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Probability basics

Introduction
To model a random phenomenon (such as flipping a coin, rolling a die),
we need to specify the following components:

• Sample space

• Events

• Probability

Collectively, they define a probability space.

We’ll go through the above concepts one by one.
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Probability basics

A little bit set terminology and notation:

• A set is an unordered collection of objects: A = {1, 2, 3} = {3, 1, 2},
B = (1, 3) = {x | 1 < x < 3}, C = [0,∞) = {x | x ≥ 0}

• Notation: To indicate an object is in or not in the set: 1 ∈ A, 4 /∈ A

• A subset is a subcollection of the objects: {1} ⊂ A ⊂ C

• The size (cardinality) of a set is the number of objects in it: |A| = 3

• Special sets: ∅ (empty set), N = {1, 2, 3, . . .}, Z = {. . . ,−1, 0, 1, . . .},
R = (−∞,∞)
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Probability basics

Sample space
Def 0.1. The set of all possible outcomes of a random phenomenon is
called the sample space for that experiment.

• We denote a sample space by
S (some books use Ω instead).

• A sample space is typically rep-
resented by a rectangle, and
the outcomes of the sample
space are denoted by points
within the rectangle.

S
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Probability basics

Example 0.1. Write down the sample space of each of the following
experiments:

• Tossing a coin: S = {H, T}.

• Rolling a die: S = {1, 2, 3, 4, 5, 6}.

• Drawing a card from an ordinary deck of 52: S = {All 52 cards}.
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Probability basics

Example 0.2. Write down the sample space of each of the following
experiments:

• Throw a coin twice:

S = {(H, H), (H, T ), (T, H), (T, T )}.

• Roll two dice:

S = {(1, 1), . . . , (1, 6), (2, 1), (2, 2), . . . , (6, 6)} ←− by enumeration
= {(i, j) | 1 ≤ i ≤ 6, 1 ≤ j ≤ 6} ←− by formula

• Throw a coin repeatedly until a head first appears:

S = {H, TH, TTH, TTTH, . . .}
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Probability basics

The sample spaces in the previous example are discrete sets, which are
countable. That is, the number of objects in the set must be

• finite (e.g., {1, 2, . . . , 6}), or

• countably infinite: There is a 1-to-1 correspondence to the set of
natural numbers, N = {1, 2, 3, . . .}.

For example, the set of all integers Z is countable:

In contrast, the set of all real numbers R is uncountable.
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Probability basics

In the following example, the sample spaces are continuous intervals
(which are uncountable).

Example 0.3.

• Life time of a new light bulb. The sample space is an interval
S = (0,∞).

• Waiting time (in minutes) to talk to a customer service representative:
S = (0,∞)

• Throw a dart to a unit disk and measure its distance to center:
S = [0, 1]
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Probability basics

Events
Consider the following probability questions about events:

• (Toss two fair dice) What is the probability of getting a sum of 8?

• (Toss two fair dice) What is the probability of getting two even
numbers?

• (Toss two fair dice) What is the probability of getting two identical
numbers?

• (Toss a fair coin repeatedly until a head first appears) What is
the probability that at most 3 tails are observed?
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Probability basics

Def 0.2. Mathematically, an event is just a subset E of outcomes in the
sample space S.

• In particular, S, ∅ are events.

• We say an event E occurred
if the actual outcome of the
experiment lies in E.

• It is called a simple event if
it contains only one outcome.
Otherwise, it is called a com-
pound event.

S

E
b

F

(Event E occurred, while F did not)
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Probability basics

Example 0.4 (Roll a single die). The sample space is S = {1, 2, 3, 4, 5, 6}.
The following are events:

• A = {1} = {The smallest number} ←− simple event

• B = {6} = {The largest number} ←− simple event

• C = {2, 4, 6} = {An even number} ←− compound event

• D = {1, 3, 5} = {An odd number} ←− compound event

If an outcome of 1 was observed when performing the experiment, then
which of the above events occurred (and which of them did not occur)?
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Probability basics

Example 0.5 (Throw two dice). The sample space is

S = {(1, 1), (1, 2), . . . , (6, 6)} = {(i, j) | 1 ≤ i, j ≤ 6}.

The following are events:

A = {Sum equals 6}
= {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

B = {Two identical numbers}
= {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

C = {Two even numbers}
= {(2, 2), (2, 4), (2, 6), (4, 2), (4, 4), (4, 6), (6, 2), (6, 4), (6, 6)}.
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Probability basics

Example 0.6. Consider the experiment where you repeatedly toss a coin
until you see the first head. The following is an event:

E = {At most 4 tails are obtained}
= {H, TH, TTH, TTTH, TTTTH}
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Probability basics

Event operations

Def 0.3. Let A, B ⊆ S be two events. We define

• Complement Ac: set of all outcomes not in A

• Union A ∪B: set of all outcomes in A or B (or both)

• Intersection A ∩B: set of all outcomes in both A and B

• Difference A−B = A∩Bc: set of all outcomes in A and not in B

They can be represented by the so-called Venn diagrams (see next slide).
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Probability basics

Ac

A ∪B

A−B

A ∩B
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Probability basics

Example 0.7 (Throw two dice). Let

• A = {Sum equals 6}

• B = {Two identical numbers}

• C = {Two even numbers}

Compute |C|, A ∩B, A ∪B, Bc, A− C
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Probability basics

Two useful set laws:

• Distributive law:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

• De Morgan’s Laws

(A ∪B)c = Ac ∩Bc,

(A ∩B)c = Ac ∪Bc
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Probability basics

Disjoint events

Def 0.4. Two events A, B are said
to be disjoint, or mutually exclu-
sive, if their intersection is empty:
A ∩B = ∅.

A sequence of events E1, E2, . . . are
said to be pairwise disjoint, or mu-
tually exclusive, if Ei ∩Ej = ∅ for
all i 6= j.

A B

E1

E2

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 19/39



Probability basics

Example 0.8 (Toss two fair dice). Are the following two events disjoint?

• A = {Sum equals 7}.

• B = {Two identical numbers}.
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Probability basics

Probability

Intuitively, probability is a number P (E) describing the chance of an event
E occurring.

The larger the probability, the more likely for the event to occur.

And it needs to satisfy certain conditions in order to be valid/meaningful.
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Probability basics

Below is the formal definition of probability.

Def 0.5. Probability is a function defined on the space of events that
satisfies the following Kolmogorov Axioms of Probability:

1. P (E) ≥ 0 for any E ⊆ S.

2. P (S) = 1.

3. For any infinite sequence
of pairwise disjoint events
E1, E2, . . .,

P (∪∞
i=1Ei) =

∞∑
i=1

P (Ei).

S

E

| |

0 1P (E)
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Probability basics

Theorem 0.1. The Axioms of Probability imply the following are true:1

• P (∅) = 0.

• If E1, E2, . . . , Ek ⊂ S are pairwise disjoint, then

P
(
∪k

i=1Ei

)
=

k∑
i=1

P (Ei)

• P (Ec) = 1− P (E), from which we obtain that P (E) ≤ 1.

• P (B − A) = P (B) − P (B ∩ A): If A ⊆ B, then it simplifies to
P (B −A) = P (B)− P (A).

1This is why we did not include these properties in the definition of probability.
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Probability basics

Countable sample spaces
The following property implies that, to define the probability function over
a countable sample space, it suffices to specify only the probabilities of
simple events.

Theorem 0.2. If the sample space
S is countable, then for any event
A ⊆ S,

P (A) =
∑
a∈A

P ({a}).

S
b

b b

b

b
b

b
A

b
b
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Probability basics

Example 0.9 (Fair coin model). Let S = {H, T} with P ({H}) =
P ({T}) = .5.

Example 0.10 (Biased coin model). Let S = {H, T} with P ({H}) =
.55, P ({T}) = .45.

Example 0.11 (Fair die model). Let S = {1, 2, . . . , 6} with P ({1}) =
P ({2}) = · · · = P ({6}) = 1

6 . The probability of getting an even number
is

P ({An even number}) = P ({2}) + P ({4}) + P ({6}) = 1
6 + 1

6 + 1
6 = 1

2 .
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Probability basics

Finite sample spaces with equally likely outcomes

Theorem 0.3. If |S| <∞ (i.e., S is
a finite set) and all the outcomes are
equally likely to occur, then for any
event A ⊆ S,

P (A) = |A|
|S|

= # outcomes in A

# outcomes in S
.

S
b

b bb

bb

b
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b

b

b
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b b
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b

b
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b

b

b
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Proof. By the preceding theorem,

P (A) =
∑
a∈A

P ({a}) =
∑
a∈A

1
|S|

= 1
|S|
· |A| = |A|

|S|
.
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Probability basics

Joke: What is a probability to meet a dinosaur?

A: What is a probability to meet a dinosaur on the street?

B: Well, 50x50!

A: How, why???

B: You either meet it or not!

So, i met it!
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Probability basics

Example 0.12 (Throw a fair die). Find the following probabilities:

P ({An even number)}) =

P ({At least 5}) =

P ({Not a 3}) =
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Probability basics

Example 0.13 (Throw two fair dice). Find the following probabilities:

P ({Sum equals 6}) =

P ({Two identical numbers}) =

P ({Both even}) =
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Probability basics

Example 0.14 (Toss a fair coin 5 times). What is the probability of
getting at least one head?
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Probability basics

Inclusive-exclusive formula (2 events)

Theorem 0.4. For any A, B ⊆ S,

P (A∪B) = P (A)+P (B)−P (A∩B).

In particular, if A ∩ B = ∅, then
P (A ∪B) = P (A) + P (B).
Proof. By additivity for mutually
exclusive events,

P (A ∪B) = P (A−B) + P (A ∩B) + P (B −A)
= P (A)− P (A ∩B) + P (A ∩B) + P (B)− P (B ∩A)
= P (A) + P (B)− P (A ∩B)

A
B
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Probability basics

Example 0.15. In a large discrete math class, 55% of the students have
a major in math, and 35% of the class have a major in CS. Among the
two groups of students combined, 5% of them are dual majors (in math
and CS). What is the probability that a randomly selected student from
the class majors in

(a) at least one of math and CS,

(b) one and only one of math and CS,

(c) neither math nor CS?
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Probability basics

(blank slide)
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Probability basics

Inclusive-exclusive formula (3 events)

Theorem 0.5. For any three events
A, B, C ⊆ S, we have

P (A ∪B ∪ C)
= P (A) + P (B) + P (C)
− P (A ∩B)− P (A ∩ C)− P (B ∩ C)
+ P (A ∩B ∩ C).

A

C

B
1

2 2

2
1 1

3
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Probability basics

Example 0.16 (Select an integer from {1, . . . , 100} at random). What
is the probability that it is divisible by at least one of the three prime
numbers 2, 3, 5? (Answer: .74)
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Probability basics

Summary
We first introduced the concept of a probability space associated to a
random phenomenon, which consists of the following:

• Sample space S (set of all possible outcomes)

• Events E ⊆ S (subsets of outcomes, often with a common trait)

• Probability (chance that an event occurs): a mapping from events
to numbers, P : E ⊆ S 7→ P (E) ∈ R, that satisfies the three
Axioms of Probability

1. P (E) ≥ 0 for any E ⊆ S.
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Probability basics

2. P (S) = 1.

3. If an infinite sequence of events E1, E2, . . . are pairwise disjoint,
then

P (∪∞
i=1Ei) =

∞∑
i=1

P (Ei).

The Axioms imply more properties for the probability function:

• P (∅) = 0.

• If E1, E2, . . . , Ek are pairwise disjoint, then

P
(
∪k

i=1Ei

)
=

k∑
i=1

P (Ei)
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Probability basics

• P (Ec) = 1− P (E), from which we obtain that P (E) ≤ 1.

• If A ⊆ B, then P (A) ≤ P (B) ←− This is due to the property
P (B −A) = P (B)− P (A ∩B)

• Inclusive-exclusive formula for any two events A, B ⊆ S:

P (A ∪B) = P (A) + P (B)− P (A ∩B)

• Inclusive-exclusive formula for any three events A, B, C ⊆ S:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)
− P (A ∩B)− P (A ∩ C)− P (B ∩ C)
+ P (A ∩B ∩ C).
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Probability basics

Lastly, there are two special settings:

• If the sample space S is countable, then for any event A ⊆ S,

P (A) =
∑
a∈A

P ({a}).

• If the sample space is finite and all the outcomes are equally likely
to occur, then for any event A ⊆ S,

P (A) = |A|
|S|

= # outcomes in A

# outcomes in S
.
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