San José State University
 Math 161A: Applied Probability \& Statistics

Special continuous distributions

Prof. Guangliang Chen

Section 4.3 The Normal distribution

Section 4.4 The Exponential and Gamma distributions

Special continuous distributions

Introduction

In this lecture we cover the following special continuous distributions

- Uniform
- Normal
- Exponential
- Gamma (and Chi-square)

Special continuous distributions

... by following the same treatment plan (as for discrete distributions):

- Examples
- Definition (via pdf)
- Expected value
- Variance
- Other useful properties (if any)

The Uniform distribution

Def 0.1 ($X \sim \operatorname{Unif}(a, b)$). A continuous random variable X is said to have a uniform distribution with parameters a, b if it has the following probability density function (pdf):

$$
f(x)= \begin{cases}\frac{1}{b-a}, & a<x<b \\ 0, & \text { otherwise }\end{cases}
$$

Special continuous distributions

Remark. We have already seen an example of the uniform distribution

$$
f_{X}(x)=1, \quad 0<x<1
$$

We can denote this by $X \sim \operatorname{Unif}(0,1)$. We have also computed the following quantities:

- cdf: $F_{X}(x)=x, \quad 0<x<1$
- expected value: $\mathrm{E}(X)=\frac{1}{2}$
- variance: $\operatorname{Var}(X)=\frac{1}{12}$

Special continuous distributions

Example 0.1. Suppose a bus arrives at a stop uniformly random between noon and $12: 15 \mathrm{pm}$, and you arrive at the bus stop exactly at noon. What is the probability that you will wait
(1) no more than 5 minutes or
(2) between 5 and 10 minutes, or
(3) more than 10 minutes?

Special continuous distributions

Theorem 0.1. If $X \sim \operatorname{Unif}(a, b)$, then its $c d f$ is

$$
F(x)=\frac{x-a}{b-a}, \quad a<x<b
$$

and the mean and variance are

$$
\mathrm{E}(X)=\frac{a+b}{2}, \quad \operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
$$

The Normal distribution

Def $0.2\left(X \sim N\left(\mu, \sigma^{2}\right)\right)$. We say that a continuous random variable X has a normal distribution with parameters μ, σ if it has the following pdf:

$$
f(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<\infty
$$

(1) The normal curves are all symmetric, unimodal, and bell-shaped;
(2) $\mathrm{E}(X)=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$;
(3) $N(0,1)$ is called the standard normal distribution:
$f(x ; 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}, \quad x \in \mathbb{R}$
Prof. Guangliang Chen | Mathematics \& Statistics, San José State University

Special continuous distributions

The Normal distributions are fundamental in probability and statistics:

- Empirically, measurements of a large population often have normal distributions, such as
- repeated measurements of the same object,
- heights of a large population, and
- test scores of a large class.
- Mathematically, one can show that the sums of many independent random variables (individually not necessarily normally distributed) have approximate normal distributions (this result is called the Central Limit Theorem)

Special continuous distributions

Why staticians don't make it as waiters...

Special continuous distributions

Bad news - cdfs of normal distributions do not have explicit formulas: For any given point x_{0},

$$
F\left(x_{0} ; \mu, \sigma\right)=P\left(X<x_{0}\right)=\int_{-\infty}^{x_{0}} \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \mathrm{~d} x
$$

Through a change of variable

$$
z=\frac{x-\mu}{\sigma} \quad\left(\text { and a corresponding change of limit } z_{0}=\frac{x_{0}-\mu}{\sigma}\right)
$$

we can obtain that

$$
F\left(x_{0} ; \mu, \sigma\right)=\int_{-\infty}^{z_{0}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \mathrm{~d} z=F\left(z_{0} ; 0,1\right)
$$

Good news - All cdf calculations for normal distributions can be reduced to similar calculations for the standard normal.

Special continuous distributions

Displaying the cdf of $N(0,1)$

The cdf of standard normal $\Phi(x) \equiv F(x ; 0,1)$ can be numerically calculated through a computer:

and displayed in a (huge) table, called standard normal table (linked on http://www.sjsu.edu/faculty/guangliang.chen/Math161a.html).

Special continuous distributions

Table entry for z is the area under the standard Normal curve to the left of z.

TABLEA

Standard Normal probabilities (continued)

z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
0.1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
0.2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
0.3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
0.4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
0.5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
0.6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
0.7	. 7580	. 7611	. 7642	. 7673	. 7704	. 7734	. 7764	. 7794	. 7823	. 7852
0.8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
0.9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015

Special continuous distributions

Example 0.2. Suppose $Z \sim N(0,1)$. Find

- $P(Z<0)=$
- $P(Z<-1.3)=$
- $P(Z>1.3)=$
- $P(-2.5<Z<1.5)=$
- $P(-1<Z<1)=.6826$
- $P(-2<Z<2)=.9544$
- $P(-3<Z<3)=.9974$

Special continuous distributions

Percentiles

Def 0.3. For any $0<p<1$, we define the $(100 p)$ th percentile of the standard normal random variable Z as the cutoff z such that

$$
p=P(Z<z)=\Phi(z)
$$

Alternatively, we may write

$$
z=\Phi^{-1}(p)
$$

Special continuous distributions

Example 0.3. Find the 25th (first quartile), 50th (median), 75th (third quartile) percentiles of $Z \sim N(0,1)$.

Special continuous distributions

Critical values

Def 0.4. For $0<\alpha<1$, we define the z_{α} critical value as

$$
P\left(Z>z_{\alpha}\right)=\alpha
$$

Remark. z_{α} is also the $100(1-\alpha)$ th percentile:

$$
P\left(Z<z_{\alpha}\right)=1-\alpha
$$

Special continuous distributions

Example 0.4. Find z_{α} for $\alpha=.01, .05, .1$

Special continuous distributions

Standardization

Def 0.5. Let X be a random variable with mean μ and standard deviation σ). Its standardized form is defined as

$$
Z=\frac{X-\mu}{\sigma}
$$

Remark. Standardized random variables always have zero mean and unit variance:

$$
\begin{aligned}
\mathrm{E}(Z) & =\mathrm{E}\left[\frac{1}{\sigma}(X-\mu)\right]=\frac{1}{\sigma}(\mathrm{E}(X)-\mu)=0 \\
\operatorname{Var}(Z) & =\frac{1}{\sigma^{2}} \operatorname{Var}(X)=1
\end{aligned}
$$

Special continuous distributions

Proposition 0.2. If $X \sim N\left(\mu, \sigma^{2}\right)$, then

$$
Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

Correspondingly,

$$
F_{X}(x ; \mu, \sigma)=P(X \leq x)=P\left(Z \leq \frac{x-\mu}{\sigma}\right)=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

Remark. The normality part of the theorem follows from the fact that any linear transformation of a normal random variable is still normal.

Special continuous distributions

Example 0.5. Suppose $X \sim N\left(5,3^{2}\right)$. Verify that

$$
\begin{aligned}
P(X<-1) & =0.0228 \\
P(X>4.1) & =0.6179 \\
P(2<X<5.3) & =0.3811
\end{aligned}
$$

Special continuous distributions

Example 0.6. Suppose $X \sim N\left(5,3^{2}\right)$. Find the 90 th percentile.

Special continuous distributions

The 68-95-99.7 rule

Interpretation: Let $X \sim N\left(\mu, \sigma^{2}\right)$. Then the probabilities of X staying within one/two/three standard deviation around the center are roughly $68 \%, 95 \%, 99.7 \%$, respectively:

$$
\begin{aligned}
P(\mu-\sigma<X<\mu+\sigma) & \approx .68 \\
P(\mu-2 \sigma<X<\mu+2 \sigma) & \approx .95 \\
P(\mu-3 \sigma<X<\mu+3 \sigma) & \approx .997
\end{aligned}
$$

Special continuous distributions

Special continuous distributions

Normal approximation to binomial

Theorem 0.3. Let $X \sim B(n, p)$. Then for large n such that

$$
n p \geq 10, n(1-p) \geq 10
$$

we have

$$
X \stackrel{\text { approx }}{\sim} N\left(\mu=n p, \sigma^{2}=n p(1-p)\right),
$$

or equivalently,

$$
\frac{X-n p}{\sqrt{n p(1-p)}} \stackrel{\text { approx }}{\sim} N(0,1) .
$$

Special continuous distributions

How to make sense of the theorem (we use $x=22$ as an example):

$$
\underbrace{P(X=22)}_{B(n=40, p=0.5)} \approx \underbrace{P(21.5<X<22.5)}_{N(n p, n p(1-p))}
$$

Special continuous distributions

Example 0.7. Use the normal approximation to find the probability of getting exactly 22 heads when tossing a fair coin 40 times.
Answer: Binomial 0.1031, Normal 0.1044

Special continuous distributions

Example 0.8 (Cont'd). What about no more than 22 heads? Answer: Binomial 0.7852, Normal approximation 0.7357, and Normal+continuity correction 0.7852

Special continuous distributions

Remark. In the preceding example, the normal approximation to binomial (with continuity correction) works in the following ways:

$$
\begin{aligned}
& P(X=22) \approx P(21.5<X<22.5) \\
& P(X \leq 22) \approx P(X<22.5) \\
& P(X<22)=P(X \leq 21) \approx P(X<21.5) \\
& P(X \geq 22) \approx P(X>21.5) \\
& P(X>22)=P(X \geq 23) \approx P(X>22.5)
\end{aligned}
$$

The Exponential distribution

Exponential distributions are very useful for modeling the waiting time for a rare event, such as the arrival of a hurricane and the breakdown of an electronic device such as light bulb.

Def $0.6(X \sim \operatorname{Exp}(\lambda))$. A continuous random variable X is said to have an exponential distribution with parameter λ if its pdf has the following form

$$
f(x)=\lambda e^{-\lambda x}, \quad x>0
$$

Special continuous distributions

To understand what the parameter λ represents, we first need to find the expected value of $X \sim \operatorname{Exp}(\lambda)$.

Theorem 0.4. If $X \sim \operatorname{Exp}(\lambda)$, then

$$
\mathrm{E}(X)=\frac{1}{\lambda}, \quad \operatorname{Var}(X)=\frac{1}{\lambda^{2}}
$$

Special continuous distributions

Remark. The preceding theorem indicates that $\frac{1}{\lambda}$ is the mean waiting time for a rare event to occur and thus λ is the rate at which the event occurs (and it is the same parameter lambda of the Poisson distribution).

Special continuous distributions

Example 0.9. Suppose that the life time of a certain brand of light bulbs is exponentially distributed with an average of 1,000 hours. What is the probability that a new light bulb can exceed this amount of time? What about between 1,000 and 2,000 hours?

Special continuous distributions

Proposition 0.5. Let $X \sim \operatorname{Exp}(\lambda)$. Then the cdf of X is

$$
F_{X}(x)=1-e^{-\lambda x}, \quad x>0
$$

Special continuous distributions

The complementary cdf function

Def 0.7 . The complementary cdf of a random variable X is defined as

$$
\bar{F}(x)=P(X>x)=1-F(x)
$$

Remark. If $X \sim \operatorname{Exp}(\lambda)$, then

$$
\bar{F}(x)=e^{-\lambda x}, \quad x>0 .
$$

It can be thought of as the proba-
 bility of lasting longer than x hours for a light bulb.

Special continuous distributions

Theorem 0.6 (The memoryless property). If $X \sim \operatorname{Exp}(\lambda)$, then

$$
P\left(X>t_{0}+t \mid X>t_{0}\right)=P(X>t), \quad \text { for any } t_{0}, t>0
$$

Interpretation (in the setting of light bulbs):

- $P(X>t)$: probability that a new light bulb can exceed t hours
- $P\left(X>t_{0}+t \mid X>t_{0}\right)$: probability that a light bulb can last for t more hours given that it has worked for t_{0} hours.

Remark. The exponential distribution is the only continuous distribution that has the memoryless property.

Example 0.10. Jones figures that the total number of thousands of miles that an auto can be driven before it would need to be junked is an exponential random variable with parameter $\lambda=1 / 20$. Smith has a used car that he claims has been driven only 10,000 miles. If Jones purchases the car, what is the probability that she would get at least 20,000 additional miles out of it?

Special continuous distributions

Example 0.11 (Cont'd). Repeat under the assumption that the lifetime mileage of the car is not exponentially distributed but rather is (in thousands of miles) uniformly distributed over (0,40).

Special continuous distributions

The Gamma distribution

The Gamma distribution is defined based on the template function

$$
g(x)=x^{\alpha-1} e^{-x}, \quad x>0
$$

which has a peak at $x=\alpha-1$ when $\alpha>1$ and a long right tail:

$$
g^{\prime}(x)=x^{\alpha-2} e^{-x}(\alpha-1-x)
$$

In order to use $g(x)$ to produce a distribution, we need to normalize it carefully:

$$
1=\int_{0}^{\infty} C x^{\alpha-1} e^{-x} \mathrm{~d} x=C \cdot \underbrace{\int_{0}^{\infty} x^{\alpha-1} e^{-x} \mathrm{~d} x}_{\Gamma(\alpha)} \longrightarrow C=\frac{1}{\Gamma(\alpha)}
$$

The Gamma function

Def 0.8. The Gamma function is Properties:
a function $\Gamma:(0, \infty) \mapsto(0, \infty)$ with

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} \mathrm{~d} x, \quad \alpha>0
$$

(The Gamma function can be seen as a way to generalize factorials from integers to non-integers, e.g., 2.4!)

- $\Gamma(1)=1$
- For any $\alpha>0, \Gamma(\alpha+1)=$ $\alpha \cdot \Gamma(\alpha)$
- For any positive integer n, $\Gamma(n)=(n-1)$!
- $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

Special continuous distributions

Graph of the Gamma function

https://www.medcalc.org/manual/gamma_function.php
Prof. Guangliang Chen | Mathematics \& Statistics, San José State University

Special continuous distributions

We introduce a second parameter (β) to make the Gamma distribution more flexible.

From

$$
1=\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} e^{-x} \mathrm{~d} x
$$

by letting $x=y / \beta$ for some $\beta>0$, we have

$$
\begin{aligned}
1 & =\int_{0}^{\infty} \frac{1}{\Gamma(\alpha)}\left(\frac{y}{\beta}\right)^{\alpha-1} e^{-y / \beta} \frac{1}{\beta} \mathrm{~d} y \\
& =\int_{0}^{\infty} \underbrace{\frac{1}{\beta^{\alpha} \Gamma(\alpha)} y^{\alpha-1} e^{-y / \beta}}_{\text {two-parameter Gamma density }} \mathrm{d}
\end{aligned}
$$

The two-parameter Gamma distribution

Def $0.9(X \sim \operatorname{Gamma}(\alpha, \beta))$. A random variable X is said to have a (two-parameter) Gamma distribution with parameters α, β if it has a pdf of the form

$$
f(x ; \alpha, \beta)=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \beta}, \quad x>0
$$

Remark. If $\alpha=1$, then $\operatorname{Gamma}(\alpha, \beta)$ reduces to $\operatorname{Exp}(\lambda=1 / \beta)$.
Theorem 0.7. If $X \sim \operatorname{Gamma}(\alpha, \beta)$, then

$$
\mathrm{E}(X)=\alpha \beta, \quad \operatorname{Var}(X)=\alpha \beta^{2}
$$

Special continuous distributions

$$
f(x ; \alpha, \beta)
$$

(β is a scale parameter)

Application of the Gamma distribution

Consider the experiment of counting the occurrences of a rare event (such as hurricane) that occurs with rate λ :

It is already known that

- The total number of occurrences of the event in a unit interval of time has a Poisson distribution: $X \sim \operatorname{Pois}(\lambda)$;

Special continuous distributions

- The separate waiting times for different occurrences of the event, T_{1}, T_{2}, \ldots, are iid $\operatorname{Exp}(\lambda)$.

It turns out that the total waiting time for n occurrences of the event has a Gamma distribution:

$$
T=T_{1}+\cdots+T_{n} \sim \operatorname{Gamma}(\alpha=n, \beta=1 / \lambda)
$$

This implies that

$$
\begin{aligned}
\mathrm{E}(T) & =\mathrm{E}\left(T_{1}\right)+\cdots+\mathrm{E}\left(T_{n}\right)=n \cdot \frac{1}{\lambda}=\frac{n}{\lambda} \\
\operatorname{Var}(T) & =\operatorname{Var}\left(T_{1}\right)+\cdots+\operatorname{Var}\left(T_{n}\right)=n \cdot \frac{1}{\lambda^{2}}=\frac{n}{\lambda^{2}}
\end{aligned}
$$

The chi-squared distribution

Another special case of the Gamma distribution is the chi-squared distribution with parameter k, denoted as $\chi^{2}(k)$ and sometimes also χ_{k}^{2} :
$\operatorname{Gamma}\left(\alpha=\frac{k}{2}, \beta=2\right)=\chi^{2}(k) \longleftarrow k$ is called \#degrees of freedom
It is also the distribution of $X=Z_{1}^{2}+\cdots+Z_{k}^{2}$ where $Z_{1}, \ldots, Z_{k} \stackrel{i i d}{\sim} N(0,1)$.
The pdf of the $\chi^{2}(k)$ distribution is the following:

$$
f(x)=\frac{1}{2^{k / 2} \Gamma(k / 2)} x^{(k / 2)-1} e^{-x / 2}, \quad x>0
$$

Its mean and variance are $\mathrm{E}(X)=k$ and $\operatorname{Var}(X)=2 k$.

Special continuous distributions

Prof. Guangliang Chen | Mathematics \& Statistics, San José State University 49/50

Special continuous distributions

