San José State University
 Math 161A: Applied Probability \& Statistics

Expected value and variance

Prof. Guangliang Chen

Section 3.3 expected value and variance

Expected value and variance

Introduction

We have just introduced the probability mass function (pmf) of a discrete random variable X to describe its distribution in terms of

- Range: the set of all possible values that X may take, and
- Frequency: individual probability $P\left(X=x_{i}\right)$ for each x_{i} in range.

Expected value and variance

We next present two ways of summarizing the distribution of X :

- Expected value: center of distribution (also mean value of the random variable over many trials)
- Variance: spread of distribution

Expected value and variance

Expected value

Def 0.1. Let X be a discrete random variable with pmf

x	x_{1}	x_{2}	\cdots
$P(X=x)$	p_{1}	p_{2}	\cdots

The expected value of X is defined as

$$
\mu=\mathrm{E}(X)=\sum_{i} \underbrace{x_{i}}_{\text {value }} \cdot \underbrace{p_{i}}_{\text {prob }}
$$

If the sum is not finite, then we say
 the expected value does not exist.

Expected value and variance

Interpretation: $\mathrm{E}(X)$ represents the mean value of X over a large number of repetitions of the experiment:

- Each value x_{i} in the range of X should occur about $N p_{i}$ times
- The sum of all the x_{i} is about $x_{i} \cdot N p_{i}$ (subtotal)
- The overall sum of all the N values of X is about $\sum x_{i} N p_{i}$

The mean value of X is thus (about) \longleftarrow the larger N, the closer

$$
\frac{1}{N} \sum_{i} x_{i} N p_{i}=\sum_{i} x_{i} p_{i}
$$

Expected value and variance

Example 0.1 (Flip a coin with probability of getting heads equal to p). Let $X=1$ (heads) or 0 (tails). Find $\mathrm{E}(X)$.

Expected value and variance

Example 0.2 (Toss a fair die). Let X denote the number. Find $\mathrm{E}(X)$.

Expected value and variance

Example 0.3. Let X be a random variable with pmf
 $$
f(x)=\frac{1}{x(1+x)}, \quad x=1,2, \ldots
$$

Show that the expectation does not exist.

Expected value and variance

Remark.

- Expectation is only a summary of the distribution (center)
- Expected value is not necessarily achievable by the random variable
- Expectation may be infinite (we say that it does not exist)

Expected value and variance

Some "on average" jokes

A statistician confidently tried to cross a river that was 1 meter deep on average.

He drowned.

Expected value and variance

A mathematician, a physicist and a statistician went hunting for deer.

When they chanced upon one buck lounging about, the mathematician fired first, missing the buck's nose by a few inches.

The physicist then tried his hand, and missed the tail by a wee bit.

The statistician started jumping up and down saying "We got him! We got him!"

Expected value and variance

"Every American should have above average income, and my Administration is going to see they get it." (Bill Clinton on campaign trail)

Expected value and variance

With one foot in a bucket of ice water, and one foot in a bucket of boiling water, you are, on the average, comfortable.

Expected value and variance

Expected value of a function of X

Example 0.4 (Toss a fair die). Let X denote the number. What is $\mathrm{E}\left(X^{2}\right)$? $\mathrm{E}\left(e^{X}\right)$?

Theorem 0.1. Let X be a discrete random variable and $Y=g(X)$ for some function g. Then

$Y=g(X)$	$g\left(x_{1}\right)$	$g\left(x_{2}\right)$	\cdots
X	x_{1}	x_{2}	\cdots
$P(X=x)$	p_{1}	p_{2}	\cdots

$$
\mathrm{E}(Y)=\sum_{i} \underbrace{g\left(x_{i}\right)}_{\text {value }} \cdot \underbrace{p_{i}}_{\text {prob. }}
$$

Properties of expectation

Theorem 0.2. $\mathrm{E}(\cdot)$ is a linear operator, that is

- For any $a, b \in \mathbb{R}$, and a random variable X,

$$
\mathrm{E}(a \cdot X+b)=a \cdot \mathrm{E}(X)+b
$$

In particular, $\mathrm{E}(-X)=-\mathrm{E}(X)$.

- For any two random variables X, Y,

$$
\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)
$$

Expected value and variance

Remark. There are a few equations which you might think are true, but they do not hold true in general:

- $\mathrm{E}(|X|) \neq|\mathrm{E}(X)|$
- $\mathrm{E}\left(X^{2}\right) \neq \mathrm{E}(X)^{2}$
- $\mathrm{E}\left(\frac{1}{X}\right) \neq \frac{1}{\mathrm{E}(X)}$
- $\mathrm{E}\left(e^{X}\right) \neq e^{\mathrm{E}(X)}$
- $\mathrm{E}(X Y) \neq \mathrm{E}(X) \mathrm{E}(Y)$ unless X, Y are independent.
- $\mathrm{E}\left(\frac{X}{Y}\right) \neq \frac{\mathrm{E}(X)}{\mathrm{E}(Y)}$

Expected value and variance

Example 0.5. Find the mean of X which denotes the sum of two tosses of a fair die.

Expected value and variance

A joke

How does a mathematician change five light bulbs simultaneously?

He gives the new light bulbs to five engineers, and have them change five light bulbs at the same time. Problem solved!

Variance and standard deviation

Def 0.2. The variance of a dis-

$$
\text { variance }=\text { ave. squared deviation }
$$ crete X which has expected value $\mu=\mathrm{E}(X)$ is defined as

$$
\operatorname{Var}(X)=\Sigma\left(x_{i}-\mu\right)^{2} p_{i}
$$

$$
\begin{aligned}
\sigma^{2} & =\operatorname{Var}(X) \stackrel{\text { def }}{=} \mathrm{E}\left[(X-\mu)^{2}\right] \\
& =\sum_{i} \underbrace{\left(x_{i}-\mu\right)^{2}}_{\text {squared deviation }} \cdot \underbrace{p_{i}}_{\text {prob }}
\end{aligned}
$$

The square root of the variance is called the standard deviation of X :

$$
\sigma=\operatorname{Std}(X) \stackrel{\text { def }}{=} \sqrt{\operatorname{Var}(X)}
$$

Expected value and variance

A joke on variance, standard deviation, etc.

One day the variance and the standard deviation were engaged in a heated argument over which was the better measure of variability.

The standard deviation shouted at the variance, "You are useless because you don't even relate to the original scale."

The variance glared back and yelled, "Oh yeah! You are totally worthless because you are far too radical."

Expected value and variance

Just then the mean deviation stepped between the two and pushed them both back. In a proud voice the mean deviation proclaimed, "You are both wrong! I am ABSOLUTELY the best measure of variability since both of you would be worth ZERO if you didn't square your deviations!!!"

$$
\mathrm{E}(|X-\mu|)=\sum_{i}\left|x_{i}-\mu\right| p_{i}
$$

Expected value and variance

Theorem 0.3. For any random variable X with $\mu=\mathrm{E}(X)$,

$$
\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

Proof. By direct calculation,
$\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}-2 \mu X+\mu^{2}\right)=\mathrm{E}\left(X^{2}\right)-2 \mu \mathrm{E}(X)+\mu^{2}=\mathrm{E}\left(X^{2}\right)-\mu^{2}$.
Remark. This indicates that $\operatorname{Var}(X)$ can be calculated in three steps:
(1) $\mathrm{E}(X)=\sum x_{i} \cdot p_{i}$
(2) $\mathrm{E}\left(X^{2}\right)=\sum x_{i}^{2} \cdot p_{i}$
(3) $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2}$

Expected value and variance

Example 0.6 (Toss a coin which gives heads with fixed probability p). Let X denote the numerical outcome: 1 (heads) or 0 (tails). Find $\operatorname{Var}(X)$.

Expected value and variance

Example 0.7 (Toss a fair die once). Let X denote the number obtained. Find $\operatorname{Var}(X)$.

Expected value and variance

Properties of variance

Theorem 0.4. For any real numbers a, b, and random variable X,

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

For independent random variables X, Y,

$$
\operatorname{Var}(X+Y) \stackrel{\text { indep. }}{=} \operatorname{Var}(X)+\operatorname{Var}(Y) .
$$

Remark. The first property implies that $\operatorname{Var}(-X)=\operatorname{Var}(X)$.
The second identity does not hold true for two dependent random variables, e.g., $Y=-X$:
$\operatorname{Var}(X+Y)=0, \quad$ but $\operatorname{Var}(X)+\operatorname{Var}(Y)=\operatorname{Var}(X)+\operatorname{Var}(-X)=2 \operatorname{Var}(X)>0$.

Expected value and variance

Remark. In general,

- $\operatorname{Var}(|X|) \neq|\operatorname{Var}(X)|$
- $\operatorname{Var}\left(X^{2}\right) \neq \operatorname{Var}(X)^{2}$
- $\operatorname{Var}\left(\frac{1}{X}\right) \neq \frac{1}{\operatorname{Var}(X)}$
- $\operatorname{Var}\left(e^{X}\right) \neq e^{\operatorname{Var}(X)}$
- $\operatorname{Var}(X Y) \neq \operatorname{Var}(X) \operatorname{Var}(Y)$
- Var $\left(\frac{X}{Y}\right) \neq \frac{\operatorname{Var}(X)}{\operatorname{Var}(Y)}$

Expected value and variance

Example 0.8. Find the variance of X which denotes the sum of two independent tosses of a fair die.

Expected value and variance

Summary

In this lecture we covered the following:

- Expectation of a discrete r.v. X :

$$
\mu=\mathrm{E}(X)=\sum x_{i} f_{X}\left(x_{i}\right)
$$

- Expectation of a function of X :

$$
\mathrm{E}(g(X))=\sum g\left(x_{i}\right) f_{X}\left(x_{i}\right)
$$

Expected value and variance

- Properties of expectation:

$$
\begin{aligned}
\mathrm{E}(a \cdot X+b) & =a \cdot \mathrm{E}(X)+b \\
\mathrm{E}(X+Y) & =\mathrm{E}(X)+\mathrm{E}(Y)
\end{aligned}
$$

- Variance of a discrete r.v. X :

$$
\sigma^{2}=\operatorname{Var}(X)=\mathrm{E}\left[(X-\mu)^{2}\right]=\mathrm{E}\left(X^{2}\right)-\mu^{2}
$$

- Properties of variance:

$$
\begin{aligned}
& \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) \\
& \operatorname{Var}(X+Y) \stackrel{\text { indep. }}{=} \operatorname{Var}(X)+\operatorname{Var}(Y)
\end{aligned}
$$

