San José State University
Math 161A: Applied Probability \& Statistics

Conditional Probability \& Independence

Prof. Guangliang Chen

Section 2.4 Conditional probability

Section 2.5 Independence

Conditional probability and independence

Introduction

Consider the following problem.
Example 0.1 (Toss two fair dice). Let $B=\{\mathrm{Sum}=10\}$. Find $P(B)$.

Conditional probability and independence

Introduction (cont'd)

Example 0.2 (Continuation of the previous question). What if we are given that the two numbers are identical (event A)?

Conditional probability and independence

Conditional probability

When extra information (about the result of a random phenomenon) is available, this effectively reduces the sample space.

Def 0.1. Suppose $A, B \subseteq S$ and $P(A)>0$. The conditional probability of B given A (which has occurred) is defined as

$$
P(B \mid \underbrace{A}_{\text {given }})=\frac{P(A \cap B)}{P(A)}
$$

Conditional probability and independence

Example 0.3. Consider the previous question again where the experiment was tossing two fair dice and we let $A=\{$ Two identical numbers $\}$ and $B=\{\mathrm{Sum}=10\}$. We already know that $P(B \mid A)=\frac{1}{6}$. Find also $P(A \mid B)$. Are they equal to each other?

Conditional probability and independence

Multiplication rule

Rewriting the equation in the definition of conditional probability leads to a rule for computing the probability of several events occuring together.

Theorem 0.1. For any two events $A, B \subseteq S$ with $P(A)>0$,

$$
P(A \cap B)=P(B \mid A) \cdot P(A)
$$

More generally,

$$
P\left(E_{1} \cap E_{2} \cap E_{3}\right)=P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right) \cdot P\left(E_{3} \mid E_{1} \cap E_{2}\right)
$$

Conditional probability and independence

Example 0.4 (Polya's urn scheme). Suppose an urn initially has r red balls and b blue balls. A ball is drawn at random and its color noted. Then it together with an extra ball of the same color (as the drawn ball) is put back into the urn. Now select a second ball at random. What is the probability that the two drawn balls are both red?

Conditional probability and independence

Solution:

Conditional probability and independence

Example 0.5. Three cards are dealt from the top of a well-shuffled deck of 52 cards. What is the probability that they are all hearts?

Conditional probability and independence

Partition of a sample space

Def 0.2. A sequence of nonempty events $\left\{E_{i}\right\}$ are said to form a partition of the sample space S if they are

- mutually exclusive:

$$
E_{i} \cap E_{j}=\emptyset \quad \text { for all } i \neq j
$$

- and exhaustive:

$$
\cup E_{i}=S
$$

Conditional probability and independence

Example 0.6 (Toss a die once). The sample space is $S=\{1,2,3,4,5,6\}$.
Which of the following are partitions of the sample space?
(1) $E_{1}=\{1\}, \ldots, E_{6}=\{6\}$
(2) $A=\{1,3,5\}, A^{c}=\{2,4,6\}$
(3) $A=\{1,2,3\}, B=\{4,5\}, C=\{6\}$
(4) $A=\{1,3,5\}, B=\{2,4\}$
(5) $A=\{1,3,5\}, B=\{2,4\}, C=\{5,6\}$

Conditional probability and independence

Remark. For any sample space S, the following are partitions:

- All the simple events: $S=\cup_{s \in S}\{s\}$.
- Any nonempty event $A \subset S$ and its complement: $S=A \cup A^{c}$.

Conditional probability and independence

Law of total probability (LTP)

Theorem 0.2. Assume a partition of a sample space $S=E_{1} \cup E_{2} \cup \cdots$. For any event $A \subseteq S$, we have

$$
\begin{aligned}
P(A) & =\sum_{i} P\left(A \cap E_{i}\right) \\
& =\sum_{i} P\left(A \mid E_{i}\right) P\left(E_{i}\right) .
\end{aligned}
$$

Proof. This is a direct consequence of additivity of probability function and the multiplication rule.

Conditional probability and independence

For a partition of size two: $S=A \cup A^{c}$, the LTP reduces to the following. Corollary 0.3. Let $A \subset S$, with $P(A)>0$. Then for any event $B \subseteq S$,

$$
\begin{aligned}
P(B) & =P(B \cap A)+P\left(B \cap A^{c}\right) \\
& =P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)
\end{aligned}
$$

Conditional probability and independence

Example 0.7 (Polya's urn scheme). Suppose an urn initially has r red balls and b blue balls. A ball is drawn and its color noted. The it together with an extra ball of the same color (as the drawn ball) is added to the urn. Now select a second ball at random. What is the probability that the second drawn ball is red?

Conditional probability and independence

Solution:

Conditional probability and independence

Bayes’ rule

\ldots is a formula for computing the "posterior probabilities" $P\left(E_{i} \mid A\right)$.

Theorem 0.4. Suppose that the events E_{1}, E_{2}, \ldots form a partition of S. Let $A \subseteq S$ be any event with $P(A)>0$. Then, for any i,

$$
P\left(E_{i} \mid A\right) \stackrel{\text { def }}{=} \frac{P\left(A \cap E_{i}\right)}{P(A)}
$$

$$
=\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{\sum_{j} P\left(A \mid E_{j}\right) P\left(E_{j}\right)}
$$

Conditional probability and independence

Interpretation of Bayes' rule:

- E_{i} : possible causes or hypotheses
- A : evidence
- $P\left(E_{i}\right)$: prior probabilities
- $P\left(A \mid E_{i}\right)$: forward probabilities
- $P\left(E_{i} \mid A\right)$: posterior probabilities (after seeing the evidence)

Conditional probability and independence

Conditional probability and independence

Example 0.8 (Polya's urn scheme). Suppose an urn has r red balls and b blue balls. A ball is drawn and its color noted. The it together with an extra ball of the same color as the drawn ball is added to the urn. Find the probability that the first drawn ball was red given that the second ball drawn is red.

Conditional probability and independence

Solution:

Conditional probability and independence

Example 0.9. Suppose that 65% of the defendants are truly guilty. Suppose also that juries vote a guilty person innocent with probability 0.2 whereas the probability that a jury votes an innocent person guilty is 0.1 . Find the probability that a defendant is convicted. What percentage of convicted defendants are truly guilty?

Conditional probability and independence

Example 0.10. Suppose there are three chests each having two drawers. One chest has a gold coin in each drawer, one chest has a gold coin in one drawer and a silver coin in the other drawer, and the third chest has a silver coin in each drawer. A chest is first picked at random and then a random drawer is opened.
(a) What is the probability that the opened drawer contains a gold coin?
(b) If the drawer contains a gold coin, what is the probability that the other drawer also contains a gold coin?

Conditional probability and independence

Example 0.11 (The Monty Hall problem). First watch a YouTube video at https://www.youtube.com/watch?v=mhlc7peGlGg and then use a tree diagram to verify the probabilities.

Conditional probability and independence

Independence

Two events are independent if the knowledge of one event occurring does not change the probability of the other occurring.

Def 0.3. Two events $A, B \subseteq S$ with $P(A)>0$ are said to be (statistically) independent if

$$
P(B \mid A)=P(B)
$$

Conditional probability and independence

Example 0.12. A card is selected at random from an ordinary deck of 52 . Let A denote the event that the selected card is an ace, and B a spade. Are A, B independent?

Conditional probability and independence

Theorem 0.5. Two events $A, B \subseteq S$ are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

Proof. This can be easily shown by combining the multiplication rule and the definition of independence:

$$
P(A \cap B) \stackrel{\text { always }}{=} P(A) P(B \mid A) \stackrel{\text { indep. }}{=} P(A) P(B)
$$

Remark. If $A, B \subseteq S$ are independent events, then each of the pairs: A^{c} and B, A and B^{c}, A^{c} and B^{c}, are also independent events:

$$
\begin{aligned}
P\left(A \cap B^{c}\right) & =P(A)-P(A \cap B)=P(A)-P(A) P(B) \\
& =P(A)(1-P(B))=P(A) P\left(B^{c}\right)
\end{aligned}
$$

Conditional probability and independence

Example 0.13. Suppose we draw two cards from an ordinary deck of 52, with replacement. Find the probability that both are diamonds. What if the cards are drawn without replacement instead?

Conditional probability and independence

A joke on independence

A stats professor plans to travel to a conference by plane. When he passes the security check, they discover a bomb in his carry-on-baggage. Of course, he is hauled off immediately for interrogation.
"I don't understand it!" the interrogating officer exclaims. "You're an accomplished professional, a caring family man, a pillar of your parish and now you want to destroy that all by blowing up an airplane!"
"Sorry", the professor interrupts him. "I had never intended to blow up the plane."
"So, for what reason else did you try to bring a bomb on board?!"

Conditional probability and independence

"Let me explain. Statistics shows that the probability of a bomb being on an airplane is $1 / 1,000$. That's quite high if you think about it - so high that I wouldn't have any peace of mind on a flight."
"And what does this have to do with you bringing a bomb on board of a plane?"
"You see, since the probability of one bomb being on my plane is $1 / 1,000$, the chance that there are two bombs is $1 / 1,000,000$. If I already bring one, the chance of another bomb being around is actually $1 / 1,000,000$, and I am much safer.

Conditional probability and independence

Def 0.4. A collection of events E_{1}, E_{2}, \ldots are said to be (mutually) independent if for any subcollection $E_{i_{1}}, \ldots, E_{i_{k}}$, we have

$$
P\left(E_{i_{1}} \cap \cdots \cap E_{i_{k}}\right)=P\left(E_{i_{1}}\right) \cdots P\left(E_{i_{k}}\right)
$$

Remark. Three events $E_{1}, E_{2}, E_{3} \subseteq S$ are independent if all four equations below are true:

$$
\begin{aligned}
P\left(E_{1} \cap E_{2}\right) & =P\left(E_{1}\right) P\left(E_{2}\right) \\
P\left(E_{1} \cap E_{3}\right) & =P\left(E_{1}\right) P\left(E_{3}\right) \\
P\left(E_{2} \cap E_{3}\right) & =P\left(E_{2}\right) P\left(E_{3}\right) \\
P\left(E_{1} \cap E_{2} \cap E_{3}\right) & =P\left(E_{1}\right) P\left(E_{2}\right) P\left(E_{3}\right)
\end{aligned}
$$

Conditional probability and independence

If only the top three equations hold true, then E_{1}, E_{2}, E_{3} are said to be pairwise independent.

In your homework you are asked to show that the top three equations do not necessarily imply the last one.

Thus, pairwise independence is weaker than mutual independence (the latter is what we typically mean by independence for three or more events).

Remark. Independence (for three or more events) is more often an assumption, or the experimental setup, given to us, which can be used to simplify calculations.

Conditional probability and independence

Example 0.14 (n coin tosses). Consider the experiment of tossing a coin n times independently. Suppose the probability of the coin landing on heads is p. Find the probabilities that
(1) only the first k tosses are heads
(2) at least one toss is a head.

Solution: Let $H_{i}=\{i$ th coin toss is a head $\}$ for each $i=1, \ldots, n$. Then according to the question, H_{1}, \ldots, H_{n} are (mutually) independent.

Conditional probability and independence

Summary

In this lecture we presented the following concepts:

- Conditional probability of one event B given another event A (with $P(A)>0$):

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

- Partition of a sample space: $S=\cup E_{i}$ (E_{i} are pairwise disjoint)
- Independence: Two events A, B are (statistically) independent if

$$
P(B \mid A)=P(B), \quad \text { or equivalently } \quad P(A \cap B)=P(A) P(B)
$$

Conditional probability and independence

and formulas:

- Multiplication Rule:

$$
P(A \cap B)=P(B \mid A) P(A)
$$

- Law of Total Probability: Given a partition $S=\cup E_{i}$, for any event $A \subseteq S$,

$$
P(A)=\sum P\left(A \mid E_{i}\right) P\left(E_{i}\right)
$$

- Bayes' Rule: For any event E_{i} in the partition,

$$
\text { posterior probability } \longrightarrow P\left(E_{i} \mid A\right)=\frac{P\left(A \mid E_{i}\right) P\left(E_{i}\right)}{P(A)}
$$

