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Confidence intervals

Introduction
Last time we started considering the new setting in which we only know
the distribution type, but not the values of its parameters.

The new goal is to use a random sample to infer about the unknown
population parameter. This is called statistical inference.
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Confidence intervals

We also mentioned three different kinds of inference tasks

X Point estimation: What is a single (best) guess of the value of θ?

×
your guess

• Interval estimation: Can you find an interval to capture the value
of θ?

• Hypothesis testing: It is claimed that θ = θ0 (θ0 represents a
specific number). How do you test the hypothesis based on a
random sample from the population?

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 4/37



Confidence intervals

Recall that mathematically, a point estimator θ̂ of θ is a (reasonable)
statistic used to estimate θ.
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For any specific realization of the random sample, the corresponding value
of θ̂ is called a point estimate of θ.
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Limitations with point estimation:
×

your guess

• Point estimates are rarely exactly correct (even when point estimators
that are unbiased and have least variance are used).

For example, for a random sample from the N(µ, σ2) population,
the point estimator X̄ of µ is a MVUE. For any small ε > 0, the
probability that X̄ is within a distance of ε from µ is

P (µ− ε < X̄ < µ+ ε) ≈ 2εf(µ).

• Point estimates provide no error information.
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Confidence intervals

Question: Can we make the “coverage probability” much higher than 0?

The answer is yes (by using an interval around X̄). One extreme case is

P (µ ∈ (X̄ −∞, X̄ +∞) = 1)

but it is useless.

A more favorable solution is to find a “short” interval with “high” coverage
probability:

P (µ ∈ (X̄ −m, X̄ +m)) = 1− α (for some small α).

×( )

X̄ X̄ +mX̄ −m
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Rewrite as
P (X̄ −m < µ < X̄ +m) = 1− α.

In the equation,

• µ: population mean (unknown parameter to be estimated)

• X̄: sample mean (statistic)

• m: half width (fixed scalar, to be found)

• 1− α: coverage probability (specified by user)

• (X̄ −m, X̄ +m): interval estimator (random)

Task: Given α, find m.
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Theorem 0.1. Assume X1, . . . , Xn
iid∼ N(µ, σ2) where µ is unknown, but

σ2 is known. For any given 0 < α < 1, we have

m = zα/2
σ√
n
.

Proof. The equation on the preceding slide is equivalent to

P (−m < X̄−µ < m) = 1−α, or P

(
− m

σ/
√
n
< Z <

m

σ/
√
n

)
= 1−α.

This implies that
m

σ/
√
n

= zα/2, and accordingly, m = zα/2
σ√
n
.
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Interval estimator
We have just obtained that

P

(
µ ∈

(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

))
= 1− α.

Def 0.1. We call the interval estimator(
X̄ − zα/2

σ√
n
, X̄ + zα/2

σ√
n

)
≡ X̄ ± zα/2

σ√
n

a 1− α random interval for µ. The quantity m = zα/2
σ√
n
is called the

margin of error of the point estimator X̄.

Remark. If α = 0.05 (i.e., 1− α = 0.95), then m = 1.96 σ√
n
.
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Confidence interval

Def 0.2. For any specific sample X1 = x1, . . . , Xn = xn (along with the
observed value x̄ of X̄), the interval estimate

x̄± zα/2
σ√
n

is called a 1−α confidence interval for µ. In this setting, 1−α is called
the confidence level.
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N(µ, σ2)
X1

X2

Xn

b

b
b

Random sample

Interval estimator

X̄ ± zα/2
σ√
nµ unknown

(σ known)

x̄(1) ± zα/2
σ√
n

Confidence intervals

Population

x̄(2) ± zα/2
σ√
n

b

b

b

Example 0.1. Recall the brown egg example where n = 12, x̄ = 65.5 and
σ = 2, a 95% confidence interval is

x̄± zα/2
σ√
n

= 65.5± 1.96 · 2√
12

= 65.5± 1.1 = (64.4, 66.6).
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Interpretations of confidence intervals
We can say that

• (64.4, 66.6) is a 95% confidence interval for µ, or

• We are 95% confident that the true µ is contained by this interval (i.e.,
between 64.4 and 66.6 grams).

We cannot say that

• The probability that µ is contained by this interval is 0.95,

as both µ and this interval are fixed and there is only one truth: “contain”
or “not contain”. We just do not know which one is true (when µ is un-
known).
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Confidence is not probability!

bc bc
bcbc
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bc
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bc
bc

bc

Select 1 ball

at random

19 blue balls 1 red

?

• Probability describes the chance of selecting a blue ball before you
actually do it (or if you do it many times)

• Confidence is, after you selected one ball, how certain you believe
the ball you got is blue (without looking at it).
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Confidence intervals

Relationship between m and n, α

(m: margin of error, n: sample size, 1− α: confidence level)

m = zα/2
σ√
n

• The larger the sample size n, the smaller the margin of error m (the
shorter the confidence interval);

• The larger the confidence level 1− α, the bigger the margin of error
m (the wider the confidence interval).
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Confidence intervals

Example 0.2 (Continuation of the brown egg example). For another
sample from the same population with the same mean x̄ = 65.5 but a
larger size n = 48, a 95% confidence interval is

x̄± zα/2
σ√
n

= 65.5± 1.96 · 2√
48

= 65.5± 0.55.

How large should the sample size be in order for the margin of error to be
0.2 (at level 95%)?

n =
(
zα/2

σ

m

)2
=
(

1.96 · 2
0.2

)2
= 384.2.

The smallest sample size thus is 385.
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Confidence intervals

Example 0.3 (Continuation of the brown egg example). Using the same
sample, a 99% confidence interval is

x̄± zα/2
σ√
n

= 65.5± 2.576 · 2√
12

= 65.5± 1.5 = (64.0, 67.0),

and a 90% confidence interval is

x̄± zα/2
σ√
n

= 65.5± 1.645 · 2√
12

= 65.5± 0.95

Remark. 99% CI > (longer than) 95% CI > 90% CI

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 18/37
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What if we do not know σ?

Assuming a normal population N(µ, σ2), with both µ, σ2 unknown, we
can still construct a 1− α confidence intervals for

(1) µ

(2) σ2

We present the details next.
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Confidence interval for µ (when σ is unknown)
Recall when σ was assumed to be known, to derive a 1 − α confidence
interval for µ, we started with

P (X̄ −m < µ < X̄ +m) = 1− α

and got (after rearranging terms)

P (−m < X̄ − µ < m) = 1− α.

In order to solve for m, we then standardized X̄ ∼ N(µ, σ2/n):

P

(
− m

σ/
√
n
<
X̄ − µ
σ/
√
n
<

m

σ/
√
n

)
= 1− α.
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When σ is unknown, we can use its estimator S in place of σ: Dividing all
sides of the inequalities in the equation

P (−m < X̄ − µ < m) = 1− α.

by S/
√
n gives that

P

(
− m

S/
√
n
<
X̄ − µ
S/
√
n
<

m

S/
√
n

)
= 1− α

To determinem, we need to know the distribution of the middle quantity. It
turns out that it follows a t distribution with n−1 degrees of freedom:

X̄ − µ
S/
√
n
∼ t(n− 1) = tn−1.
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Student’s t distributions
Def 0.3. The t distribution with ν degrees of freedom is a continuous
distribution whose pdf has the following form

f(x) =
Γ(ν+1

2 )
√
νπ Γ(ν2 )

(
1 + x2

ν

)− ν+1
2

, −∞ < x <∞.

Properties:
(1) The graphs are also symmetric,
unimodal and bell-shaped.
(2) E(X) = 0.
(3) Var(X) = ν

ν−2 (when ν > 2).
(4) t(ν)→ N(0, 1) as ν → +∞.
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Confidence interval for µ (when σ unknown)

Theorem 0.2. A 1 − α confidence
interval for µ in the case of a normal
population

X1, . . . , Xn
iid∼ N(µ, σ2),

where σ is unknown, is

x̄± tα/2,n−1
s√
n
.

Remark. Compare with:

x̄± zα/2
σ√
n

(when σ known).
(Use the t table to find the t critical
value tα/2,n−1)
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Example 0.4. In the brown egg example, we selected a sample of 12 eggs
(in a carton) and obtained that x̄ = 65.5 and s2 = 4.69. Assuming normal
population (with unknown variance), we obtain a 95% confidence interval

x̄±tα/2,n−1
s√
n

= 65.5±t0.025,11

√
4.69√
12

= 65.5±2.201
√

4.69
12 = 65.5±1.4.

Remark. Previously, when σ = 2 was used, we obtained the following 95%
confidence interval

x̄± zα/2
σ√
n

= 65.5± 1.96 · 2√
12

= 65.5± 1.1,

which is shorter. Why?
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Confidence interval for σ2

Assume the same setting of a random sample from a normal population:

X1, . . . , Xn
iid∼ N(µ, σ2),

where neither µ nor σ2 is known.

We already know that

S2 = 1
n− 1

n∑
i=1

(Xi − X̄)2

is an (unbiased) estimator for σ2.

We can further use S2 to construct a 1− α confidence interval for σ2.
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Confidence intervals

Theorem 0.3. A 1− α confidence interval for σ2 in the case of a normal
population X1, . . . , Xn

iid∼ N(µ, σ2) is(
(n− 1)s2

χ2
α/2, n−1

,
(n− 1)s2

χ2
1−α/2, n−1

)

where χ2
α/2, n−1, χ

2
1−α/2, n−1 denote the critical values associated to the

chi-square distribution with n− 1 degrees of freedom:

For any X ∼ χ2(n− 1),

P (X > χ2
α/2, n−1) = α/2

P (X > χ2
1−α/2, n−1) = 1− α/2.
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In the brown egg example, suppose we did not know the true value of σ2.
Let us find a 95% confidence interval for σ2 based on the specific sample
we have been using: n = 12, s2 = 4.69.

We need to find the two χ2 critical values (by using table):

• χ2
α/2, n−1 = χ2

.025, 11 = 21.92;

• χ2
1−α/2, n−1 = χ2

.975, 11 = 3.82.

Therefore, a 95% confidence interval for σ2 is(
(n− 1)s2

χ2
α/2, n−1

,
(n− 1)s2

χ2
1−α/2, n−1

)
=
(11 · 4.69

21.92 ,
11 · 4.69

3.82

)
= (2.35, 13.51).
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One-sided confidence intervals
Sometimes there is a need for only one-sided confidence intervals:

• Lower confidence bound

1− α = P (µ > X̄ −m)
b µ

X̄

(

X̄ −m

• Upper confidence bound

1− α = P (µ < X̄ +m)
b µ

X̄

)

X̄ +m
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Confidence intervals

Theorem 0.4. Assuming a random sample X1, . . . , Xn
iid∼ N(µ, σ2) with

unknown µ but known σ2. Then

• A 1− α lower confidence bound for µ is

µ > x̄− zα
σ√
n

• A 1− α upper confidence bound for µ is

µ < x̄+ zα
σ√
n

Remark. For each confidence bound, m = zα
σ√
n
.
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Proof. We derive only the lower confidence bound (the other part is
similar). Rewrite 1− α = P (µ > X̄ −m) as

1− α = P (X̄ − µ < m)

Standardize X̄ to have

1− α = P

(
X̄ − µ
σ/
√
n
<

m

σ/
√
n

)

Since X̄−µ
σ/
√
n
∼ N(0, 1), we obtain that

m

σ/
√
n

= zα −→ m = zα
σ√
n
.

Consequently, a 1− α lower confidence bound for µ is X̄ − zα σ√
n
.
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Confidence intervals

Example 0.5. In the brown egg example (where x̄ = 65.5, σ = 2), a 95%
upper confidence bound for µ is

µ < x̄+ zα
σ√
n

= 65.5 + z.05
2√
12

= 65.5 + 1.645 2√
12

= 66.45.

Similarly, a 95% lower confidence bound for µ is

µ > x̄− zα
σ√
n

= 65.5− 1.645 2√
12

= 64.55.

b| |

65.564.4 66.6

bc
64.55
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Confidence intervals

Remark. When σ is unknown, the one-sided confidence intervals for µ can
be obtained by using the t distribution instead:

• A 1− α lower confidence bound for µ is

µ > x̄− tα,n−1
s√
n

• A 1− α upper confidence bound for µ is

µ < x̄+ tα,n−1
s√
n
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Similarly, the one-sided confidence intervals for σ2 are

• A 1− α lower confidence bound for σ2 is

σ2 >
(n− 1)s2

χ2
α, n−1

• A 1− α upper confidence bound for σ2 is

0 < σ2 <
(n− 1)s2

χ2
1−α, n−1
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Summary

Assume a random sample from a distribution, X1, . . . , Xn
iid∼ f(x), with

an unknown parameter θ.

• Basic concepts

– Interval estimator: a random interval of the form θ̂ ±m =
(θ̂ −m, θ̂ +m), where m is called the margin of error.

– A desired property of an interval estimator is the high coverage
probability :

P (θ̂ −m < θ < θ̂ +m) = 1− α
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Confidence intervals

– For any specific sample, the corresponding specific interval is
called a confidence interval for θ (at level 1− α).

• Important results

– For a normal population N(µ, σ2) with known µ but known
σ2, a 1− α confidence interval for µ is

x̄± zα/2
σ√
n

Pay attention to how the margin of error m = zα/2
σ√
n
depends

on the sample size n and confidence level 1− α.
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Confidence intervals

– For a normal population N(µ, σ2) with both µ, σ2 unknown, a
1− α confidence interval for µ is

x̄± tα/2, n−1
s√
n

In this case, a 1− α confidence interval for σ2 is(
(n− 1)s2

χ2
α/2, n−1

,
(n− 1)s2

χ2
1−α/2, n−1

)
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