered with the LiDAR 
odometry module which performs localization of the quadcopter in the world frame. Combining 
the odometry estimate and LiDAR sensor returns, the LiDAR mapping module can map the 
environment around the quadcopter. The place recognition module uses monocular place 
recognition information to enable optimization of the localization and mapping outputs from the 
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LiDAR pipeline. The final output of the LiDAR pipeline is the optimized odometry and mapping 
estimates. 

2.2 Monocular Pipeline 

The monocular pipeline for LCS-SLAM uses the left camera in a stereo camera pair equipped 
onboard the selected quadcopter as an input. This sensor can be real or simulated in a virtual 
environment for easier testing of the pipeline. Data output from the camera is registered with the 
monocular odometry module which performs localization of the quadcopter pose in the world 
frame. The monocular odometry module is used to enable the place recognition module which is 
used by both the fused and LiDAR pipelines. The final output of the monocular pipeline is the 
optimized odometry and mapping estimates. 

2.3 Fused Pipeline 

The fused pipeline for LCS-SLAM uses the optimized outputs odometry and mapping from the 
mono and LiDAR pipelines combined with an IMU sensor equipped onboard the selected 
quadcopter. The IMU sensor can be real or simulated in a virtual environment for easier testing 
of the pipeline. The fusion of the robot odometry and mapping estimates from the various 
optimized pipelines leverages the Unscented Kalman Filter (UKF). The monocular place 
recognition module is leveraged to enable optimization of fused localization and mapping 
outputs from the pipeline. The final output of the fused pipeline is the optimized odometry and 
mapping estimates.  

2.4 Other Pipeline Considerations 

The current implementation of LCS-SLAM does not contain complete pipelines for stereo 
cameras or RGB-D cameras for various reasons given the selected application. The addition of a 
complete stereo camera pipeline could increase the accuracy of the localization and mapping 
estimate, however, would be significantly limited with its capabilities in large scale racing 
environments. Although the usage of a depth-sensing algorithm that can be implemented for real-
time use is common, the feasibility of such system for a racing quadcopter is questionable given 
the very small baseline length of the stereo camera for a small application like a drone, which 
significantly reduces the effective range of a stereo camera system. In applications in which the 
stereo camera is not reliable, algorithms typically rely on monocular camera estimates for 
odometry which LCS-SLAM uses. An RGB-D camera pipelines has not been implemented given 
similar constraints to the stereo camera pipeline rational above. Different course configurations 
or use-cases in the future may present a more desirable test environment to further enhance LCS-
SLAM with complete stereo and RGB-D pipelines.  
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Chapter 3 – Hardware Selection 
Commercial-of-the-shelf hardware components are selected for emulating a quadcopter, LiDAR, 
camera, and IMU. Each of the sensor components are attached to the selected quadcopter, which 
have their physical properties modeled in a virtual simulation environment for testing of the 
complete LCS-SLAM system.  

3.1 Quadcopter Selection 

The selected quadcopter is presented in [24]. The design is based off the Lockheed Martin racing 
quadcopter, RacerAI, used in the 2019 AlphaPilot competition shown in Fig. 3.2. The quadcopter 
design includes various sensors including a stereoscopic camera and IMU. Its flight performance, 
flight characteristics, and computational capabilities are known for the purpose of testing the 
LCS-SLAM system. Although a LiDAR sensor is not presented in [24] on the selected 
quadcopter, a sensor is selected such that it could be integrated into the existing design. Relevant 
specifications of the chosen quadcopter for testing LCS-SLAM are presented in Table 3.1 and 
the selected Quadcopter can be seen in Fig. 3.1. 

Table 3.1 - Selected quadcopter specifications. 

Property Quantity Units 

Take-off weight (w/o LiDAR) 1.846 Kilograms 

Total static thrust 2,178 Gram-force 

Thrust-to-Weight ratio 4.79 N/A 
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Figure 3.1 - Selected quadcopter design [24]. 

 

Figure 3.2 – AlphaPilot RacerAI drone [25]. 

3.2 LiDAR Selection 

The LiDAR chosen to integrate with the selected quadcopter for testing LCS-SLAM is the 
Velodyne VLP-16 Puck Lite. The LiDAR was selected for its relatively small form factor, long 
range, and 3D scanning capability. In addition, the VLP-16 Puck Lite has desirable mass 
properties which allow for seamless integration with the selected drone design with minimal 
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impact to its stability, assuming it is placed about the current center of gravity. The specifications 
of the VLP-16 Puck Lite are shown in Table 3.2, while the sensor can be seen in Fig. 3.3. 

Table 3.2 – VLP-16 Puck Lite LiDAR specifications. 

Property Quantity Units 

Weight 0.590 Kilograms 

Sample rate Adjustable: 5 / 10 / 20 Hertz 

Scanning range 100 Meters 

Distance resolution 2 Millimeters 

Azimuth resolution Adjustable: 0.1 / 0.2 / 0.4 Degrees 

 

 

Figure 3.3 - VLP-16 Puck Lite LiDAR sensor [26]. 

3.3 Camera Selection 

The selected camera is the Arducam BO200. The camera was selected for testing with LCS-
SLAM as it is equipped in a stereo configuration on the selected quadcopter as shown in [24]. 
The camera specifications when configured as a stereo pair are detailed further in Table 3.3, with 
an image of the camera in Fig. 3.4. 
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Table 3.3 - Selected camera specification. 

Property Quantity Units 

Resolution 640x480 Pixels x Pixels 

Configuration Horizontal Stereo N/A 

Diagonal field of view 100 Degrees 

Baseline 14 Centimeters 

Frame rate 30 Frames Per Second 

 

 

Figure 3.4 - Arducam BO200 camera [27]. 

3.4 IMU Selection 

The selected IMU is the Bosch BNO055 based on the quadcopter design in [24]. The selected 
sensor has an accelerometer, gyroscope, magnetometer, and thermometer. This sensor is chosen 
for its low cost, accurate attitude measurements, and internal sensor fusion algorithms. The 
specifications of the sensor are shown in Table 3.4, and the IMU can be seen in Fig. 3.5. 
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Table 3.4 - Selected BNO055 sensor specification. 

Property Quantity Units 

Sample rate (accelerometer) 100 Hertz 

Sample rate (gyroscope) 80 Hertz 

 

 

Figure 3.5 - BNO055 IMU sensor [28]. 
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Chapter 4 – Virtualization of Sensors 
The selected sensors for testing LCS-SLAM are modeled in a virtual environment to allow for 
synthetic data generation. The platform used to simulate the selected hardware is critical in 
enabling accurate simulation that can seamlessly transition to real-world applications. In the real-
world, sensors would be directly integrated with the LCS-SLAM system, however, in a virtual 
environment there must be a compatibility layer to supply communication between the simulated 
sensors and the various modules and pipelines in the LCS-SLAM algorithm. The communication 
framework used in the development of LCS-SLAM is Robot Operating System 2 (ROS2). The 
Galactic Geochelone distribution of ROS2 that was initially released in May of 2021 is used. 
ROS2 is a framework which supplies tools, libraries, and conventions aimed at simplifying the 
task of creating complex robot systems. ROS2 uses individual applications, or nodes, which 
communicate between each other using defined messages assigned to topics in a publish-
subscribe software messaging paradigm. This allows for researchers to prototype software using 
simulated sensor data and quickly deploy the software to hardware with minor changes to the 
underlying software design. The middleware layer in ROS2 that allows communication between 
applications is provided by a selected Distributed Discovery Service (DDS) such as eProsima 
Fast DDS, Eclipse Cyclone DDS, or RTI Connext. The selected DDS middleware used in the 
development of LCS-SLAM is eProsima Fast DDS. Another major ROS2 package, Rviz2, 
provides the visualization tools that are helpful for developing and evaluating the performance of 
LCS-SLAM. 

4.1 Selection of Simulation Environment 

The Unity3D game engine is selected as the virtual simulation environment to test the LCS-
SLAM system and virtualize the required sensors. Unity3D is chosen for its support of the 
Nvidia PhysX simulation engine which allows for classical control of a robot with Newtonian 
physics. Features such as computer graphics ray-casting and 3D rendering of environments 
allows for simulation of both LiDAR and camera sensors. The simulation environment also 
provides support for connectivity with ROS2 via the Unity Robotics Hub. For visualization of 
LCS-SLAM performance, the ROS2 package Rviz2 is used. Two quadcopter racing courses 
were developed to test LCS-SLAM. A quadcopter was navigated around the two quadcopter 
course configurations and the relevant sensor data was recorded to provide easy testing of the 
LCS-SLAM system without the need to run the simulation environment. These two recorded 
datasets are named Track-Easy and Track-Hard. The quadcopter racing courses developed to test 
LCS-SLAM onboard a racing quadcopter are presented in Figs. 4.1-4.4 below.  
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Figure 4.1 – Isometric view of Track-Easy course built in Unity3D. 

 

 

Figure 4.2 – Isometric view of Track-Hard course built in Unity3D. 
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Figure 4.3 – Side view of Track-Hard course built in Unity3D. 

 

Figure 4.4 – Back view of Track-Hard course built in Unity3D. 
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4.2 Quadcopter Dynamics Model 

The mass properties and dynamics of the selected quadcopter are already known and are 
presented in [24]. A flight controller that allows for simple flight through a virtual course via 
waypoints or manual control is provided for interfacing with the LCS-SLAM system. The 
provided controller is a Proportional, Integral, and Derivative (PID) controller tuned to the 
parameters in [24]. The physics model used in simulation includes aerodynamic drag, motor 
torques, and motor forces applied to rigid-body dynamics for simulation of the physical forces 
applied to and from the quadcopter. The Nvidia PhysX simulation engine allows for 
customization of the physics time step used for integration in solving the rigid body dynamics. 
The selected physics integration frequency was chosen to be 1000 Hz which allows for realistic 
modeling of motion in real-time with the selected sensor sampling rates and flight controller 
signal frequencies. The simulated quadcopter model is provided in Figure 4.5. 

 

Figure 4.5 - Simulated quadcopter model. 

4.3 LiDAR Data Generation 

The selected LiDAR model is simulated using the Nvidia PhysX ray-casting functionality. Ray-
casting is a computer rendering technique which allows for directional light rays to be sent from 
a source point which can reflect off objects back to the source. When objects in a scene are 
detected, the returned ray-casts hold information on the distance and time it took to return from a 
collision with an object. The LiDAR model is built in Unity3D using the technique presented in 
[11] to emulate the datasheet specifications of the Velodyne VLP-16 Puck Lite LiDAR presented 
in [26]. The LiDAR can produce up to nearly 300,000 points a second with this technique which 
is then consolidated into a stream of packets that is published by ROS2 that conforms to the 
specification defined in [26]. It should be noted that real-world materials that may be non-
reflective or highly refractive are not modeled for simplicity of the simulation. Fig. 4.6-4.8 show 
the LiDAR scanner in use during the simulation used for testing LCS-SLAM. 
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Figure 4.6 - Velodyne VLP-16 Puck Lite scanning pattern. 

 

 

Figure 4.7 - PhysX ray-cast detection from Velodyne VLP-16 Puck Lite. 
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Figure 4.8 - LiDAR point cloud from a VLP-16 scan generated from Unity3D. 

4.4 Camera Data Generation 

The selected camera is simulated as a pinhole camera in a horizontal stereo configuration with 
the specifications that match what is shown in Table 3.3. Both cameras in the stereo 
configuration are modeled to be hardware synchronized and have motion blur when moving at 
high speeds. The stereo camera output data is compressed into JPG format and published by 
ROS2. The simulated left camera output in the stereo configuration is provided in Fig. 4.9.  
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Figure 4.9 – Simulated left camera output in a stereo configuration. 

4.5 IMU Data Generation 

IMU data is generated from the quadcopter’s rigid body motion while under the control of the 
Nvidia PhysX engine. Within the simulation environment, the position and attitude of the 
quadcopter in the world frame is captured at a fixed time step and can be considered the “ground 
truth” data. To introduce sensor noise, the IMU sensor readings are artificially varied from its 
true value. The artificial noise is assumed to be Gaussian in nature. The data from the IMU is 
generated at a rate of a 100 Hz and has accelerometer and gyroscope data that is published by 
ROS2. 
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Chapter 5 – Monocular Pipeline 
The simulated sensors from Chapter 4 provide the ROS2 topics that the monocular pipeline 
requires as an input. The outputs of this pipeline provide the basis for the place recognition 
modules of the LiDAR and fused pipelines. A scale ambiguous odometry estimate is also 
provided as a pipeline output for reference. The two major modules within the monocular 
pipeline are the visual odometry and place recognition modules, which are discussed in further 
detail below. 

5.1 Monocular Visual Odometry 

In LCS-SLAM, the monocular visual odometry algorithm uses successive images taken from the 
left camera in the stereo camera pair to estimate the pose of the quadcopter. Since each 
individual camera output is an image of the 3D world projected onto a 2D image plane, it is 
important to establish a geometric model which can be used to describe the projection process. 
The projection process allows for the 3D point of an object relative to the camera to be 
determined from a 2D image captured of the environment. The most popular camera geometry 
model used today in computer vision is the pinhole camera geometry model. The pinhole camera 
geometry model describes an infinitely small hole which projects 3D object points into the 2D 
image space. The 2D image space is known as the image plane, while the plane where the 
pinhole exists is known as the camera plane. The camera plane has an optical center O which 
describes the hole in the pinhole model. This optical center is separated from the image plane 
projection of the optical center O’ by a known focal length f. Both O and O’ are the centers of 
their respective coordinate systems (x’,y’,z’) and (x,y,z). Light from a point P in 3D space passes 
through the pinhole and is projected onto the image plane as P’. Fig. 5.1 shows the geometric 
relationship between the image and camera planes with respect to a 3D point in space. 

 

Figure 5.1 - Pinhole camera model.[29] 
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Using the similarity of triangles from the pinhole geometric model, the relationships between the 
3D point P in the (X, Y, Z) coordinate system can be related to the projected point P’ coordinate 
system (X’, Y’, Z’) as seen in Eq. (5.1). Note that images are typically inverted when projected 
onto the image plane, however most modern cameras do not output an inverted image which the 
pinhole model suggests. The image plane can be symmetrically placed in front of the camera 
frame to flip the inverted image and give us the final form of the geometric relationships in the 
pinhole camera model shown in Eq. (5.1). 
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Using the pinhole camera model, a pixel coordinate system, and Eq. (5.1) one can determine the 
projection of 3D point P onto a camera normalized plane. The relationship between the pixel 
coordinate system and the image coordinate system can be described by the camera intrinsic 
calibration parameters. These parameters can be provided by the manufacturer or determined 
from a calibration process. The derivation of such is outside the scope of this paper and it 
assumed that the internal camera calibration parameters are described by a matrix K. In addition 
to the camera intrinsic parameters, lenses are used in modern cameras to get a larger field of 
view of a scene. Lenses change how light is projected onto the image plane from the 3D world 
by bending it. To continue using the pinhole camera model with cameras equipped with lenses, a 
correction for the radial and tangential distortion from the lens is required for complete camera 
calibration. Like the camera intrinsic parameters, the derivation of such correction factors is out 
of the scope of this paper and is described by a set of coefficients kn and pn up to an n order of 
accuracy which can be determined from the popular checkboard camera calibration processes.  

Given a calibrated camera, the pixel coordinate system from images taken with modern cameras 
can be mapped into the image coordinate system and evidently the camera coordinate system 
through the pinhole model. In addition to the camera intrinsic calibration parameters, there are 
camera extrinsic parameters which describe the rotation of the camera R and the translation of 
the camera t with respect to the world coordinate system. The camera extrinsic parameters are 
used in solving for motion in LCS-SLAM when given an input from a single camera streaming 
video. With these concepts in mind, the relationship between a point in the pixel coordinate 
space (u, v) can be related to a point in the 3D world space (X, Y, Z) with Eq. (5.2).  

𝑃&' = 𝐾(𝑅𝑃( + 𝑡)      (5.2) 

Note that the point in world space PW is described in the camera normalized coordinate space 
where the camera coordinates are normalized by the depth of the scene Z. This is important since 
this means a single camera view is not sufficient in determining the depth of a scene as it is lost 
during the projection process. The 3D position of objects in space are only able to be determined 
up to a scale of depth Z for monocular cameras, leading to the well-known scale ambiguity 
problem.  

In LCS-SLAM, unprocessed camera images are passed to the odometry algorithm and corrected 
for camera lens distortion. Once corrected for lens distortion, the input image is filtered using 
Contrast Limited Adaptive Histogram Equalization (CLAHE). CLAHE is a histogram 
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equalization algorithm with a contrast limiting threshold that splits the image into a rectangular 
grid which enhances edges for feature detection. CLAHE filtered images can be seen in Fig. 5.2.  

 

Figure 5.2 – Generic CLAHE processed image [29]. 

Once equalized the image is then converted from RGB to greyscale for further processing by the 
pipeline. Using the undistorted and equalized image view, 2D features are detected using an 
ORB feature detector and binary descriptor. Features from an image can consist of corners, 
edges, and blocks that are scale and rotation invariant. The exact algorithm that ORB [30] uses 
for finding features is outside the scope of this paper, however Fig. 5.3-5.4 show the ORB 
feature detection breakdown and image pyramid used to achieve scale and rotation invariant 
features. 

 

Figure 5.3 – ORB feature extraction process [30]. 
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Figure 5.4 – Image pyramid showing how scale invariant features are detected [30]. 

In LCS-SLAM the ORB detector and descriptor is tuned to generate the best 1500 features in an 
image calculated by the Harris Score of the features. In addition, the Features from Accelerated 
Segment Test (FAST) detector threshold used in ORB is limited to increase the number of 
features initially detected. Once features are detected in an image view, they are matched with 
against a temporally successive image frame. LCS-SLAM uses a Fast Library for Approximate 
Nearest Neighbors (FLANN) based Matcher using Locally Sensitive Hashing (LSH) to handle 
matching of binary feature descriptors using Hamming distances which represent the distance 
between two binary strings. FLANN is used to quickly perform feature matching when compared 
to traditional binary feature matching methods such as the Brute-Force Matcher because FLANN 
only performs approximations of matches and is typically used for the more computationally 
taxing floating point feature descriptors such as Speeded Up Robust Features (SURF) and Scale 
Invariant Feature Transform (SIFT). In LCS-SLAM, the best two nearest neighbor matches are 
calculated for each feature in the image from the FLANN matcher, which are then filtered based 
on its estimated ambiguity. For each feature in the current image view, if there are two features 
that closely match from an earlier view then Lowe’s Ratio Test is used to reject features that 
don’t meet a specified threshold of uniqueness. In LCS-SLAM, the threshold for the Lowe’s 
Ratio Test is a 25% difference between the first “best matched” feature and the second “best 
matched” feature to be considered sufficiently unique matches. The best matched features 
between two image views of a generic scene are shown in Fig. 5.5. The real-time matched 
features when running LCS-SLAM is shown in Fig. 5.6. 



26 

 

Figure 5.5 – Keypoint feature matching between two images [29]. 

 

Figure 5.6 – Best matched ORB features in LCS-SLAM. 
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The “best matches” that pass Lowe’s Ratio Test are then used to estimate the relative pose of the 
robot by estimation a technique known as essential matrix estimation using the well-known 
Nister 5-point algorithm [31] with Levenberg-Marquardt least squares optimization to handle 
noisy matches. Decomposing the final estimated essential matrix yields the relative rotation 
between two camera frames and a unit vector of the relative translation between the two camera 
frames with ambiguous scale between the two image views. Depending on the number of feature 
inliers recovered from the essential matrix estimation process, the relative pose estimate is either 
kept as a keyframe and used for odometry or rejected in favor of the next image view. To recover 
an estimate of the proper translation scale, the most recent LiDAR position magnitude estimate is 
used, however the system is still prone to scale drift because the LiDAR and monocular pipeline 
keyframes are not synchronized in LCS-SLAM. 

Based on the estimated pose between frames, the magnitude of the translation and rotation is 
checked against a set of thresholds to determine whether the current image view should be 
considered a keyframe. If so, the keyframe can be used to estimate the odometry of the robot. 
The criteria to be considered a keyframe in the monocular keyframe is experimentally obtained 
and shown in Table 5.1. The monocular odometry keyframes are shown in Fig. 5.7.  

Table 5.1 – Monocular odometry keyframe selection properties. 

Keyframe Property Quantity Units 

Translation minimum 0.5 Meters 

Rotation minimum 3.0 Degrees 

 

Figure 5.7 – Monocular keyframe selection (purple) compared to ground truth (red). 
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With the pose recovered and keyframes selected, the data can be used for further processing in 
the place recognition module and mapping modules. 

5.2 Monocular Mapping 

Using the odometry estimates and the aid of multiple camera views from the left camera in the 
stereo camera pair, 2D features detected in the image can be triangulated into 3D space given 
that the stereo camera is calibrated properly. The concept of stereo vision aims to solve for the 
depth by using two perspectives to view a point from the same scene. Fig. 5.8 shows two 
cameras that are placed in a parallel horizontal stereo configuration observing the same point in a 
scene. Once again P represents the point in 3D space, where uL and uR represent the pixel 
coordinate along the horizontal axis for each camera. 

 

Figure 5.8 – Horizontal stereo camera geometry model [29]. 

OL and OR represent the optical centers of the left and right camera planes, f represents the focal 
length of the camera, b represents the baseline between the two cameras, and PL and PR represent 
the projection of the 3D object points on the left and right image planes.  

Using the similarity of triangles from the geometric model in Fig 5.9, it is possible to determine 
the relationship required to obtain the depth of a point in the scene as shown in Eq. (5.3).  

𝑧 = ")
*
, 𝑑	 ≜ 𝑢+ − 𝑢,     (5.3) 

Eq. (5.3) shows that the depth of the scene for parallel cameras can be recovered by a stereo 
camera if the disparity (sometimes referred to as parallax) d can be found for the point projected 
onto each image plane. Given the general case when the cameras are not parallel the relative 
rotation and translation between the cameras must be known to triangulate points in 3D space. 
This combination of rotation and translation along with the camera intrinsic matrix forms the 
projection matrix for each camera view. The solution to perform triangulation for the monocular 
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pipeline in LCS-SLAM is to use successive camera views of matched features in the scene 
combined with odometry estimates to initialize projection matrices for each camera view. Given 
matched features between two camera views and the relative translation and rotation between 
them in 3D space, Direct Linear Transformation can be used to project points into 3D space. 
Points that are triangulated incorrectly are filtered out by LCS-SLAM. The output of the 
monocular mapping module of LCS-SLAM using this triangulation technique is shown in Fig. 
5.9.  

 

Figure 5.9 – Monocular mapping module. 

5.3 Monocular Place Recognition 

Given that there are inaccuracies in the state estimation process, errors in odometry and mapping 
grow exponentially over time if left uncorrected. To enable a global optimization process, the 
robot must know if it is at a previously visited location also known as loop-closure detection. In 
the context of an autonomous racing drone, this means the robot must know when it has arrived 
at the same part of the course that it has visited previously. Loop closure detection requires a 
robot to have place recognition capabilities. Loop closure in LCS-SLAM uses features from each 
monocular camera keyframe that is indexed and saved into a database. This database holds a 
Bag-of-Words representation that allows for real-time recall of previous monocular camera 
keyframes. By leveraging the Fast Digital Bag-of-Words (FDBoW) open-source software library, 
a Bag-of-Words representation of a keyframe and its respective features allow for efficient recall 
of similar images in a database, with relatively good precision. The exact details on how Bag-of-
Words works is outside the scope of this paper, however it is important to identify Bag-of-Words 
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as a histogram-based similarity comparison method using a predetermined vocabulary database 
that describes features [32]. A high-level visualization of the process is shown in Fig. 5.10. 

 

Figure 5.10 – Bag-of-Words high-level overview [32]. 

By using histograms to compare vocabulary between images, a k-d tree can be used to efficiently 
lookup a database of existing images and their respective features. Each new keyframe is 
compared to the keyframes stored in the Bag-of-Words database, and if the new keyframe meet a 
similarity threshold which uniquely identify an environment, then the robot has successfully 
detected a loop closure. Once loop closure is detected, a global optimization processes such as 
Pose Graph Optimization can be used to successfully optimize the graph or “close the loop” as 
used in the LiDAR pipeline. An example of “closing the loop” from current state-of-the-art 
SLAM algorithms can be seen in Fig. 5.11. 

 

Figure 5.11 – Generic loop closure impact on map where red is the detected loop closure points 
[33]. 
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Chapter 6 – LiDAR Pipeline 
The simulated sensors from Chapter 4 provide the ROS2 topics that the LiDAR pipeline requires 
as input. The output of this module is optimized quadcopter odometry and map of the 
environment which can be used in the fusion pipeline. The LiDAR pipeline consists of odometry, 
mapping, place recognition, and optimization modules described in further detail below. 

6.1 LiDAR Odometry 

LiDAR odometry estimates the quadcopter motion based on successive LiDAR scans of the 
surrounding environment. Each LiDAR packet sent from the sensor is collected, and based on 
the sensor calibration and configuration, a point cloud can be obtained. The LiDAR processing 
algorithm in LCS-SLAM uses the velodyne_pointcloud ROS2 package which takes raw sensor 
measurements of azimuth, intensity, and distance for each laser scan in conjunction with the 
sensor calibration parameters and determines the local cartesian coordinate points returned by 
each laser. The selected LiDAR sensor, the VLP-16, contains 16 lasers with their own unique 
geometric positions which must be accounted for to accurately transform the sensor 
measurements to the cartesian coordinate system. Once the initial processing of the of LiDAR 
sensor data is complete, a point cloud of each scan is generated and can be used for further 
processing by the odometry module. 

The first step in the LCS-SLAM LiDAR odometry pipeline is to filter the incoming point cloud 
scans to ensure only unique points and inliers are considered. This allows the entire pipeline to 
run faster and produce a more accurate result. Three different filters are applied to the data to 
prepare it for further processing: box filter, voxel down-sample Filter, and removing invalid 
points. A box filter eliminates all points outside of defined Cartesian coordinate bounds. For the 
selected VLP-16 LiDAR, bounds of +/- 120 meters is selected for each axis which is set based on 
the maximum range of the VLP-16 sensor given in Table 3.2. Voxel down-sampling of the data 
then reduces the number of points in the point cloud, drastically decreasing computation times in 
further processing steps. Voxel down-sampling applies a voxel grid with a specified leaf size in 
which points that fall within a leaf are binned together. This helps eliminate similar points from a 
point cloud by representing them as one single entity. The specified leaf size is dependent on the 
sensor resolution from Table 3.2 as well as the desired computational efficiency increase, which 
comes at the cost of accuracy. A leaf size of 1.0 meter is selected through experimentation for 
use in LCS-SLAM. Lastly, any points in the cloud that do not have a valid cartesian coordinate 
are removed, ensuring only valid points are considered by the odometry module. The parameters 
used for LiDAR point cloud filtering are provided in Table 6.1. 
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Table 6.1 – LiDAR point cloud filtering parameters. 

Property Quantity Units 

Box filter radius 120 Meters 

Voxel leaf size 1.0 Meters 

Next, the odometry module uses successive scans and compares them to each other in a process 
known as scan matching. Scan matching is used to determine the relative pose of the quadcopter 
between successive scans by computing a transform which minimizes the distance between 
corresponding points in two temporally successive point clouds with similar scene views. If the 
point clouds from two successive scans P and P’ are defined as a set of points pi and p’i 
respectively, the transformation between each of the scans defined by the rotation R and 
translation t can be represented by Eq. (6.1). 

𝑝- = 𝑅𝑝′- + 𝑡       (6.1) 

It is assumed that the closest points between the point clouds are the same points that undergo a 
Euclidean transformation between consecutive scans.  Using the matched points, a point cloud 
registration technique known as Voxelized Generalized Iterative Closest Point (VGICP) is used 
to determine the transformation between the point clouds. The VGICP algorithm is an 
augmented version of the ICP algorithm with a focus on real-time processing and better 
performance in indoor 3D environments. An example of the ICP registration process for a pair of 
generic point clouds is shown in Fig. 6.1. 

 

Figure 6.1 – ICP algorithm alignment for two similar point clouds. 
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The Iterative closest point algorithm defines the error e between two points to be defined as in 
Eq. (6.2). 

𝑒- = 𝑝- − (𝑅𝑝-$ + 𝑡)      (6.2) 

The error term is then used to construct a least-square problem between two points which when 
minimized is used to determine the rotation R and translation t as shown in Eq. (6.3). 

min
,,/

0
1∑ ||( 𝑝- − (𝑅𝑝-

$ + 𝑡))||1     (6.3) 

Given the least-square problem in Eq. (6.3), the iterative closest point algorithm requires that the 
centroid of the point clouds to be computed. Once the centroids are computed, the rotation that 
aligned the current scan to the previous scan can be obtained by using Singular Value 
Decomposition (SVD). The translation can be solved by solving for the vector that connects the 
two centroids from the consecutive point clouds. By integrating each estimated transformation 
over each previous transformation, an absolute pose of the quadcopter can be determined as 
shown in Eqs. (6.4) and (6.5). 

𝑅2$ =3 	 𝑅23 ∗ 𝑅2$2       (6.4) 

𝑡2$ =3 	 𝑡23 + 𝑡2$2       (6.5) 

ICP alone can estimate the relative and absolute robot translation and rotation. To allow for more 
robust transformation estimates in indoor environments, GICP can be used. The GICP algorithm 
is based on the Iterative Closest Point (ICP) and Point-to-Plane algorithms which can be broken 
down into steps: 

Iterative Closest Point Algorithm 

1. Given two input clouds A and B, compute correspondences for each point within a 
specified matching threshold. 

2. Compute a transformation which minimizes the distance between two corresponding 
points. 

Point-to-Plane Algorithm 

1. Given two input clouds A and B, compute correspondences for each point within a 
specified matching threshold. 

2. Compute a transformation which minimizes the error along the surface normal of one of 
the cloud scans. 

However, for more robust and real-time performance a GPU accelerated VGICP algorithm is 
used in LCS-SLAM. VGICP extends the GICP algorithm. This allows VGICP to perform plane-
to-plane correspondences which minimizes the error along the surface normal for both point 
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clouds which is common in LiDAR scans, and not well handled by ICP and Point-to-Plane 
algorithms individually. To ensure real-time performance and accurate results, there are three 
termination criteria selected for the algorithm as shown in Table 6.2. 

Table 6.2 – GICP termination criteria in LCS-SLAM. 

Termination Criteria Criteria Number Quantity Units 

Transformation epsilon 1 1e-10 Meters 

Euclidean fitness 2 1e-3 Meters 

Number of iterations 3 250 N/A 

Termination criterion 1 and 2 stop the algorithm if a good match is found and reduce 
unnecessary iterations from being performed. Termination criteria enforces the real-time 
constraint at the cost of accuracy of the scan matching process. These values were determined 
based off experimentation with the given simulation environment.   

Next in the LiDAR odometry module, keyframes are selected based on the transformation 
estimated from the scan matching step. Keyframes are selected based on enough rotation or 
translation occurring between successive scans which limits drift when the quadcopter is not 
moving. The experimentally obtained keyframe threshold between scans are shown in Table 6.3. 

Table 6.3 – LiDAR keyframe selection properties. 

Keyframe Property Quantity Units 

Rotation minimum 3.0 Degrees 

Position minimum 1.0 Meters 

If the LiDAR scan passes the threshold for being a keyframe, it can be used to estimate the 
odometry and for further processing by the mapping module. If there have been no other 
keyframes processed by LCS-SLAM, the odometry system will mark the scan as the reference 
scan and be initialized, thus all successive scans will be relative to the reference scan. Each 
keyframe from this module is given a unique identification number and registered with the most 
recent monocular camera keyframe identification number. This registration process is important 
for the optimization module in the pipeline. A visualization of the LiDAR odometry keyframes 
are shown in Fig. 6.2. 
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Figure 6.2 – LCS-SLAM LiDAR odometry keyframes (blue) compared to ground truth (orange). 

6.2 LiDAR Mapping 

LiDAR maps are created from the odometry of successive LiDAR scans of the environment and 
the 3D points directly generated from the LiDAR sensor returns. Laser returns from each of the 
scans generate sparse map points of the environment up to 100 meters in any direction given the 
selected sensor. Visualization of the LiDAR map generated by LCS-SLAM is shown in Fig. 6.3. 

 

Figure 6.3 – LCS-SLAM LiDAR mapping module. 
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6.3 LiDAR Place Recognition 

Given that the monocular pipeline has correctly identified a “loop closure” from its place 
recognition module, the monocular camera keyframe identification number and its registered 
LiDAR scan identification number associated can be used to recover the LiDAR scans in which 
the loop closure occurs. These two scans are then aligned using VGICP as described in the 
LIDAR odometry module. The relative odometry between these two scans is then used to create 
a loop closure relationship in the optimization module.  

6.4 LiDAR Optimization 

A technique to reduce the impact on odometry drift is to perform Pose Graph Optimization. The 
open source g2o hypergraph optimization software library is leveraged which allows for 
representation of the robot odometry as a pose graph. Pose Graph Optimization, or more 
generally factor graph optimization, uses Graph Theory and Lie-Algebra groups to represent the 
SLAM problem in terms of nodes and edges to perform global optimization of for SLAM 
systems. Nodes are represented by robot state measurements generated from odometry and 
converted to a Special Euclidean (SE3) Lie-Algebra Group representation, where edges are the 
relative odometry measurements between each robot state. Each edge also consists of an 
information matrix or Fisher Matrix which consists of the inverse covariances from the 
measurement uncertainty for each state variable used in the state estimation process. When a 
loop closure is detected, a new edge is added to the graph constraining the original state 
measurement and the matched state measurement from the place recognition module. The 
estimated rotation and translation between the matched scans are then used as the edge constraint 
in the graph and optimization of the graph can commence.  

To properly perform an optimization, the initial node of the graph must be set fixed, otherwise 
the optimization problem will not be properly constrained. During the optimization process a 
gradient descent method is used to iteratively calculate the Maximum-Likelihood-Estimate 
(MLE) of the robot poses by minimizing the weighted sum of residual errors present in the 
graph. It should be also noted that bundle adjustment is a specific case of pose graph 
optimization where landmark points are identified as additional vertices connected by edges 
containing the projection information to generate the landmarks, however it is not used by the 
LCS-SLAM LiDAR pipeline. 

Optimization of the pose graph is done by minimizing the least-squares problem using the well-
known Levenberg-Marquardt gradient descent optimization method.  

After reaching termination criterion or exhausting the maximum number of iterations allowed for 
solving the problem, the updated graph is used to optimize the previous odometry estimates and 
map points on a global scale.  
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Chapter 7 – Fused Pipeline 
The simulated sensors from Chapter 4 and the outputs from the LiDAR and mono pipelines 
provide the ROS2 topics that the fused pipeline requires as inputs. The output of this module is 
the optimized quadcopter odometry and map of the environment which is the optimal output of 
LCS-SLAM. The pipeline contains odometry, mapping, place recognition, and optimization 
modules. 

7.1 Fused Odometry 

In the LCS-SLAM algorithm, LiDAR, Camera, and IMU sensor data can be fused together using 
an Unscented Kalman Filter (UKF). The UKF is an extension of the Extended Kalman Filter 
(EKF) which is capable of fusing non-linear sensor data assuming the data points are Gaussian 
Random Variables (GRV). The EKF leverages a Taylor expansion to achieve first-order 
linearization of the non-linear sensor model which can result in sub-optimal state estimation 
performance and in some cases divergence of the filter. The UKF remedies the flaws of an EKF 
by sampling a set of GRV sample points that are transformed via the Unscented Transform 
which can capture the system performance up to third-order accuracy without explicit 
linearization as required in the EKF. The basis of the UKF can be defined with state prediction 
and measurement update steps like the traditional Kalman Filter.  

The prediction step of the UKF depends on a set of sigma points. Sigma points are individual 
points from the data distribution which are representative of the whole distribution itself. The 
algorithm behind the prediction step is like that of the EKF without the explicit linearization step. 
This step is replaced by the Unscented Transform which consists of:  

1. Calculating sigma points 
2. Determining weights of the sigma points 
3. Transformation of sigma points to generate a predicted mean and co-variance.  

The number of sigma points needed for accurate representation of the system is given by Eq. 
(7.1), where N is the dimensionality of the problem.  

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑆𝑖𝑔𝑚𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 2𝑁 + 1    (7.1) 

The sigma points matrix X of dimensionality N is calculated as shown in Eqs. (7.2) and (7.3) 
where μ is the mean of the Gaussian distribution, n is the dimensionality of the system, ƛ is the 
scaling factor which defines the distance from the mean for selecting sigma points which is 
typically selected as 3-n, and Σ is the co-variance matrix. The square root of a matrix can be 
calculated with the aid of the Cholesky decomposition.  

𝑋! = 𝜇            (7.2) 

𝑋" = 𝜇 + 78(𝑛 + 𝜆)𝛴="
         (7.3) 
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Next in the algorithm is to compute the weights w of each sigma point as shown in Eqs. (7.4) and 
(7.5). 

𝑤! =
#

(%&#)
      (7.4) 

𝑤" =
(

)(%&#)
      (7.5) 

Once the weights are computed, the transformation of the sigma points to calculate a new mean 
and co-variance is done as shown in Eqs. (7.6) and (7.7) where f is defined as the non-linear 
process function, and R is defined as the process noise. 

𝜇′ = ∑ 𝑤")%
"*! 𝑓(𝑋")     (7.6) 

𝛴′ = ∑ 𝑤")%
"*! (𝑓(𝑋") − 𝜇′)(𝑔(𝑋") − 𝑢′)+ + 𝑅,    (7.7) 

The update step of the UKF uses the sensor measurement data to further enhance the estimate 
from the prediction step. To achieve this, the sigma points must be transformed from state space 
to measurement state space by a function h, then the mean and co-variance from the prediction 
step can be represented in measurement space by ζ and S respectively, with external process 
noise Q as shown in Eqs. (7.8), (7.9), and (7.10). 

𝑍 = ℎ(𝑋")               (7.8) 

𝜁 = ∑ 𝑤")%
"*! 𝑍      (7.9) 

𝑆 = ∑ 𝑤")%
"*! (𝑍 − 𝜁)(𝑍 − 𝜁)+ + 𝑄    (7.10) 

To calculate the Kalman gain, K, Eqs. (7.11) and (7.12) are defined where T is the cross-co-
relation matrix between state and predicted space.  

𝐾 = 𝑇𝑆-(      (7.11) 

𝑇 = ∑ 𝑤")%
"*! (𝑋" − 𝜇′)(𝑍" − 𝜁)+    (7.12) 

Given the calculated quantities variables above, the final predicted mean and co-variance is 
given by Eqs. (7.13) and (7.14). This updated value is used in the prediction of the next iteration 
of the filter. 

𝜇"&( = 𝜇"′ + 𝐾"I𝜁./0123/4," − 𝜁"J         (7.13) 

𝛴"&( = (𝐼 − 𝐾"𝑇")𝛴"′     (7.14) 

The UKF essentially allows all equipped sensors on the robot to be used to provide the best 
estimate of the robot odometry and map, given each sensors strengths and limitations which are 
reflected in the covariances that the filter is initialized with. The LCS-SLAM fused odometry 
keyframes are visualized in Fig 7.1. 

Deleted: ¶
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Figure 7.1 – LCS-SLAM fused odometry keyframes (red) vs ground truth (orange). 

7.2 Fused Mapping 

Using the fused odometry estimate, the map points from the LiDAR sensor can be registered 
with the most optimal robot localization estimate. There is no added computational cost in the 
mapping module other than re-alignment of map points with fused odometry estimates. 

 

Figure 7.2 – LCS-SLAM fused mapping keyframes. 
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7.3 Fused Place Recognition 

Given that the monocular pipeline has correctly found a “loop closure” from its place recognition 
module, the monocular camera keyframe identification number and its registered LiDAR and 
fused identification numbers can be used to recover the fused odometry keyframes in which the 
loop closure occurs. The relative odometry between these two scans is assumed to be the 
calculated LiDAR loop closure odometry since it is the most accurate method available in LCS-
SLAM.  

7.4 Fused Optimization 

For fused optimization, pose graph optimization is used to perform global optimization. Pose 
graph optimization techniques used in the fused pipeline are identical to those used in the LiDAR 
pipeline which is discussed in detail in Chapter 6. Fig. 7.3 and Fig. 7.4 show the fused odometry 
estimate before and after optimization, respectively. 

 

Figure 7.3 – LCS-SLAM fused (red) and truth (orange) before pose graph optimization. 
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Figure 7.4 – LCS-SLAM fused (red) and truth (orange) after pose graph optimization. 
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Chapter 8 – LCS-SLAM Benchmark Test 
Benchmark testing of the LCS-SLAM used the core software discussed in the chapters above in 
addition to computer system clocks calibrated for nanosecond accuracy. There were three tests 
conducted for each dataset: Track-Easy and Track-Hard which generated six total data points for 
benchmarking the performance of LCS-SLAM for use in a racing quadcopter traveling at 
approximately 10 miles per hour. The machine used to test the system contained 64GB of DDR4 
RAM, an AMD Ryzen 3950x with 32 CPU cores, and an RTX 3090 GPU on a 64-bit x86 
machine running Ubuntu 20.04. Each test had ten seconds at the beginning to allow LCS-SLAM 
to start-up before the dataset would begin supplying data into the system. When the dataset 
ended, the generated log files for trajectories, execution times, and maps from LCS-SLAM were 
then post-processed to evaluate for the metrics described below. The selected metrics aim to 
measure accuracy, repeatability, and real-time performance of LCS-SLAM. 

8.1 Absolute Trajectory Error (ATE) 

The absolute trajectory error is calculated by comparing the ground-truth trajectories from the 
simulator and performing Root Mean Square (RMS) analysis between the estimated robot 
trajectory for each of the various path outputs in LCS-SLAM: LiDAR, Monocular, and Fused 
which is good for evaluating global consistency of the trajectory. The Absolute Trajectory Error 
(ATE) for can be calculated for each synchronized time sequence i using Eq. (8.1), where E is 
the absolute trajectory error in Special Euclidean 3D space (SE3), Q is the ground-truth 
trajectory in SE3 space, S is the rigid-body transformation that aligns the ground truth and 
estimated trajectory frame, and P is the estimated trajectory in SE3 space. Since both the 
estimated trajectory and ground-truth trajectory are taken at difference time sequences, an 
association step is used in which the nearest timestamps are matched between the two datasets 
and are considered “time-synchronized”. This results in a slight variation in the error estimate as 
there is inherent error associated with the data association step. 

𝐸- =	𝑄-40𝑆𝑃-      (8.1) 

The root-mean square error of the error matrices in Eq. (8.1) can be solved using Eq. (8.2) where 
n is the number of time synchronized samples. 

𝐴𝑇𝐸,567 = (0
8∑ ‖𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝐸-)‖8

-90
1)0/1   (8.2)  

Eq. (8.2) can be normalized against the total length traveled by the robot to allow for datasets of 
different lengths to be compared against each other. This normalization process yields the 
distance normalized root-mean square ATE and is given in Eq (8.3). 

𝐴𝑇𝐸;,567 =
<=7!"#$

∑ ‖/@A8BCA/-D8(F%)‖&
%'(

    (8.3) 

The results of this analysis are summarized in Tables 8.1-8.2. Figs. 8.1-8.24 contain various 
visualizations in both isometric and overhead views of the optimized absolute trajectory obtained 



43 

from the mono, LiDAR, and fused odometry pipelines compared to the ground-truth. The Track-
Easy and Track-Hard datasets were used to test LCS-SLAM and contain three tests for each 
dataset. Figs. 8.1-8.12 show all the tests between the two datasets, while Figs. 8.13-8.24 shows 
only one of the three tests from each dataset.  

Table 8.1 – LCS-SLAM RMSE ATE results. 

Scenario Monocular Camera 
RMSE ATE (m) 

LiDAR RMSE ATE 
(m) 

Fused UKF RMSE 
ATE (m) 

Track-Easy Test 1 14.555 3.280 4.251 

Track-Easy Test 2 13.714 3.329 3.537 

Track-Easy Test 3 21.915 3.680 4.112 

Track-Easy 

Average 

16.728 3.429 3.967 

Track-Hard Test 1 19.093 6.068 9.139 

Track-Hard Test 2 14.124 11.369 12.553 

Track-Hard Test 3 18.818 8.765 9.039 

Track-Hard 

Average 

17.345 8.734 10.244 
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Table 8.2 – LCS-SLAM NRMSE ATE results. 

Scenario Monocular Camera 
NRMSE ATE (%) 

LiDAR NRMSE 
ATE (%) 

Fused UKF NRMSE 
ATE (%) 

Track-Easy Test 1 4.506 1.016 1.316 

Track-Easy Test 2 4.246 1.031 1.095 

Track-Easy Test 3 6.785 1.139 1.273 

Track-Easy 

Average 

5.179 1.062 1.228 

Track-Hard Test 1 7.074 2.157 3.249 

Track-Hard Test 2 5.020 4.041 4.462 

Track-Hard Test 3 6.689 3.115 3.213 

Track-Hard 

Average 

6.261 3.104 3.641 
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Figure 8.1 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Easy Test 1. 

 

 

Figure 8.2 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Easy Test 2. 
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Figure 8.3 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Easy Test 3. 

 

Figure 8.4 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 1. 
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Figure 8.5 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 2. 

 

Figure 8.6 – Isometric view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 3. 



48 

 

Figure 8.7 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-Easy 
Test 1. 

 

Figure 8.8 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-Easy 
Test 2. 
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Figure 8.9 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-Easy 
Test 3. 

 

Figure 8.10 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 1. 
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Figure 8.11 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 2. 

 

Figure 8.12 – Top view of LCS-SLAM final estimated trajectory and ground-truth on Track-
Hard Test 3. 
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Figure 8.13 – Isometric view of LCS-SLAM fused estimated trajectory and ground-truth on 
Track-Easy Test 1. 

 

Figure 8.14 – Isometric view of LCS-SLAM fused estimated trajectory and ground-truth on 
Track-Hard Test 1. 
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Figure 8.15 – Top view of LCS-SLAM fused estimated trajectory and ground-truth on Track-
Easy Test 1. 

 

Figure 8.16 – Top view of LCS-SLAM fused estimated trajectory and ground-truth on Track-
Hard Test 1. 
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Figure 8.17 – Isometric view of LCS-SLAM LiDAR estimated trajectory and ground-truth on 
Track-Easy Test 1. 

 

 

Figure 8.18 – Isometric view of LCS-SLAM LiDAR estimated trajectory and ground-truth on 
Track-Hard Test 1. 
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Figure 8.19 – Top view of LCS-SLAM LiDAR estimated trajectory and ground-truth on Track-
Easy Test 1. 

 

Figure 8.20 – Top view of LCS-SLAM LiDAR estimated trajectory and ground-truth on Track-
Hard Test 1. 
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Figure 8.21 – Isometric view of LCS-SLAM mono estimated trajectory and ground-truth on 
Track-Easy Test 1. 

 

Figure 8.22 – Isometric view of LCS-SLAM mono estimated trajectory and ground-truth on 
Track-Hard Test 1. 
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Figure 8.23 – Top view of LCS-SLAM mono estimated trajectory and ground-truth on Track-
Easy Test 1. 

 

Figure 8.24 – Top view of LCS-SLAM mono estimated trajectory and ground-truth on Track-
Hard Test 1. 
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8.2 Relative Pose Error (RPE) 

The relative pose error is calculated by comparing the ground-truth poses from the simulator and 
performing root mean square (RMS) analysis between each relative pose estimate of the various 
path outputs in LCS-SLAM: LiDAR, Monocular, and Fused which is useful in evaluating the 
drift of a trajectory. The relative pose error (RPE) is typically broken into two components: 
translation and rotation. First the relative pose error for each time interval Δ must be calculated 
for each sequence of i. The relative pose error can be calculated using Eq. (8.4) where F is the 
relative pose error, Q is the ground-truth pose, and P is the estimated pose. 

𝐹- =	 (𝑄-40𝑄-HI)40(𝑃-40𝑃-H∆)     (8.4) 

Using Eq. (8.4) the root-mean square error for both the rotation and translation components of 
the relative pose error can be calculated using Eq. (8.5) and Eq. (8.6), respectively, where n is the 
number of time synchronized samples. 

𝑅𝑃𝐸/@A8B
-,∆ = (0

8∑ ‖𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛(𝐹-)‖8
-90

1)0/1     (8.5) 

𝑅𝑃𝐸@D/
-,∆ = 0

840∑ arccos	(/@A2KL@D/A/-D8(M%)N40
1

)840
-90     (8.6) 

Eq. (8.6) can be normalized over the total distance traveled to obtain a distance invariant error 
metric as seen in Eq. (8.7). 

𝑅𝑃𝐸8D@OAC-PK*	@D/
-,∆ = ,R7)*+

%,∆

∑ ‖/@A8BCA/-D8(F%)‖&
%'(

     (8.7) 

The RPE measured in testing of LCS-SLAM using Eq. (8.5) and Eq. (8.7) are summarized in 
Table 8.3. 
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Table 8.3 – LCS-SLAM RPE results. 

Scenario Monocular 
Camera 
RMSE 
RPE 
Translation 
(m) 

LiDAR 
RMSE 
RPE 
Translation 
(m) 

Fused 
RMSE 
RPE 
Translation 
(m) 

Monocular 
NRMSE 
RPE 
Rotation 
(deg/m) 

LiDAR 
NRMSE 
RPE 
Rotation 
(deg/m) 

Fused 
NRMSE 
RPE 
Rotation 
(deg/m) 

Track-
Easy Test 
1 

1.053 1.009 0.615 0.011 0.011 0.006 

Track-
Easy Test 
2 

1.053 1.006 0.593 0.012 0.012 0.005 

Track-
Easy Test 
3 

1.089 1.035 0.609 0.012 0.012 0.005 

Track-
Easy 

Average 

1.065 1.017 0.606 0.012 0.012 

 

0.005 

Track-
Hard Test 
1 

1.244 1.131 0.891 0.018 0.018 0.012 

Track-
Hard Test 
2 

1.231 1.154 0.909 0.019 0.018 0.012 

Track-
Hard Test 
3 

1.229 1.165 0.891 0.019 0.018 0.013 

Track-
Hard 
Average 

1.234 1.150 0.897 0.019 0.018 0.012 
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8.3 Tracking, Mapping, and Optimization Execution Times 

The mean tracking execution times are calculated for each sensor in LCS-SLAM: LiDAR, 
Monocular, and Fused. The results of this analysis are summarized in Table 8.4. 

Table 8.4 – LCS-SLAM tracking execution time results. 

Scenario Monocular 
Odometry 
Mean 
Execution 
Time (ms) 

Monocular 
Odometry 
Standard 
Deviation 
Execution 
Time (ms) 

LiDAR 
Odometry 
Execution 
Time (ms) 

LiDAR 
Odometry 
Standard 
Deviation 
Execution 
Time (ms) 

Fused 
Odometry 
Mean 
Execution 
Time (ms) 

Fused 
Odometry 
Standard 
Deviation 
Execution 
Time (ms) 

Track-Easy 
Test 1 

48.566 11.764 4.544 9.462 0.037 0.021 

Track-Easy 
Test 2 

49.799 11.378 4.425 9.136 0.040 0.020 

Track-Easy 
Test 3 

49.679 12.043 4.389 8.844 0.039 0.020 

Track-
Easy 

Average 

49.448 11.728 4.453 9.147 0.039 

 

0.020 

Track-
Hard Test 
1 

63.371 12.818 6.044 13.481 0.042 0.019 

Track-
Hard Test 
2 

62.867 11.311 6.567 15.164 0.042 0.018 

Track-
Hard Test 
3 

62.738 11.848 6.683 16.237 0.043 0.019 
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Scenario Monocular 
Odometry 
Mean 
Execution 
Time (ms) 

Monocular 
Odometry 
Standard 
Deviation 
Execution 
Time (ms) 

LiDAR 
Odometry 
Execution 
Time (ms) 

LiDAR 
Odometry 
Standard 
Deviation 
Execution 
Time (ms) 

Fused 
Odometry 
Mean 
Execution 
Time (ms) 

Fused 
Odometry 
Standard 
Deviation 
Execution 
Time (ms) 

Track-
Hard 
Average 

62.992 11.992 6.431 14.960 0.042 0.019 

The mean mapping execution times are calculated for each sensor in LCS-SLAM: LiDAR, 
Monocular, and Fused. The results of this analysis are summarized in Table 8.5. 

Table 8.5 – LCS-SLAM mapping execution time results. 

Scenario Monocular 
Mapping 
Mean 
Execution 
Time (ms) 

Monocular 
Mapping 
Standard 
Deviation 
Execution 
Time (ms) 

LiDAR 
Mapping 
Execution 
Time (ms) 

LiDAR 
Mapping 
Standard 
Deviation 
Execution 
Time (ms) 

Fused 
Mapping 
Mean 
Execution 
Time (ms) 

Fused 
Mapping 
Standard 
Deviation 
Execution 
Time (ms) 

Track-Easy 
Test 1 

46.534 32.497 0.182 0.108 0.276 0.261 

Track-Easy 
Test 2 

47.277 34.266 0.188 0.124 0.324 0.321 

Track-Easy 
Test 3 

49.952 36.671 0.189 0.131 0.311 0.256 

Track-
Easy 

Average 

47.921 31.478 0.186 0.121 0.304 0.279 

Track-
Hard Test 
1 

35.038 26.086 0.182 0.094 0.171 0.143 
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Scenario Monocular 
Mapping 
Mean 
Execution 
Time (ms) 

Monocular 
Mapping 
Standard 
Deviation 
Execution 
Time (ms) 

LiDAR 
Mapping 
Execution 
Time (ms) 

LiDAR 
Mapping 
Standard 
Deviation 
Execution 
Time (ms) 

Fused 
Mapping 
Mean 
Execution 
Time (ms) 

Fused 
Mapping 
Standard 
Deviation 
Execution 
Time (ms) 

Track-
Hard Test 
2 

38.532 28.364 0.148 0.092 0.168 0.141 

Track-
Hard Test 
3 

35.235 27.045 0.150 0.095 0.176 0.144 

Track-
Hard 
Average 

36.268 27.165 0.160 0.094 0.172 0.428 

The mean optimization execution times are calculated for each sensor in LCS-SLAM: LiDAR, 
Monocular, and Fused. The results of this analysis are summarized in Table 8.6. 

Table 8.6 – LCS-SLAM optimization execution time results. 

Scenario Monocul
ar Opt. 
Mean 
Executio
n Time 
(ms) 

Monocular 
Opt. 
Standard 
Deviation 
Execution 
Time (ms) 

LiDAR 
Opt. 
Execution 
Time (ms) 

LiDAR 
Opt. 
Standard 
Deviation 
Execution 
Time (ms) 

Fused 
Opt. Mean 
Execution 
Time (ms) 

Fused 
Opt. 
Standard 
Deviation 
Execution 
Time (ms) 

Track-Easy 
Test 1 

46.700 N/A 53.905 11.218 119.099 48.143 

Track-Easy 
Test 2 

31.907 N/A 48.575 N/A 80.656 N/A 

Track-Easy 
Test 3 

41.973 N/A 50.829 N/A 83.017 N/A 
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Scenario Monocul
ar Opt. 
Mean 
Executio
n Time 
(ms) 

Monocular 
Opt. 
Standard 
Deviation 
Execution 
Time (ms) 

LiDAR 
Opt. 
Execution 
Time (ms) 

LiDAR 
Opt. 
Standard 
Deviation 
Execution 
Time (ms) 

Fused 
Opt. Mean 
Execution 
Time (ms) 

Fused 
Opt. 
Standard 
Deviation 
Execution 
Time (ms) 

Track-
Easy 

Average 

40.193 N/A 51.103 N/A 94.257 N/A 

Track-
Hard Test 
1 

34.624 N/A 30.377 N/A 46.663 N/A 

Track-
Hard Test 
2 

36.917 N/A 41.321 N/A 47.873 N/A 

Track-
Hard Test 
3 

41.515 N/A 36.349 N/A 51.334 N/A 

Track-
Hard 
Average 

37.685 N/A 36.016 N/A 48.623 N/A 

 

The mean total execution times are calculated for the entirety of the LCS-SLAM algorithm. The 
results of this analysis are summarized in Table 8.7. 
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Table 8.7 – LCS-SLAM total execution time results. 

Scenario Total Mean 
Execution 
Time (ms) 

Total 
Standard 
Deviation 
Execution 
Time (ms) 

Total Max 
Execution 
Time (ms) 

Total Min 
Execution 
Time (ms) 

Total 
Median 
Execution 
Time (ms) 

Track-Easy 
Test 1 

54.098 57.439 729.147 5.184 23.693 

Track-Easy 
Test 2 

54.364 56.701 707.873 5.155 24.394 

Track-Easy 
Test 3 

55.307 60.048 748.409 5.199 23.860 

Track-Easy 

Average 

54.589 58.063 728.476 5.179 23.982 

Track-Hard 
Test 1 

76.099 62.045 560.005 6.876 81.191 

Track-Hard 
Test 2 

78.392 63.614 543.987 6.639 83.486 

Track-Hard 
Test 3 

75.724 61.844 544.923 6.843 81.830 

Track-Hard 

Average 

76.738 62.501 549.638 6.786 82.169 
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8.4 Mapping Accuracy 

The mapping accuracy in LCS-SLAM is calculated for only the best fused pipeline results for 
each dataset. Test 1 from both the Track-Easy and Track-Hard datasets were used for evaluation 
of mapping accuracy. The 3D models used in the datasets were exported from Unity3D and 
sampled into point clouds. These point clouds are used as ground-truth maps when compared to 
the estimated point cloud maps generated from LCS-SLAM. The point clouds from LCS-SLAM 
are filtered to remove outliers and then aligned to the ground-truth using the Iterative Closest 
Point (ICP) algorithm. Once aligned, the mean distance between closest matched points in both 
the ground-truth and estimated maps are calculated. To perform this analysis the point cloud 
alignment software known as CloudCompare is used. The results of this analysis are summarized 
in Table 8.8 and Figs. 8.25-8.29. 

Table 8.8 – LCS-SLAM mapping accuracy results. 

Dataset Mean Distance (m) Standard Deviation (m) 

Track-Easy, Test 1 0.892 1.006 

Track-Hard, Test 1 1.385 1.422 
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Figure 8.25 – Top view of ground-truth map of Track-Easy Unity3D course. 
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Figure 8.26 – Top view of ground-truth map of Track-Hard Unity3D course. 
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Figure 8.27 – Top view of estimated fused map of Track-Easy dataset, test 1. 
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Figure 8.28 – Top view of estimated fused map (white) registered with ground-truth map 
(colored) of Track-Easy dataset, test 1. 
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Figure 8.29 – Top view of estimated fused map (white) registered with ground-truth map 
(colored) of Track-Hard dataset, test 1. 
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Chapter 9 – Analysis of LCS-SLAM Performance 

9.1 Analysis of LCS-SLAM Performance 

The overall performance of LCS-SLAM on the two datasets collected for analysis is defined by 
its tracking accuracy, mapping accuracy, repeatability, and execution times.  

LCS-SLAM is globally consistent in a simple scene up to 1.062% trajectory error, and in a 
difficult scene 3.104% trajectory error. Mean relative translation error is as low as 0.606 meters 
in a simple scene and as high as 0.897 meters for a difficult scene for the fused sensor pipeline, 
which is the most accurate for relative pose estimation. Distance normalized relative rotation 
error is as low as 0.005 degrees per meter or as high 0.012 degrees per meter in the worst case 
for the most accurate sensor pipeline. 

LCS-SLAM excels in its mean tracking execution time performance in the LiDAR and fused 
pipelines with best-case tracking times as low as 4.453 milliseconds and 0.039 milliseconds, 
respectively. Monocular tracking is an order of magnitude slower than LiDAR tracking at 49.448 
milliseconds. In the worst case LCS-SLAM performs LiDAR and fused tracking at 6.431 
milliseconds and 0.042 milliseconds, respectively. Monocular tracking in the worst-case tracks at 
62.992 milliseconds. The large difference between the tracking times can be attributed to the 
complexity of the monocular tracking pipeline and the use of a GPU-accelerated LiDAR 
odometry algorithm. The fusion tracking pipeline is the quickest as it uses IMU data and any 
new data from the monocular or LiDAR pipelines to perform sensor fusion with a highly 
optimized implementation of the Unscented Kalman Filter. 

In the mapping execution time performance, LCS-SLAM once again sees very fast mean 
response times in the LiDAR and fused pipelines. These two pipelines ingest existing sensor data 
and must only concatenate current transforms and maps with existing map data, resulting in 
worst-case performance of less than 1 millisecond. Monocular mapping is more intensive as it 
must perform a triangulation step between multiple geometry views. Best case performance is 
36.628 milliseconds, while worst case performance is 47.912 milliseconds.  

Mean optimization execution time performance for all sensor pipelines in LCS-SLAM average 
under 100 milliseconds on average. Monocular optimizations take up to 40.193 milliseconds in 
the worst case and as little as 37.685 milliseconds in the best case. LiDAR optimizations take up 
to 51.103 milliseconds in the worst case, and as little as 36.016 milliseconds in the best case. 
Fused optimization performance can take up to 94.257 milliseconds in the worst case, and 
48.623 milliseconds in the best case. The increasing optimization time can be attributed to the 
number of pose graph nodes, weights on pose graph edges, and map points associated with the 
optimization process for each pipeline. 

Mean total execution time for LCS-SLAM in the best case is 58.063 milliseconds and in the 
worst case is 62.501 milliseconds. Maximum execution time of LCS-SLAM can be upwards of 
728.476 milliseconds, while minimum execution times can be a little as 5.184 milliseconds. The 
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median execution time in the best case is 23.982 milliseconds, and 82.169 milliseconds in the 
worst case.  

Mapping performance of LCS-SLAM is accurate to the meter level, with mapping registration 
mean distance error of 0.892 meters and 1.385 meters over distances of a simple course of 
322.99 meters and a difficult course of 281.347 meters respectively. Incorrect pose estimates can 
have a catastrophic impact on the map, thus reducing drift and performing global optimization 
are critical to globally consistent maps as done in LCS-SLAM. 

Overall, the performance of LCS-SLAM can be described as real-time capable in 3D racing 
environments of both simple and difficult scenes with average mapping and tracking capabilities, 
but prone to drift without continuous loop closures. LCS-SLAM is capable of execution at 
approximately 15 Hz, with the potential for LiDAR maps to be generated up to 100 Hz, given 
that sensor input rates of that frequency can be achieved. 

9.2 Comparison Versus ORB-SLAM 

ORB-SLAM3 is a state-of-the-art real-time SLAM framework for monocular, stereo, and RGB-
D cameras that is popular in the open-source computer vision community. Like LCS-SLAM, 
ORB-SLAM uses the ORB feature detector to generate keypoints in an image which are used for 
localization and mapping. To improve the robustness of the framework’s localization and 
mapping accuracy, keyframes are selected from images with sufficient motion. In addition, 
ORB-SLAM is capable of both loop detection and loop correction by optimizing an essential 
graph using similarity transformations and Levenberg-Marquardt optimization to complete a 
least squares minimization problem. Like LCS-SLAM, loop detection in ORB-SLAM uses an 
optimized visual vocabulary database called Bag-of-Words. 

Tracking in ORB-SLAM requires an initialization step in which essential matrix estimation or 
homography is used and only points which are visible in the local map are tracked in a co-
visibility graph. Keyframes are inserted using a technique called “Survival of the Fittest” and if 
tracking is lost, new image frames are compared to the Bag-of-Words database for the most 
likely matches and corresponding odometry estimates of those points. Fig. 9.1 shows the ORB-
SLAM framework architecture and feature matching and mapping capabilities.  
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Figure 9.1 – ORB-SLAM framework architecture [33]. 

9.3 Comparison Versus LOAM 

LiDAR Odometry and Mapping (LOAM) is a state-of-the-art odometry and mapping framework 
which uses LiDAR scans. Like LCS-SLAM, LOAM uses point cloud registration to estimate the 
odometry at a 10Hz update rate. The odometry data is used to generate 3D maps of the 
environment given the raw sensor scans from a LiDAR. The mapping process takes the scanned 
3D points and transforms them into the odometry frame at a frequency of 1 Hz. The architecture 
for LOAM can be seen in Fig. 9.2, while the output odometry and mapping procedures from 
LOAM are shown in Fig. 9.3.  

 

Figure 9.2 – LOAM high level system architecture [8]. 
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Figure 9.3 – LOAM odometry and mapping output [8]. 

9.4 Comparison Versus HDL-Graph-SLAM 

HDL-Graph-SLAM integrates systems that use LiDAR and Inertial Navigation System (INS) 
sensors which together can create a system that sustains long-term and wide-area measurements. 
HDL-Graph-SLAM is based on graph SLAM, which is the same approach used in the 
optimization process of LCS-SLAM. Scan matching is used between consecutive frames using 
the Normal Distribution Transform algorithm to estimate odometry and construct the pose graph. 
INS data that provides angular velocity is used to compensate for rotational drift of the LiDAR 
scan matching algorithm. The angular velocity is integrated with a UKF, much like what is used 
in LCS-SLAM. The high-level system architecture of HDL-Graph-SLAM is shown in Fig. 6.4, 
while HDL-Graph-SLAM in action is shown in Fig. 9.5. 

 

Figure 9.4 – HDL-Graph-SLAM system architecture [34]. 
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Figure 9.5 – HDL-Graph-SLAM scan matching capability [34]. 
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Chapter 10 – Conclusion 
LCS-SLAM has shown that sensor fusion between 3D LiDAR, cameras, and IMU sensors have 
the potential to enable robust and resilient SLAM in real-time using traditional SLAM and 
computer-vision techniques. In addition, the power of GPU-accelerated algorithms can also be 
used for real-time applications given the increasing computation capabilities of modern 
technology. The LCS-SLAM algorithm was developed and tested in a flight simulation 
environment using a racing quadcopter with proven results that showed an optimized global map 
of the environment and robots estimated trajectory generated from the LiDAR, monocular 
camera, and fused pipelines which leverage the sensors equipped on the virtual quadcopter. A 
quantitative and qualitative analysis of the localization and mapping performance of LCS-SLAM 
has shown that LCS-SLAM has the potential to become an accurate solution for localization and 
mapping for autonomous racing quadcopters. Future work could include performance 
optimizations to speed up the monocular camera pipeline, improvements to the localization 
techniques used for visual odometry, the addition of a stereo camera or RGB-D pipeline, and the 
addition of local optimization processes such as sliding window bundle adjustment. 
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