Special Procedures and Protocols for Remote-learning during COVID will be discussed on first day of class.

Course and Contact Information

Instructor: Robert Chun
Office Location: MH 413 (On-Line)
Telephone: (408) 924-5137
Email: Robert.Chun@sjsu.edu
Office Hours: MW 6:30pm-7:00pm & 9:00pm-9:30pm (and by appointment, On-Line)
Class Days/Time: MW 1900 - 2100
Classroom: On-Line
Prerequisites: CS146, Introductory Course in Architecture, also in Operating Systems

Faculty Web Page

Course materials such as presentation slides, notes, assignments, etc. can be found on my faculty web page at http://www.sjsu.edu/people/Robert.Chun/courses

Course Description

A hardware architecture and software development class focused on multi-threaded, parallel processing algorithms and techniques. A detailed study of high-performance parallel processing hardware architectures ranging from on-chip Instruction-Level Parallelism to multi-core microprocessor chips to large distributed supercomputing systems including Clusters, Grids, and Clouds. Discussion and hands-on exercises in a selected subset of various parallel programming paradigms and languages such as Pthreads, MPI, OpenMP, Map-Reduce Hadoop, CUDA and OpenCL. The class will focus on the fundamental concepts associated with the design and analysis of parallel processing systems. Special emphasis will be placed on avoiding the unique non-deterministic software defects that can arise in parallel processing systems including race conditions and deadlocks. A term project and oral presentation on a topic selected by the student will be required. Active participation during student presentations will be required.

Course Learning Outcomes (CLO)
Upon successful completion of this course, students will be able to:

- Understand the Technical and Business motivation and need for current state-of-the-art computing systems to incorporate Parallel Processing into the Hardware and Software Subsystems.
- Explain the Micro-Hardware Architectural Evolutionary Trends leading to on-chip Instruction-Level Parallelism, and Pipelining, SuperScalar, Multi-Function Unit Parallel Processing.
- Understand the Macro-Hardware Architectural Evolutionary Trends leading to Parallel Processing including Flynn’s Taxonomy and the recent progression in high-performance supercomputing architectures from Clusters to Grids and to Clouds.
- Explain data dependency analysis & hazards, and Amdahl’s Law, which limits the amount of practical speedup and scalability that can be achieved with Parallel Processing.
- Perform Design and Analysis Techniques for Parallel Processing Systems including the identification of data vs. task partitioning in algorithms and applications.
- Understand the Different Models for implementing parallelism in Computing Systems such as shared memory and message passing.
- Explain the software challenges associated with Parallel Processing including the difference between concurrent vs. parallel execution models, deadlocks and race conditions.
- Understand a sample of current parallel programming paradigms and languages and be able to write parallel programs using them.

Required Texts/Readings

Textbooks

A Google Search on the following file name can sometimes find this source on-line as a PDF.

Multi-Core_Programming.pdf

Web Resources: See Informational Sheet: "Useful Web Pages for Parallel Processing Course"

Course Requirements and Assignments

Assignments include two midterms, one final exam, a written and oral report, a set of projects (consisting of a combination of written problems and programming assignments), and active participation during student presentations, weighted as shown below. Grading is based on a class curve. All assignments (especially the oral presentation) must be completed by the student on the due date specified to receive credit for the class. Late assignments (including the scheduled oral presentations) or exams are not accepted. All students must uphold academic honesty, especially for the required term paper, per university policy detailed at

http://www.sjsu.edu/specialed/docs/current-forms/AcademicIntegrityPolicy.pdf

Final Examination
The final exam for the class will be held on Wednesday, August 4, 2021 at 1900-2115

Grading Information
Grading consists of two midterms, one final, a written and oral report, a set of projects (consisting of a combination of written problems and programming assignments), and active participation during student presentations, weighted as follows. Grading is based on a class curve. All assignments (especially the oral presentation) are all required and all must be completed by the student on the due date specified to receive credit for the class. Late assignments or exams are not accepted. All students must uphold academic honesty, especially for the required term paper, per university policy detailed at the following official SJSU webpage: http://www.sjsu.edu/specialeed/docs/current-forms/AcademicIntegrityPolicy.pdf

<table>
<thead>
<tr>
<th>Weight</th>
<th>Exam/Project</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>15%</td>
<td>Midterm Exam 1</td>
<td>Monday, June 28, 2021</td>
</tr>
<tr>
<td>15%</td>
<td>Midterm Exam 2</td>
<td>Wednesday, July 14, 2021</td>
</tr>
<tr>
<td>30%</td>
<td>Written Term Paper/Project & Oral Presentations</td>
<td>July 19, 21, 26, 28 (to be specified per student)</td>
</tr>
<tr>
<td>30%</td>
<td>Final Exam</td>
<td>Wednesday, August 4, 2021 at 1900-2115</td>
</tr>
<tr>
<td>10%</td>
<td>Combined total of Three HW/Projects</td>
<td>Project 1 Due on June 28; Project 2 Due on July 14; Project 3 Due August 4, 2021</td>
</tr>
</tbody>
</table>

Classroom Protocol
COVID Protocols require that this class be taught in an on-line fashion via Zoom Meetings and/or pre-recorded video lessons. There will be no on-campus meetings in person.

Students are expected to attend all classes (On-Line), including all student presentations (On-Line).

The majority of lectures and student presentations can be viewed Asynchronously as pre-recorded videos, meaning that students can view them at their own convenience anytime within the specified class schedule.

All Exams (Midterm1, Midterm2, and the Final Exam) will be synchronous sessions, meaning that all students must take the exams on the same day and at the same time. Midterm1 is on June 28th; Midterm2 is on July 14; and the Final Exam is on August 4, 2021.

University Policies
Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs’ Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/
CS259 Summer 2021 Tentative Course Schedule

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Motivation and Broad Overview of Parallel Processing (View between June 2 - June 9)</td>
<td></td>
</tr>
<tr>
<td>1 - 4</td>
<td>Introduction, Motivation and Broad Overview of Parallel Processing with an emphasis on the Micro- and Macro-Hardware Evolutionary Trends leading to Parallelism and the Software Challenges of Parallelism including Concurrent vs. Parallel Execution Models, and Amdahl’s Law</td>
</tr>
<tr>
<td>Hardware Parallel Processing (View between June 9 - June 21)</td>
<td></td>
</tr>
<tr>
<td>5 - 6</td>
<td>Hardware Pipelining and Instruction-Level Parallelism (ILP)</td>
</tr>
<tr>
<td>7</td>
<td>Multi-Function Parallelism in Hardware</td>
</tr>
<tr>
<td>8</td>
<td>Data dependency analysis and control hazard analysis including RAW, WAR, WAW, Branch Prediction, and VLIW Architectures</td>
</tr>
<tr>
<td>9</td>
<td>Memory Interleaving (Parallelism in Memory Subsystems)</td>
</tr>
<tr>
<td>10</td>
<td>Memory Matrix Demo & Hyper-Threading</td>
</tr>
<tr>
<td>MidTerm1</td>
<td>Monday, June 28, 2021 at 1900-2030</td>
</tr>
<tr>
<td>Software Challenges of Parallel Processing (View between June 30 - July 7)</td>
<td></td>
</tr>
<tr>
<td>11 - 12</td>
<td>Software Challenges of Parallel Processing: Deadlocks</td>
</tr>
<tr>
<td>13 - 14</td>
<td>Software Challenges of Parallel Processing: Race Conditions, Semaphores</td>
</tr>
<tr>
<td>MidTerm2</td>
<td>Wednesday, July 14, 2021 at 1900-2030</td>
</tr>
<tr>
<td>Advanced, Specialized Topics of Parallel Processing (Selected and Presented by Students) (View July 19-28)</td>
<td></td>
</tr>
<tr>
<td>15 - 18</td>
<td>Varied Topics including Parallel Programming Paradigms such as Unix Process Forking, PVM, POSIX Threads, Thread Pools, Applications of Parallelism, MPI, OpenMP, CUDA, OpenCL, Hadoop Map-Reduce, GPGPU Computing, Toolsets for Parallel Program Software Development and Debugging, Models of Parallelism such as Shared Memory vs. Message Passing, Specific Parallel Programming Languages, Algorithms & Tools.</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Wednesday, August 4, 2021 at 1900-2115</td>
</tr>
</tbody>
</table>

Key Delivery Due Dates for Assignments:

- **Term Paper/Project Title & Abstract Due:** Wednesday, June 16, 2021
- **MidTerm1 & HW Project 1 Due:** Monday, June 28, 2021 at 1900-2030
- **MidTerm2 & HW Project 2 Due:** Wednesday, July 14, 2021 at 1900-2030
- **Term Paper/Project Due:** Monday, July 19, 2021
- **Student Presentation Videos Due:** Between July 19 to July 28 (to be specified per student)
- **Selection of 5 Papers for Final Exam Due:** Monday, July 26, 2021
- **Final Exam & HW Project 3 Due:** Wednesday, August 4, 2021 at 1900-2115
General University Policies

DISABILITIES:
If you need course adaptations or accommodations because of a disability, or if you need special arrangements in case the building must be evacuated, please inform the instructor as soon as possible. Presidential Directive 97-03 requires that students with disabilities register with DRC to establish a record of their disability.

ACADEMIC INTEGRITY:
Academic integrity is essential to the mission of San José State University. As such, students are expected to perform their own work (except when collaboration is expressly permitted by the course instructor) without the use of any outside resources. Students are not permitted to use old tests or quizzes when preparing for exams, nor may they consult with students who have already taken the exam. When practiced, academic integrity ensures that all students are fairly graded.

We all share the obligation to maintain an environment which practices academic integrity. Violations to the Academic Integrity Policy undermine the educational process and will not be tolerated. It also demonstrates a lack of respect for oneself, fellow students and the course instructor, and can ruin the university's reputation and the value of the degrees it offers. Violators of the Academic Integrity Policy will be subject to failing this course and being reported to the Office of Judicial Affairs for disciplinary action which could result in suspension or expulsion from San José State University.

CHEATING:
At SJSU, cheating is the act of obtaining or attempting to obtain credit for academic work through the use of any dishonest, deceptive, or fraudulent means. Cheating at SJSU includes but is not limited to:

Copying in part or in whole, from another's test or other evaluation instrument; Submitting work previously graded in another course unless this has been approved by the course instructor or by departmental policy. Submitting work simultaneously presented in two courses, unless this has been approved by both course instructors or by departmental policy. Altering or interfering with grading or grading instructions; Sitting for an examination by a surrogate, or as a surrogate; any other act committed by a student in the course of his or her academic work which defrauds or misrepresents, including aiding or abetting in any of the actions defined above.

PLAGIARISM:
At SJSU plagiarism is the act of representing the work of another as one's own (without giving appropriate credit) regardless of how that work was obtained, and submitting it to fulfill academic requirements. Plagiarism at SJSU includes but is not limited to:

The act of incorporating the ideas, words, sentences, paragraphs, or parts thereof, or the specific substances of another's work, without giving appropriate credit, and representing the product as one's own work; and representing another's artistic/scholarly works such as musical compositions, computer programs, photographs, painting, drawing, sculptures, or similar works as one’s own.

Additional Information:
http://www.cs.sjsu.edu/greensheetinfo/index.html