San José State University
College of Science/Department of Chemistry
Chem 1A, General Chemistry, Sec. 2 Fall 2022

Course and Contact Information

Instructor: Melody Esfandiari, PhD
Office Location: SCI-152
Email: via Canvas
Telephone: Email is preferred
Office Hours: MW 11:30 am – 12:15 pm
Class Days/Time: MWF 10:30– 11:20 am
Classroom: Morris Dailey Auditorium, Room 101

Prerequisites: Proficiency in high school chemistry or CHEM 010 (with a grade of "C" or better; "C-
not accepted) or instructor consent; proficiency in high school algebra and eligibility
for MATH 019; Writing Enrollment Group W-I or W-II, or ENGL 1AF with a grade
of CR, or ENGL 1A with a grade of C- or better.

Please check your canvas frequently, as lectures, handouts/online quizzes will be uploaded or emailed via
Canvas. All the exams will be conducted on Canvas, while being logged into Zoom.

CoS COVID-19 and Monkeypox Safety Training

Students registered for a College of Science (CoS) class with an in-person component should view the CoS
COVID-19 and Monkeypox Training slides for updated CoS, SJSU, county, state and federal information
and guidelines, and more information can be found on the SJSU Health Advisories website. By working
together to follow these safety practices, we can keep our college safer. Failure to follow safety practice(s)
outlined in the training, the SJSU Health Advisories website, or instructions from instructors, TAs or CoS
Safety Staff may result in dismissal from CoS buildings, facilities or field sites. Updates will be implemented
as changes occur (and posted to the same links).

COURSE FORMAT

This course has a lab and seminar component, which complement lectures. Lab exams/quizzes will be administered in
seminars. Lecture quizzes will be taken online via canvas.
COURSE DESCRIPTION
Topics including stoichiometry, reactions, atomic structure, periodicity, bonding, states of matter, energy changes, solutions using organic and inorganic examples. Lab program complements lecture. Prerequisite: Proficiency in high school chemistry or CHEM 010 (with a grade of "C" or better; "C-" not accepted) or instructor consent; proficiency in high school algebra and eligibility for MATH 019; EPT requirement met. Misc/Lab: Lecture 3 hours/lecture 1 hour/lab 3 hours.

BS/BA CHEM PROGRAM LEARNING OUTCOMES (Covered by Chem 1A)
Chem 1A provides basic, introductory support for the following degree outcomes:
PLO #1 - Demonstrate understanding of core concepts and to effectively solve problems in inorganic chemistry.
PLO #2 - Demonstrate understanding of core concepts and to effectively solve problems in organic chemistry.
PLO #3 - Demonstrate understanding of core concepts and to effectively solve problems in analytical chemistry.
PLO #4 - Demonstrate understanding of core concepts and to effectively solve problems in physical chemistry.
PLO #5 - Demonstrate understanding of core concepts and to effectively solve problems in biochemistry.
PLO #6 - Answer questions regarding safe practices in the laboratory and chemical safety.
PLO #7 - Demonstrate safe laboratory skills (including proper handling of materials and chemical waste) for particular laboratory experiments.

COURSE LEARNING OUTCOMES
The detailed learning outcomes can be found at the end of this syllabus.

BOOKS/SUPPLIES/COURSES

Required
1) Chemistry: The Central Science – Brown, LeMay and Bursten – 10th, 11th or 12th edition (Or a college level Chem. text if you feel comfortable with a different textbook.)
2) Lab Manual for Chemistry 1A - Sold during the first 2 weeks of school by the Chemistry Student Club (DH20) - They only take cash!
3) Chem. 1A Booklet - Sold by the Chemistry Student Club (DH20). Contains sample exams, problems with solutions, abbreviated class notes, etc.
4) Hand-held scientific calculator - **Must be non-programmable** and should have log x, 10^x, ln x, e^x and x^y keys. - **You will not be allowed to use your programmable calculator or your cell phone during a lecture or lab exam, or quiz!**

Note that we require a computer and printer. There will be a few lecture handouts that you need to print out to use during the exams.

All the exams will be conducted on Canvas during our class period. You need to bring your laptop to class to take the exam.

Recommended
1) Academic Excellence Workshops to help you study for Chem. 1A. These are 3 hour a week organized study sessions. We will have 4 to 12 different sessions facilitated by former 1A students. **I strongly encourage you to enroll in one of these workshops.** More information will be provided in lecture on how to enroll.
2) SI Sessions (Supplemental Instructors) to help you study for Chem. 1A. SI sessions are led by former Chem 1A students. SI leaders are available to help clarify any questions or concerns that you have about the course. They work with me to plan activity-based group study sessions that are free for all to join and are based on
your needs.

2) Other Chemistry texts - Most freshman chemistry books are about the same in quality and content, however you might find another author's "prose" and text layout more to your liking. You can check out additional textbooks from King Library.

3) Solutions manuals to textbook problems - These options are available with your book.

Thing you must do the first week of class

1) Attend your lab section to claim your space. **Miss your first lab, we drop you from the course!**

2) **Read this greensheet thoroughly.** It is the rules of the game. Best to know the rules before you start.

3) If you decide to drop the course, please email Dr. Singmaster a note with your name indicating that you will be dropping the course. It will allow us to add people efficiently.

4) If you are trying to add, please note the only person that can add you to the course is Dr. Singmaster. You will find a form on the webpage for the Chemistry Department (https://www.sjsu.edu/chemistry/) that is called Trying to Add Chem 1A? or Trying to Add Chem 1B? Complete the form, making sure to select as many lab times as possible to increase your chances of getting added.

PREREQUISITES/COREQUISITES

The prerequisites for Chem. 1A are completion of a one year high school chemistry course; Math 19 (Pre-calculus) and English 1A eligibility. You cannot be a remedial student. You need to recall your high school chemistry. **You should not enroll in Chem. 1A if you have not had high school chemistry, if you can’t remember your high school chemistry or if you had a weak high school chemistry!** You should take the Chem. 30A.

Every student who wishes to remain in the course or who wishes to add the course must be present in lab and seminar for the safety discussion and must take and pass a safety quiz. If you are waiting to get into the class please make certain you attend the safety discussion and take the safety quiz. You must pass the safety quiz with a score of 8 or better!

COURSE REQUIREMENTS AND ASSIGNMENTS

Lecture Exams and Final

Three fifty-minute exams (~100 points each) will be given. Scheduled dates for the exams are attached. Plan ahead. The final exam (~200 points) will be 2 hours long; it is a comprehensive multiple-choice exam. This course builds on itself so material covered on a previous lecture exam is needed in a following exam. There will be no make-ups for lecture exams. Should you miss an exam because of illness or equally compelling reasons, you should inform me of the fact as soon as possible, and hopefully before the exam is given. You can do so by emailing me. You will need to provide me with written evidence (doctors’ note, police report, etc.) for your excuse. If I accept your excuse, I will use the score on the final (questions pertaining to the particular exam) as your exam score. An unexplained or unsatisfactory excuse for missing a lab or exam will result in a grade of zero. You can arrange to take the exam a day early if you have a planned, excused absence for the exam day. **You will need to bring your photo ID card and a non-programmable calculator to the Zoom exam.**

In-Class Exam Dates

Exam 1: Friday, October 3rd Exam 2: Friday, November 7th Exam 3: Monday, Dec 5th
Final Exam: Wednesday, December 12th

Exam Policies (read carefully). If you violate our honor code, you will be reported to the office of student conduct and receive an F for the course.

- The exams will be conducted on Canvas during our regular class time.
- You need to bring your laptop to class to take the exam on Canvas.
- You can NOT use online resources, and you are NOT permitted to talk to
anyone while taking this exam.

Lecture Quizzes

Several take-home quizzes will be given. Take-home quizzes must be submitted on assigned due dates, or they will not be accepted. **No make-ups for missed quizzes. Do not miss the due dates!** The quizzes will be posted on your Chem 1A Canvas account, and you will need to finish them online before the due dates. More information will be given in lecture meetings before the due dates.

Once you submit your quiz on canvas, you cannot access it again so make sure you print a hard copy of the quiz for your reference. The quizzes will help you prepare for the exams.

Laboratory

The total lab grade constitutes 35% of the final grade. **Failing lab (55.0% or less) or lack of attendance to lab will result in an F grade for the FULL COURSE, irrelevant of how well you are doing in lecture.** Do not miss labs!! Details regarding the lab grade will be provided in the lab syllabus.

GRADING INFORMATION

Lecture Grading

Lecture-65% of total course grade and it includes the following:

a) Three lecture exams - ~100 pts each
b) Canvas Quizzes - ~ 35 pts
c) Final ~ 200 pts
Lecture is based on points, add up all the points, divide by the total.

Lab/Seminar – 35% of total course grade – Details provided with lab/seminar.

Your grades for all the lecture exams and canvas quizzes will be posted on canvas. **You have only 9 days from the day a grade is posted to ask for a regrade. I will not do regrades after nine days have passed.**

Grading Scale

At the end of the semester, you will receive a single grade for the course. The following grade scale is for the full course, including lab.

above 97.0 % A+
96.9 - 92.0 % A
91.9 - 89.0 % A-
88.9 - 85.0 % B+
84.9 - 80.0 % B
79.9 - 77.0 % B-
76.9 - 72.0 % C+
71.9 - 65.0 % C
64.9 - 61.0 % C-
60.9 - 57.0 % D+
56.9 - 54.0 % D
52.9 - 50.0 % D-
Below 50.0% F

Incompletes will not be given unless a strong compelling reason with proof is furnished to support the need for an incomplete. Incompletes will not be granted just because the university won’t late drop you or because the low grade will disqualify you, put you on probation or increase your car insurance payment! Incompletes do not remove
past scores in exams! Incompletes are only given to persons who have completed at least 80% of the course. Incompletes are removed by completing pending tasks. I do not provide special projects to make up incompletes.

PLEASE note we DO NOT provide extra credit work at the end of the semester for students who are doing poorly. You need to perform well in your tests, lab reports and quizzes.

PLEASE note that I provide bonus points throughout the tests/quizzes to push your grade up a bit just in case you feel some grading was harsh or uneven. This can amount to as much as an extra 2%. At the end of the semester I decide letter grades using the scale above without providing additional bonus.

 Emergencies/evacuations
If you hear a continuously sounding alarm, or are told to evacuate by Emergency Coordinators (colored badge identities), walk quickly to the nearest stairway (end of each hall). Take your personal belongings with you as you may not be immediately allowed to return. Follow instructions of Coordinators. Be quiet so you can hear. Once outside, move away from the building. Do not return to the building unless the Police or Coordinators announce that it is permissible. If an alarm should occur during an exam or quiz, please attempt to give your instructor the paper.

Safe and Respectful Community
We hope that the classroom and laboratory will serve as an environment that will promote learning and the development of new ideas, as well as be a safe and respectful community. Behavior that interferes with the normal academic function in a classroom or lab is unacceptable. Students exhibiting this behavior will be asked to leave the class. Examples of such behavior include:
 a) Persistent interruptions or using disrespectful adjectives in response to the comments of others.
 b) The use of obscene or profane language.
 c) Yelling at classmates and/or faculty.
 d) Persistent and disruptive late arrival to or early departure from class without permission.
 e) Physical threats, harassing/bullying behavior, or personal insults (even when stated in a joking manner).
 f) Use of personal electronic devices such as pagers, cell phones, PDAs in class, unless it is part of the instructional activity.

UNIVERSITY POLICIES
Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs’ Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/"

Office Hours
We will have Zoom office hours. Your exam and quiz grades will be posted on your canvas account. Please be efficient and organized when you come to ask questions during office hours. I might have to limit the amount of time I spend with you if there are several students waiting.

On occasions I will have to cancel office hours due to medical appointments or important committee meetings. I'm sorry for the inconvenience. Please see if you can get assistance from one of the lab or seminar instructors.

Lectures/lab buddies
In a difficult and time-consuming class such as this one, it is often very useful to establish a buddy relationship with one or two students. You can lend each other notes, study together, collect handouts for each other and commiserate with each other. Seriously consider establishing such a relationship with someone in lecture and in your lab (doesn’t have to be the same person).

Resources for help
1) Dr. Esfandiari (Lab and Lecture)
2) Seminar instructors (Lab and, to some degree, lecture also)
3) Lab instructors (Lab predominantly, although some can also provide excellent help for lecture)
4) Academic Excellence Workshops (Lecture) – You must be enrolled! Please note these are not tutoring sessions. They are organized, collaborative study times.

5) COSAC – The College of Science Advising Center is located in the second Floor of Duncan Hall, DH 213. They have peer advisors and tutors. Check their schedule.

6) Peer Connections – They have small group, individual, and drop-in tutoring for a number of undergraduate courses, consultation with mentors is available on a drop-in or by appointment basis. Visit Peer Connections website at http://peerconnections.sjsu.edu for more information.

7) ASPIRE – Student Services Center – Services are limited to low income, first generation college students or students with disabilities.

8) Counseling Services - Professional psychologists, social workers, and counselors are available to provide consultations on issues of student mental health, campus climate or psychological and academic issues on an individual, couple, or group basis. To schedule an appointment or learn more information, visit Counseling Services website at http://www.sjsu.edu/counseling.

9) SI Sessions. Free study session lead by former Chem 1A students.

10) Career Center: http://www.sjsu.edu/careercenter/

11) Accessible Education Center. If you feel that you are unable to keep up with the class even though you have all the prerequisites; if you are spending ample time studying yet you never have time to finish exams and quizzes and/or if this class, for some reason, is testing your abilities to learn, you might consider paying a visit to the Accessible Education Center, ADM 110. They might be able to test you to determine whether you have a learning disability.

Syllabus for Chem. 1A – Dr. Esfandiari

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>CHAPTER</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent Study of Units, Significant Figures, Dimensional Anal., Density, Temp., Atomic and Molec. Weight</td>
<td>1, 2.4, 3.3</td>
<td>#1</td>
</tr>
<tr>
<td>Mole, % comp., empirical</td>
<td>3.4 - 3.5</td>
<td>#2</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>2.5 – 2.8</td>
<td></td>
</tr>
<tr>
<td>Solubility/Dissociation Rules</td>
<td>4.1 – 4.2</td>
<td>#3, 4</td>
</tr>
<tr>
<td>Net Ionic Equations</td>
<td>4.2- 4.3</td>
<td>#3, 4</td>
</tr>
<tr>
<td>Chemical Reactions</td>
<td>4.4, 20.1 – 20.2</td>
<td>#3, 4, 5</td>
</tr>
<tr>
<td>Stoichiometry</td>
<td>3.6 – 3.7</td>
<td>#6</td>
</tr>
<tr>
<td>Concentration and solution stoichiometry</td>
<td>4.5 – 4.6</td>
<td>#6</td>
</tr>
<tr>
<td>Structure of Atoms</td>
<td>2.1 – 2.4</td>
<td>#7</td>
</tr>
<tr>
<td>Periodicity</td>
<td>7.1 – 7.6</td>
<td>#8</td>
</tr>
<tr>
<td>Bonding</td>
<td>Chap. 8</td>
<td>#9</td>
</tr>
<tr>
<td>Molecular Structure</td>
<td>9.1 – 9.6</td>
<td>#9</td>
</tr>
<tr>
<td>Gases</td>
<td>Chap.10</td>
<td>#10</td>
</tr>
<tr>
<td>Liquids and Solids</td>
<td>Chap.11, 23.5 - 23.6</td>
<td>#11</td>
</tr>
<tr>
<td>Heat Transfer and Thermochemistry</td>
<td>11.4, Chap. 5</td>
<td>#12</td>
</tr>
<tr>
<td>Organic Chemistry</td>
<td>2.9, 25.1 – 25.6</td>
<td></td>
</tr>
</tbody>
</table>
Chem 1A Course Learning Outcomes
Dr. Esfandiari’s Lectures

This is a list of very specific learning outcomes for Chem 1A lecture. The lab will also provide hands-on opportunities to develop and apply this knowledge. If a specific outcome is also partially addressed with an experiment, we have included the experiment number in parenthesis. Please note that for many of the topics in this course real world examples are used. Also, on occasion, the topics result in brief discussions of economic or societal issues.

The student will be able to:

1) apply significant figures rules in all calculations providing the correct number of significant figures and units (Exp 1, 2, 6, 7, 10, 11 and 12)

2) convert between different units using conversion factors and dimensional analysis (Exp. 1)

3) name elements, provide their symbols and determine the number of protons, neutrons, electrons and nuclei in elements and compounds

3) calculate percent composition given a molecular formula and molecular formula given the percent composition (Exp. 2)

4) name salts, acids, bases and covalent compounds and provide formulas for these given a molecular formula (Exp. 3)

5) explain the difference between solubility and dissociation in water and apply this knowledge to acids, bases and salts (Exp. 3)

6) identify weak and strong acids and bases and insoluble compounds using dissociation and solubility rules and develop the net ionic representation for these species using the rules (Exp. 3 and 4)

7) construct molecular, total and net ionic equations for double displacement reactions (Exp. 3 and 4)

8) identify redox reactions including identifying the oxidation, reduction, oxidation agent and reducing agent (Exp. 5)

9) calculate oxidation numbers and balance redox reactions (Exp. 5)

10) perform stoichiometry calculations for chemical and non-chemical systems whether the limiting reactant is known or unknown (Exp. 6 and 10)

11) calculate molarity of a solution starting with pure solute or with a concentrated solution as well as explain how to prepare a solution of a given molarity (Exp. 6)
12) provide brief descriptions of the accomplishments of Planck, Einstein, Thompson, Rutherford, Millikan, Rydberg, Bohr, de Broglie and Schrodinger; and how these contributed to understanding the atom

13) explain how a cathode ray tube works and how it assisted in understanding the electronic configuration of atoms.

14) convert between wavelength, energy and frequency for light and understand the relationship between absorbed light and color (Exp. 7)

15) calculate the energy and wavelength of a given electronic transition in hydrogen (Exp. 7)

16) define what each quantum number represents and how to obtain quantum numbers for any electron in an atom

17) analyze an atom or ion of a given element providing the full electronic configuration, the abbreviated electronic configuration, the nl^x notation, a representative diagram of the orbitals and the unpaired number of electrons; then use this information to determine the possible oxidation states of the element and the magnetic properties of the element (Exp. 8)

18) define electronegativity, electron affinity and ionization potential

19) organize a set of element or monoatomic ions in order of increasing atomic radius, ionic radius, first ionization energy and electronegativity

20) determine whether a bond is metallic, ionic, covalent or polar covalent

21) represent covalent and ionic bonding using Lewis dot structures

22) evaluate the molecular geometry, hybridization and polarity of a covalent molecule (Exp. 9)

23) evaluate the type of molecular bonding(σ or π) in a covalent molecule and identify the orbitals used for bonding

24) explain the properties of temperature and pressure including how these are measured and convert between different units for these properties, including the use of different liquids in the measurement of pressure (Exp. 10)

25) derive the relationships between pressure, volume, temperature and moles for ideal gases; perform calculations using these relations, including when they are combined with stoichiometry or percent composition problems (Exp. 10)

26) define and apply Dalton’s Law of Partial Pressures and Graham’s Law of Diffusion and Effusion to mixtures of gases (Exp. 10)

27) use the results from the Kinetic Molecular Theory of Gases to explain the relationship between kinetic energy, average molecular velocity, temperature, pressure, density and number of collisions when an ideal gas undergoes a change of state
28) describe and provide examples of the five types of intermolecular forces and be able to analyze the forced present in a substance and organize a set of compounds in order of increasing intermolecular forces (Exp. 11)

29) define the terms and explain the temperature dependence of surface tension, viscosity, vapor pressure, normal boiling point, capillary action; and be able to organize a set of compounds in increasing order for most of these properties (Exp. 11)

30) explain the concept of specific heat and apply the equation to heating or cooling of materials

31) perform heat transfer calculations for systems with and without phase changes (Exp 12)

32) calculate heats of reaction using Hess’ Law or heats of formation, including combining the process with stoichiometry, and identify whether the reaction is exothermic or endothermic (Exp 12)

33) name unsubstituted and substituted alkanes, alkenes and alkynes given a drawing of a molecule and vice versa

34) identify all the isomers associated with simple aliphatic hydrocarbons and predict boiling point and vapor pressure change as a function of the number of carbons

35) identify and name the organic functional groups in a molecule
<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture Schedule</th>
<th>Comments</th>
<th>Due assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Introduction and Periodic Table</td>
<td>August 19th: First Day of Instruction</td>
<td></td>
</tr>
<tr>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 2</td>
<td>Measurements, Sig Fig, Unit Conv, Density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/22 – 8/26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 3</td>
<td>Naming Compounds</td>
<td></td>
<td>Quiz 1 (due on 9/5)</td>
</tr>
<tr>
<td>8/29 – 9/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 4</td>
<td>Moles and Stoichiometry</td>
<td></td>
<td>Quiz 2 (due on 9/26)</td>
</tr>
<tr>
<td>9/5 – 9/9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>Solubility Rules and Chemical Reactions</td>
<td>September 15th: Last day to ADD and to Drop</td>
<td></td>
</tr>
<tr>
<td>9/12 – 9/16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 6</td>
<td>Chemical Reactions</td>
<td></td>
<td>Quiz 3 (due on 10/18)</td>
</tr>
<tr>
<td>9/19 – 9/23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 7</td>
<td>Stoichiometry and Limiting Reagent</td>
<td></td>
<td>Quiz 4 (due on 10/31)</td>
</tr>
<tr>
<td>9/26 – 9/30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 8</td>
<td>Exam I Monday 10/03/22</td>
<td></td>
<td>Quiz 5 (due on 11/14)</td>
</tr>
<tr>
<td>10/3 – 10/7</td>
<td>Solution and Concentration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 9</td>
<td>Quantum theory and Atom Structure</td>
<td>October 14th: Lab Exam I</td>
<td></td>
</tr>
<tr>
<td>10/10 – 10/14</td>
<td></td>
<td></td>
<td>Quiz 3 (due on 10/18)</td>
</tr>
<tr>
<td>Week 10</td>
<td>Quantum theory and Atom Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/17 – 10/21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 11</td>
<td>Boding and Lewis Structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/24 – 10/28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>Periodic Properties</td>
<td></td>
<td>Quiz 4 (due on 10/31)</td>
</tr>
<tr>
<td>10/31 – 11/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 13</td>
<td>Exam II Monday 11/7/22</td>
<td></td>
<td>Quiz 5 (due on 11/14)</td>
</tr>
<tr>
<td>11/7 – 11/11</td>
<td>Behavior of Gases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 14</td>
<td>Intermolecular Forces and Physical Properties</td>
<td></td>
<td>Quiz 6 (due on 12/3)</td>
</tr>
<tr>
<td>11/14 – 11/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 15</td>
<td>Energy and phase change</td>
<td></td>
<td>Quiz 6 (due on 12/3)</td>
</tr>
<tr>
<td>11/20 – 11/25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 16</td>
<td>Enthalpy and Hess’s Law</td>
<td>Dec 2nd-Lab Exam II</td>
<td></td>
</tr>
<tr>
<td>11/28 – 12/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 17</td>
<td>Exam III Monday 12/5/22</td>
<td>Dec 6th: Last Day of Instruction</td>
<td></td>
</tr>
<tr>
<td>12/5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 18</td>
<td>Final Exam Week</td>
<td>Dec 12th: Final exam (All chapters covered)</td>
<td></td>
</tr>
<tr>
<td>12/12</td>
<td></td>
<td>9:45 am – 12 pm</td>
<td></td>
</tr>
</tbody>
</table>
Chem 1A – Fall 2022 – Dr. Esfandiari Lecture Schedule – Accessible Version

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 19th</td>
<td>First day of class</td>
</tr>
<tr>
<td>September 15th</td>
<td>Last day to drop a class</td>
</tr>
<tr>
<td>September 15th</td>
<td>Last day to add a class</td>
</tr>
<tr>
<td>October 3rd</td>
<td>Lecture Exam I</td>
</tr>
<tr>
<td>October 14th</td>
<td>Lab Exam I – Exam is during the seminar period</td>
</tr>
<tr>
<td>November 7th</td>
<td>Lecture Exam II</td>
</tr>
<tr>
<td>December 2nd</td>
<td>Lab Exam II - Exam is during the seminar period</td>
</tr>
<tr>
<td>December 5th</td>
<td>Lecture Exam III</td>
</tr>
<tr>
<td>December 5th</td>
<td>Last day of class</td>
</tr>
<tr>
<td>December 12th</td>
<td>Final Exam at 9:45 am</td>
</tr>
</tbody>
</table>