San José State University Math 161A: Applied Probability & Statistics I

Interval Estimation

Prof. Guangliang Chen

Sec 7.1: Basic properties of confidence intervals

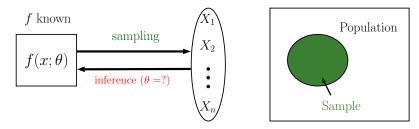
Sec 7.3: Intervals based on a normal population distribution

Sec 7.4 Confidence intervals for the variance of a normal population

Introduction

Last time we started considering the new setting in which we only know the distribution type, but not the values of its parameters.

The new goal is to use a random sample to infer about the unknown population parameter. This is called **statistical inference**.



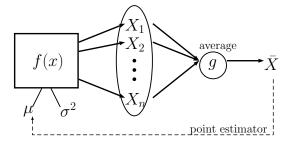
Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 3/37

We also mentioned three different kinds of inference tasks

✓ **Point estimation**: What is a single (best) guess of the value of θ ?

- Interval estimation: Can you find an interval to capture the value of *θ*?
- Hypothesis testing: It is claimed that $\theta = \theta_0$ (θ_0 represents a specific number). How do you test the hypothesis based on a random sample from the population?

Recall that mathematically, a **point estimator** $\hat{\theta}$ of θ is a (reasonable) statistic used to estimate θ .



For any specific realization of the random sample, the corresponding value of $\hat{\theta}$ is called a point estimate of θ .

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 5/37

Limitations with point estimation:

your guess

• Point estimates are rarely exactly correct (even when point estimators that are unbiased and have least variance are used).

For example, for a random sample from the $N(\mu, \sigma^2)$ population, the point estimator \bar{X} of μ is a MVUE. For any small $\epsilon > 0$, the probability that \bar{X} is within a distance of ϵ from μ is

$$P(\mu - \epsilon < \bar{X} < \mu + \epsilon) \approx 2\epsilon f(\mu).$$

• Point estimates provide no error information.

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 6/37

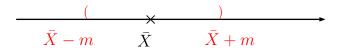
Question: Can we make the "coverage probability" much higher than 0? The answer is yes (by using an interval around \bar{X}). One extreme case is

$$P(\mu \in (\bar{X} - \infty, \bar{X} + \infty) = 1)$$

but it is useless.

A more favorable solution is to find a "short" interval with "high" coverage probability:

 $P(\mu \in (\bar{X} - m, \bar{X} + m)) = 1 - \alpha \qquad \text{(for some small } \alpha\text{)}.$



Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 7/37

Rewrite as

$$P(\bar{X} - m < \mu < \bar{X} + m) = 1 - \alpha.$$

In the equation,

- μ : population mean (unknown parameter to be estimated)
- \bar{X} : sample mean (statistic)
- m: half width (fixed scalar, to be found)
- 1α : coverage probability (specified by user)
- $(\bar{X} m, \bar{X} + m)$: interval estimator (random)

Task: Given α , find m.

Theorem 0.1. Assume $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ where μ is unknown, but σ^2 is known. For any given $0 < \alpha < 1$, we have

$$m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$$

Proof. The equation on the preceding slide is equivalent to

$$P(-m < \bar{X} - \mu < m) = 1 - \alpha$$
, or $P\left(-\frac{m}{\sigma/\sqrt{n}} < Z < \frac{m}{\sigma/\sqrt{n}}\right) = 1 - \alpha$.

This implies that

$$\frac{m}{\sigma/\sqrt{n}} = z_{\alpha/2},$$
 and accordingly, $m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}.$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 9/37

Interval estimator

We have just obtained that

$$P\left(\mu \in \left(\bar{X} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)\right) = 1 - \alpha.$$

Def 0.1. We call the interval estimator

$$\left(\bar{X} - z_{\alpha/2}\frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) \equiv \bar{X} \pm z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$$

a $1 - \alpha$ random interval for μ . The quantity $m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ is called the margin of error of the point estimator \bar{X} .

Remark. If
$$\alpha = 0.05$$
 (i.e., $1 - \alpha = 0.95$), then $m = 1.96 \frac{\sigma}{\sqrt{n}}$.

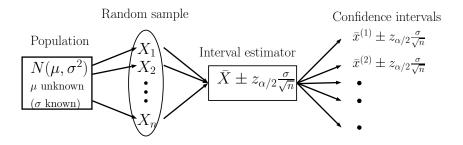
Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 10/37

Confidence interval

Def 0.2. For any specific sample $X_1 = x_1, \ldots, X_n = x_n$ (along with the observed value \bar{x} of \bar{X}), the <u>interval estimate</u>

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

is called a $1 - \alpha$ confidence interval for μ . In this setting, $1 - \alpha$ is called the confidence level.

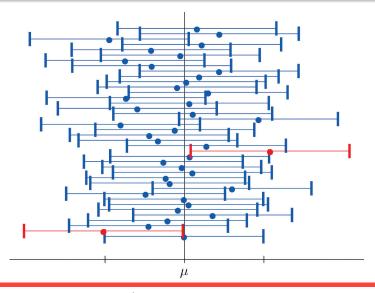


Example 0.1. Recall the brown egg example where $n = 12, \bar{x} = 65.5$ and $\sigma = 2$, a 95% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.1 = (64.4, 66.6).$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 12/37

Confidence intervals



Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 13/37

Interpretations of confidence intervals

We can say that

- (64.4, 66.6) is a 95% confidence interval for $\mu,$ or
- We are 95% confident that the true μ is contained by this interval (i.e., between 64.4 and 66.6 grams).

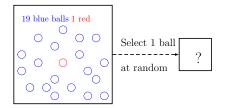
We cannot say that

• The probability that μ is contained by this interval is 0.95,

as both μ and this interval are fixed and there is only one truth: "contain" or "not contain". We just do not know which one is true (when μ is un-known).

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 14/37

Confidence is not probability!



- Probability describes the chance of selecting a blue ball <u>before</u> you actually do it (or if you do it many times)
- Confidence is, <u>after</u> you selected one ball, how certain you believe the ball you got is blue (without looking at it).

Relationship between m and n,α

(*m*: margin of error, *n*: sample size, $1 - \alpha$: confidence level)

$$m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

- The larger the sample size n, the smaller the margin of error m (the shorter the confidence interval);
- The larger the confidence level 1α , the bigger the margin of error m (the wider the confidence interval).

Example 0.2 (Continuation of the brown egg example). For another sample from the same population with the same mean $\bar{x} = 65.5$ but a larger size n = 48, a 95% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{48}} = 65.5 \pm 0.55$$

How large should the sample size be in order for the margin of error to be 0.2 (at level 95%)?

$$n = \left(z_{\alpha/2}\frac{\sigma}{m}\right)^2 = \left(1.96 \cdot \frac{2}{0.2}\right)^2 = 384.2.$$

The smallest sample size thus is 385.

Example 0.3 (Continuation of the brown egg example). Using the same sample, a 99% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 2.576 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.5 = (64.0, 67.0),$$

and a 90% confidence interval is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.645 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 0.95$$

Remark. 99% CI > (longer than) 95% CI > 90% CI

What if we do not know σ ?

Assuming a normal population $N(\mu, \sigma^2)$, with both μ, σ^2 unknown, we can still construct a $1 - \alpha$ confidence intervals for

(1) μ

(2) σ²

We present the details next.

Confidence interval for μ (when σ is unknown)

Recall when σ was assumed to be known, to derive a $1-\alpha$ confidence interval for $\mu,$ we started with

$$P(\bar{X} - m < \mu < \bar{X} + m) = 1 - \alpha$$

and got (after rearranging terms)

$$P(-m < \bar{X} - \mu < m) = 1 - \alpha.$$

In order to solve for m, we then standardized $\bar{X} \sim N(\mu, \sigma^2/n)$:

$$P\left(-\frac{m}{\sigma/\sqrt{n}} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < \frac{m}{\sigma/\sqrt{n}}\right) = 1 - \alpha.$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 20/37

When σ is unknown, we can use its estimator S in place of σ : Dividing all sides of the inequalities in the equation

$$P(-m < \bar{X} - \mu < m) = 1 - \alpha.$$

by S/\sqrt{n} gives that

$$P\left(-\frac{m}{S/\sqrt{n}} < \frac{\bar{X} - \mu}{S/\sqrt{n}} < \frac{m}{S/\sqrt{n}}\right) = 1 - \alpha$$

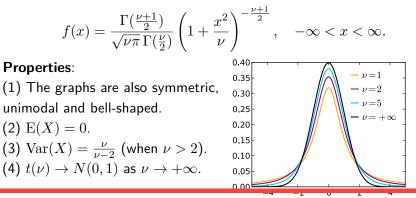
To determine m, we need to know the distribution of the middle quantity. It turns out that it follows a t distribution with n-1 degrees of freedom:

$$\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t(n-1) = t_{n-1}.$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 21/37

Student's t distributions

Def 0.3. The *t* distribution with ν degrees of freedom is a continuous distribution whose pdf has the following form



Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 22/37

Confidence intervals

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 23/37

Confidence interval for μ (when σ unknown)

Theorem 0.2. A $1 - \alpha$ confidence interval for μ in the case of a normal population

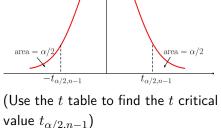
$$X_1,\ldots,X_n \stackrel{iid}{\sim} N(\mu,\sigma^2),$$

where σ is unknown, is

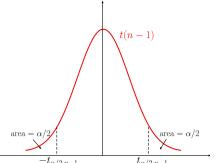
$$\bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}.$$

Remark. Compare with:

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$
 (when σ known).



Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 24/37



Example 0.4. In the brown egg example, we selected a sample of 12 eggs (in a carton) and obtained that $\bar{x} = 65.5$ and $s^2 = 4.69$. Assuming normal population (with unknown variance), we obtain a 95% confidence interval

$$\bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}} = 65.5 \pm t_{0.025, 11} \frac{\sqrt{4.69}}{\sqrt{12}} = 65.5 \pm 2.201 \sqrt{\frac{4.69}{12}} = 65.5 \pm 1.4.$$

Remark. Previously, when $\sigma=2$ was used, we obtained the following 95% confidence interval

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 65.5 \pm 1.96 \cdot \frac{2}{\sqrt{12}} = 65.5 \pm 1.1,$$

which is shorter. Why?

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 25/37

Confidence interval for σ^2

Assume the same setting of a random sample from a normal population:

$$X_1,\ldots,X_n \stackrel{\text{iid}}{\sim} N(\mu,\sigma^2),$$

where neither μ nor σ^2 is known.

We already know that

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

is an (unbiased) estimator for σ^2 .

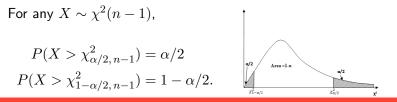
We can further use S^2 to construct a $1-\alpha$ confidence interval for σ^2 .

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 26/37

Theorem 0.3. A $1 - \alpha$ confidence interval for σ^2 in the case of a normal population $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ is

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right)$$

where $\chi^2_{\alpha/2, n-1}$, $\chi^2_{1-\alpha/2, n-1}$ denote the critical values associated to the chi-square distribution with n-1 degrees of freedom:



Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 27/37

In the brown egg example, suppose we did not know the true value of σ^2 . Let us find a 95% confidence interval for σ^2 based on the specific sample we have been using: $n = 12, s^2 = 4.69$.

We need to find the two χ^2 critical values (by using table):

•
$$\chi^2_{\alpha/2, n-1} = \chi^2_{.025, 11} = 21.92;$$

• $\chi^2_{1-\alpha/2, n-1} = \chi^2_{.975, 11} = 3.82.$

Therefore, a 95% confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \ \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right) = \left(\frac{11\cdot 4.69}{21.92}, \ \frac{11\cdot 4.69}{3.82}\right) = (2.35, 13.51).$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 28/37

One-sided confidence intervals

Sometimes there is a need for only one-sided confidence intervals:

• Lower confidence bound

• Upper confidence bound

$$1 - \alpha = P(\mu < \bar{X} + m)$$

$$\vec{X} \qquad \vec{X} + m$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 29/37

Theorem 0.4. Assuming a random sample $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ with unknown μ but known σ^2 . Then

• A $1-\alpha$ lower confidence bound for μ is

$$\mu > \bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

• A $1-\alpha$ upper confidence bound for μ is

$$\mu < \bar{x} + z_\alpha \frac{\sigma}{\sqrt{n}}$$

Remark. For each confidence bound, $m = z_{\alpha} \frac{\sigma}{\sqrt{n}}$.

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 30/37

Confidence intervals

Proof. We derive only the lower confidence bound (the other part is similar). Rewrite $1 - \alpha = P(\mu > \overline{X} - m)$ as

$$1 - \alpha = P(\bar{X} - \mu < m)$$

Standardize \bar{X} to have

$$1 - \alpha = P\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < \frac{m}{\sigma/\sqrt{n}}\right)$$

Since $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$, we obtain that

$$\frac{m}{\sigma/\sqrt{n}} = z_{\alpha} \quad \longrightarrow m = z_{\alpha} \frac{\sigma}{\sqrt{n}}$$

Consequently, a $1 - \alpha$ lower confidence bound for μ is $\overline{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}$.

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 31/37

Example 0.5. In the brown egg example (where $\bar{x} = 65.5, \sigma = 2$), a 95% upper confidence bound for μ is

$$\mu < \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}} = 65.5 + z_{.05} \frac{2}{\sqrt{12}} = 65.5 + 1.645 \frac{2}{\sqrt{12}} = 66.45.$$

Similarly, a 95% lower confidence bound for μ is

$$\mu > \bar{x} - z_{\alpha} \frac{\sigma}{\sqrt{n}} = 65.5 - 1.645 \frac{2}{\sqrt{12}} = 64.55.$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 32/37

Remark. When σ is unknown, the one-sided confidence intervals for μ can be obtained by using the t distribution instead:

- A $1-\alpha$ lower confidence bound for μ is

$$\mu > \bar{x} - t_{\alpha, n-1} \frac{s}{\sqrt{n}}$$

• A $1-\alpha$ upper confidence bound for μ is

$$\mu < \bar{x} + t_{\alpha, n-1} \frac{s}{\sqrt{n}}$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 33/37

Similarly, the one-sided confidence intervals for σ^2 are

• A $1 - \alpha$ lower confidence bound for σ^2 is

$$\sigma^2 > \frac{(n-1)s^2}{\chi^2_{\alpha,n-1}}$$

• A $1 - \alpha$ upper confidence bound for σ^2 is

$$0 < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha,n-1}}$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 34/37

Summary

Assume a random sample from a distribution, $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x)$, with an unknown parameter θ .

- Basic concepts
 - Interval estimator: a random interval of the form $\hat{\theta} \pm m = (\hat{\theta} m, \hat{\theta} + m)$, where m is called the margin of error.
 - A desired property of an interval estimator is the high *coverage* probability:

$$P(\hat{\theta} - m < \theta < \hat{\theta} + m) = 1 - \alpha$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 35/37

- For any specific sample, the corresponding specific interval is called a **confidence interval** for θ (at level 1α).
- Important results
 - For a normal population $N(\mu,\sigma^2)$ with known μ but known σ^2 , a $1-\alpha$ confidence interval for μ is

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Pay attention to how the margin of error $m = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ depends on the sample size n and confidence level $1 - \alpha$.

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 36/37

– For a normal population $N(\mu,\sigma^2)$ with both μ,σ^2 unknown, a $1-\alpha$ confidence interval for μ is

$$\bar{x} \pm t_{\alpha/2, n-1} \frac{s}{\sqrt{n}}$$

In this case, a $1-\alpha$ confidence interval for σ^2 is

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,\,n-1}}, \ \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,\,n-1}}\right)$$

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 37/37