San José State University Computer Science Department Computer Science 46B: Data Structures, Fall 2016

Course and Contact Information

Instructor: Philip Heller

Office Location: MacQuarrie Hall 211

Telephone: (408) 924-8145

Email: Philip.Heller@sjsu.edu

Office Hours: Tu 1:30 - 2:30

Class Days/Time: M/W 3:00 - 4:15

Classroom: WSQ 109

Prerequisites: Knowledge of Java equivalent to that obtained by completing CS 046A or CS

049J with grade of C- or better. Eligibility for Math 030 or Math 030P, or instructor consent. Math remediation completed or a post baccalaureate. Pre/Co-requisite: Math 42. BRING HARDCOPY PROOF OF PRE- AND

CO-REQUISITES TO 1ST LECTURE.

Course Format

Lectures: traditional lecture format, plus Piazza clicker quizzes. Labs: Brief introduction by lab TA, followed by lab exercises conducted in pairs.

Canvas

Course materials, including slides, homework assignments, and lab assignments, will be posted to Canvas at http://sjsu.instructure.com.

Course Description

Stacks and queues, recursion, lists, dynamic arrays, binary search trees. Iteration over collections. Hashing. Searching, elementary sorting. Big-O notation. Standard and custom collection classes.

Course Learning Outcomes

Upon successful completion of this course, students will be able to:

- 1. Use and work with basic structures such as linked lists, stacks, queues, binary search trees, and iterators.
- 2. Implement Java classes that embody data structures.
- 3. Use pre-existing implementations such as the Java Collections framework.
- 4. Make relative estimates of the running times of alternative algorithms using big-O analysis.
- 5. Formulate and test for pre- and post-conditions.
- 6. Distinguish between different types of program defect, and understand how testing and debugging are used to correct them.
- 7. Implement simple sorting algorithms such as Insertion Sort and Selection Sort.
- 8. Implement the Sequential Search and Binary Search algorithms.
- 9. Implement simple recursive algorithms such as binary tree traversal.
- 10. Work competently with commonly used tools for software development.
- 11. Create custom data structures when appropriate pre-existing classes are not available.

Required Texts/Readings

Textbook

Big Java 6e ENGAGE Custom Interactive Text by Cay S. Horstmann, ISBN: 9781119290223 (preferred) or Big Java Early Objects 5th Edition by Cay S. Horstmann, ISBN 978-1-118-60771-8.

Course Requirements and Assignments

Lectures: Students are strongly encouraged to attend all lectures. Any material presented in any lecture may be tested in any subsequent midterm or final exam.

Homework: There will be approximately 7 substantial programming assignments. No late homework will be accepted for any reason. The lowest homework grade will be dropped.

Midterm Exams: Midterms will be on March 6 and April 5. Midterms are in-class, closed-book, and comprehensive. Makeup midterm exams will only be given in cases of verifiable emergency.

Final Exam: May 24, 12:15 PM - 2:30 PM. Makeup final exams will be only be given in cases of verifiable emergencies or, if the instructor is notified at least 3 weeks before the last class meeting, to students with at least 2 other finals in a 24-hour period.

Lab: All CS 46B students must concurrently enroll in a lab section. Labs are led by student TAs. Lab Rules:

- 1) You may miss up to 3 scheduled lab meetings. If you miss more than 3 labs for any reason including personal emergency, you will fail the course. So choose your misses wisely.
- 2) The first lab meetings will be the week of Jan 30.
- 3) You cannot make up a missed lab.
- 4) Bring your laptop to each lab.
- 5) All labs involve programming in Java, using the Eclipse IDE. Try to install Eclipse before your first lab meeting.
- 6) Work in pairs, unless there are an odd number of students, in which case 1 team will have 3 students. Teams will be formed at the first lab meeting; you choose your own lab partner. If your lab partner is absent, your lab instructor will form a team for you for that meeting.
- 7) A lab report is due at the end of each lab meeting.
- 8) There are 2 roles, "Driver" and "Scribe", in each team. You and your lab partner will switch roles week to week. The driver runs Eclipse and submits a simple lab report. The scribe writes a more detailed lab report. Lab assignments clearly state what each report should contain.
- 9) If you and your partner are stuck, ask your lab instructor. Don't expect your instructor to give you answers; expect to be given ideas about how to get un-stuck.

Grading

Students who fail their lab section, either by missing more than 3 sections or by getting a failing lab grade, fail the entire course. Students who pass their lab section are graded as follows:

Homework: 35% Midterm 1: 15% Midterm 2: 15% Final: 35%

At least	Letter Grade
93%	Α
90%	A-
87%	B+
83%	В
80%	B-
77%	C+
72%	С
70%	C-
67%	D+
62%	D
60%	D-
<60%	F

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs' Syllabus Information web page at http://www.sisu.edu/gup/syllabusinfo/

Computer Science 46B Fall 2016 Course Schedule

Course Schedule

Week	Date	Topics
1		No class. We meet M/W, Week 1 begins on a Thursday. No labs this week.
2	1/30	Need for data structures. Inheritance.
2	2/1	Polymorphism.
3	2/6	Polymorphism.
3	2/8	Inner classes. Interfaces.
4	2/13	Equality and comparison.
4	2/15	Sets.
5	2/20	Exceptions and assertions.
5	2/22	I/O and exceptions.
6	2/27	I/O and exceptions.
6	3/1	Review.
7	3/6	Midterm 1.
7	3/8	Midterm answers. Introduction to recursion.
8	3/13	Recursion & backtracking.
8	3/15	Sorting & searching.
9	3/20	Sorting & searching: algorithm complexity, big-O.
9	3/22	The collections framework.
10	3/27	SPRING BREAK
10	3/29	SPRING BREAK
11	4/3	Review.
11	4/5	Midterm 2.
12	4/10	Midterm answers. Hash Tables.
12	4/12	Trees.
13	4/17	Custom collections.
13	4/19	Custom collections.
14	4/24	Custom collections.
14	4/26	Binary Search Trees.
15	5/1	Binary Search Trees.

Week	Date	Topics
15	5/3	General graphs.
16	5/8	General graphs.
16	5/10	General graphs.
17	5/15	Review, last lecture.
Final Exam	May 24 (Wed)	WSQ 109 (Same as lectures). 1215-1430.