Online flipped classroom and assignment re-structuring for student engagement

Crystal Han
Assistant Professor
Department of Mechanical Engineering
San Jose State University
Jan. 15, 2021
Our remote classrooms

What differentiates SJSU remote education from other online learning?

Learning Community

Feeling of isolation

One-way communication

Losing interests

Students missing
Our resources for teaching

- Class time: asynchronous, synchronous, bi-synchronous
- Knowledge for the subject
- Problems from textbooks or custom-made
- Students with diverse academic preparedness
- Assignment dues (teachable moments)
- Quizzes and exams: highest commitment on studying
- Students’ expectation on time commitment (normally three hours per unit per week as per syllabus).
- Active engagement tools (i-clicker, live demo, multimedia, etc.)
Solving the problem of teaching

Problems
• Ignoring reading assignments
• High score on HW, low score on quizzes
• Feeling of isolation
• Less prone to ask for help
• Low attendance
• Low participation and attention during lectures

Goals
Mastery of concepts
Building a learning community
Active engagement

Action plan
• Flipped classroom
• Updating the use of problems in assignments
• Pre-assigned breakout rooms
• In-class problem solving as a group
Why flipped classroom?

- I have to lecture in front of camera anyway in remote teaching.
- The class time is NOT the first time students learn about a concept.
- Assignment dues aligns with the lecture pace.

Previous

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>HW due</th>
<th>Lec</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>S</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>Th</td>
<td>F</td>
<td>S</td>
<td>S</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>S</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>Th</td>
<td>F</td>
<td>S</td>
<td>S</td>
<td>M</td>
<td>T</td>
</tr>
</tbody>
</table>

Current teaching (bisynchronous, meeting pattern mode 10)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>HW</th>
<th>WS</th>
<th>Class</th>
<th>HW</th>
<th>WS</th>
<th>Class: Active-learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>S</td>
<td>S</td>
<td>M</td>
<td>T</td>
<td>W</td>
<td>Th</td>
<td>F</td>
</tr>
</tbody>
</table>
Updating the use of problems

Problems
1. Students do not care much about example problems.
2. Possibility of copying solution manuals for homework.

Previous
- Textbook examples
- End-of-Chapter problems
- Custom-made problem

Current
- Encouraging full digestion of examples via HW
- More problems solved actively as WS
- Use extra motivation of studying before exams to revisit problems again.
- Gradual increase in problem level
Comparison of number of problems

Average 30% increase in number of graded problems throughout all chapters.
HW as a proof of online learning

- Students take example problems seriously
- Motivated to watch lecture videos
- Students actually uses homework problems to study

Example
A plate of mass m_p slides freely in the vertical direction along the frictionless guide rails. Given the mass flow rate \dot{m} and the area of the nozzle, derive an expression for the steady-state constant velocity of the upward moving plate.

\[\sum F_y = \dot{m} \rho V_{in} - \dot{m} V_{in} \]
\[V_{in} = V_{j} - V_{cv} \]
\[\dot{m} = \rho V_{in} \cdot A \]
\[-W = -\rho V_{in} \cdot A V_{in} \]

Homework problem
4. A plate of unknown mass slides upward in the vertical direction at a constant velocity of 10 cm/s along the frictionless guide rails. Given the nozzle velocity of 25 cm/s and mass flow rate of 2 kg/s, calculate the mass of the plate.
Solving the problem of teaching

Problems
- Ignoring reading assignments
 - High score on HW, low score on quizzes
- Feeling of isolation
 - Less prone to ask for help
- Low attendance
 - Low participation and attention during lectures

Goals
- Mastery of concepts
- Building a learning community
- Active engagement

Action plan
- Flipped classroom
- Updating the use of problems in assignments
- Pre-assigned breakout rooms
- In-class problem solving as a group
Class time for group worksheet sessions

- Review
- Understanding a problem
- Instructor visits
- Wrap-up
 - Questions
 - Student screen share
 - Zoom chat

The process repeated for each concept/problem (total 3-4)
Strategies for building a learning community

- 3 people in a group with clear responsibility (file manager, spokesperson, quality inspector)
- Each group had mixed level students.
- Asked for a communication plan outside of class meetings.
- Same members for a month

Zoom pre-assigned breakout room (set-up in the beginning of the semester)

1. **Require registration** on the class zoom meeting
2. **After the first class**, download the **meeting report** to obtain the student emails
3. Upload .csv file for pre-assigned breakout room
4. Ask students to keep using the same email they used on the first class
Class participation over time

*WU students not included in the analysis (2 in Section 5)
Learning outcome comparison

Average final scores

Student #: 74 47 51 41

Final version 1

Final version 2

*Error bar indicates one standard deviation

**WU students not included in the analysis (2 in Section 5 and 2 in 2019 class)
Summary

Mastery of concept
- Assignment dues aligned with course pace (flipped classroom)
- Homework problems connected to examples

Learning Community
- First exposure of material before class
- Higher number of problems graded
- Small group with each member taking a specific role
- Same group member
- Clear deliverable as a group

Active engagement
- Group problem-solving
- Visiting each group
- Interactive wrap-up session
Potential future discussions

• Suggestions or feedback on my analysis
• Further ideas on pedagogy related studies
• Better grading strategies
• Setting up pre-assigned breakout rooms
• Proctoring procedures
• Please email me crystal.m.han@sjsu.edu
Thanks for listening!
Questions?
1. **Require registration** on the class zoom meetings

2. Download the **meeting report after the first class** to obtain the student emails

3. Upload [.csv file for pre-assigned breakout room](#)

4. Ask students to keep using the same email they used on the first class