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ABSTRACT

Analysis of Low-Cost Agricultural Drone with Machine Learning Object Detection
Effectiveness

by Zhijie Chen

With advancements of drone and machine learning technologies, drones have evolved to
have more applications in different industries. One of the lesser explored industries for use of
drones is agriculture. Due to the high investment cost of UAV systems from larger companies,
many localized farmers may not hold value for an advanced drone system from large drone
manufacturers to be incorporated into the normal workflow. This report aims to analyze the
effectiveness of a lower cost drone model and open-source machine learning based object
detection to determine if there is viability in more financially friendly agricultural drones.
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1. Introduction

1.1 Motivation

While UAV companies, such as DJI, have made strides in creating agricultural drones,
UAVs have not had a major impact on the agricultural industry. Local farmers have still not been
introduced to the technology into their workflows. One of the major factors in this is cost as
many of the commercial options are expensive. This project aims to create a backbone of a low-
cost drone that can be trained and adopted to target crops that interested farmers can use and act
as a gateway to increase the use of UAVs in agriculture.

1.2 Literature Review

The use of drones and unmanned aerial vehicles (UAVs) has been explored in various
industries as technological advancements have allowed for UAVs to broaden the viability of use.
Some of the applications of drones include, but are not limited to, search/rescue, surveillance,
law enforcement, photography/film, construction, delivery, firefighting, real estate, and
agriculture. This literature review explores the documented history of the application and use of
UAVs in the agricultural industry. Additionally, it will illustrate the required equipment to
generate a better understanding of the realistic parameters of analysis for this project.

When analyzing the usefulness of drones within agriculture, the potential use cases of
drones must be first identified. In an article by S. Ahirwar for Anand Agricultural University, the
use of agricultural drones can be identified into two main categories, analysis and task
performance [1]. The analysis applications include providing data on crops that can be used to
improve crops' overall health and condition. This example presented in the article uses 3D
mapping for soil analysis which can provide information about irrigation and nitrogen-level
management in addition to crop planning. Thermal sensors can also be used to identify potential
dry areas on the field. Task performance applications include planting and crop spraying.
Planting crops with a drone tends to involve ejecting seeds from the drone; this use case can
reduce the total labor needed in cases of large fields. Crop-spraying uses drones to release liquid-
based chemicals that can allow for the task to be performed up to five times faster than from the
ground [1].

Focusing on the analysis function of drones, imaging can be a useful tool as a basis for
analysis. According to an article by Yoshio Inoue, drones commonly use three different forms of
imaging: multi-spectral, thermal, and visible video [2]. The spectral analysis aspect of the
imaging includes the inspection of the reflectance of the captured imagining based on wavebands
presented; the values can be compared with vegetarian indices to determine the overall condition



of the crop/field. In thermal analysis, thermal remote sensing can display data related to possible
diseases based on the leaf temperature of the crop. In addition to video imaging for visual
inspections, predictive algorithms, and conversion models can be used to generate realistic
analyses of the state of crops. Shown below is a system flow chart of the specific imaging drone

from Inoue’s article.
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Figure 1.1: Example system operation flow chart of agricultural imagining drone [2]

While imagining provides a basis for the analysis of agricultural drones, not all
parameters of crop health can be easily identified through imaging. Another form of data that can
be gathered by a drone is the composition of compounds in the air, such as ammonia. A research
article led by Theerapat Pobkrut explored the viability of using electronic noses, chemical
sensors that can identify patterns of airborne odors, for UAVs. The main compounds focused on
in the experiment were ammonia and toluene, but this model can be adapted to detect other
airborne compounds. The experiment was performed in two different environments. The first
experiment was performed in a closed-room environment with distinct scenarios of control and
the presence of the respective compounds. The second environment was composed of an open-
air simulation with the same scenarios as the closed-room environment. While the date for the
closed-room experiment was more defined in its detection than the open-air environment, the
sensors and drone configuration were able to discern the presence of ammonia and toluene in
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both environments [3]. The sensors used in this experiment return data in the form of resistance
changes from the sensors. The sensor response from six different sensors for both ammonia and
toluene presented in Pobkrut is shown below.
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Figure 1.2: Comparison of sensor performance of six e-nose configurations SWCNT-COOH
with PVC, SWCNT-COOH with PSE, SWCNT-COOH with PVP, SWCNT-COOH with PVC,
SWCNT-COOH with PVA, and SWCNT-NH2 respectively [2]
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Figure 1.3:E-nose results from six sensors of five minutes of clean air followed by five minutes
exposed to chemical [2]

According to a review of UAV designs led by Abdul Aabid, factors that affect the overall
performance of a UAV are influenced by mechanical systems (structural, computational,
fabrication), communications systems (IoT, Al, navigation), materials (metallic, non-metallic,
lightweight), and electrical systems (electronic motors, control, transducers) [4]. The design
elements noted above affect weight, endurance/flight time, payload capabilities, and range
performance parameters. In addition to pure performance metrics, the two main types (fixed-
wing and vertical takeoff) have inherent benefits depending on the desired mission. Rotating-
wing (vertical takeoff) UAVs have the main benefits of hover capabilities, rapid movement,
small take-off area requirement, and flight versatility; in contrast, fixed-wing UAVs have the
main benefits of flight speed, flight endurance/range, and wind resistance [4].
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Figure 1.4: Pros and cons of fixed-wing and rotating-wing UAVs [4]

The basis of the design of a UAV can be found in the main structure that houses all its
components. While the design of the structure is mainly based on the mass requirement of
equipment and flight forces acting upon the body, structural design elements may be analyzed to
establish where critical points within the body are most important. In a generative design
analysis by Jerrin Bright, two specific generated frames were compared with the baseline DJI
design; Frame one features a thinner armed frame with structural support panels added spanning
from the root to about the halfway point of the arm, and Frame two features the frame without
the root supports. Both generated frames have an inherent downward curve for the arms. The
base DJI design had wider arms with no angularity. The DJI design displayed max stress/strain
located at the root of the arms due to the moment generated by the motors. Frame two displays
the change of location of the maximum stress/strain from the root to where the downward angle
starts; with the max stress being greater than the DJI design [5]. Frame one with the reinforced
arm displayed a surprising consistency in stress/strain distribution with no noticeable location of
max stress [5]. The DJI design showed the greatest amount of deflection due to the stresses of the
motor. The main takeaways from this article include the use of angularity to shift the location of
max stress and the ability to add more support to a frame to create a consistent stress distribution
at the cost of higher mass.



(b) Frame 2

(c) DIJI F450 frame
Figure 1.5: Generative UAV structure design displacement FEA comparison [5]

In a quadcopter UAV, the four motors are the main contributing factors in the movement
of the drone. The manipulation of the speed and direction of the motors directly affects the
vehicle’s attitude, pitch, and speed [6]. The reference motor orientation is shown below.
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Figure 1.6: Basic motor orientation of a quadcopter UAV [6]

With this reference configuration, the motor’s power input (mainly voltage) can be modulated to
allow for movement in cases of hovering, forward, backward, left, right, pitch, and roll. In
quadcopter designs the speed of movement is based on the pitch of the aircraft. Motors one and
four are coupled in the same direction, and motors two and three are coupled. The difference in
thrust production between the two couples results in the rotation of the aircraft [6].

For control of movement, UAVs rely on flight controllers to maintain and alter power
and signals received by the motors. In general, many of the flight controllers are based on 32-bit
ARM MCUs using programming languages of C, C++, Python, or Java. However, it is shown
that there is a lack of industrial standards in open-source flight controllers, which makes
applications of each controller more specific to its architecture [7].
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Figure 1.8: Paparazzi Chimera flight controller [7]



1.3 Project Proposal

The objective of this project is to produce a drone that can support the use of a high-
definition camera. A program is produced that will focus on machine learning object detection
that will be used with the camera footage of the drone as the source.

1.4 Methodology

This project begins with the physical design of the drone; this body is comprised of
mostly commercially available parts as this project is intended to be easily replicated.
Modifications will be made to the structure to allow for the equipment of required additional
components such as a GoPro sized camera. Motors and flight controllers will be selected based
on the desired flight speed and movement requirements. A machine learning model is created
based on the testing scenario for object detection. Using online resources, the capabilities of the
object detection will be analyzed based on detection effectiveness.

2 Subsystems

2.1 Defining Subsystems

The project of building a drone can be broken down into eight main sub-systems. These
sub-systems include drone structure, flight control, user-to-drone communication, propulsion,
drone power, auxiliary camera, object detection software, and user input.

2.1.1 Drone Structure

The main role of the drone structure is to house all the necessary electronics for the drone
to operate and sustain the stresses of flight without signs of damage. This subsystem is important
due to its direct integration with the following subsystems: flight control, user-to-drone
communication, propulsion, drone power, and auxiliary camera.

The drone structure subsystem must be able to support the equipment needed for the
subsystems listed above to operate. This includes proper and secure mounting of important
electronics in safe positions to prevent damage in flight. For some, such as flight control and
propulsion, standardized FPV mounting formats (bolting locations and motor positioning) will be
used; however, some systems (user-to-drone communication, drone power, and auxiliary
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camera) may not have standardized mounting. The drone structure must accommodate both
standardized and non-standardized forms.

2.1.2 Flight Control

The flight control subsystem is responsible for processing and transmitting information to
operate motors in flight. The flight controls have direct integration with the user-to-drone
communication and propulsion systems. This subsystem must be able to receive information
from the user-to-drone system and translate it into pulse width modulation (PWM) signals that
are required for motor operation and control.

2.1.3 User-To-Drone Communication

The user-to-drone communication subsystem is responsible for enabling wireless
connection between the user and the drone. The electronics found within this system will receive
the user input from the ground station and transmit the information to the flight controller. The
main performance metrics associated are wireless range and stability of the connection.

2.1.4 Propulsion

The propulsion system mainly consists of the motor and propellers. The components
allow for the drone to sustain flight by generating lift. Propulsion will require vital information
from flight controls and will need to follow specifications based on the overall mass and size of
the drone.

2.1.5 Drone Power

Drone power will be required to supply sufficient power for all electrical components of
the drone to operate. Systems that require power include propulsion, flight control, and user-to-
drone communication. The auxiliary camera and user input will be operating on their dedicated
power. The battery chosen will be based on target flight times concerning the operational power
needs of all electronic components onboard the drone according to manufacturer specifications.

2.1.6 User Input

The user input includes the control pad necessary for the pilot to relay flight commands
and the screen or goggles needed for the pilot. This subsystem will be the ground station and is
isolated from the drone power and drone structure systems. However, it will need to directly
operate in conjunction with user-to-drone communication.

2.1.7 Auxiliary Camera and Object Detection Software Subsystems

The auxiliary camera and object detection software are the most isolated from the rest of
the subsystem due to these not being flight-effecting. The auxiliary camera will capture the main

10



video feed used for analysis and the object detection will use machine learning to analyze the
video feed. The auxiliary camera will be needed as the main flight camera will focus on low
latency, while the auxiliary camera will focus on video fidelity. The drone structure will need to

accommodate the mounting for the auxiliary camera.

2.2 Subsystem Connections

The connections between the subsystems can be seen below in the N2 diagrams.

Drone Structure

Mass and size of drone

Flight control electronic
mounting determines drone
frame specifcations

Flight Control

PWM information for motor
operation and control

Defines controls power
requirements

User communication
electronics must be
mountable on frame

Flight control based on signal
transmitted from user to drone
communication

User to Drone Communication

Communication power
requirements of electronics

Feed first person flight video
feed to user

Frame must have proper
motor mounting and
clearance for propellers

Propulsion

Defines power required for

Frame must support mounting
for needed battery

Drone Power

Frame must support mounting
for additional cameras

Auxilery Camera

Video feed used for object
detection analysis

Object Detection Software

User imput must be able to be
recieved

User Input

User Input

User imput must be able to
be recieved

Feed first person flight video
feed to user

User fo Drone
Communication

Figure 2.1: Random N2 diagram

Flight control based on
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to drone communication

Flight Conirol
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Communication power
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Defines power required for

Drone Power

User communication
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mountable on frame

Flight control electronic
mounting determines drone
frame specifcations

Frame must have proper
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Mass and size of drone

Drone Structure
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mounting for additional
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Auxilery Camera

Video feed used for object
detection analysis

Object Detection Software

Figure 2.2: Ordered N2 diagram
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3. Flight Controls and Communication

3.1 Flight Control/Communication System Design Overview

The controls and communications systems of a drone allow for the control of the motors
that are responsible for motion and connectivity of the drone to the user control. A simple drone
control and communication system will be based on modern small first-person view (FPV)
drones. The core motor controls components in a FPV drone are the flight controller and the
electronic speed controller (ESC). These two components are generally commercially produced
to work with each other. The flight controller is a microprocessor that uses the intended input
and translates the input into commands for motor control; the ESC uses the output commands
from the flight controller and applies power to generate phase electronic pulses that allows for
the motors of the drone to spin [8]. These two components act as the core of the drone and other
components are wired to the flight controller and ESC to operate.

For FPV drones to operate, cameras and camera signal transmission will be required for
the user to be able to have visual of how the drone is moving. Flight cameras are small, low
latency modules that are equipped to the front of the drone to allow for visual and video
transmitters (VTx) transmit the flight camera feed to drone flight goggles or ground station; these
components are usually compliant to different wireless protocols depending on the manufacturer
[8]. Reliability is very important for these two components as loss in visual signal can lead to
accidents when flying FPV drones. It is important to note that flight cameras will only be used to
fly and will not be recorded for machine learning object detection. A higher fidelity, small form
factor camera will be equipped for recording purposes.

The last major component of this system is the control receiver. The receiver wirelessly
connects with the physical flight controller that the pilot will use to operate the drone. In the use
case of a FPV drone, the receiver will use the ExpressLRS (ELRS) protocol. ELRS is an open-
source radio control protocol operating in the 2.4GHz frequency with the main benefits of long-
range performance, low latency, small size, and low cost [9].

3.2 Flight Controller and Electronic Speed Controller

With cost in mind, the commercially available flight controller and ESC that will be used
for this drone are the SpeedyBee F405 v4 flight controller and SpeedyBee BLS 55A ESC. This
controller stack was designed specifically to be used with quadcopter drones with support for all
the other components mentioned in the design overview above and the BLS 55A having support
for four motors.
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F405 V4 Flight Controller BLS 55A 4-in-1 ESC

Figure 3.1: SpeedyBee F405v4 and BLS 55A [10]

The wiring for the connection between the F405 and BLS includes individual data for
each motor and battery power pass through [10]. The connection can be made through individual
wire soldering or using the included 8-pin cable. Power is fed through the BLS from a battery to
the F405 as seen in the diagram below.

Motor 3 Motor 1

1000uF Low ESR

& it
XT60 Power Cable apacitor

Figure 3.2: SpeedyBee BLS 55A wiring [10]

Connections to the other components such as the camera, video transmitter, and receiver
will be wired through the F405v4 as seen in the figure below.
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Figure 3.4: SpeedyBee F405v4 wiring guide [10]

3.3 Flight Camera and Video Transmitter

For flight visuals, a small camera module will be included on the drone. For this drone,
the module used will be the Foxeer Micro Razer 1200TVL camera. This camera is capable of a
video feed of 1200 TVL (equates to nearly 1080p video quality) at a 4:3 aspect ratio and 125
degrees field of view according to Foxeer’s product specifications [11]. When analyzing
compatibility with the SpeedyBee F405v4, the Foxeer camera can operate with voltage of 4.5V-
25V; the F405v4 has a dedicated camera power trace rated at 5V. At five volts, the Foxeer
camera only consumes (.7 watts of power based on the recorded amperage of 140 mA [11].
Connection with the F405v4 requires three wires to be soldered to the PCB: CAM (referred to as
VID on the Foxeer camera), 5V power, and ground. Reference figure 2.5 for the wiring
connection points.
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Figure 3.5: SpeedyBee F405v4 to Foxeer Micro Razer Camera wiring

To pair with the camera module, a video transmitter must be included to transmit the
video signal from the drone to the ground station for flight visuals. The video transmitter selected
in this drone is the Happymodel OVX303. The OVX303 is a module using the OpenVTX
protocol that allows for the visual connection with any analog supported googles or ground
station displays; the module operates in the 5.8 GHz frequency with a required power input of
5Vs and transmit power of 25 mW, 125 mW, or 300 mW according to manufacturer
specifications [12]. The OVX303 will require 5V power, ground, smart audio, and video
connections with the flight controller. See the wiring guide below in figure 3.6.
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Figure 3.6: F405v4 to OVX303 wiring

3.4 Control Receiver

The control receiver allows the flight controller to communicate with the pilot by
receiving input commands and transmitting feedback. The control receiver chosen is the
Happymodel EP1 RX operating in the frequency range of 2400-2500 MHz, peak gain of 2.23dB,
and has an operating voltage of five volts according to manufacturer specifications [13]. These
specifications fit in line with the operational needs of the F405v4. For wiring, the ER1 will
require four connections to be soldered: five-volt power, ground, transmit, and receive. The
F405v4 has a dedicated five-volt power (labeled as 4V5) and ground for the power needs of the
ER1. The transmit (T2) on the F405v4 will be connected to the receive (RX) on the ER1; the
receive (R2) on the F405v4 will be connected to the transmit (TX) on the ER1. Refer to figure
3.7 for wiring between the F405v4 and ER1.
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Figure 3.7: F405v4 to EP1 wiring

3.5 Flight Control/Communication System Mass and Cost

The masses and cost of the components for the flight controls and communications are
compiled in table 3.1 below. These values do not include the required wires and antennas as they
may vary based on drone frame.

Table 3.1: Mass and cost of components from the flight controls and communications

Part Name Mass (g) Cost (USD)

SpeedBee F405v4 + BLS 55A 23.5 69.99
Foxeer Micro Razer 1200TVL 4.5 22.9
Happymodel OVX303 1.5 29.99
Happymodel EP1 RX 0.42 16.99
Total 29.92 139.87

4. Propulsion and Power

4.1 Propulsion/Power System Overview

The propulsion and power systems of a FPV drone are directly connected due to the
major components influencing each other’s performance. The main component in the propulsion
system is the motors. There are four motors in a quadcopter located at the end of each arm of the

17



drone. The motors are connected through the ESC through the dedicated soldering locations
through wires. The main component in the power system is the battery. While there are a variety
of the sizes for FPV batteries, the main indicator of what the requirements for the battery needed
is the motors due to it being most of the power draw.

4.2 Propulsion

There are two numbers that are used within the naming of the motor that indicate the
properties. The first four-digit number indicates the physical size of the motor. The number is
structured in an AABB where the first two digits (AA) show the stator width and the last two
digits (BB) represent the stator height [14]. For example, a 2207 motor will have a stator width
of 22 millimeters and a stator height of seven millimeters. The stator is the stationary section of
the motor which consists of a bearing, polled magnets extending out, and copper wiring coiled
around the poles. Similar to how electric motors operate on a car, the electricity acting on the
coils causes the magnets to change polarities, which interacts with outer magnets on the moving
part to create rotation [15].

Windings Permanent

Bearing

Motortator Motor Bell

(% OscarLiang.con

Figure 4.1: FPV drone motor components [14]
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The second number in the naming convention of a FPV motor is known as the KV value.
The KV represents the rated revolution of the motor when one volt of electricity is applied to the
motor [14].

Being based on a five-inch drone design, the motor size that will be most appropriate for
this drone will be 2207 or 2208. When looking at 2207 or 2208 motors, there is a large range of
available KV ratings to explore from 1700 to 2200. Since the focus of this drone build is flight
time as opposed to speed, it would be more beneficial to use a lower KV rating due to the lower
power consumption. The motor chosen was the BrotherHobby VS 2207 1720 KV which has a
max thrust of 1830g at 23.8V and 38.8A, this motor can handle up to 6S batteries [16].

Figure 4.2: BrotherHobby VS 2207 1720KV motor [16]

For connection between the motors between the motors and the ESC, there are three
soldering pads for each motor on the ESC that corresponds to the three-wire coming from the
motor. The wires will be soldered onto the pads with the middle motor wire going into the
middle ESC solder pad. The position of the other two wires is less important due to the VS motor
being bush-less (meaning able to spin in both directions), the directionality of the motors will be
adjusted in software.

To pair with the motors, propellers will be needed to generate lifting forces for the drone
to operate. There is a wide variety of propellers to choose from; for the use case of capturing
footage, the propellers for this drone should be optimized for smoother flying instead of greater
agility to prevent inconsistent footage for use in machine learning object detection. For this
instance, the propellers used will be the Azure Power Johnny Freestyle 4.8 inch. These propellers
feature a length of 4.8 inches, hub inner diameter of five millimeters, polycarbonate material, and
overall weight of 3.9 grams each [17].
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Figure 4.3: Azure Power Johnny Freestyle propellers [17]

4.3 Power

The drone will be battery power with the power entering the ESC as seen in section 3.2.
The main design factor in deciding which battery to be used in the drone is flight time. The flight
time of a drone can be determined by the equation shown below.

T = 60(CD/A) (4.1)

T is representative of the total estimated flight time in minutes, C is the total battery
capacity, D is the battery discharge (80% assumed), and A is the average current draw [18]. For
the minimum flight time estimation, the current draw will be the sum of the max current of the
motor; for the selected motors, that will be 155.2 amps. For a five-inch drone, the recommended
battery size to minimize the effect mass would have on flight is between 1100 mAh to 1400
mAh. See the table below for the expected minimum flight time of each battery capacity within
the designated range. The actual flight time may be greater depending on the flight speed and
tuning of the motors. This estimation also does not include the power required to run other
electronics onboard, but the power impact that other electronics will have been minimal
compared to the motors.
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Table 4.1: Minimum flight time estimation

Battery Capacity (mAh) Minimum Flight Time (minutes)
1100 3.388960205
1150 3.543003851
1200 3.697047497
1250 3.851091142
1300 4.005134788
1350 4.159178434
1400 4.31322208

Since the goal is to optimize flight time, the largest battery possible without significant
impact on the mass of the drone will be best, 1400 mAh. The battery that would match the
requirements would be the Tattu R-Line 1400mah LiPo. The battery features a six cell, 22.2V
design capable of 1400 mAh capacity at a below market mass of 222 grams for the capacity [19].
The Tattu battery also has a discharge plug of XT60, which is the same connector used by the
ESC. Since the battery is easily swappable, an extra battery can be held on standby to extend the
total flight time if needed.

Figure 4.4: Tattu R-Line 1400 mAh battery with XT60 plug [19]

4.4 Propulsion/Power Mass and Cost

The masses and cost of the components for the propulsion and power systems are
compiled in table 3.2 below.
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Table 4.2: Propulsion/power mass and cost table

Part Mass (g) Cost (USD)

BrotherHobby VS 2207 1750 KV x 4 (motor) 130 19.99
Azure Power Johnny Freestyle 4838 (prop) 16 3.99
Tattu R-Line 1400 mAh (battery) 222 39.99
Total 368 63.97

5. Structure

5.1 Drone Structure

The drone structure consists of the frame that will be onboard electronics needed from the
other subsystems. The construction of a drone frame consists of four main parts, the main plate,
top plate, arms, and bottom brace. The main plate includes the mounting for most electronics
with the top plate installed on top of the main plate with spacers and bolts. The top plate also
allows for the mounting of the battery. The arms are bolted below the main plate which allows
the motors to be mounted. The bottom brace is installed below the arms to add structural rigidity
to the complete construction. In a frame where the arms of the drone are separate instead of a
single part, the bottom brace becomes more important to prevent the arms from loosening. Drone
frame parts are generally fabricated from cut carbon fiber or similar fiberglass panels, varying in
thickness from two millimeters to four millimeters.

22



Standoffs
G E I
BACK I

Main Plate -

X-Brace it

N Maxt2 it

Figure 5.1: Construction of an FPV drone frame [20]

One aspect to consider when choosing a frame is the configuration. Drone frames can be
broken down into two distinct categories, symmetrical and asymmetrical. Symmetrical frames
position the motors an equal distance away from the center point of the drone, while
asymmetrical frames may position the front or back motors slightly closer than the other two
motors. Examples of symmetrical frames include X-frames, H-frames, and box frames. The letter
in the X-frame and H-frame naming convention refers to the shape that the arms of the drone
create, and box frames connect the tips of the frames creating a square. Symmetrical frames tend
to have better inherent flight dynamics resulting in the motor tuning being simpler; in addition,
box frames add more structural protection in case of collisions. An example of an asymmetrical
frame is the deadcat. In the case of the deadcat configuration, the front motors are swept back
compared to the rear motors. The advantage of the deadcat is the ability to keep the propellers
from entering the frame of any forward-facing cameras.
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Figure 5.3: Deadcat drone frame [20]
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5.2 Drone Frame Selection

While it would be ideal to custom design a frame for this project, the additional cost and
production time of custom laser cutting parts would not be beneficial for creating a low-cost and
easily accessible for the masses to experiment with object detection drones. Commercially
available options were explored to find a frame that would suit the use case of capturing footage
for use with object detection. As mentioned in section 4.1, the deadcat configuration will be best
suited. The frame must also have 30 mm x 30 mm mounting for the flight controller and
mounting for analog-style micro cameras.

The drone frame selected for this project was the RotorRiot CL2-Air. The CL2 is a five-
inch deadcat frame with support for 30 mm x 30 mm stack mounting [21]. Other specifications
include a wheelbase of 220 mm, 4 mm arm thickness, 3 mm main plate thickness, 2 mm top
plate thickness, analog micro camera mounting support, 16 mm diameter motor mount, max
stack height of 25 mm, and estimated mass of 166 g [21]. These specifications correlate with the
dimension and mounting specification of the components from the other subsystems. Mounting
for the auxiliary camera can be produced by 3D printing based on the dimension of the front
micro camera mounting bolts. This frame also support mounting for additional cameras.

Figure 5.4: RotorRiot CL2-Air drone frame [21]
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6. Machine Learning

6.1 Machine Learning Object Detection

Machine learning object detection is the basis of the analysis of effectiveness for this
project. Machine learning can be applied to object detection software to automate the
identification process using a preset database of contextual information. This means that human
creation of datasets and training of machine learning will be required to fine-tune the
effectiveness of object detection. YOLOVS is the open-source object detection model that can be
implemented in this project. YOLOVS is an example of a regression analysis-based convolutional
neural network (CNN) based on CUDA graphics acceleration in its algorithm [22]. YOLO object
detection models have been renowned for the performance of target and location recognition and
scalable performance based on computational hardware.
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3. w - bbox width([0;1] wrt image)

4, h - bbox height{[0;1] wrt image)

5. ¢ - bbox confidence ~ P (obj in bboxl)

Figure 6.1: YOLO machine learning object detection model [22]
Since YOLOVS still uses a fixed dataset constructed by human identification of objects,

the program will still need a large library of reference data. More context given to the machine
learning algorithm will result in greater accuracy in object detection.
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Figure 6.2: Machine learning training model [22]

6.2 Incorporation of Machine Learning Object Detection

Implementing machine learning into this project will require the use of an external
computer that can allow for the processing of drone footage due to the higher computational
needs of object detection. YOLOVS can be easily used with any computer using Python as a
control console, Nvidia’s CUDA toolkit to access computer GPU computing, and PyTorch as
machine learning model management [23]. It is important to consider that YOLOVS’s
performance is highly dependent on the processing power of the user’s GPU. There are

modifications of model size to accommodate lesser hardware, but generally, there will be a trade-

off between power and performance based on the model size.
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Figure 6.3: Comparison of different model sizes of YOLOVS [23]
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7. Base YOLOVS8 Testing

The version of YOLO being used in this project is YOLOVS adapted by Ultralytics.
YOLOVS8 is a more updated version of YOLO compared to the previous version mentioned
above which uses command line implementation with Python, allowing for the program to be
more easily implemented and used. The program is still dependent on CUDA protocols and has
five default model with varying speeds and detection parameters: YOLOv8n, YOLOVSs,
YOLOv8m, YOLOVSI, and YOLOvS8x [24]. The specifications between the model are included
below.

Table 7.1: YOLOvVS8 models [24]

Speed Speed
size mAPval CPU ONNX | A100 TensorRT params FLOPs
Model (pixels) 50-95 (ms) (ms) (M) (B)
YOLOvENn G40 37.3 80.4 0.99 3.2 a7
YOLOv8s G40 44 9 128 .4 1.2 11.2 286
YOLOvBm G40 50.2 2347 1.83 259 789
YOLOvEI G40 529 3752 239 437 165.2
YOLOv8x G40 539 479 1 3.53 68.2 2578

The following tests in this chapter will compare the overall performance of the YOLOv8 models
in terms of detection and classification results.

7.1 Base YOLOVS Test Case 1: High Object Environment

In the first test case of the capabilities of YOLOVS, a picture of a crowded highway was
used. The photo below contained many vehicles of varying types, and the algorithm would be
required to detect each vehicle and classify the type of vehicle (car, truck, or bus). In addition,
some of the vehicles overlap due to the camera's perspective, which may prove to be a challenge
for YOLOVS to detect multiple vehicles.
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Figure 7.1: Base test 1 reference photo [25]

Using the YOLOv8n model, the program was able to detect many of the vehicles on the
high with a detection rate of 76%. However, there were instances of vehicles being detected
twice as seen by the overlapping detection boxes. There were also instances of misclassifications
as a truck was identified as a bus and some cars were identified as trucks. In this case, some
SUVs can be confused as trucks from the front due to similar structures without the visible back
of the vehicle to provide context of the differences.

Figure 7.2: YOLOvSn test case 1
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Using the YOLOVS8s model, the results were similar to the YOLOv8n model despite a
slightly lower detection rate (71%) and classification rate (64%) due to lesser total detections and
classifications. In comparison to the previous model, there were no instances of double detection
and fewer instances of misclassification for buses. The misclassification of some cars as trucks
persisted.

Figure 7.3: YOLOVSs test case 1

Using the YOLOv8m model, the results were more stagnant as opposed to improvement.
The detection rate was the same as the YOLOv8n model with a slightly higher classification rate,
but there was an instance of misclassification of a bus and double detection. Detection of trucks
improved overall compared to the previous models.
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Figure 7.4: YOLOv8m test case 1

The results of the YOLOvV8I model yielded visually similar results to YOLOv8m with a
similar detection rate and classification rate to YOLOvS8s model. This model also resulted in the
highest average classification certainty.

0.481

| . car I'IWJ

Figure 7.5: YOLOVSI test case 1
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Using the YOLOv8x model, the results were statistically the best of all the models. This
model yielded the highest detection rate, classification rate, and average classification certainty.
Visually, this model provided the best distinction between cars and truck, but still had a problem
with identifying buses.

Figure 7.6: YOLOvVSX test case 1

Included below are the numerical statistics for comparison of all the models shown
above. These statistics reference the total amount of vehicles visible in the original photo.
Statistics should be used in conjunction with visual observations of each model to have a
complete understanding of the overall performance.

Table 7.2: Test case 1 numerical results

Model Number of Detections  |False Detections Detection Ratio Correct Classifications | Classification Rate |Average Certainty

YOLOvEn 36 4 0.7619047619 29 0.6904761905 0.57
YOLOv8s 30 0 0.7142857143 27 0.6428571429 0.53
YOLOvEBm 35 3 0.7619047619 30 0.7142857143 0.56
YOLOvE 31 1 0.7142857143 26 0.619047619 0.63
YOLOv8x 33 0 07857142857 32 0.7619047619 061

7.2 Base YOLOVS Test Case 2: Low Light Conditions

In the second testing case, the original photo is the same as the first testing case with
alteration made to result in a more difficult detention environment. Adobe Lightroom was used to
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digitally adjust the photo to have a much darker exposure and contrast to simulate an inferior
camera configuration or improper setup.

Figure 7.7: Base test 2 reference photo

The results of the different models with the digitally augmented photo can be seen below.

Figure 7.8: YOLOvV&n test case 2
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Figure 7.9: YOLOVSs test case 2

Figure 7.10: YOLOv8m test case 2
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Figure 7.12: YOLOvVS8x test case 2

The results of the darkened photo and the original were similar. However, the darkened
photo yielded noticeably lower total detections and classification. Issues with cars overlapping
due to the camera angle proved to be a greater problem with worse lighting conditions. The
numerical statistics for the results can be seen below.
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Table 7.3: Test case 2 numerical results

Model Mumber of Detections  |False Detections Detection Ratio Correct Classifications  |Classification Rate [Average Cerfainty

YOLOvER 25 1 0.5714285714 23 05476190476 0.49
YOLOvEs 25 ] 0.5952380952 23 05476190476 0.57
YOLOvEmM 24 1 0.5476190476 23 05476190476 0.58
YOLOvE! 28 ] 0.666666666T 7 06428571429 0.64
YOLOvER 28 1 0.6428571429 26 0.619047619 0.56

7.3 Base YOLOVS Test Case 3: In and Out of Focus

The third test of the base YOLOv8 models shows the effectiveness of each model’s

ability to perform with varying focus on the object. The photo chosen for this test was a picture
of apples shot with a large aperture allowing for the apple in the foreground to be in focus and
the apples in the background to be out of focus. There was one overlapping apple in the
foreground and one in the background; however, only the overlapping apple in the foreground
will be expected to be detectable due to the blur in the background.

Figure 7.13: Test case 3 reference photo [26]

eleven apples with a classification certainty of 0.51.
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Figure 7.14: YOLOVS8n test case 3

With the YOLOv8s model, five of the eleven apples were detected. However, there was a
wrong detection of a leaf as an apple. The average classification certainty was 0.55.

Figure 7.15: YOLOVSs test case 3
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Using the YOLOv8m model, there was a notable improvement in total detection with
eight of the eleven apples detected and an average classification certainty of 0.60.

Figure 7.16: YOLOvV8m test case 3

The YOLOvS8I model yielded the best performance with a detection rate and
classification rate of 91% and average classification certainty of 0.64.
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Figure 7.17: YOLOVSI test case 3

Using model YOIOvS8x, the number of detections seemed to have regressed but yielded
the highest classification certainty of them all at 0.90. There seems to be priority with high
certainty within this model analyzing this photo.
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Figure 7.18: YOLOvVS8x test case 3

The statistical data for this test can be seen below.

Table 7.5: Test case 3 numerical results

Model Number of Detections | False Detections Detection Ratio Correct Classifications | Classification Rate | Average Certainty

YOLOvEn 4 0 0.3636363636 4 0.3636363636 0.51
YOLOvEs 6 1 0.4545454545 5 0.4545454545 0.55
YOLOvBm 3 0 0.7272727273 8 07272727273 0.8
YOLOvEI 1 1 0.9090802091 10 0.9090908021 0.52
YOLOvEx 2 0 0.1818181818 2 0.1818151818 049

7.4 Base YOLOVS Test 4: Video

For the testing case of video, the focus was the comparison of the processing time. Since

YOLOVS processes video frame by frame, there are more chances for an object to be detected
and identified. However, frame-by-frame detection results in a much longer processing time due
to the equivalence of processing multiple pictures for a span of a video. In this testing case, a
video of cars driving by a camera on a highway was used that was uploaded in 30 frames per
second with a total run time of about 21 seconds. The video results in a total of 610 total frames.
The results will vary based on the hardware used; in this test case, the graphics processing unit
used was a Nvidia RTX 3080. Lower-grade hardware will result in slower processing time and
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higher-grade hardware will result in faster processing time. Other factors that impact overall time
will be hardware optimization for CUDA protocol and hardware allocation if background
processes are being run in addition to YOLOVS.

Table 7.6: Test case 4 run time results

Model Run Time (s)

YOLOv8n 23.17
YOLOv8s 23.52
YOLOv8m 24.32
YOLOvSI 25.38
YOLOv8x 28.33

When analyzing the overall impact on time due to the fidelity of each model, there is a
5.16 seconds delta between the highest and lowest fidelity models. This delta can be expected to
be greater as the video used is longer or uses a higher framerate (both resulting in higher total
frames).

8. Custom Dataset Integration

To allow YOLOVS to detect specific information for agricultural needs, a custom dataset
must be created for the internal Ultralytrics training program to train with. The training process
includes finding a formation of a library of reference photographs, labeling, formatting of dataset
files, and choosing a reference model of YOLOVS to train with.

8.1 Dataset Construction and Labeling

For dataset construction, many pictures of the target detected item must be collected in
preparation for labeling. The larger number of reference pictures allows for a more robust and
accurate detection model. In this case, two data sets were created: one for leaf disease detection
and another for fire detection. These two cases were chosen to test YOLOVS8’s ability to detect
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biological issues (disease) and landscape issues (fire). Upwards of 200 photographs were
gathered as a reference for both datasets.

For labeling, the program Labelme was used which can be acquired through pip install in
Windows terminals (in this case Anaconda Prompt). This program allows the user to polygon
around the object desired in the detection and label them with the correct identifier (label). The
GUI of Labelme with a processed photograph can be seen below.
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Figure 8.1: Labelme interface

After the labels are placed, Labelme will create a .json file containing information on each item
labeled item and its relative position coordinated and identifier. This process is repeated for each
photo in the dataset.

For formatting, YOLOVS requires images and labels to be in separate subfolders. By
default, Labelme saves the .json label files to the same subfolder. This separation can be done
manually or by using Labelme2Yolo, a separate program that can be pip-installed that allows for
automated conversion of a Labelme folder. Using Labelme2Yolo also automatically makes a
.yaml file that contains the directory path to the files and label names needed for the training, this
file will be modified later to have updated directory pathways. Pull some images (five to ten) and
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labels from the current “training: and recreate the subfolders for a “validate” folder as both will
be needed for the training process.

8.2 Training Custom Dataset YOLOv8 Model

The training protocol built into the Ultralytics Python library requires some additional
parameters in addition to the YOLOVS8 formatted training folder and .yaml file. These parameters
include task, mode, epochs, data, model, image size, and batch. The task in this instance is
“segment” and the mode is “train”; this indicates that this is an attempt to train a new model.
Epochs represent the number of cycles/instances of training; higher epochs will result in higher
training time. For this instance, the epochs value used was 100 for both models. Data represents
the .yaml file used for this training linked to the dataset created using the process demonstrated
in section 8.2; this will be the complete name of the .yaml file, including the file type designator.
Model is the base YOLOvVS8 model that the new model will be based upon; the different base
models are shown in Chapter 7 above. The model used for both trained models for this session
was YOLOv8m. Image size is linked to the base YOLOv8 model; see Table 7.1 under the size
section. Lastly, batch relates to the number of tasks being performed; this correlates to the
hardware being used to perform the train, specifically GPU and tied to GPU VRAM. Since this
training session is being performed on a Nvidia RTX 3080, the batch value was set to -1 for
automatic 60% GPU VRAM utilization. The definitions for the input arguments can be found in
official Ultralytics documentation [27].

Once training is successful, the “weights” folder of the training run folder will constrain two .pt
files that represent the deemed best model and the last model from the epochs cycles. These two
files are the complete trained YOLOvV8 model created with the custom data set. In addition,
analysis data is also presented to verify the results for the training session. The resultant data of
the crop disease and fire model are included below.
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Figure 8.2: Crop leaf disease detection model post-training performance metrics
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Figure 8.3: Fire detection model post-training performance metrics

When evaluating the performance metrics of both models, the main graphs to focus on

are “box_loss”, “cls_loss”, and “dfl loss”. Each value on the graph represents the performance
of each training cycle in the epochs. Box loss (box_loss) evaluates the accuracy of the bounding
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boxes based on regression loss and error; a lower value is better. Classification loss (clc_loss)
evaluates the performance of identifying a detected object based on the error; a lower value is
better. Deformable conversion layer loss (dfl loss) evaluates the models' effectiveness in counter
deformation of the detected object due to factors such as variance in photographed angle or
obstructions; a lower value is better. Definitions for these performance metrics can be found in
official Ultralytics documentation [28].

When evaluating the resultant metrics of the trained models for crop leaf disease
detection and fire detection, all three types of loss showed a downward relationship as epoch
increases in training cycles; this displays clear improvement over time with continued training.

8.3 Trained Model on Real Photographs

Using the trained leaf disease model, resultant detection runs with some example
photographs are included below:

Figure 8.4: Plant disease detection 1
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Figure 8.6: Plant disease detection 3
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Figure 8.8: Plant disease detection 5
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Overall, the results of the disease detection seemed reasonable. For the most part, the
detection model was able to detect and identify the potential evidence of plant disease except in
the third photograph where two of the leaves were detected. In image five, there were still
noticeable instances of missed detection, but the image has an extremely high density of holes in
the leaf which will result in some missed detections.

Using the fire detection model, the detection run results are displayed below:

ZWILDFIRE 0.42:

Figure 8.9: Fire detection model result 1
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Figure 8.10: Fire detection model result 2

Figure 8.11: Fire detection model result 3
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The results of the fire detection model rely much on the existence of smoke and groups
that in with the identification of the fire. There could be some improvements. in a higher aerial
view, these results would be acceptable.

9. Conclusion and Suggested Future Work

This project aimed to analyze the potential in low-cost drone design and machine
learning object detection in agricultural use. A low-cost drone design was produced using
commercially available parts that would be able to capture stable video footage and photography
for machine learning analysis. The use of open-source object detection and custom dataset
creation was successful in being able to identify common cases of vegetation diseases and fire
detection. However, there are some pitfalls in the current environment that can prove to be
challenges to the intended user. Firstly, there is a large commitment in working with developing
custom datasets as each reference photo must be labeled correctly for data to be used in dataset
compilation and machine learning. For the preliminary plant disease dataset created for this
project, there were a total of 248 photographs analyzed and took close to a month to complete. In
addition, for more specialized use cases for specific plants, there may not be enough available
reference photographs available online to meet the same requirements as the custom dataset in
this project. While datasets can still be successful with smaller reference data, chances of
effective object detection models increase as the amount of reference data increases. There are
viable alternatives to creating the users’ own custom dataset as libraries of custom made labeled
sets exist on the internet, but quality of mentioned datasets will vary.
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