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Hypothesis testing

Introduction
Consider the brown egg problem again.

Suppose the weights of the eggs produced at the farm (population) are
normally distributed with unknown mean µ but known standard deviation
σ = 2 g.

It is claimed by the manufacturer that µ = 65 g.

You bought a carton of 12 eggs, with an average weight of 61.5 g.

Question. Is such a discrepancy between sample mean and population
mean purely due to randomness or significant evidence against the claim?
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Hypothesis testing

The formal procedure of hypothesis testing
First, we set up the following hypothesis test:

H0 : µ = 65 vs H1 (or Ha) : µ 6= 65

in which

• H0: null hypothesis (statement which we intend to reject)

• H1: alternative hypothesis (statement we suspect to be true)

The goal is to make a decision, based on a random sample X1, . . . , Xn

from the population, whether or not to reject H0.

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 4/58



Hypothesis testing

There are two kinds of decisions:

• If the sample “strongly” contradicts H0, then we reject H0 and
correspondingly accept H1;

• If the sample “does not strongly” contradict H0, then we fail to
reject H0, or equivalently we retain H0.

Remark. This is essentially a proof by contradiction approach.
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Hypothesis testing

Remark. There is a perfect analogy to courtroom trial. In this scenario,
the following two hypotheses are tested:

• H0: Defendant is innocent;

• Ha: Defendant is guilty.

The prosecutor presents evidence to the court, examined by the jury:

• If the jury thinks the evidence is strong enough (significant), the
defendant will be convicted (H0 is rejected and Ha is then accepted);

• Otherwise, the defendant is not found guilty and will be acquitted
(the prosecutor has thus failed to convict the defendant due to
insufficient evidence).
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Hypothesis testing

Remark. It is also possible to use a one-sided alternative:

H0 : µ = 65 vs Ha : µ < 65.

In this case, the null is understood as “µ is at least 65 (µ ≥ 65)”.

For example, the FDA’s main interest is to know whether the eggs are
lighter than 65 g (on average). It is not an issue if they are actually heavier
(good for customers).

Similarly, for some other consideration, we might want to test

H0 : µ = 65 vs Ha : µ > 65,

where the null is understood as “µ is at most 65 (µ ≤ 65)”.

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 7/58



Hypothesis testing

Test statistic
Typically, a test statistic needs to be specified to assist in making a decision.
It is often a point estimator for the parameter being tested.
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Hypothesis testing

In the brown egg example, we can use X̄ as a test statistic to test
H0 : µ = 65 against

• H1 : µ 6= 65: “very small or large” values of X̄ are evidence against
the null and correspondingly in favor of the alternative hypothesis.

bb
claimobservation

µ
65x̄

observation

x̄
×

• H1 : µ < 65: only “very small” values of X̄ are evidence against the
null and correspondingly in favor of the alternative hypothesis.

b
claimobservation µ

65x̄
×
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Hypothesis testing

Decision rules
Clearly, a rule needs to be specified in order to decide when to reject the
null H0 : µ = 65. This also defines a rejection region for the test.

• For H1 : µ 6= 65:

|x̄− 65| > c

• For H1 : µ < 65:

x̄ < 65− c

• For H1 : µ > 65:

x̄ > 65 + c

b
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Hypothesis testing

Test errors

There are two kinds of test errors depending on whether H0 is true or not.

Decision
Retain H0 Reject H0

H0 true Correct decision Type I error
false Type II error Correct decision

Remark. In the courtroom trial scenario, a type I error is convicting an
innocent person, while a type II error is acquitting a guilty person.
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Hypothesis testing

Calculating the type-I error probability
Example 0.1. In the brown eggs problem, suppose the true population
standard deviation is σ = 2 grams. A person decides to use the following
decision rule (for a sample of size n = 12, i.e., a carton of eggs)

|x̄− 65| > 1 ←− rejection region of the test

to conduct the two-sided test

H0 : µ = 65 vs H1 : µ 6= 65.

What is the probability α of making a type-I error? (Answer: 0.0836)
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Hypothesis testing

(blank slide)
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Hypothesis testing

Example 0.2. (cont’d) Consider two different decision rules:

• |x̄− 65| > 0.5

• |x̄− 65| > 2

for conducting the same two-sided test. Verify that the corresponding
probabilities of making a type-I error are 0.3844, 0.0006, respectively.
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Hypothesis testing

Type-I error probabilities of tests with |x̄− 65| > c as rejection regions:
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Observation: The larger the threshold (c), the smaller the rejection region
(the less often we reject H0), the smaller the type-I error probability.
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Hypothesis testing

Example 0.3. Compute the probability of making a type-I error for the
one-sided test H1 : µ < 65 with each of the following decision rules

• x̄ < 65− 0.5 = 64.5

• x̄ < 65− 1 = 64

• x̄ < 65− 2 = 63

(Answers: 0.1922, 0.0418, 0.0003)
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Hypothesis testing

Type-I error probabilities of tests with x̄ < 65− c as rejection regions:

Similarly, the type-I error probability decreases as the threshold (c) is
increased.
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Hypothesis testing

Too easy, too good?

It seems that by increasing the threshold c (which would shrink the rejection
region), we can make the type-I error probability arbitrarily small.

This seems a bit too easy and too good to be true.

This is indeed true, as far as only type-I error is concerned, but is it perhaps
at the expense of something else?
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Hypothesis testing

How is the type-II error affected?
It turns out that reducing the rejection region will cause the probability of
making a type-II error to increase:

• Making it hard to reject H0 (by using a small rejection region) is
good when H0 is true (this corresponds to type-I errors).

• But it would be bad when H0 is false (we actually want to reject
H0 in this case).

The thing is that we don’t know which hypothesis is true, so we have to
choose a rejection region carefully such that both errors are small.
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Hypothesis testing

Illustration for a one-sided test when H1 is true with µ = 64
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Hypothesis testing
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Hypothesis testing

Calculating the type-II error probabilities
Consider first the one-sided test

H0 : µ = 65 vs H1 : µ < 65.

When H0 : µ = 65 is false (H1 is correspondingly true), µ could be 64, or
63, or any other value contained by H1.

For any fixed test with decision rule x̄ < 65− c (c given), the probability
of making a type-II error depends on the true value of µ:

β(µ) = P (Fail to reject H0 | H0 false) = P (X̄ > 65− c | H1 true)

Thus, there is a separate type-II error probability at each µ in H1.
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Hypothesis testing

Remark.

• 1− β(µ) is the probability of making a correct decision by rejecting
H0 when it is false:

1− β(µ) = P (Reject H0 | H0 false) = P (X̄ < 65− c | H1 true)

• It is called the power of the test (at µ).

• We would like

– the type-II error probability β(µ) for a given µ to be small, and

– the power of the test at the given µ to be large (80% or bigger).
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Hypothesis testing

We demonstrate here how to find β(64), the probability of making a type-II
error when µ = 64, by the following decision rules:

x̄ < 65− c

By definition,

β(64) = P (X̄ > 65− c | µ = 64)

= P

(
X̄ − 64
2/
√

12
>

(65− c)− 64
2/
√

12

∣∣∣∣∣ µ = 64
)

= P (Z >
√

3 (1− c)) = 1− Φ(
√

3(1− c)) =


0.1922, c = 0.5
0.5, c = 1
0.9582, c = 2
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Hypothesis testing

What about other values of c (and
also other values of µ)?

Observations on the type-II errors
(type-I error probability decreases as
c increases):

• For fixed value µ: the larger
c (the smaller the rejection re-
gion, and thus the harder to
reject H0), the larger the type-
II error.

• For fixed test (c): the closer
µ is to the value in H0 (65),
the larger the type II error.
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Hypothesis testing

Type-II error probabilities for two-sided tests can be computed similarly,
but the process is a little harder.

Example 0.4. Consider the two-sided test:

H0 : µ = 65 vs H1 : µ 6= 65

along with the following decision rule:

|x̄− 65| > c.

Find the probability of making a type-II error when µ = 64 for each value
of c = 0.5, 1, 2.

(Answer: β(64) = P (|X̄ − 65| < c | µ = 64) = 0.1875, 0.4997, 0.9582,
which has the same trend as c increases)
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Hypothesis testing
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Hypothesis testing

How to control both errors together
Previously we assumed that both sample size n and test threshold c are
fixed so as to evaluate the type-I and type-II errors of the test

H0 : µ = µ0 vs Ha : µ < µ0 (or µ 6= µ0)

Here we consider the inverse design problem by assuming the two types
of error probabilities are given first:

• type-I error probability α (called level of the test) ←− typically 5%

• type-II error probability β (at a specified value µ′) ←− typically 20%

and then trying to determine the required values of c and n as follows:
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Hypothesis testing

1. For the given level of the test i.e., α, solve

α = P (Reject H0 | H0 true)
= P (X̄ < µ0 − c | µ = µ0)

= P

(
X̄ − µ0
σ/
√
n
< − c

σ/
√
n

∣∣∣∣∣ µ = µ0

)

= P

(
Z < − c

σ/
√
n

)
−→ c

σ/
√
n

= zα

This yields that c = zα
σ√
n
. That is, a level α test for Ha : µ < µ0

(for a fixed sample size n) is

x̄ < µ0 − zα
σ√
n
, or equivalently, x̄− µ0

σ/
√
n
< −zα
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Hypothesis testing

2. For the choice of c = zα
σ√
n
, choose sample size n to achieve type-II

error probability β at an alternative value µ = µ′:

β = P (Fail to reject H0 | H0 false)
= P (X̄ > µ0 − c | µ = µ′)

= P

(
X̄ − µ′

σ/
√
n
>
µ0 − c− µ′

σ/
√
n

∣∣∣∣∣ µ = µ′
)

= P

(
Z > −zα + µ0 − µ′

σ/
√
n

)
This yields that

zβ = −zα + µ0 − µ′

σ/
√
n
, and thus, n =

(
σ(zα + zβ)
µ0 − µ′

)2
.
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Hypothesis testing

Example 0.5. Assume the setting of the brown eggs example (with known
σ = 2, but sample size n TBD). Consider the following one-sided test

H0 : µ = 65 vs Ha : µ < 65

with corresponding decision rule

x̄ < 65− c

Choose n, c so that the test has level 5% and power 80% (at µ = 64).

Answer :

c = zα
σ√
n

= 0.658, n =
(
σ(zα + zβ)
µ0 − µ′

)2
= 25.
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Hypothesis testing

Remark. For a two-sided test such as

H0 : µ = µ0 vs Ha : µ 6= µ0

with corresponding decision rule

|x̄− µ0| > c

the two equations (for determining n, c) become

α = P (Reject H0 | H0 true) = P (|X̄ − µ0| > c | µ = µ0)

β = P (Fail to reject H0 | H0 false) = P (|X̄ − µ0| < c | µ = µ′)
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Hypothesis testing

The first equation has an exact solution

c = zα/2
σ√
n
,

but the second equation only has an approximation solution:

n ≈
(
σ(zα/2 + zβ)
µ0 − µ′

)2

.

The corresponding level α test is

|x̄− µ0| > zα/2
σ√
n
, or equivalently,

∣∣∣∣ x̄− µ0
σ/
√
n

∣∣∣∣ > zα/2
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Hypothesis testing

Example 0.6. Redo the preceding example but instead for a two-sided
test

H0 : µ = 65 vs Ha : µ 6= 65

with decision rule
|x̄− 65| > c

Answer :

c = zα/2
σ√
n

= 0.693, n ≈
(
σ(zα/2 + zβ)
µ0 − µ′

)2

= 32
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Hypothesis testing

Connection to confidence intervals
In the last example, the rejection region of the two-sided test at level α is

|x̄− 65| > zα/2
σ√
n

which is equivalent to

65 /∈ (x̄− zα/2
σ√
n
, x̄+ zα/2

σ√
n

) = x̄± zα/2
σ√
n

(CI)

b

b

b b

b b

65
65 + zα/2

σ√
n

65− zα/2
σ√
n

x̄− zα/2
σ√
n

x̄+ zα/2
σ√
n

x̄

rejection region

confidence interval

·
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Hypothesis testing

That is, we reject the null at level α if and only if the 1− α confidence
interval fails to capture the claimed value 65.

There is a similar connection between one-sided tests and one-sided confi-
dence intervals: We reject the null at level α if and only if 65 is outside
the one-sided confidence interval at level α:

x̄ < 65− zα
σ√
n
⇐⇒ 65 /∈ (−∞, x̄+ zα

σ√
n

)
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Hypothesis testing

One can thus use a 1- or 2-sided 1− α confidence interval to conduct the
corresponding hypothesis test at level α:

• Confidence interval captured µ = 65: Do not reject H0

• Confidence interval failed to capture µ = 65: Reject H0

Note the relationship between and interpretation of:

1− α (confidence level) and α (level of the test).
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Hypothesis testing

Summary
A hypothesis test has the following components:

• Population: e.g., all brown eggs produced by the farm, whose
weights have a normal distribution with unknown mean µ but known
variance σ2

• Null and alternative hypotheses: H0 : µ = µ0 vs Ha : µ 6= µ0;

• Random sample from the population: X1, . . . , Xn
iid∼ N(µ, σ2)

• Test statistic: e.g., X̄

• Decision rule (based on a specified rejection region): |x̄−µ0| > c
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Hypothesis testing

Evaluation of the test:

• Type-I error:

α = P (Reject H0 | H0 true) = P (|X̄ − µ0| > c | µ = µ0)

If α is specified first as the level of the test, then set c = zα/2
σ√
n

(or c = zα
σ√
n
for a one-sided test)

• Type-II errors (at a given µ = µ′)

β = P (Fail to reject H0 | H0 false) = P (|X̄ − µ0| < c | µ = µ′)

To control both errors, we first choose c (dependent on n) to attain level
α, then choose sample size n to achieve power 1− β at µ′:
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Hypothesis testing

When σ2 is known, a level α test for µ is

• H0 : µ = µ0 vs H1 : µ 6= µ0:

Reject H0 if and only if |x̄− µ0| > zα/2
σ√
n

• H0 : µ = µ0 vs H1 : µ < µ0:

Reject H0 if and only if x̄− µ0 < −zα
σ√
n

• H0 : µ = µ0 vs H1 : µ > µ0:

Reject H0 if and only if x̄− µ0 > zα
σ√
n

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 40/58



Hypothesis testing

To achieve a type-II error probability of β at an alternative value µ′, the
required sample size is

• for the two-sided test:

n ≈
(
σ(zα/2 + zβ)
µ0 − µ′

)2

• for both one-sided tests:

n =
(
σ(zα + zβ)
µ0 − µ′

)2
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Hypothesis testing

Limitation of the rejection region approach
The rejection region approach to conducting a hypothesis test at a given
level makes sense, but the decision is discrete (reject or retain the null).

b

65 65 + zα/2
σ√
n

bb

65− zα/2
σ√
n

× × ×

It does not reflect the strength of the evidence against H0 (when rejecting
it) or the closeness to the rejection region (when failing to reject it).

Another way of performing the hypothesis test is to assign a score of
extremeness (relative to the null), called p-value, to any observed value
of the test statistic in a continuous way.
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Hypothesis testing

Logic behind the p-value approach to hypothesis testing

Consider the two-sided test again (in same setting but with a fresh mind):

H0 : µ = 65 vs Ha : µ 6= 65 (or Ha : µ < 65)

We adopt a proof-by-contradiction procedure:

• Assume H0 is true. Then µ = 65 and X̄ ∼ N(65, 22/12).

• Intuitively, most observed values of X̄ should be “around 65”, while
“extreme” values should be rare.

• For every observation x̄ of X̄, we assign an extremeness score,
called p-value (e.g., most extreme 5%):
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Hypothesis testing

pval(x̄) =

left tail area only, for Ha : µ < 65
total area of both tails, for Ha : µ 6= 65
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Hypothesis testing

• If for a specific sample, x̄ is extreme (with small p-value), we have
two possible explanations: bad luck or wrong assumption (H0
does not hold true).

• If “very bad luck” is needed to explain the extreme observation, we
choose to believe instead that the assumption must be wrong, and
consequently H0 should be rejected.

• Thus, very small p-values lead to rejections of the null.

• Apparently, such a decision carries a risk of making a type-I error
(when H0 is actually true).
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Hypothesis testing

The formal definition of p-value

Def 0.1. The p-value of an observed value x̄ of the test statistic X̄ is
the probability of observing x̄, or values that are “more contradictory” to
H0, when assuming H0 is true:

pval(x̄) = P (X̄ is at least as contradictory as x̄ | H0 true)

We will reject H0 if and only if the observed value of ~X corresponding to
a sample is “very extreme”.

Remark. The more extreme the observation, the smaller the p-value, the
stronger the evidence against H0.
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Hypothesis testing

Example 0.7. In the brown eggs example, suppose we observed x̄ = 63.8.

• H1 : µ 6= 65: The more contradictory values are x̄ < 63.8 and
x̄ > 66.2 (mirror point). Thus, for a 2-sided test,

pval(63.8) = 2 · P (X̄ ≤ 63.8 | H0 true)

= 2 · P
(
X̄ − µ
σ/
√
n
≤ 63.8− 65

2/
√

12

∣∣∣∣∣ µ = 65
)

= 2 · P (Z ≤ −2.08) = 2 · .019 = .038

• H1 : µ < 65: The more contradictory values are only x̄ < 63.8. In
this case, the p-value is

pval(63.8) = P (X̄ ≤ 63.8 | H0 true) = .019
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Hypothesis testing
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Hypothesis testing

Significance level
Def 0.2. The cutoff p-value at which we choose to reject the null is called
the significance level of the test. We denote it by α.

Remark. p-values that are smaller than the significance level (α) are said
to be significant and will lead to the rejection of the null:

Reject H0 if and only if p-value ≤ α.

Example 0.8. In the previous example, what is your conclusion if α = 5%?
1%?
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Hypothesis testing

Remark. For a p-value test at sig-
nificance level α, the following three
are the same (i.e., all equal to α):

• significance level

• type-I error probability

• level of the test.

which is because

pval(x̄) < α ↔ |x̄−65| > zα/2
σ√
n
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Hypothesis testing

In theory, the p value is a continuous measure of evidence, but in practice
it is typically trichotomized approximately into

• highly significant (p ≤ 0.01)

• moderately significant (0.01 < p ≤ 0.03)

• marginally significant (p ≈ 0.05), and

• not statistically significant (p > 0.06)
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Hypothesis testing

What does a statistician call it when the heads of 10 rats are cut off and
1 survives?

Non-significant.
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Hypothesis testing

When population variance is also unknown

How do we conduct a hypothesis test for each of the following?

• Population mean µ

• Population variance σ2
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Hypothesis testing

Testing for µ with unknown variance

Recall that in the case of a normal population N(µ, σ2) (with unknown µ
and known σ2), to conduct the two-sided test

H0 : µ = 65 vs H1 : µ 6= 65

at level α, one can use the following decision rule

|x̄− 65| > zα/2
σ√
n
, or equivalently

∣∣∣∣ x̄− 65
σ/
√
n

∣∣∣∣ > zα/2

The test statistic X̄−65
σ/
√
n
is correctly standardized (when H0 is true), which

has a standard normal distribution.

For the above reasons, the above test is called a (two-sided) z-test.
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Hypothesis testing

When σ is unknown, we can use the sample standard deviation S in place
of σ (like the construction of confidence interval), yielding a t-test:∣∣∣∣ x̄− 65

s/
√
n

∣∣∣∣ > tα/2,n−1

Similarly, for a one-sided test like H1 : µ < 65, we can use a one-sided
t-test (when σ is unknown):

x̄− 65
s/
√
n
< −tα,n−1 ←− x̄ < 65− zα

σ√
n

Additionally, when σ is unknown, we can use the t distribution to calculate
the p-value of a specific sample in order to conduct the hypothesis test at
certain level α.
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Hypothesis testing

Example 0.9. Consider the brown egg example again. Conduct the
following test at level 95%

H0 : µ = 65 vs H1 : µ 6= 65

for a specific sample of 12 eggs with x̄ = 64 and s2 = 4.69. Conduct the
test at level α = .05. What is the p-value of the sample?

Solution: Since | x̄−65
s/
√
n
| = 1.6 < tα/2,n−1 = 2.201, we fail to reject the null.

The p-value of the sample is

P

(∣∣∣∣∣X̄ − 65
S/
√
n

∣∣∣∣∣ > 1.6 | µ = 65
)

= 2P (t(11) > 1.6) > 2 · 0.05 = 0.1,

which is not significant at level 5% (and thus leads to the same decision).
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Hypothesis testing

Testing for population variance

For population variance we are often interested in a one-sided test of the
form

H0 : σ2 = σ2
0 vs H1 : σ2 > σ2

0

Following previous reasoning, we write down the following decision rule:

(n− 1)s2

σ2
0

> c

For a given level α, the cutoff c is determined as follows:

α = P

(
(n− 1)s2

σ2
0

> c

∣∣∣∣∣ σ2 = σ2
0

)
−→ c = χ2

α,n−1
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Hypothesis testing

Example 0.10 (Continuation of previous example). Conduct the following
test at level 5%:

H0 : σ2 = 22 vs H1 : σ2 > 22

What is the p-value?

Solution: Since
(n− 1)s2

σ2
0

= 11 · 4.69
22 = 12.9 < χ2

.05,11 = 19.7,

we fail to reject the null. The p-value of the sample is

P

(
(n− 1)S2

22 ≥ 12.9
∣∣∣∣∣ σ2 = 22

)
= P (χ2(11) > 12.9) > 0.25,

which is not significant at level 5% and thus leads to the same conclusion.
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