San José State University
 Math 161a: Applied Probability \& Statistics

Lecture 4: Random variables

Prof. Guangliang Chen

Section 3.1 Random variables

Section 3.2 Probability distributions for discrete random variables

Random variables and their distributions

Introduction

Consider the following experiments:

- Flip a coin once;
- Flip a coin 5 times;
- Toss two dice;
- Select four numbers from 1:20, without replacement;
- Toss a coin repeatedly until a head first appears.

What are the outcomes of each experiment?

Some likely outcomes of each experiment:

- Flip a coin once; $\longrightarrow \mathrm{H}, \mathrm{T}$
- Flip a coin 5 times; \longrightarrow HHTTH, HHHHT
- Toss two dice; $\longrightarrow(3,1),(5,5),(2,6)$
- Select four numbers from 1:20, without replacement; $\xrightarrow{\text { unordered }}\{6,9,17,2\}$, \{20,7,12,16\}
- Toss a coin repeatedly until a head first appears. $\longrightarrow \mathrm{H}, \mathrm{TTH}$, TTTTTTH

It is often desirable to convert the outcomes to numbers in some way.

Informally, a random variable is a numerical description of the outcomes.
For example,

- Flip a coin once; $\longrightarrow X=1(\mathrm{H}), 0(\mathrm{~T})$
- Flip a coin 5 times; $\longrightarrow X=\#$ heads, $Y=\#$ tails
- Toss two dice; $\longrightarrow X=$ sum, $Y=$ absolute value of difference
- Select four numbers from 1:20 at random, without replacement; \longrightarrow $X=$ maximum of the 4 numbers
- Toss a coin repeatedly until a head first appears. $\longrightarrow X=$ total \#trials needed, $Y=\#$ tails before the first head

Definition of random variables

Def 0.1. A random variable (r.v.) associated to a sample space S is a rule that assigns a real number to each outcome of S :

$$
X: S \mapsto \mathbb{R}
$$

The set of all possible values of X is called its range:

$$
\operatorname{Range}(X)=\{X(s) \mid s \in S\}
$$

Example 0.1. Find the range of the following random variables.

- Flip a coin once; $\longrightarrow X=1$ (H), 0 (T)
- Flip a coin 5 times; $\longrightarrow X=$ \#heads
- Toss two dice; $\longrightarrow X=$ sum, $Y=$ absolute value of difference
- Select four numbers from 1:20 at random, without replacement; \longrightarrow $X=$ maximum of the 4 numbers
- Toss a coin repeatedly until a head first appears. $\longrightarrow X=$ total \#trials needed, $Y=$ \#tails before the first head

Random variables and their distributions

Answers:

- $\{0,1\}$
- $\{0,1,2,3,4,5\}$
- Range $(X)=\{2,3, \ldots, 12\}$, Range $(Y)=\{0,1, \ldots, 5\}$
- $\{4,5, \ldots, 20\}$
- Range $(X)=\{1,2,3, \ldots\}$, Range $(Y)=\{0,1,2, \ldots\}$

Preimages of a random variable are events

Def 0.2. Let $X: S \mapsto \mathbb{R}$ be a random variable. For any $a \in \mathbb{R}$, its preimage is defined as

$$
X^{-1}(a)=\{s \in S \mid X(s)=a\}
$$

Remark. Since $X^{-1}(a) \subseteq S$ is an event, we define

$$
P(X=a)=P\left(X^{-1}(a)\right)
$$

Random variables and their distributions

Example 0.2. Determine the following events:

- Flip a coin once; define $X=1(\mathrm{H}), 0(\mathrm{~T}) . X^{-1}(1)$
- Toss two dice; define $X=$ sum. $X^{-1}(7)$
- Select four numbers from 1:20 at random, without replacement; define $X=$ maximum of the 4 numbers. $X^{-1}(3)$
$X^{-1}(5)$
- Toss a coin repeatedly until a head first appears; define $X=$ total \#trials needed. $X^{-1}(3)$

Random variables and their distributions

Example 0.3. Find the following probabilities:

- Flip a fair coin once; define $X=1(\mathrm{H}), 0(\mathrm{~T}) \cdot P(X=1)=$
- Toss two fair dice; define $X=$ sum. $P(X=7)=$
- Select four numbers from 1:20 at random, without replacement; define $X=$ maximum of the 4 numbers. $P(X=3)=$, $P(X=5)=$
- Toss a fair coin repeatedly and independently until a head first appears; define $X=$ total \#trials needed. $P(X=3)=$

Random variables and their distributions

Example 0.4. Find the following probabilities:

- Toss two fair dice; define $X=$ sum. $P(X \leq 3)=$

$$
P(X \geq 10)=
$$

- Select four numbers from 1:20 at random, without replacement; define $X=$ maximum of the 4 numbers.
$P(X \leq 5)=$
- Toss a fair coin repeatedly until a head first appears; define $X=$ total \#trials needed. $P(X \leq 3)=$

Classification of random variables

Def 0.3. A random variable X is said to be discrete if it takes only a countable number of possible values, i.e., Range (X) is a finite or countably infinite set. Otherwise, it is said to be continuous.

$$
\text { Range }(X)
$$

Discrete
Continuous

Remark. Chapter 3 focuses on discrete random variables.

Example 0.5. Below are some examples of continuous random variables:

- Waiting time for your bus to come,
- Life time of electronic products
- A randomly selected SJSU student's height/weight/temperature
- Throwing a dart toward a board. Let X be the distance to the center, and Y the angle relative to the positive x-axis

Remark. Chapter 4 is about continuous random variables.

Random variables and their distributions

A joke

Two random variables were talking in a bar. They thought they were being discrete but I heard their chatter continuously.

Random variables and their distributions

Distribution of random variables

Informally speaking, the probability distribution of a random variable X refers to both

- the set of values it can take (range), and
- how often it takes those values (frequency).

The distribution of a discrete random variable can be fully characterized by a probability mass function (pmf).

Def 0.4. Let X be a discrete random variable with range $\left\{x_{1}, x_{2}, \ldots\right\}$. The probability mass function (pmf) of X, denoted $f_{X}: \mathbb{R} \rightarrow \mathbb{R}$, is defined as

$$
f_{X}(x)= \begin{cases}P\left(X=x_{i}\right), & \text { if } x=x_{i}, \text { for } i=1,2, \ldots \\ 0, & \text { for all other } x\end{cases}
$$

For example, let X be the numerical outcome of a single toss of a fair coin (0 for tails and 1 for heads). Then its pmf is

$$
f_{X}(x)= \begin{cases}\frac{1}{2}, & \text { if } x=0 \\ \frac{1}{2}, & \text { if } x=1 \\ 0, & \text { for all other } x\end{cases}
$$

Displaying pmf

We may display the distribution of a discrete random variable using either a table or a plot consisting of spikes (line graph).

x	x_{1}	x_{2}	\cdots
$P(X=x)$	p_{1}	p_{2}	\cdots

(Notation: $p_{i}=f_{X}\left(x_{i}\right)$ for all i)

Important reminder:

f_{X} is defined everywhere on \mathbb{R} (it takes the value 0 at locations not indicated in the table or plot).

Random variables and their distributions

Find the pmf of X in each question below and display it in both ways.
Example 0.6 (Roll a fair die once). Let X be the number obtained.

Random variables and their distributions

Example 0.7 (Roll a fair die twice). Let X be the sum of the two numbers obtained.

Properties of a pmf f_{X} :

- It is nonnegative on \mathbb{R} : $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
- It is positive (i.e., $f_{X}(x)>0$) only in a countable number of locations, say x_{1}, x_{2}, \ldots

- The total sum is 1 : $\sum_{i} f_{X}\left(x_{i}\right)=1$.

Conversely, any function satisfying all 3 conditions above is a pmf.

Cumulative distribution function (cdf)

A different way of characterizing the distribution of a random variable is through specifying all the cumulative probabilities.

Def 0.5. The $c d f$ of a r.v. X, denoted $F_{X}: \mathbb{R} \rightarrow \mathbb{R}$, is defined by

$$
F_{X}(x)=P(X \leq x), \quad \forall x \in \mathbb{R}
$$

Remark. The cdf is also defined ev- pmf = "individual contributions"; erywhere on \mathbb{R}.

Random variables and their distributions

The cdf can also be displayed as a table or graph.

cdf table			
x	x_{1}	x_{2}	\cdots
$P(X \leq x)$	p_{1}	$p_{1}+p_{2}$	\cdots

Note that the value of the cdf between two neighboring points is not zero, but determined by the left neighbor.

Random variables and their distributions

Example 0.8 (Roll a fair die once). Let X be the number obtained. Find the cdf of X.

Random variables and their distributions

Properties of a cdf $F(x)$:

- $\lim _{x \rightarrow-\infty} F(x)=0$, $\lim _{x \rightarrow \infty} F(x)=1$.
- $F(x)$ is nondecreasing.
- $F(x)$ is right-continuous.

The converse is also true.

The cdf of a discrete random variable X is a step function.

In next chapter we will see that the cdf of a continuous X is a continuous curve (satisfying the three conditions above).

Random variables and their distributions

Example 0.9. Find the pmf corresponding to the cdf given below.

Random variables and their distributions

Random variables and their distributions

Example 0.10. For the pmf on the previous slide, find

- $P(X<0.2), P(X \leq 0.2), P(X>0.2), P(X \geq 0.2)$
- $P(X \leq 1), P(X<1)$
- $P(0.2<X \leq 1.2)$

Summary

We presented the following concepts:

- Random variables: $X: S \mapsto \mathbb{R}$
- Range of $X:\{X(s) \in \mathbb{R} \mid s \in S\}$
- Classification of X based on its range: discrete (countable range) or continuous (interval range)
- Description of distribution of X by either of the following
- pmf: $f_{X}(x)=P(X=x)$ for any $x \in \mathbb{R}$
- cdf: $F_{X}(x)=P(X \leq x)$ for any $x \in \mathbb{R}$

Random variables and their distributions

- Tabular representation of pmf and cdf:

x	x_{1}	x_{2}	x_{3}	\cdots
$f_{X}(x)$	p_{1}	p_{2}	p_{3}	\cdots
$F_{X}(x)$	p_{1}	$p_{1}+p_{2}$	$p_{1}+p_{2}+p_{3}$	\cdots

- Graphical representations

