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Section 6.1 Some general concepts of point estimation



Point Estimation

Scenario change

We have completed the probability portion of the course:

• distributions of discrete random variables (Chapter 3)

• distributions of continuous random variables (Chapter 4)

• joint distributions of two (discrete) random variables (Section 5.1)

• sampling distributions of statistics (Sections 5.3, 5.4)
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Point Estimation

In the previous settings (which were very mathematical), we assumed that
we had full knowledge of the distribution in terms of both the distribution
type and the values of the associated parameters (e.g., Bernoulli(0.5),
Pois(2.2), N(65, 22), Exp( 1

45)).

In practical settings we usually only know the type of the distribution for
the population (or can make a reasonable assumption about the distribution
type), but not the values of its parameters.

In most cases, it is too difficult or expensive to access the whole population
to determine the exact value of a distribution parameter.
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Point Estimation

A more efficient way is to use a sample from the population to infer about
the population parameters. This is called statistical inference.

Population

Sample

f(x; θ)

X1
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Xn
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Point Estimation

For example, in the brown egg problem, we only know (or can assume)
that the weights of all the brown eggs produced at the farm (population)
follow a normal distribution (this is our model).

We will need to determine the values of its parameters µ (mean weight)
and σ2 (variance).

Inference about the population mean µ and the variance σ2 can be made
based on a random sample X1, . . . , Xn from the distribution (e.g., weights
of a carton of eggs selected from the population).
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Point Estimation

We may consider three different kinds of inference tasks:

• Point estimation: What is the single (best) guess of the population
mean µ?

• Interval estimation: In what interval (range) does µ lie “with high
probability”?

• Hypothesis testing: The label says µ = 65 g, but the average
weight of the eggs in a randomly selected carton is only 63.9 g. Is
this a contradiction?
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Point Estimation

For each task, inference will be performed through a statistic:
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Point Estimation

Point estimation
Consider the brown egg example again.

Example 0.1. Suppose the weights of the 12 eggs in a selected carton are

x1 = 63.3, x2 = 63.4, x3 = 64.0, x4 = 63.0, x5 = 70.4, x6 = 65.7,
x7 = 63.7, x8 = 65.8, x9 = 67.5, x10 = 66.4, x11 = 66.8, x12 = 66.0

Obviously, one can use the sample mean x̄ = 65.5 g as a reasonable guess
of the population mean µ.

• We say that x̄ = 65.5 g is a point estimate of µ.

• However, point estimates will likely vary from sample to sample.
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Point Estimation

• In order to study such randomness, we need to consider a random
sample X1, . . . , X12 from the population and examine the associated
statistic:

X̄ = 1
12

12∑
i=1

Xi.

The statistic X̄ is called a point estimator of µ.

• Note that a point estimator is a random variable (also a statistic)
while a point estimate is an observed value of the point estimator
(obtained through a realization of the sampling process).
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Point Estimation

Question. Are there other estimators for µ in the brown egg example and
what are the corresponding point estimates (based on the same sample)?

• Sample median X̃. Point estimate is x̃ = 65.7+65.8
2 = 65.75

• Midpoint of the range M . Point estimate is m = 63.0+70.4
2 = 66.7.

b b b b b

median

×

midpoint

Conclusion: Point estimators of µ are not unique.
−→ Follow-up question: Which one is the best?
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Point Estimation

General definition

More generally, consider a distribution f(x; θ) with known type f but
unknown parameter value θ. For example,

• f is the normal pdf and θ represents µ (assuming σ2 known);

• f is the Poisson pmf and θ is the associated parameter λ;

Def 0.1. A point estimator θ̂ of θ is any (reasonable) statistic that is
used to estimate θ.

For any specific realization of the random sample, the corresponding value
of θ̂ is called a point estimate of θ.
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Point Estimation

Example 0.2. Suppose we draw a random sample X1, . . . , Xn from the
uniform distribution Unif(0, b). Then the sample maximum

0 b
b b b bb

Xmax = max1≤i≤nXi

||

can be used as a point estimator for b.
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Point Estimation

Follow-up question. Is there another statistic that may be used to
estimate the unknown parameter b in the preceding example?
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Point Estimation

New question. Given a random sample X1, . . . , Xn from a population
with unknown variance σ2, what estimators can we use for σ2?

• The sample variance is the most common point estimator:

S2 = 1
n− 1

n∑
i=1

(Xi − X̄)2

• Another possibility is to use

S′2 = 1
n

n∑
i=1

(Xi − X̄)2 = n− 1
n

S2
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Point Estimation

Example 0.3. Given the same sample from before,

x1 = 63.3, x2 = 63.4, x3 = 64.0, x4 = 63.0, x5 = 70.4, x6 = 65.7,
x7 = 63.7, x8 = 65.8, x9 = 67.5, x10 = 66.4, x11 = 66.8, x12 = 66.0

a point estimate of σ2 based on S2 is s2 = 4.72. In contrast, s′2 = 4.32.
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Point Estimation

Evaluation of estimators

The best estimators are unbiased and have least possible variance.

b b bbb bb b bb

b b b b b b b b

b b b b b b
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unbiased estimators biased estimators
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Point Estimation

Def 0.2. A point estimator θ̂ of θ is said to be unbiased if

E(θ̂) = θ.

Otherwise, it is biased and the bias of θ is defined as

B(θ̂) = E(θ̂)− θ.
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Point Estimation

Theorem 0.1. Let X1, . . . , Xn
iid∼ f(x) with E(Xi) = µ and Var(Xi) = σ2

for all 1 ≤ i ≤ n. The statistics X̄, S2 are always unbiased estimators of
µ, σ2 respectively.

Proof. The X̄ part directly follows from a previous sampling result:

E(X̄) = µ.

The variance part can be proved based on the following identity

S2 = 1
n− 1

n∑
i=1

(Xi − X̄)2 = 1
n− 1

[
n∑
i=1

X2
i − nX̄2

]
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Point Estimation

That is,

E(S2) = 1
n− 1

[
n∑
i=1

E(X2
i )− nE(X̄2)

]

= 1
n− 1

[
n∑
i=1

(µ2 + σ2)− n(µ2 + σ2

n
)
]

= 1
n− 1

[
n(µ2 + σ2)− (nµ2 + σ2)

]
= σ2

(In the above we have used the formula E(Y 2) = E(Y )2 + Var(Y ) for any
random variable Y ).
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Point Estimation

Remark. The theorem implies that S′2 is a biased estimator of σ2:

E(S′2) = E(n− 1
n

S2) = n− 1
n

σ2 6= σ2

and the bias is
B(S′2) = E(S′2)− σ2 = − 1

n
σ2.

That is, S′2 tends to underestimate σ2.
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Point Estimation

Remark. Note that µ may represent different parameters for different
populations:

• Normal: X̄ is an unbiased estimator of µ;

• Bernoulli: X̄ is an unbiased estimator of p;

• Poisson: X̄ is an unbiased estimator of λ;

• Uniform(0, b): X̄ is an unbiased estimator of b/2, which implies that
2X̄ is an unbiased estimator of b.
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Point Estimation

Example 0.4. For a random sample of size n from the Unif(0, b) distribu-
tion (where b is unknown), it can be shown that the sample maximum is
a biased estimator of b:

E(Xmax) = n

n+ 1b

with negative bias

B(Xmax) = E(Xmax)− b = n

n+ 1b− b = − 1
n+ 1b

However, n+1
n Xmax is an unbiased estimator of b:

E
(
n+ 1
n

Xmax

)
= n+ 1

n
E (Xmax) = n+ 1

n
· n

n+ 1b = b

(Recall that 2X̄ is another unbiased estimator of b).
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Point Estimation

Between two unbiased estimators (of some parameter), the one with smaller
variance is better.

Def 0.3. The unbiased estimator θ̂∗ of θ that has the smallest variance is
called a minimum variance unbiased estimator (MVUE).

All point estimators of θ

All unbiased ones

b
MVUE

Theorem 0.2. For normal populations, X̄ is a MVUE for µ.
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Point Estimation

Summary
Assume a distribution f(x) with an unknown parameter θ and a random
sample X1, . . . , Xn from this population.

• Basic concepts

– Point estimator: a statistic used to estimate the parameter
θ, denoted as θ̂. The observed value of θ̂ corresponding to a
specific sample is called a point estimate.

– Unbiasedness: θ̂ is unbiased if E(θ̂) = θ. Otherwise, the bias
is B(θ̂) = E(θ̂) − θ. When two estimators θ̂1, θ̂2 are both
unbiased, we prefer the one with smaller variance.
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Point Estimation

– The unbiased estimator θ̂∗ with the smallest variance is called
a minimum variance unbiased estimator (MVUE) for θ.

• Important results

– Sample mean X̄ = 1
n

∑
Xi is always unbiased (as an esti-

mator for population mean µ). For example,

∗ For Normal populations N(µ, σ2), X̄ is unbiased for µ;

∗ For Poisson populations Pois(λ), X̄ is unbiased for λ;

∗ For Uniform distributions Unif(0, θ), X̄ is unbiased for θ
2 ;
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Point Estimation

In the case of a normal population N(µ, σ2), X̄ also has the
smallest variance (among all unbiased estimators) and thus is
a MVUE for µ.

– Sample variance S2 = 1
n−1

∑
(Xi− X̄)2 is always unbiased

(as an estimator for population variance σ2). For example:

∗ For Normal populations N(µ, σ2), S2 is unbiased for σ2;

∗ For Poisson populations Pois(λ), S2 is unbiased for λ;

Note that S′2 = 1
n

∑
(Xi − X̄)2 is always a biased estimator

for σ2; the bias is B(S′2) = − 1
nσ

2.
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