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In this lecture, we introduce the following special discrete distributions
from Sections 3.4 – 3.6:

• Bernoulli

• Binomial (and HyperGeometric)

• Geometric (and Negative Binomial)

• Poisson



Special discrete distributions

Treatment plan for each distribution

• Examples

• Definition (including pmf)

• Expected value

• Variance

• Other useful properties (if any)
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Special discrete distributions

Bernoulli distributions
Consider the following experiments and associated random variables. What
distributions do they have?

Example 0.1 (Toss a fair coin). X = 1 (heads) and 0 (tails).

Example 0.2 (Randomly select a ball from an urn that has 10 red and 20
green balls). Let Y = 1 (if the selected ball is red) and 0 (otherwise).

Example 0.3 (Randomly select an individual from a population 40% of
which have certain characteristic). Let Z = 1 (if the selected individual
has the characteristic) and 0 (otherwise).
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Special discrete distributions

These experiments all share the following traits:

• There is only one trial;

• It has only two possible outcomes, “success” or “failure”;

• The probability of having a success is some number p;

• X is a indicator variable for the outcome success:
X = 1 (success) or 0 (failure)

We say that such a random variable has a Bernoulli distribution with
parameter p, and denote it as X ∼ Bernoulli(p).

Such an experiment is called a Bernoulli trial.
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Special discrete distributions

Example 0.4 (Toss a fair coin). X = 1 (heads) and 0 (tails).

Answer: X ∼ Bernoulli(1
2)

Example 0.5 (Randomly select a ball from an urn that has 10 red and 20
green balls). Let Y = 1 (if the selected ball is red) and 0 (otherwise).

Answer: Y ∼ Bernoulli(1
3)

Example 0.6 (Randomly select an individual from a population 40% of
which have certain characteristic). Let Z = 1 (if the selected individual
has the characteristic) and 0 (otherwise).

Answer: Z ∼ Bernoulli(0.4)
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Special discrete distributions

Properties of Bernoulli distributions

Clearly, if a discrete random variable X follows a Bernoulli distribution
with parameter p, then its pmf has the following form (and vice versa):

fX(x) = px(1 − p)1−x, x = 0, 1

(and fX(x) = 0 for all other x)

x 0 1
P (X = x) 1 − p p 0 1

b

b

1− p

p |
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Special discrete distributions

Theorem 0.1. Let X ∼ Bernoulli(p). Then

E(X) = p

Var(X) = p(1 − p)

Proof. We have already obtained these results previously:

E(X) = 0 · (1 − p) + 1 · p = p

E(X2) = 02 · (1 − p) + 12 · p = p

and consequently,

Var(X) = E(X2) − E(X)2 = p− p2 = p(1 − p).
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Special discrete distributions

Binomial

The following experiments (and random variables X) are essentially the
same:

• (Toss a fair coin 10 times): X = #heads

• (Answer 10 multiple-choiced questions by random guessing):
X= #correctly answered questions

• (Draw with replacement 10 balls at random from an urn containing
30 red balls and 20 blue balls): X= #red balls obtained
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Special discrete distributions

We make the following abstraction about the experiments:

• The experiment consists of n repeated trials

• Each trial has only two possible outcomes: “success”, “failure”

• The probability p of getting successes is fixed throughout the
experiment

• The n Bernoulli trials are independent

• X counts the total number of successes
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Special discrete distributions

Distribution of the random variable X:

In short, X counts the total number of successes in n independent Bernoulli
trials with fixed probability of success p.

1 2 n

In the above scenario, we say that X follows a binomial distribution
with parameters n, p, and write X ∼ B(n, p)
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Special discrete distributions

Example 0.7. Find the distribution of X in each case below:

• (Toss a fair coin 10 times) X = #heads B(10, 1
2)

• (Answer 10 multiple-choiced questions by random guessing) X=
#correctly answered questions B(10, 1

4)

• (Draw with replacement 10 balls from an urn containing 30 red balls
and 20 blue balls at random) X= #red balls obtained. B(10, 0.6)
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Special discrete distributions

Theorem 0.2. The pmf of X ∼ B(n, p) is

fX(x) =
(
n

x

)
px(1 − p)n−x, x = 0, 1, . . . , n.

1 2 n

H HH

How to understand this result:

• (nx): # ways of having x successes in n trials

• px: probability of having exactly x successes (in each pattern)

• (1 − p)n−x: probability of having exactly n− x failures
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Special discrete distributions

Example 0.8 (Answer 10 multiple-choiced questions by random guessing).
Let X= #correctly answered questions. Find P (X = x) for x = 0, 2, 9.
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Special discrete distributions
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Special discrete distributions

Theorem 0.3. Let X ∼ B(n, p). Then

E(X) = np, Var(X) = np(1 − p)

Proof. Write

1 2 n

X1 + X2 + · · · + XnX =

where the Xi’s are identically and independently distributed (iid) according
to the Bernoulli(p) distribution:

X1, X2, . . . , Xn
iid∼ Bernoulli(p)
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Special discrete distributions

It follows that

E(Xi) = p, Var(Xi) = p(1 − p), for all i = 1, . . . , n

By linearity and independence,

E(X) = E(X1) + · · · + E(Xn) = p+ · · · + p = np

Var(X) = Var(X1) + · · · + Var(Xn) = np(1 − p).
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Special discrete distributions

Hypergeometric

Recall the example in which we draw 10 balls at random from an urn
containing 30 red and 20 blue balls, and let X= #red balls obtained.

The experiment was performed with replacement, so we concluded that
X ∼ B(n = 10, p = 0.6)

If the experiment is performed without replacement instead, then X is
not binomial (why?), but has a so-called hypergeometric distribution:
X ∼ HyperGeom(N = 50, r = 30, n = 10).
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Special discrete distributions

In fact, in the latter case (without replacement), X has the following pmf:

fX(x) =
(30
x

)( 20
10−x

)(50
10
) , x = 0, 1, . . . , 10

where

• (30
x

)
: #ways of choosing x red balls out of 30

• ( 20
10−x

)
: #ways of choosing 10 − x blue balls out of 20

• (50
10
)
: #ways of choosing 10 balls out of 50 in total (ignoring color)
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Special discrete distributions

The hypergeometric pmf has a somewhat complicated formula, but in the
special setting of large N and large r, it can be well approximated by the
binomial pmf.

Theorem 0.4. When N, r are both large (relative to n), then

HyperGeom(N, r, n) ≈ B(n, p = r

N
).

Remark. To understand why this approximation seems reasonable, assume
an urn containing 500 red balls and 500 blue balls. We select a small
number of balls from the urn without replacement, and monitor how the
probability of selecting red balls changes gradually (see next slide).

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 20/51



Special discrete distributions
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Special discrete distributions
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Special discrete distributions

Suppose we now draw 20 balls without replacement from an urn containing
500 red and 500 blue balls, and let X= number of red balls in the selection.
Below shows the pmf of the exact distribution of X (hypergeometric) and
its binomial approximation.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

HG(1000,500,20)
B(20,0.5)
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Special discrete distributions

The Hypergeometric distribution has important applications in polling,
where it is often suitable to approximate it by the binomial distribution.

Example 0.9. Consider the experiment of drawing, without replacement,
n voters at random from the whole pool of N that are registered, r of
which support certain presidential candidate. Let X = #supporters of
the candidate in the selection. Then X ∼ HyperGeom(N, r, n). In reality,
both r and N are typically large (e.g., in the order of millions) and n is
only around a thousand. Accordingly, we have that X approx∼ B(n, p = r

N ).
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Special discrete distributions

Geometric
The following two experiments are identical in nature:

Example 0.10. Consider the experiment of repeatedly and independently
flipping a coin until the first head appears. Let X = #flips needed.

1 2

T T T T H

X = #flips

b b b

Example 0.11. Consider the experiment of repeatedly drawing balls, with
replacement, from an urn containing 5 red balls and 5 blue balls, until a
red ball has been selected. Let X = total # of trials needed.
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Special discrete distributions

We make the following abstraction:

• The experiment consists of a sequence of repeated Bernoulli trials
(i.e., each trial has only two outcomes: “success” and “failure”);

• The probability p of getting successes is always fixed

• The Bernoulli trials are all independent;

• The experiment is stopped as soon as one success has occurred;

• X denotes the total number of trials that have been performed.

In short, X counts the total number of independent trials (with fixed
probability of success) that are needed for the first success to occur.
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Special discrete distributions

Def 0.1. We say that the previous random variable X has a geometric
distribution with parameter p, and write X ∼ Geom(p).

Remark. Binomial (fixed #trials), geometric (fixed #successes):

1 2 n (fixed)

T T T TH H HT

How many heads are there? (binomial)

1 2

T T HT

How many trials are there? (geometric)

T
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Special discrete distributions

Example 0.12. The following random variables both have geometric
distributions:

• (Repeatedly flip a fair coin until the first head appears) X = total
number of flips needed. Geom(1

2)

• (Repeatedly draw balls with replacement from an urn containing 5
red balls and 5 blue balls) X = #trials required to obtain a red ball
for the first time. Geom(1

2)

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 28/51



Special discrete distributions

Theorem 0.5. The pmf of of X ∼ Geom(p) is

f(x) = (1 − p)x−1p, x = 1, 2, . . .

Proof. See the following figure.

1 2

T T T T H

(1− p)x−1

b b b

x− 1 x

pb
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Special discrete distributions

Example 0.13. Suppose X has a geometric distribution with p = 1
2 . Find

P (X = 4) and F (X ≥ 4).
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Special discrete distributions
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Special discrete distributions

Infinitely many mathematicians walk into a bar.

The first says, “I’ll have a beer.”

The second says, “I’ll have half a beer.”

The third says, “I’ll have a quarter of a beer.”

The barman pulls out just two beers.

The mathematicians are all like, “That’s all you’re giving us? How drunk
do you expect us to get on that?”

The bartender says, “Come on guys. Know your limits.”
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Special discrete distributions

An infinite number of mathematicians walk into a bar.

The first one orders a beer.

The second orders half a beer.

The third orders a third of a beer.

The bartender bellows, “Get the hell out of here, are you trying to ruin
me?”
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Special discrete distributions

Theorem 0.6. Let X ∼ Geom(p). Then

E(X) = 1
p
, Var(X) = 1 − p

p2

Proof. We prove only the formula for expected value. By definition,

E(X) =
∞∑
x=1

x · (1 − p)x−1p = p
∞∑
x=1

x(1 − p)x−1

This series is of the form
∑∞
x=1 xa

x−1, which is equal to 1
(1−a)2 . Applying

this formula gives that

E(X) = p · 1
(1 − (1 − p))2 = 1

p
.
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Special discrete distributions

Negative Binomial
Briefly speaking, negative binomial distributions are generalizations of
geometric distributions by waiting for more than one success.

Example 0.14. Consider the experiment of repeatedly and independently
flipping a coin until a total of r heads have been obtained. Let X = #trials
needed. Then X follows a negative binomial distribution with parameters
p (probability of getting heads) and r. We denote it by X ∼ NB(p, r).

1

T H T H

X = #flips

T T

2

T T H
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Special discrete distributions

The pmf of X is

fX(x) =
(
x− 1
r − 1

)
pr(1 − p)x−r, x = r, r + 1, r + 2, . . .︸ ︷︷ ︸

range

in which

• (x−1
r−1
)
: #ways of getting r − 1 heads in first x− 1 trials

• pr: probability of getting r heads (including the very last head)

• (1 − p)x−r: probability of getting x− r tails

1

T H T T H

x− 1 trials, r − 1 heads

T T

2 xx− 1

last head

T H
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Special discrete distributions

0 5 10 15 20

x

0

0.1

0.2

0.3

0.4

0.5

0.6

f(
x
)

NB(p, r=3) pmfs

p=0.8

p=0.5

p=0.2

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 37/51



Special discrete distributions
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Special discrete distributions

Theorem 0.7. Let X ∼ NB(p, r). Then

E(X) = r

p
, Var(X) = r(1 − p)

p2

Proof. Write X as a sum of iid Geom(p) random variables:

1

T H T T HT T

2

T H

X1 Xr
b b b+ +X =
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Special discrete distributions

Then

E(Xi) = 1
p
, Var(Xi) = 1 − p

p2 , for all i = 1, . . . , r

By linearity (and independence),

E(X) = E(X1) + · · · + E(Xr) = 1
p

+ · · · + 1
p

= r

p

Var(X) = Var(X1) + · · · + Var(Xr) = 1 − p

p2 + · · · + 1 − p

p2 = r(1 − p)
p2 .
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Special discrete distributions

Poisson
Consider the following random variables:

• #hurricanes that hit a region each year

• #earthquakes occurring in certain country in a year

• #car accidents on a certain highway per week

• #phone calls received by a call center per minute

• #customers arriving at a bank counter in every hour

• #typos on each page of certain book
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Special discrete distributions

These examples have the following common characteristics:

• X counts the total number of certain event

• ... that is rare (with a small rate of occurrence λ)

• ... and occurs independently of each other

• ... over an fixed interval of time or space

| | | |b b b b b b b b b |

#occurences =?a fixed interval

Such random variables are modeled by Poisson distributions.
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Special discrete distributions

Def 0.2 (X ∼ Pois(λ). We say that a discrete random variable has a
Poisson distribution with parameter λ, if the pmf has the form

fX(x) = λx

x! e
−λ, x = 0, 1, 2, . . .

Remark. The Poisson pmf is based on the following power series:

eλ =
∞∑
x=0

λx

x! = 1
0! + λ

1! + λ2

2! + λ3

3! + · · ·

which implies that

1 =
∞∑
x=0

λx

x! e
−λ
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Special discrete distributions

Theorem 0.8. If X ∼ Pois(λ), then E(X) = λ and Var(X) = λ.

Proof. We only prove the formula for the expected value:

E(X) =
∞∑
x=0

x · λ
x

x! e
−λ =

∞∑
x=1

λx

(x− 1)!e
−λ = λ

∞∑
y=0

λy

y! e
−λ = λ · 1 = λ.

Remark. This theorem indicates that the parameter λ represents the mean
value of the random variable.
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Special discrete distributions

Example 0.15. Suppose, on average, 2.2 hurricanes hit a region each year.
Let X = #hurricanes next year. Then X ∼ Pois(λ = 2.2). It follows that

• P (X = 0) = e−2.2 = 0.1108

• P (X = 1) = 2.2e−2.2 = 0.2438

• P (X = 2) = 2.22

2 e−2.2 = 0.2681

• P (X ≥ 2) = 1 − 3.2e−2.2 = 0.6454
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Special discrete distributions
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Special discrete distributions

Theorem 0.9. If n is large and p is small, then B(n, p) ≈ Pois(λ = np).

Why this result is true: Consider the hurricane example again (where the
number of hurricanes that hit a region in a year has a Poisson distribution
with rate λ). We divide a year into n equal subintervals of time (e.g., 12
months, or 365 days).

| b b |b| | | | | | | | | | | | | | | ||||

When n is large, the number of hurricanes that occur in each subinterval
is at most 1, thus a Bernoulli random variable with p = λ

n .

Therefore, the total number of hurricanes during the year is (approximately)
binomial, with parameters n, p.
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Special discrete distributions

Example 0.16. Verify that for X ∼ Pois(2.2), P (X = 2) = 0.2681. In
contrast, if X ∼ B(n = 365, p = 2.2

365), then P (X = 2) = 0.2689.
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Special discrete distributions

Remark. We can also use the binomial approximation to derive the expec-
tation and variance of a Poisson random variable X ∼ Pois(λ).

Since Pois(λ) ≈ B(n, p) for some large n (and small p = λ
n), we have

E(X) ≈ np = n · λ
n

= λ;

Var(X) ≈ np(1 − p) = n · λ
n

·
(

1 − λ

n

)
≈ λ.

The above approximations become exact when n goes to infinity.
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Special discrete distributions

Example 0.17. The first draft of a probability textbook has 600 pages.
Assume that the probability of any given page containing at least one
typographical error is 0.015 and the numbers of errors on all the pages are
mutually independent. Let T be the total number of pages which have at
least one typographical error. Find the probability that T = 9.
Answer: .1328 (exact), or .1318 (approx)

Solution. Each page of the textbook corresponds to a Bernoulli trial
(whether there is at least a typo on the page). There are 600 repeated
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Special discrete distributions

trials and they are independent by the assumption. Thus, the exact
distribution of T is T ∼ B(n = 600, p = 0.015). Using this, we get that

P (T = 9) =
(

600
9

)
0.0159(1 − 0.015)600−9 = .1328.

Since this is a large n, small p setting, the binomial is approximately
Poisson:

T
approx∼ Pois(λ = np = 9).

Consequently, by the Poisson approximation, we have

P (T = 9) ≈ 99

9! e
−9 = .1318

We can see that it is very close to the exact probability given by the
binomial distribution.
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