San José State University
Department of Computer Science
CS 156, Introduction to Artificial Intelligence, Section 1, Fall 2020

Course and Contact Information

Instructor: Rula Khayrallah
Office Location: MacQuarrie Hall 218
Telephone: (408) 924-5153
Email: rula.khayrallah@sjsu.edu
Office Hours: Monday 3-4 PM, Wednesday 3-5 PM, Thursday 3-4 PM
Class Days/Time: Tuesday/Thursday 12:00PM - 1:15PM
Classroom: Online via Zoom
Prerequisites: CS 146 and either CS 151 or CMPE 135 with a grade of C- or better in each

Course Format

The course will be conducted online over Zoom with synchronous lectures and interactive activities. We’ll use iClicker to gather your feedback and check understanding during the lecture. iClicker helps me understand what you know, gives everyone a chance to participate, and allows you to review the material after class.

Canvas Course Site

Course materials such as syllabus, lecture notes, assignments and exams can be found on the Canvas Learning Management System course website at http://sjsu.instructure.com. You are responsible for regularly checking with Canvas to learn of any updates.

Course Description

Basic concepts and techniques of artificial intelligence: problem solving, search, deduction, intelligent agents, knowledge representation. Topics chosen from logic programming, game playing, planning, machine learning, natural language, neural nets, robotics.

Course Learning Outcomes

Upon successful completion of this course, students will be able to:

1. By code or by hand find solution nodes in a state space using the A* algorithm.
2. Explain the advantages and disadvantages of breadth-first search compared to depth-first search.
3. Explain the advantages and disadvantages of informed search, compared to uninformed search.
4. Explain the advantages and disadvantages of hill climbing.
5. Explain the advantages and disadvantages of forward checking in constraint satisfaction.
6. Explain the advantages and disadvantages of alpha-beta pruning.
7. By code or by hand translate sentences in first-order logic to conjunctive normal form (CNF).
8. By code or by hand find proofs by using resolution.
9. Explain the advantages and disadvantages of the PDDL/STRIPS representation for planning.
10. Describe the frame problem.
11. Describe or implement at least one learning algorithm.

Recommended Textbook

ISBN: 978-0134610993

Software

Python 3.7 or later available at https://www.python.org/downloads/release/python-374/
PyCharm Professional or Community Edition - recommended IDE

Course Requirements and Assignments

Homework Assignments:

Homework assignments will be posted and submitted on Canvas. For full credit, they must be submitted by the posted due date and time. A detailed grading rubric is provided for all programming assignments. Please make sure you read and follow the grading rubric to ensure full credit. Some assignments will be individual work. Others will be team assignments. I will make it clear whether the assignment is an individual assignment or a team assignment. All work submitted on individual assignments must be your own. You may not share or copy code or answers from fellow students or from the web. Infractions will be detected and will lead to an automatic 0. If someone else copies your work, with or without your permission, you will be held responsible. For team assignments, teams will consist of two students. The work must be done by both team members and both team members will receive the same grade. Teams may not share or copy code from other teams or from the web. Both team members will receive a 0 if that happens regardless of who copied or shared the work.

Exams:

We’ll have 3 online exams in the semester, the last being the final exam. The first two exams are scheduled during our regular class time as follows:

Exam 1: Tuesday, September 22 at 12:00 PM
Exam 2: Tuesday, October 27 at 12:00 PM

The final exam is cumulative and is scheduled for Thursday, December 10 at 9:45AM-12:00PM.

Proctoring Software and Exams

Exams will be proctored in this course through Respondus Monitor and LockDown Browser. If cheating is suspected the proctored videos may be used for further inspection and may become part of the student’s disciplinary record. Note that the proctoring software does not determine whether academic misconduct occurred, but does determine whether something irregular occurred that may require further investigation.

Students are encouraged to contact the instructor if unexpected interruptions (from a parent or roommate, for example) occur during an exam.

Academic Dishonesty

Students who are suspected of cheating during an exam will be referred to the Student Conduct and Ethical Development office and depending on the severity of the conduct, will receive a zero on the assignment or a grade of F in the course. Grade Forgiveness does not apply to courses for which the original grade was the result of a finding of academic dishonesty.
Class Participation:
You are expected to attend all class meetings as you are responsible for all the material discussed. Since active participation is essential to ensure maximum benefit, we’ll use iClicker to give everyone a chance to participate. The iClicker participation points may be used to give your final grade in the course a slight boost.

Workload:
Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited to internships, labs, and clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus.

Grading Information

Determination of Grades
The final grade in the course will be calculated based on the following percentages:

- Homework Assignments: 40%
- Exam 1: 15%
- Exam 2: 15%
- Final Exam: 30%

The iClicker participation points may be used to give your final grade a slight boost. Students with the highest score will get 1 bonus point. Students who violate the academic integrity policy are not eligible. No extra credit options will be given.

Late Work
Late assignments will be accepted with a 1-point penalty for each day or partial day late. Late days include weekend days. For example, an assignment due on Monday by 5 PM will incur a penalty of 1 point if submitted at 8AM on Tuesday. Everyone gets two free 'late days' for the semester. No submissions will be accepted more than 2 days late.

Grade Scale
The letter grade will be determined based on the following scale:

- A+ = 98% - 100%
- A = 93% - 97%
- A- = 90% - 92%
- B+ = 87% - 89%
- B = 83% - 86%
- B- = 80% - 82%
- C+ = 77% - 79%
- C = 73% - 76%
- C- = 70% - 72%
- D = 60% - 69%
- F = below 60

Classroom Protocol
Please join the virtual class meeting on time and be ready to ask questions, contribute answers and participate in all class activities.

- Mute Your Microphone: To help keep background noise to a minimum, make sure you mute your microphone when you are not speaking.
- Be Mindful of Background Noise and Distractions: Find a quiet place to “attend” class, to the greatest extent possible.
 - Avoid video setups where people may be walking behind you, people talking/making noise, etc.
- Avoid activities that could create additional noise, such as shuffling papers, listening to music in the background, etc.
- Position Your Camera Properly: Be sure your webcam is in a stable position and focused at eye level.
- Limit Your Distractions/Avoid Multitasking: You can make it easier to focus on the meeting by turning off notifications, closing or minimizing running apps, and putting your smartphone away (unless you are using it to access Zoom).
- Use Appropriate Virtual Backgrounds: If using a virtual background, it should be appropriate and professional and should NOT suggest or include content that is objectively offensive or demeaning.

Recording Zoom Classes

This course will be recorded for instructional purposes. The recordings will only be shared with students enrolled in the class through Canvas. If, however, you would prefer to remain anonymous during these recordings, then please speak with the instructor about possible accommodations (e.g., temporarily turning off identifying information from the Zoom session, including student name and picture, prior to recording).

Students are not allowed to record without instructor permission

Students are prohibited from recording class activities, distributing class recordings, or posting class recordings. Materials created by the instructor for the course (syllabi, lectures and lecture notes, presentations, etc.) are copyrighted by the instructor. This university policy (S12-7) is in place to protect the privacy of students in the course, as well as to maintain academic integrity through reducing the instances of cheating. Students who record, distribute, or post these materials will be referred to the Student Conduct and Ethical Development office. Unauthorized recording may violate university and state law. It is the responsibility of students that require special accommodations or assistive technology due to a disability to notify the instructor.

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs’ Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/. Make sure to review these policies and resources.
Tentative Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics</th>
<th>Readings AIMA</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aug 20</td>
<td>Course Logistics</td>
<td></td>
<td>HW 1 due Aug 25</td>
</tr>
<tr>
<td>2</td>
<td>Aug 25</td>
<td>What is AI?</td>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Aug 27</td>
<td>Intelligent Agents</td>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sep 1</td>
<td>Python</td>
<td></td>
<td>HW 2 due Sep 7</td>
</tr>
<tr>
<td>3</td>
<td>Sep 3</td>
<td>Problem Solving and Search</td>
<td>Sec 3.1-3.3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Sep 8</td>
<td>Uninformed Search</td>
<td>Sec 3.4</td>
<td>HW 3 due Sep 14</td>
</tr>
<tr>
<td>4</td>
<td>Sep 10</td>
<td>Informed Search: greedy, A* search</td>
<td>Sec 3.5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Sep 15</td>
<td>Heuristics</td>
<td>Sec 3.6</td>
<td>HW 4 due Sep 21</td>
</tr>
<tr>
<td>5</td>
<td>Sep 17</td>
<td>Local Search</td>
<td>Sec 4.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sep 22</td>
<td>Exam 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Sep 24</td>
<td>Constraint Satisfaction Problems</td>
<td>Chapter 6</td>
<td>HW 5 due Oct 1</td>
</tr>
<tr>
<td>7</td>
<td>Sep 29</td>
<td>Constraint Satisfaction Problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Oct 1</td>
<td>Adversarial Search</td>
<td>Chapter 5</td>
<td>HW 6 due Oct 12</td>
</tr>
<tr>
<td>8</td>
<td>Oct 6</td>
<td>Depth Limited Search, Expectimax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Oct 8</td>
<td>Logical Agents</td>
<td>Chapter 7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oct 13</td>
<td>First-Order Logic</td>
<td>Chapter 8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Oct 15</td>
<td>Resolution in First-Order Logic</td>
<td>Sec 9.5</td>
<td>HW 7 due Oct 21</td>
</tr>
<tr>
<td>10</td>
<td>Oct 20</td>
<td>Automated Planning</td>
<td>Chapter 11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Oct 22</td>
<td>Automated Planning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Oct 27</td>
<td>Exam 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Oct 29</td>
<td>Uncertainty</td>
<td>Chapter 12</td>
<td>HW 8 Nov 9</td>
</tr>
<tr>
<td>12</td>
<td>Nov 3</td>
<td>Bayes Nets Representation</td>
<td>Sec 13.1-13.3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Nov 5</td>
<td>Probabilistic Reasoning Over Time</td>
<td>Sec 14.1-14.2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nov 10</td>
<td>Machine Learning</td>
<td>Sec 19.1-19.2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nov 12</td>
<td>Naïve Bayes Classification</td>
<td>Sec 20.1-20.2</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Nov 17</td>
<td>Perceptron, Neural Nets</td>
<td>Sec 21.1-21.2</td>
<td>HW 9 due Nov 30</td>
</tr>
<tr>
<td>14</td>
<td>Nov 19</td>
<td>Nearest Neighbors</td>
<td>Sec 19.7</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nov 24</td>
<td>Unsupervised Learning, Reinforcement Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Nov 26</td>
<td>Thanksgiving – No class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Dec 1</td>
<td>Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Dec 3</td>
<td>Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>Dec 10</td>
<td>9:45AM-12:00PM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>